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Abstract

Cyclic debugging is the process normally used for examining and removing
bugs in computer systems. For this process, the possibility to deterministi-
cally repeat executions is a requirement - without repeatible experiments, it
is not certain that existing bugs can be located. Thus, in order to debug real-
time systems, which normally do not allow repeatable experiments, additional
methods are needed to provide repeatability. Several solutions based on a
resource demanding record/replay approach have been proposed: By recording
data describing the occurencies of non-deterministic events during a reference
execution, and then using this data to force a consequtive replay excecution
to perform in the same way as the reference, repeatability in experiments is
achieved.

We adhere to the previous work on deterministic replay by Thane et al.
The method assumes that memory resources have limited capacity compared
to the amount of data recorded. This assumption leads to that data available
after the completion of the reference execution does not cover the reference
execution in its entirety, wherefore replay must be started from a state which
is not the initial state of the system. To facilitate this, at predefined locations
in the code, checkpoints are taken of the individual task-states. In order to
reduce the overhead imposed on the system, checkpoints are not required to
be exhaustive, only to cover the parts of the data-space with non-deterministic
properties.

The combination of these factors leads to an environment that requires new
methods for initiating replay - one of the contribution of this thesis is such a
method. By treating each task in the system independently, we show (by means
of an industrial case-study) that a restarted version of the system can be made
to look like the reference execution.

In order to guarantee that a replay execution can always be performed, the
addition of this new method triggers the requirement of new dynamic methods
for managing data during recording. The second contribution of this thesis is
a dynamic memory manager that fills this gap and is also shown to improve
memory utilization in sporadic real-time systems.





Abstract

Cyklisk debuggning är en vanlig process för att debugga datorsystem.
Processen kräver ofta repeterade experiment (därav namnet), vilket endast är
möjligt om exekveringen av systemet är möjligt att reproducera - eftersom att
parallella och/eller realtidssystem normalt inte kan garantera detta krävs en
speciell lösning. Record/replay är en ofta använd sådan, vilken i stort fungerar
som en videobandspelare; genom att först spela in en referensexekvering av
systemet kan denna sedan deterministiskt återskapas om och om igen i en
modell av systemplattformen.

En stor nackdel med denna lösning är att resursåtgången för att spela in
en exekvering är stor - både vad gäller minnes- och tidsåtgång. Tidigare
lösningar har använt checkpoints för att slippa spara inspelningar som sträcker
sig över hela systemets exekveringstid (vilken kan vara dagar, till och med
år). Vi har i detta arbete vidareutvecklat en lösning av Thane et al. vilken
använder icke-kompletta checkpoints för att ytterligare minska minnesåtgån-
gen vid inspelning. Genom att utesluta de deterministiska elementen från
checkpoints så kan resurser sparas. Dock, användandet av sådana checkpoints
leder till ett behov av nya metoder som kan starta exekveringen av systemet i
ett tillstånd som inte är systemets initialtillstånd.

I denna uppsats presenterar vi en sådan metod vilken fungerar genom
att behandla var task (eller process) för sig; genom en case-study utförd i
industrin visar vi att metoden verkligen kan få ett återstartat system att se ut
som referensexekveringen. Det visar sig dock att användandet av metoden
kräver nya dynamiska metoder för att hantera minnesutrymmet allokerat för
data inspelat under referensexekveringen. Utan en sådan metod kan inga
garantier ges för att exekveringen kan återskapas. Vidare krävs av denna metod
att den har en konstant exekveringstid; utan konstant exekveringstid kommer
jittret i systemet att öka vilket leder till att systemet blir mer yttermera svårt att
testa. Vi presenterar även en sådan metod, med konstant exekveringstid, och
visar i en utvärdering att den, förutom att som första metod fylla samtliga av de
uppställda kraven på en sådan metod, även ger ett bättre resultat i sporadiska
realtidssystem än tidigare kända metoder.
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Chapter 1

Introduction

The research described in this thesis1 concerns debugging of real-time systems.
Normally, debugging (orcyclic debugging) is an iterative process (hence
“cyclic”) performed by setting breakpoints and stepping through the system
source code over and over again, inspecting program state as you go. This
approach, however, is not directly applicable to non-deterministic and/or time-
dependent systems (e.g. real-time systems).

With respect to debugging, two things differentiate real-time systems from
those that can be cyclically debugged: Firstly, because of non-deterministic
races and irreproducible input from the surrounding environment, it cannot be
ensured that two consecutive executions will be identical. Secondly, perturbing
the system will alter its behavior (hence, no breakpoints etc. may be used on
the system as-is) - this is known as theprobe effect[4].

The solution that we and many others [1, 5, 11, 19] use is the record/replay
approach to facilitate cyclical debugging. The process consists of two steps:
first, a reference executionof the system is executed and observed, second,
a replay executionis performed based on the observations made during the
reference execution. This consecutive replay execution is repeatable (as long
as the observations made from the replay execution are available), and is
not vulnerable to the probe effect (as the decisions that may be effected are
controlled by the observations made from the reference execution). Thus, the
replay execution can be debugged using conventional methods, and as long as
it can be considered to be a facsimile of the reference execution, debugging the

1You are reading a thesis presented in candidacy for the degree of Technology Licentiate; a
Licentiate is a swedish graduate degree ranked between Master and Doctor.



2 Introduction

replay execution is the same as debugging the reference execution.
The act of observation is referred to asrecordingthe reference execution.

Recording has two sub-activities: First,monitoringthe system, second,logging
monitoring data. Monitoring is performed by insertingprobesinto the system,
in order to extractentrieswith information about the execution. Logging is the
act of saving these entries intorecords, and managing the space available for
that process. In this work, we assume that logging is performed locally; data
is not stored on some offline node with unlimited capacity. As a result of this
assumption, there is a competition between log-entries for storage space. We
therefore require that there is an algorithm that can prioritize over the available
entries so that the most valuable (in some appropriate respect, see Paper C)
entries are kept. Alogging structureis the abstract data type (ADT) responsible
for the online management of storage space, the structure can be compared to
a garbage collection algorithm in the sense that it tries to identify previously
used space to allocate for new data.

Probes can be implemented in software, hardware, or some hybrid. The
difference between solutions can essentially be compared by analyzing the
perturbation on the system incurred by the probes, but there is also (for
example) an economical cost issue. Generally, hardware implementations
have low perturbation, low abstraction level, and high economical cost,
while software implementations have opposite characteristics. If probes are
perturbing the system, they cannot be removed, altered, or added, without
modifying the conditions for the remaining system. If these conditions are
modified, aprobe effectwill be incurred on the system [4], resulting in that
previous system validation efforts are made obsolete. In this work, we assume
that probes are perturbing and implemented in software.

Note that, in the interest of testability, the perturbation incurred on the
system by these probes should be constant with respect to time; the recording
of a given entry should always consume the same resources. Jitter in the probes
will increase the jitter of the application, which will decrease testability [15].

1.1 Problem formulation

In this work, we address the general issue of debugging real-time systems.
This is assumed to be performed with a record/replay solution that can remedy
the inherent problems of cyclically debugging non-deterministic and/or time-
dependent systems. In order to minimize the system perturbation (with
respect to the execution overhead) of the approach, we usememory excluding
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checkpoints[8] (see Section 1.2.3).
More specifically, we are investigating two sub-issues: first, how to use

available space for logging data from the monitoring process, second, how to
start a replay execution from another state than the initial system state when
using memory excluding checkpoints. We show that these issues are related
(Paper B); the algorithm for storing data from the monitoring process can
guarantee that a replay of a system is always feasible. For the first issue, we
present a novel algorithm (Paper E), the successor of which is presented as a
contribution in this thesis (Paper C). For the second issue, we investigate the
system constraints and present a method for how to perform this start-up of the
replay-system (Paper B).

1.2 Related work

With respect to related work in the field of replay debugging of concurrent
programs and real-time systems, most references are quite old. Recent
advancement in the field has been meagre. On the special topic of finding
starting points for replay of real-time systems, no comprehensive studies have
been published hitherto. The only work known to us that has some similarities
[7, 19] is limited to replay of message passing in concurrent software, and
does not cover real-time issues like scheduled preemptions, access to critical
sections, or interrupts. Also, the jitter of these solutions cause the testability to
be compromised.

A more comprehensive study of related works than found in this section is
provided in Paper A.

1.2.1 Replay

On the general topic of replay, much of the previous work published has either
been relying on special hardware [3, 17] or on special compilers generating
dedicated instrumented code [3, 6]. This has limited the applicability of
these solutions on standard hardware and standard real-time operating system
software.

Other approaches do not rely on special compilers or hardware, but lack
in the respect that they can only replay concurrent program execution events
like rendezvous, but not real-time specific events like scheduled preemptions,
asynchronous interrupts or mutual exclusion operations [1, 11, 19].

Xu et al. [18] present their Flight Data Recorder (FDR), an intrusive
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hardware that facilitates debugging of races in multiprocessor systems.
Similair to our work (see Paper F), the intention is to leave the facility in
the deployed system, thereby proividing a powerfull tool for that aid system
maintainance. FDR allows a replay to be started from a state which is not
the initial state of the system, but require complete system checkpoints as
starting point. In order to reduce the system perturbation from checkpointing,
incremental checkpoints are used in the described implementation.

1.2.2 Jitter

A jitter is a difference - for example in the execution time of an algorithm. Say
that the fastest execution of a given implementation on a given hardware isX
time units, and the slowest execution time of the same isY time units. The
jitter of the system is then equal toY −X.

Previously, Puschner [9, 10] has argued for WCET-oriented2 programming,
i.e. for algorithms in real-time systems to be optimized with regard to reduced
jitter rather then reduced average execution time. According to Puschner,
the main motivation for WCET-oriented programming is to make WCET-
estimations more accurate, thus making scheduling easier and more efficient.

This is related to our work on logging structures presented in papers C
and E that present algorithms with constant execution time. The motivations
for a constant execution time differs from our motivation, Puschner argues
that reduced jitter will: make control-algorithms function better, allow tighter
scheduling, increase predictability and maintainability (as the number of
conditional branches is reduced), and facilitate automated WCET-analysis.

1.2.3 Memory excluding checkpoints

A survey presented by Plank et al. [8] presents previous work onmemory
excluding checkpoints. The concept of memory excluding checkpoints is as
follows: as the goal of checkpointing is recreation of a previous system state at
a later point in time, a checkpointing algorithm is only required to log the data
that cannot be deduced by other means.

Plank et al. state that there are two distinct approaches to exclude memory
from checkpoints: To ommit dead memory, or to ommit read-only-memory.
The goal of the first approach is to identify the memory that is no longer needed
by the application (compare to garbage collection), and exclude this memory

2WCET is a common abbreviation for Worst Case Execution Time - in this context meaning
the longest execution time possible
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from the checkpoint. The goal of the second approach is to exclude the data
which has not changed since some known system state (for example another
checkpoint, or the initial state of the system). In our context, primarily read-
only memory exclusion seems as an attractive option as it allows exclusion of
memory that can be recreated by other means.

The challenge that we face is to minimize the size of checkpoints with out
inferring a jitter into the system.

1.2.4 Garbage collection

There is a close familiarity between logging structures and garbage collection
algorithms; both deal with releasing allocated records (or objects) in order to
provide space for more recent data. Differences however, can be found in the
criteria for collection/eviction; logging structures attempt to identify the “least
useable” space, while garbage collection algorithms identify unused space.

1.2.5 Deterministic replay

Our deterministic replay technique, which supports timely replay of non-
deterministic events such as interrupts, preemption of tasks, inputs from
the environment, and distributed transactions, is presented in a number of
publications [12, 13, 14, 16, Paper B, Paper F, Paper G]. The contributions of
our technique include integration of the replay technology into Commercial-
Of-The-Shelf (COTS) an Integrated Development Environment (IDE) (see
Paper G), the use of memory excluding checkpoints as described by Plank et
al. [8] (see Paper B), and the choice of real-time systems as target environment
while using probes implemented in software (see Paper G). Further, as a
validation of the replay technique in general and our instantiation of that
technique in particular, the technique has been shown to work in a large state-
of-practice real-time system that use a COTS operating system (see Paper G).

1.3 Published and preliminary results

During the work, some opportunities for publication have arisen. In this
section, we survey the published and the to-be-published material that has
been authored or co-authored by Joel Huselius. We differentiate between those
publications that are included in the thesis, and those that have been left out.
Generally, publications that have been left out have either seen only little input
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from Joel Huselius, or present very early and unfinished work (such as Paper
E).

1.3.1 Papers included in the thesis

Paper A

Joel Huselius. Debugging Parallel Systems: A State of the Art
Report. MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-63/2002-1-
SE, September 2002, Mälardalen Real-Time Research Centre, Mälardalen
University.

This paper surveys the field of debugging parallel and/or real-time systems
with respect to both state-of-the-art and -practice. It includes a problem
formulation, a listing of constraints on solutions to the problem, descriptions
of previously published scientific solutions, descriptions of products available
on the commercial market today, and a listing of the types of faults that may
occur in computer systems.

Contribution from Joel Huselius: Mr Huselius is the sole author of the
paper.

Paper B

Joel Huselius, Henrik Thane and Daniel Sundmark.Starting Conditions
for Post-Mortem Debugging using Deterministic Replay of Real-Time Systems.
In Proceedings of the15th Euromicro Conference on Real-Time Systems
(ECRTS03), pages 177-184, Oporto, Portugal,2nd - 4th of July 2003.

This paper discuss the issue of starting a replay execution based on a
logging effort with memory excluding checkpoints. The technical contribution
is a method for doing so, and a listing of the system requirements that must be
fulfilled in order for it to work. The proposed method for starting replay has
been integrated into a commercial-of-the-shelf development environment, and
shown to work in an industrial starte-of-practice real-time system (Paper G).

Our method treats each task independently; as checkpoints are not
coordinated between tasks, there is no globally consistent recovery line (see
Paper A). Basicly, in order to start the replay, each task is first restarted
with the same parameters as during the reference execution. After that a task
has reached a pre-defined state (a local starting point), the state of the task
is replaced with one from the log. As all tasks have reached their starting
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points, the replay is commenced. Note that the only items that are required to
be checkpointed are data variables whose values may have been dynamically
altered during the execution. Thus, as some data may be ommitted, the
checkpoints are memory excluding.

During the reference execution, checkpoints and other entries compete
for space, it must therefore be ensured that local starting points are visited
frequently enough during the reference execution so that checkpoints from them
are still available in the log. This can lead to that the developer is forced to
define multiple consecutive starting points in the same task.

One of the conclusions of the paper is that (because of multiple consecutive
starting points), if no mechanism is deployed that can guarantee the
availability of some required log-entries, it is not possible to guarantee the
feasibility of the replay execution.

Contribution from Joel Huselius: Mr Huselius took the initiative to write
the paper, he was the main author, and the coordinator of the effort. The
technical contribution from Mr Huselius concerned the listing of system
requirements posted by the contribution, the new terminology introduced,3 and
the work on multiple consecutive starting points.

Paper C

Joel Huselius and Henrik Thane.Recording for Replay of Sporadic Real-
Time Systems.A version of this paper has been submitted for publication.

In Paper B, we concluded that multiple consecutive starting points may
prevent deterministic replay when using memory excluding checkpoints. As
a solution to this problem, Paper C presents the logging structure ECETES,
which can be compared to a garbage collection algorithm for accumulated
data. The logging structure is an extension to the CETES-algorithm presented
in Paper E. The hypothesis of the paper is that ECETES, in sporadic systems
and/or systems with multiple consecutive starting points, has a more efficient
memory utilization then previous (FIFO) solutions.

The paper presents a comparison criteria for logging structures: The
shortest interval of replay (SIR) is the period under which all tasks of the system
are replayed, we note that it is only effectively possible to find and identify
bugs executed during this interval. By comparing resulting SIR’s for different
logging structures on given system executions, it can thus be determined which

3Reference execution, potential-, global- and local- starting point, eviction scheduler, and
multiple consecutive starting points.
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of several that is the most appropriate logging structure for the given system.
Using the proposed method of comparison and the requirements found

in Paper B, the paper presents an evaluation that support the proposed
hypothesis. The evaluation is performed by means of simulation, and a set of
three different simplistic system architectures are investigated. It is concluded
that ECETES is the most suitable logging structure for sporadic real-time
systems, and that ECETES should be the logging structure of choice for systems
with multiple consecutive starting points.

Contribution from Joel Huselius: Mr Huselius took the initiative to write
the paper, he was the main author, and the coordinator of the effort. The
technical contribution from Mr Huselius concerned the motivation of the
work, the implementation of the ECETES, LFIFO, and the simulator, the new
terminology introduced,4, the presentation of the simulation results, and the
overhead messurements.

1.3.2 Published papers not included in the thesis

Paper D

Joel Huselius, Henrik Thane and Daniel Sundmark.Availability Guarantee
for Deterministic Replay Starting Points in Real-Time Systems.In Proceedings
of the5th International Workshop on Automated and Algorithmic Debugging
(AADEBUG), Work in Progress Session, pages 261-264, Gent, Belgium,8th -
10th of September 2003.

This paper discuss how algorithms such as ECETES can guarantee the
possiblity to perform a correct replay execution. It is to be considered as an
early paper on the same subject as Paper C.

Mr Huselius took the initiative to write the paper, he was the main author,
and the coordinator of the effort. The technical contribution concerned the
motivation of the work and design and implementation of the ECETES.

Paper E

Joel Huselius. Logging without Compromising Testability. MRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-87/2002-1-SE, December 2002,
Mälardalen Real-Time Research Centre, Mälardalen University.

4Shortest interval of replay, incubation period, logging structure, used starting point, and
unneeded records.
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This paper introduce a novel algorithm (the Constant Execution Time
Eviction Scheduler, ECETES) for the activity of handling memory resources
when logging data form a monitoring process. The contraints on the activity
is discussed, and an algorithm that respect these constraints is presented. A
major drawback of the presented solution is the limitation that all entries be
the same size. In order to remedy this drawback, the work described in this
paper evolved into the effort presented in papers C and D.

Contribution from Joel Huselius: Mr Huselius is the sole author of the
paper.

Paper F

Henrik Thane, Daniel Sundmark, Joel Huselius and Anders Pettersson.
Replay Debugging of Real-Time Systems using Time Machines.In Proceedings
of the International Parallel and Distributed Processing Symposium
(IPDPS’03), pages 288-295, presented at the First International Workshop on
Parallel and Distributed Systems: Testing and Debugging (PADTAD03), Nice,
France,22nd - 26th of April 2003.

This paper describes the general techniques behind deterministic replay. It
contains background information for Paper B and Paper G.

Contribution from Joel Huselius: Mr Huselius was engaged in the initial
work, contributing with ideas during discussions. He was also involved in the
writing process.

Paper G

Daniel Sundmark, Henrik Thane, Joel Huselius, Anders Pettersson,
Roger Mellander, Ingemar Reiyer and Mattias Kallvi.Replay Debugging
of Complex Real-Time Systems: Experiences from Two Industrial Case
Studies.In Proceedings of the5th International Workshop on Automated and
Algorithmic Debugging (AADEBUG), pages 211-222, Gent, Belgium,8th -
10th of September 2003. Also available as MRTC Report ISSN 1404-3041
ISRN MDH-MRTC-96/2002-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University.

Experiences from two industrial case studies performed at ABB Robotics
and SAAB Avionics are relayed in this paper. This work first identified the need
for making use of memory excluding checkpoints during recording - a design
choice that require the results presented in paper B.
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Contribution from Joel Huselius: Mr Huselius was engaged in the initial
work, contributing with ideas during discussions. He was also involved in the
initial investigation of the ABB target system and the writing process.

Paper H

Joel Huselius.Source-Code to the ECETES Logging Strategy.Technical
Report, Department of Computer Science and Engineering, Mälardalen
University, August 2003.

The paper provides code to the ECETES implementation described in
Paper C. Also other code used in the evaluation procedure of the ECETES
is found here.

Contribution from Joel Huselius: Mr Huselius is the sole author of the
paper.

1.4 Conclusions

In this thesis, we have been concerned with the process of preparing for replay
of real-time systems. Paper A describes the state-of-the-art in the field of
debugging. During the subsequent work with Paper F, we identified the need
for a thorough description of a working method for how to start a replay-session
from other than the initial state of the system, if memory excluding checkpoints
(see Section 1.2.3) are used. In Paper B, we described such a method, and
the system requirements that our method impose on the system. Among
other things, that work revealed the need for dynamic logging structures that
can guarantee the success of our method. We then presented such a logging
structure in Paper C, by introducing ECETES. In that paper, we also describe
a comparison criteria for logging structures, and present an evaluation that use
that criteria to support our thesis that ECETES outperforms a FIFO solution in
sporadic real-time systems.

In summary, this work has led to that the system requirements of replay
are better known, and that the memory overhead of monitoring for replay is
reduced.
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1.5 Future work

The work presented here has left some leads to interesting work in the area of
logging structures, the following are the leads that will be pursued in our future
work.

The proposed logging structure ECETES will be further developed to
utilize memory resources even better. Specifically, this includes pursuing
the unneeded-marking of redundant records, and improving the selection
technique. Also the validation process used in Paper C will be improved
to give stronger evidence to our thesis. We plan to model a real-world
system to perform the evaluation on, and to evaluate the unneeded-marking,
which requires the verification to acknowledge that entries may individually
have different mappings to records (i.e., 1-2, 1-4, and 1-6 -mappings in the
same system). The work with finding other logging schemes, fundamentally
different in their functionality then ECETES, will also continue.

Furthermore, issues remain in the larger field of debugging:
The taxanomy presented by Dionne et al. [2] will be extended to respect

also temporal correctness and classes of bugs that may be found.
A hindrance to bringing replay technology into the idustry is the large

perturbation caused by the recording effort on the target system, particularly
checkpointing represent a large portion of this overhead. In our previous work
(see papers B and G), we made use of a simple off-line memory exclusion
technique to lighten the overhead of checkpointing; more work will be spent
on developing new, or adapting old [8], techniques that can deliver under
the posted requirements (the same requirements as those posted on logging
structures).

Apart from using memory excluding checkpoints, the perturbation of
logging can also be reduced by considering design and architecture decisions
with respect to debugging. Knowledge about the replay technique and the
memory exclusion algorithm can allow programmers to minimize the size of
the state that must be logged. Knowledge about the way that the replay is
initiated (Paper B) can be used to minimize the number of potential starting
points, and therefore also minimize the overhead caused by using many queues
(see Paper C). During our continued work, we will collect principles, advice,
and guidelines for system design that will lead to a reduced overhead of
recording.
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Abstract

In this State of the art Report (SotA), we will give an introduction to work
presented in the area of debugging large software systems with modern
hardware architectures. We will discuss techniques used for single- and multi-
processor as well as distributed systems. In addition we will provide pointers
to work by large players in the field, and major conferences of importance.

We will discuss the debugging of parallel systems, these include systems
that have complex software or hardware architectures. We will explain why
distributed and multiprocessor systems as well as multitasking and/or real-
time systems must be handled differently during debugging than less complex
systems. As we describe a general method for debugging parallel systems, we
will also see that even other hardware and software architectures and devices
will inflict upon the debugging process.
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2.1 Introduction

To debug sequential software can be considered as fairly straightforward - as
long as each execution is deterministic and repeatable, the cause of an observed
failure can always be found by existing methods.

However, if we consider parallel systems, the multitude of potential
execution orderings increase dramatically from one per combination of input
parameters in the sequential case, to millions or even more in the parallel case
[60]. Some inputs to the system may not be controllable, or even visible,
resulting in seemingly non-deterministic behaviour that cannot be repeated
at command. Further, assuming traditional techniques used for debugging
sequential systems, we can see that they are insufficient for the task of
debugging; even if we sense the presence of a bug by observing a failure of
the system, it is not always given that we can derive the location of the bug that
caused the failure. Information about the location of a bug is required in order
to repair the system successfully.

One of the intentions of this report is to investigate the issues that make
debugging parallel systems so hard. We will describe the generally accepted
method for debugging parallel systems through the use of executionrecording
and executionreplay, and describe the topics that are important to cover in
implementations of the two. In the context of recording, we discuss issues
such as:

1. monitoring, that describes the act of observing the system during runtime

2. logging output from the process of monitoring

3. theprobe effect[9] (see Section 2.4.1) that can lead to unintended system
behavior,

4. the correlation problem (see Section 2.4.1) that must be solved when
recording the execution of distributed systems,

5. and the observability problem 2.4.1 that states that the system must be
open enough to allow monitoring.

In the context of replay the problems, we discuss issues such as:

1. thecompleteness problem(see Section 2.5.2)

2. and thebystander effect(see Section 2.5.1).
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Another intention of the report is to survey the possible errors that may
occur in these systems. These include synchronization errors, race conditions,
and timing related problems that primarily occur in real-time systems.

Furthermore, the report presents a survey of the state of art (work carried
out in the academia) and state of practice (work carried out in the industry)
in the field of debugging parallel systems. As the industry (understandably
enough) is reluctant to make detailed information about their products publicly
available, the focus here will be on state of the art.

Finally, by using the rest of the report as background, we point out areas
for our future research.

2.1.1 Outline

The outline of this report is as follows: Chapter 2.2 provides explanations and
definitions for some fundamental terminology relevant to the rest of the report.
Chapter 2.3 describes the categories of potential errors which may occur in
parallel systems.

Thereafter, the two chapters that follow discuss the two sub-activities in
the widely accepted basic method for debugging parallel systems: Chapter 2.4
discusses how recording can be performed, the problems that are encountered,
and discusses different approaches and tools found in the literature. Chapter 2.5
discuss issues that must be respected when constructing a replay-mechanism,
some different approaches found in the literature are also discussed.

Chapter 2.6 provides some ideas which are intended for our future work,
the issues discussed have arisen during the work on this report. Finally, we
provide a short summary of the report in Chapter 2.7.

2.2 Terminology

In this section we will describe some fundamental issues regarding the
problems that we investigate, and the type of systems that we assume.

In their article “Debugging Concurrent Programs” published in 1989 [30],
McDowell and Helmbold refers to debugging as the process of locating,
analyzing, and correcting suspected faults, the same definition is also found
in the book “Distributed Real-Time Systems: Monitoring Visualization and
Debugging and Analysis” by Tsai et al. [64, s5;p127]. Faults are referred to
as the cause of violations to the system specification [30]. Schütz has similar
opinions in his survey [48]. In this report we will survey the area of debugging
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parallel systems.

2.2.1 Tasks, processes, and threads

There are many names for the threads of control in a computer system, in this
report we shall use the nametask, which is often used in the context of real-
time systems. In other contexts, including some of our sources, the threads of
control are called processes. In many cases, these are more or less the same,
but real-time tasks normally have less complex source code, but more complex
constraints.

Many real-time systems are of a periodic nature, for example sample-
actuating loops, where a task is to be performed with a certain frequency. Note
that two tasks in the same system may very well have different frequencies,
and may be phase-shifted to each other.

Tasks have aperiodicity at which it emittsjobs. A job is the execution
of one iteration of the code of the task. The task constraints are modelled as
deadlines, release times, jitter, etc. In order to model phase-shifting between
tasks, a real-time task has anoffsetthat specifies the earliest point in time from
its release time that a job of the task is allowed to execute. The deadline of
a task is the latest time at which the task is allowed to terminate. Should
a task fail to complete before its specified deadline, its contribution to the
computation cannot be considered usable. The severity of such a failure may
be grave (for hard1 real-time systems), but there are systems (soft2 real-time
systems) which are designed to allow some amount of deadline-misses.

For example, the human task of sleeping should emitt a new job each night.
Hence, the periodicity of sleeping is approximetly 24 hours, the execution
time of sleeping is perhaps averaging on eight hours, even if the worst-case
execution time may be much longer. An alarmclock can be set to indicate the
deadline of the task, a deadline miss would be oversleeping. Further, many
people have arrival-jitter in their sleeping task as they do not fall asleep at the
same time every night. The release time of the task could describe the activity
of trying to fall asleep. Waking up in the middle of the night, having to go to
the privy, would be a context-switch to another task. This multi-tasking will
obviously increase overhead - it takes time to fall asleep again once you have
awoken.

Precedence orders are relations that constitute dependencies between
events. For example, one must put on socks before shoes when dressing. Thus,

1Hard real-time systems: Rockets, airplanes, etc.
2Soft real-time systems: Multimedia streaming, toys, etc.
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socks have precedence over shoes.
Because of these complex constraints it is a non-trivial task to perform the

scheduling of such systems. Thus, scheduling of real-time systems has been an
important research topic for more then two decades, and continue to be so.

Jitter between task instances is a consequence of the cooperative use of
resources between tasks. For example, as the processing power must be shared,
and different tasks may have different periodicities, scheduling of tasks will
differ between jobs.

2.2.2 Faults, errors, and failures

Above, we used a definition to the termfaultspresent in the literature, we will
however comply to a slightly different definition recalled and refined by Thane
[57, s3.2.1.1;p23]:

A failure is the non-performance or inability of the system
or component to perform its intended function for a
specified time under specified environmental conditions [25,
s9.1;p172]. That is, an input,X, to the component,O, yields
an output,O(X), non-compliant with the specification.

An error is a design flaw, or a deviation from a desired or
intended state [25, s9.1;p172]. That is, if we view the
program as a state machine, an error (bug) is an unwanted
state. We can also view an error as a corrupted data state,
caused by the execution of an error (bug) but also due to e.g.,
physical electromagnetic radiation.

A fault is the adjunged (hypothesized) cause for an error [21].
Generally a failure is a fault, but not vice versa, since a fault
does not necessarily lead to a failure.

Or, in other words: A failure of an entity (system, component, function,
etc.) is an observed violation to the specification of the entity. A failure is a
fault in the output, or product, of the entity. An error is an unintended state in
the entity. A fault is the cause of an error, it is the reason for its presence. If
the propagation of the fault is not prevented, the fault will lead to an error.

Therefore, a failure of a programming team to write error-free software
will lead to latent faults in the source code. Execution of these faults may lead
to errors in the system state, which will in turn lead to failures if they are not
prevented from contaminating the output of the system.
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Also, if a component receives an invalid input (as a consequence of a failure
in the supplier of the input), and fails to detect that the input is invalid, that is
a fault. If the fault changes the system state, that is an error. The error leads to
a failure of the component operation if its presence is visible or sensed outside
the component.

There are two ways of avoiding faults in a system [42, s1;p1];fault
avoidance, i.e. to avoid the occurrence of faults in the system, andfault
tolerance, i.e. to provide correct output in spite of the occurrence of faults.

2.2.3 Fault hypothesis

In order to find faults, some assumptions must be made to which faults that can
occur in the system. We will later in this report review the different types of
faults that may potentially exist in parallel systems, but we will in this section
make a small example. In his Ph.D. thesis [57, s3.2.1.3;p27], Thane recalls
that a system has a givenfailure semanticif the probability of that the system
will experience types of failures (orfailure modes) not covered by the failure
semantic is sufficiently low. Further, Thane defines that a givenfault hypothesis
is the assumption that a system will comply to a certain failure semantic.

Byzantine faults [20] describe when faulty components continue to interact
with their environment. They can then issue incorrect answers to questions,
but do so in a fashion that does not alarm the receiver of the answer. The
scenario may also have a “two-face” quality to it; a node that is experiencing
a Byzantine fault may issue different answers to different instances of queries.
Say that a faulty node answers a query about the todays special at the local
restaurant, the correct answer would perhaps be “pancakes”, but the faulty
node may answer “fish”. It is not possible for the requesting node to detect
the incorrectness of the answer without checking the menu itself (or querying
multiple nodes) as the answer lies within the scope of the potentially valid
answers - it is potentially true that fish is on the menu. If we assume that we
may experience Byzantine faults, we can never assume that a provided input
is correct, and must therefore take extreme measures if we want to construct
a system which will behave correctly. It is therefore important to, for a given
system, define a fault hypothesis that is not overly pessimistic in order to keep
the time required for development within acceptable boundaries.
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2.2.4 Nondeterministic programs

Kranzlmüller provides a definition of a nondeterministic program in his Ph.D.
thesis [18, s4.2.4;p89] as follows:

“A program is nondeterministic, if - for a given input - there
may be situations where an arbitrary programming statement is
succeeded by one of two or more follow-up states. This freedom of
choice may be determined by pure chance or unawareness of the
complete state of the execution environment.”

Meaning that if one set of inputs may cause a task to, from one run
to the next, behave differently, then the system is nondeterministic. Note
that, according to this definition, a program is nondeterministic also if the
irregularity of its products is completely depending on factors that are unknown
but not necessarily unpredictable. Thus, a deterministic system can appear to
be nondeterministic just because we lack the knowledge to understand it.

The opposite of a nondeterministic program or system, must clearly be a
deterministic program. In the book “Communication and Concurrency” by
Milner [32, s11.1;p233], the issue of determinism has been formally defined.

2.2.5 Parallel systems

In our definition of parallel systems, we incorporate both systems that are
complex in their hardware architecture, and/or in their software architecture.
Also, parallel systems may be either truly parallel, or concurrent (semi-
parallel), concurrent systems being where a resource (for example a CPU) is
more or less transparently shared in time between two or more tasks.

Hardware

The computing environment may be a distributed system, or a multiprocessor
architecture, complex hardware can be heterogeneous or homogeneous, i.e. the
nodes of the system are not necessarily uniform with respect to their hardware
architecture: instruction sets, operating systems, computation capabilities,
and external resources may differ between nodes. As different nodes in a
distributed system have individually differing temporal propagations, timing
is an interesting factor that may complicate the process of getting a consistent
ordering of the system events; the ordering of events is compromised as no
global time-base exists. Advances in Very Large Scale Integration- (VLSI-)
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technology allow the construction of System-on-Chip (SoC) hardware. SoC-
technology allows designers to place an entire system on one silicon dye,
as this allows (among other things) reduced contact with the slower off-
chip components, performance is increased. However, the reduction of off-
chip information flows limits our visibility of the system - many of the
hardware transactions between on-chip components may seem invisible and
uncontrollable for external hardware [16].

In order to create a greater understanding for our term “complex hardware”,
we will describe issues of the SPARC processor architecture to exemplify
the impact of co-processors and pipelines to the trap handling. We will
focus on exceptions and interrupts, these can be triggered by external devices,
intentionally by use of software code, or unintentionally by incorrect use of
software code.

There are three different formats of floating-point representations in the
SPARC architecture, 32x32-bit single-precision, 32x64-bit double-precision,
and 16x128-bit quad-precision registers. Some of these registers overlap,
meaning that they cannot all be used simultaneously.

Unlike many other instructions, floating-point instructions are
asynchronous. Simultaneously with the dispatching of an instruction,
when the Program Counter (PC) of the Central Processing Unit (CPU)
advances, the instruction is also executed, the results are visible and usable
for subsequent instructions. Such is not the case when using floating-point
instructions, which are queued for execution in the Floating-Point Unit (FPU),
and a new instruction is fetched. Thus, the instruction may not even have
begun its execution when a new instruction is issued. If the floating-point
instruction is followed by a couple of normal instructions, there may be quite a
lot of instructions “in the pipe” at the time when the floating-point instruction
is executed. If the instruction generates an exception, this will affect the rest
of the instructions that have been issued after that the floating-point instruction
was issued. This must be accounted for in the handling of the exception.

According to Weaver and Germand [68], a trap is the action taken by the
processor when it changes the instruction flow in response to the presence of
an exception, interrupt, orTcc instruction.

There are quite a lot of possible traps that may occur. In
a file that has a (version dependent) path similar to the string
/usr/include/v9/sys/machtrap.h , we can find a list of the different
traps possible. This list is machine specific. Note that some interrupts have
allocated a larger space than others, this enables all of the trap routine to be
situated in the trap table entry. Other interrupts must branch to free memory
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if they require more than five instructions, this may imply swapping and cache
operations that will slow down the execution of the trap handler.

Because of the nature of the invocation of traps, SPARC differentiates
between four different categories of traps [68]; Precise, Deferred, Disrupting,
and Reset traps. An instance of a trap belongs to one of these four categories.

Precise Traps Precise traps are results of the execution of a special instruction
whose objective is merely to raise the trap. This may be used in order to
gain access to privileged instructions, in systems-calls or similar.

There are three conditions that must be true in the case of precise traps.

As the trap occurs, many registers including the PC and nPC register are
saved, and execution is commenced at an address that have previously
been defined for the type of trap that occurred. The nPC register points
to the instruction that is to be executed directly after the completion of
the instruction indicated by PC. In the case of precise traps, that saved
PC register must point to the instruction that induced the trap into the
system, and the saved nPC register must point to the instruction that is
(was) to be executed immediately after that.

Furthermore, all instructions issued before the instruction that was the
source of the occurred interrupt must have completed their execution.

Finally, the third condition is that all instructions that were intended
to directly precede the instruction that was the source of the occurred
interrupt must remain un-executed.

Deferred Traps Similar to the precise traps, the deferred traps are also
induced by the execution of instructions, that is, they do not originate
from external events. They may, however, originate from mismatch
between the external environment and the assumptions made by software
(e.g. bus-error). The difference between the two categories is that
deferred traps allow the program state to be changed between the
dispatching and the execution of the instruction (see Section 2.2.5 for
an example).

If a deferred trap and a precise trap occur simultaneously, with the
exception of floating-point exceptions that may be deferred past precise
traps, the deferred trap may not be deferred past the precise trap. The
reason for that floating-point exceptions are a special case may be that
they concern different parts of the CPU compared to those that may infer
precise traps, and therefore one may assume a more relaxed policy in
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these cases. Also, the deferred trap must occur before any subsequent
instruction attempts to use any modified register or resource that the trap
inducing instruction used.

Disrupting Traps A disrupting trap originates from the assertion of an
hardware interrupt, either triggered by external stimulus, or software
execution.

In the case of software originated disrupting traps, these may be deferred.
The difference between deferred traps, and deferred software originated
disrupting traps is that the cause of the latter may lead to irrecoverable
errors.

Reset Traps Reset Traps differ from disrupting traps in that execution of the
running program is not resumed.

As we have seen an example of, modern computer architectures are not
trivial. Therefore will the tasks that are executing on machines that implement
such architectures be harder to debug. In order to fully understand the
execution of a task, every aspect of its execution must be considered.

It can be debated whether if it is really feasible to acknowledge every detail
of the architecture in order to find bugs in a system. Such may not be the
case, but it is very important to keep in mind that every abstraction, every
divergence from the real target, will make the debugging tool more blunt. Thus,
the fault hypothesis (see Section 2.2.3) will direct which divergencies that can
be allowed.

Software

Complex software could be multitasking applications with substantial inter-
communication, note that (similarly with the hardware aspect above) nodes in
a distributed system can also be heterogeneous with respect to their operating
systems and task-sets. In systems that do not use strong synchronization
between tasks, interactions are difficult to understand and predict off-line,
and recreation of a certain execution order is not necessarily feasible as no
information is available off-line that can determine that two executions are
equivalent and it is therefore not possible to determine if the recreation of
an execution has succeeded. Furthermore, the systems can also be composed
by several components that may be commercial-off-the-shelf (also known as
COTS). As the use of COTS limits the developers detailed understanding of the
software functionality and do not allow modification to source code, debugging
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these systems can be quite cumbersome.
Complex systems may also have additional real-time constraints that must

be fulfilled. The system may have as objective to monitor or control an
external process and must therefore comply to rules inherent in the context
of that external process. These constraints are typically modelled as deadlines,
periodicities etc. of individual tasks, or sets of tasks, in the system.

Also, visualizing executions in these types of systems is quite difficult.
As the complexity of the system grows, more information is required in order
to understand what is happening. Reducing that information to a minimum,
displaying it in an easy to use, and easy to understand manner, is an important
task.

Debugging these types of systems described above is still very much
handicraft, and there are not many tools available that assist programmers in
these tasks. Our long-term objective is to remedy both these issues.

In this report we explain general problems in debugging software, and
also explain which other problems that arise when software and hardware
architectures are more complex. We also survey the previous work in the field
of software debugging, both from the academia and the industry, with the focus
on parallel systems.

2.2.6 Debugging parallel systems

In this section we will first describe how sequential programs are normally
debugged, and give an introduction to why making use of this approach without
modifications is unfeasible in real-time systems and many parallel systems.
Thereafter, we provide a brief outline to the basic idea of a how to facilitate
the use of the normal debugging technique also in parallel systems which may
even have real-time constraints.

Cyclic debugging

The normal way of debugging software systems is to repeatedly use for
example a debugger that has facilities like stepping, breakpointing, and
monitoring of individual variables. Also other methods, like printing program
traces to a screen or file, are common. A program can be run repeatedly, in
order for the programmer to narrow down his/her search for the suspected
error. This process is normally referred to asCyclic(al) Debugging[22, 30],
and is an efficient approach for single-node systems that has only one thread
of execution. Under certain circumstances, also concurrent tasks may be
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efficiently debugged this way. Assumptions made are that experiments are
interactive as well as repeatable, and that the programmer can monitor all
relevant program information during program execution. If one or more of
these assumptions are not meet, the approach will not have as good possibility
of success as otherwise, but may be more or less applicable anyway.

The cyclic debugging strategy introduces an overhead to the system during
the debugging activity. In systems where one or more tasks have temporal
restrictions on their execution that will result in abnormal behavior if violated,
this strategy has limited applicability. Also systems that have race conditions
for system resources between system entities will behave in a way that differs
from the normal execution. Examples of where such race conditions may occur
are operating system scheduling and communication.

There is also another problem with cyclic debugging applied to distributed
systems, which is that all nodes must have a coordinated behavior during the
debugging phase [30]. As the program execution encounters a breakpoint, it is
supposed to stop its execution, but this would be impossible to communicate
to the other nodes of the system without any latencies. Therefore, nodes that
would normally not be able to complete a certain workload at a certain time
relative to another node, will be able to do so because the other node is stopped
for an arbitrarily long time. Thus, breakpoints in distributed systems can cause
the system to behave in a way that it would not, if the breakpoint had not been
present.

Recording and execution reproduction

As hinted in the above section, in order to debug real-time- and parallel
systems, we must uncouple the propagation of time from the propagation
of the system that we wish to debug. The literature suggests that this can
be accomplished byrecording (subactivitiesmonitoring and logging) one
execution of the system that is to be debugged to such a level of detail that
we can then replay that particular execution over and over again in some form
of model of the system. What has been accomplished by that process is that
the particular instance of the system can be debugged by means of cyclic
debugging. By iterating the process, we can find and debug as many bugs
as there is time for.

The process of monitoring and logging systems will be discussed in detail
in section 2.4, where we discuss different approaches and provide some
information on related work. We will in the remainder of this report refer to
that execution that is subject to recording as thereference execution. In section
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2.5 we survey different methods for, by using recording output, replaying an
instance of a system. This facsimile of the replay execution is callled thereplay
execution.

We will, later in this report, provide a more thorough survey of the possible
techniques to perform recording and execution replay.

2.3 Errors in parallel systems

Sequential programs can have all the normal programming errors like
unintended handling of pointers and mixing of variables, and also various
syntax errors. These errors can be found during compile time, or by cyclic
debugging or similar. Clarke and McDermid provides a classification of
different software errors that may occur in sequential software [5]:

Control errors are those that force the task through another path than
intended.

Value errors may be the assignment of incorrect values to the correct variable.

Addressing errors assign values to incorrect variables.

Termination errors are in some way related to control errors, but could
concern failure to terminate a loop.

Input errors could be unintended input values from sensors, or erroneous
parameterization.

But also other errors are possible, memory leakage for instance may have
many causes: One is a control error which leads to failure to execute the
free() function when intended, which may lead to loss of memory. Another
is the absence of code, the call to thefree() function may be absent in the
code.

In addition to those errors that occur in sequential programs, the nature of
parallel, distributed, and/or multitasking systems give rise to classes of errors
that are not visible in sequential systems. Kranzlmüller summarizes in [18,
s4.2.3;p87] that deadlocks and livelocks are common classes of errors in these
systems. In addition, also problems related to race conditions in the system are
possible [34, 37]. Thane [57] also states that interleaving related errors, and
precedence violations are possible. Finally, in real-time systems, also timing
errors are possible. We will in this section explain the above mentioned errors.
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The motivation for this chapter is to provide a well motivated understanding
for the inherent complexity of parallel systems. A fully fledged debugging
system must respect at least every issue discussed in this chapter.

2.3.1 Errors of synchronization

In this section, we will discuss three different types of errors, first interleaving
errors, then deadlocks, and finally livelocks. Both livelocks [51, s5.2;p211]
and deadlocks [6] can be considered as known phenomenon’s, but we provide
a short description here.

Interleaving errors

In order to experience livelocks or deadlocks, the system must use some
form of synchronization primitives. The use of such primitives is often well
motivated and the use fills a well needed function, if they are not used to a
sufficient degree the system may experience interleaving errors.

In semi-parallel systems, as tasks compete for execution resources, small
slots of execution time are distributed to those that require it. This distribution
is done in a fashion that does not allow, and should not allow, the individual
tasks to know how its program propagation will be with respect to other tasks.
Therefore, the use of shared resources must be protected by synchronization
primitives, so that mutual exclusion is guaranteed. If this is not performed
correctly, a task that uses a shared resource may, unknowingly, be interrupted
by another task that also makes use of the resource.

Such misuse of resources may lead to many other errors of which two are
data-inconsistency and erroneous pointer referencing.

Deadlock

As we have seen, synchronization primitives are required in parallel systems.
However, the well known system deadlock may be the result of incautious
resource management if there are several shared resources to go about.

Imagine the following chain of events (see Figure 2.1): A taskTA tries to
lock the semaphore of shared resourceS1. TA is then interrupted by taskTB

which locks the semaphore associated with resourceS2 followed by an attempt
to lock the semaphore of resourceS1. TB will then stall, as that semaphore
belongs toTA, thus allowingTA to continue its execution. TaskTA will then
try to lock the semaphore of resourcesS2, but will be blocked because taskTB
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task TA{ task TB{
. . .

sem_lock(S1);

. . .

-

ContextSwitch

. . .

sem_lock(S2);

sem_lock(S1);

�
Context

Switch

. . .

sem_lock(S2);

} }

Figure 2.1: Example of a deadlock.

already owns that semaphore.
Since neitherTA nor TB can continue their execution beyond this point,

this would result in a deadlock betweenTA andTB .
It was stated by Coffman et al. in the 1971 article “System Deadlocks”

[6], that four conditions must be satisfied in order for a system to experience a
deadlock:

Mutual exclusion: Tasks claims exclusive control of the (shared) resources
they require.

Hold and wait: Tasks hold resources already allocated to them while waiting
for additional resources.

No preemption: Resources cannot be forcibly removed from the tasks
holding them until the resources are used to completion.

Circular wait: A circular chain of tasks exists, such that each task holds one
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or more resources that are being requested by the next task in the chain.

The circular wait condition implies that there are probably more then one
process in the system, and probably more then one shared resource. The only
deadlock scenario possible with fewer entities is when one process tries to
acquire a resource which it already owns, and that case can be avoided by the
implementation of the synchronization primitives.

Livelock

Under livelock, in difference to deadlock, a system is locked in an unintended
loop of instructions that do not allow further computations on the intended
task; when the overhead approaches 100% of the utilization. Tasks that suffer
from livelock still performs operations, but the operations have no other than
administrative value and no real work is being performed. Note that the
loop mentioned earlier does not have to be infinite, it may suffice with a
finite number of iterations in order to severely degrade the performance of the
system, or (in the case of real-time systems) even cause the system to fail (see
also Section 2.3.3).

One example of livelock is given in the functionality of Ethernet (IEEE
Std 802.3 [12]). Ethernet uses a Carrier Sense Multiple Access protocol with
Collision Detection (CSMA/CD), it is in the behavior of the protocol when
the network experiences collisions that we find a potential livelock situation.
A collision can occur because the Carrier Sense part of the protocol cannot
sense if two stations commence their transmissions at approximately the same
time. As a collision occurs, all packets that where being transmitted at the
time of the collision are destroyed, thus they will have to be re-sent. However,
there is no mechanism in Ethernet that prevents that all or some nodes will be
involved in a collision also the next time a package is sent, and the next and so
forth. However improbable, this rock-paper-scissors3 procedure give rise to a
livelock, would it ever occur, and it must not go on for ever in order to present a
serious bottleneck in the system. The probability of a livelock in these systems
increase with the number of transmitting nodes in the system, and their rate on
network packet production.

3The author, who is of Swedish origin, notes that this classic child’s play is called “Sten Sax
Påse” in Swedish.
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Prod1b Cons1b Prod2br

-

r
�

Figure 2.2: Example of a message race.

2.3.2 Race conditions

The popular description of a race condition is as follows: when two or more
system entities4 potentially may be competing for resources at some time
during execution, a race condition exists. These conditions may cause the
system to behave very differently from time to time, depending on which
entity that wins the race. This is of course very true, but also another type
of race condition may occur. For example, a race can be found in network
communication, see Figure 2.2. Assuming that we have three nodes that are
interconnected by some packet switched network which also serves several
additional users that do not actively interact in this example, but still utilize
the network resource. As two nodes of the three nodes,Prod1 andProd2,
produces one message each at approximately the same time, it is not possible
off-line to determine which message that will be received first by the consumer
Cons1. Therefore, no assumption regarding the message ordering can be made
in the consumer node in this case. The situation is normally referred to as a
message race.

Netzer and Miller describes race conditions in [37], see also Netzer [34],
where they search for race conditions inprefixes[34, s3.3.1;p21] of a particular

4Entities can be such as tasks, threads, or processes.
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execution. A prefixP ′ to an executionP has the same input asP , and the initial
part of the ordered sequence of events inP ′ does not diverge from that ofP in
other aspect than that it may be a shorter sequence. After that initial sequence,
the event histories may differ.

Prefixes are ordered into different sets, see Figure 2.3 which is reproduced
from Netzer [34, Figure 3.1;p24], arrows are used to represent shared-data
dependencies in the figure. We see that from the original execution seen in
part (1.) in Figure 2.3, which exhibits theactual race(see below), we can
also find other execution orderings that are prefixes of the original execution.
Part (2.) in Figure 2.3 shows an example of a feasible execution with the same
event history as the actual execution, the execution is also a prefix of (1.). Also
part (3.) is a feasible prefix of the original execution, but has an event history
that diverges from the original execution. But part (4.) of the figure shows an
unfeasible prefix, since the execution violates (implicit) dependencies in the
system.

The authors identify two different classes of races: general, and data
races. Where a general race is a situation where entities compete for resources
(causing potentially unintended nondeterminism) in such a form that the
ordering between two events is not guaranteed, there would then be a race
between the two events. Note however, that many applications, or at least
some parts of some applications, require the intentional use of general races.
A data race is a violation to the atomicity of an operation on a shared resource,
and is never intended.

Using the notion of prefixes, each race in a prefix of the original execution
may then beactual, apparent, or feasible. Races are classified according to the
set-classification of the prefix, and their being general or data races.

Thus, a feasible data race is a data race that could really have happened to
one of the feasible prefixes of the execution (in Figure 2.3 (1.)5 or (2.)). Actual
data races exists if and only if there exists at least one data race in the original
execution (in Figure 2.3 (1.)), and it is not, in difference to feasible data races
an NP-hard task to locate them. An apparent data race is a race that seems to
be feasible, but implicit synchronization in the system prevents the occurrence
of the race (in Figure 2.3 (4.)).

In equivalence, apparent and feasible races can also be general. But there
is not an equivalent to the apparent race in the general case as general races are
experienced between program executions, and not within one execution.

Race conditions occur extremely frequently in for example shared memory

5In the case of part (1.) in Figure 2.3, note that an execution can have the same sequence of
events - without being equivalent to the original execution in all other aspects.



34 Paper A: Debugging Parallel Systems: A State of the Art Report

(1.)

S ← 1

A1b
br

-

i ← S

B1b
b
if(S = 1)

Z ← 0

C1b
b

(2.)

S ← 1

A2b
br -

i ← S

B2b
b
if(S = 1)

Z ← 0

C2b
b

(3.)

S ← 1

A3b
b

r

�

i ← S

B3b
b
r

-

if(S = 1)

Z ← 0

C3b
b

(4.)

S ← 1

A4b
b

i ← S

B4b
b
if(S = 1)

Z ← 0

C4b
br

�

Figure 2.3: Data races; (1.) actual execution. (2.) feasible execution.
(3.) feasible execution. (4.) infeasible execution.
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systems, where they potentially occur at each unsynchronized access to shared
variables by two or more different tasks. Considering that one must know the
outcome of each race in order to recreate the system execution, the log of such
races will grow quickly. Based on this observation, Ronsse et al. developed
a method called RECPLAY [43, 45] which uses the ROLT method described
in Section 2.4.5. RECPLAY can detect unwanted race conditions during the
replay of the system execution, and may neglect to record vast amounts of
information about potential races on-line. Confusingly, they use a differing
terminology than that of Netzer and Miller which was described above.

Ronsse et al. differ betweenSynchronization Raceswhich are intentional,
andData Raceswhich are unintentional. This implies that some of the general
races that Netzer and Miller defined, namely the unintended general races, are
data races according to Ronsse et al. In synchronization races, tasks race to
gain access to shared resources, where as data races occur when synchroniza-
tion is insufficient. It is data races that should be located and removed. By
reproducing the execution several times, an identified data race is pinpointed,
and sufficient information is gathered to explicitly identify its source. Of the
three execution reproductions made, the first pass senses the presence of a data
race. Thereafter, a second pass identifies the data address where the data race
occurred. Finally a third pass can identify the issued instructions that cause the
data race by operating on the memory address.

Focusing on data races, the RECPLAY fails to direct other sources of errors
in parallel systems, the method does not direct how to facilitate the replay of a
system when the initial state is lost or there are gaps in the recorded history. It
is therefore not feasible to use the method in systems where memory resources
are small relative to the required up-time of the system.

2.3.3 Real-time errors

In this section we shall review problems that normally arise only in real-time
systems.

Violations to the order of precedence

Precedence orders are relations that constitute dependencies between events.
These can also exist in non-real-time contexts, but as they are a natural
ingredient in practically all real-time systems, they are reviewed in this section.

The orders are typically on the form “EventA must occur before event
B”, where events often are task executions. These precedence orders can be
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quite complex and consist of many different events, they are often referred
to asprecedence graphs. Note that one system may have many independent
precedence graphs.

A��
��

-
B��
�� 6

C��
��� D��

��
�

Figure 2.4: A precedence graph.

As an example of a precedence graph we turn to the manipulation of
external devices. DeviceD is a part of a real-time system which also contains
the tasksA, B, andC. The device is controlled by taskA, which receive orders
from taskB which makes decisions based on information about the device state
sampled by taskC. After that the device has received a command fromC via
A it will take until time td before the command is completed.

Because of the inertia in the system, it is important that the control
decisions fromB are not issued too frequently. A registered deviation from
the expected result cannot be certified untiltd time units after that the last
control command was issued to the device byA.

Thus, there exist a precedence order between the actions taken by the tasks
in the system. No control command may be issued before a valid sensor reading
has been acquired fromC. Thereafter, samples are invalid until the sensor
readings have propagated toB, B has taken appropriate action in the form of
a command,A has transferred that command, andD has reacted to it. The



2.3 Errors in parallel systems 37

precedence graph for the system is displayed in Figure 2.4.

Timing errors

In the context of real-time systems, it is not only required that the functional
aspect of the program is correct, but also that the timing of the system follows
certain rules defined by the system specification. A real-time system has certain
timing constraints, which can be more or less complex. Timing errors may be
caused by other errors, described above, for example a livelock or a deadlock
can force a system to violate its temporal requirements. But there are also
other, more intricate causes that will be described in this section.

Tsai et al. [64, s9.1.1;p192] provide a classification of causes of timing
errors:

Computation Causes If a greedy task requires more resources than has been
granted, other tasks may find themselves with too few resources to
complete their task. For example, this problem can easily arise if
the measured Worst Case Execution Time (WCET) is lower than the
real WCET.6 Best results are achieved by estimating a WCET which
is as tight as possible, but never underestimates the actual WCET. As
the name implies, measured WCET is determined by measurement,
a process which may have poor coverage, this is a very likely cause
of errors. An estimated WCET can also be calculated, a method
that is compromised by the use of multitasking programming, caches,
pipelines, and/or superscalars. Also errors in sequential programs may
cause this type of error, see for example control errors at the beginning
of Section 2.3.

Scheduling CausesRelated to the above cause, errors in the scheduling of
the system may also cause the system to validate its timing. This
problem could arise if the schedulability analysis has not considered all
possible parameters. If it is estimated, say, that an interrupt will occur at
most once each 50 milliseconds. If there, in reality, is 45 milliseconds
between each instance of the interrupt, the system may prove to be un-
schedulable. Note that the WCET of the interrupt, and all other parts of
the system, may still be correct. Also other scheduling related sources
of errors exists, such as the occurrence of jitter in combination with end-
to-end deadline constraints.

6Note that the measured WCET cannot exceed the actual WCET, wherefore a safety margin is
often added to the measured value.
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Synchronization CausesWe have discussed the occurrence of synchroniza-
tion problems in previous sections (see for example deadlocks and
livelocks in Section 2.3.1), and they may of course also cause a real-time
system to violate its temporal restrictions.

Thus, timing errors arise as a consequence of previous errors, some of
which are only considered as errors in real-time systems.

2.4 Recording, monitoring and logging, execution
traces

Recording is an activity with two subactivities,monitoring and logging.
Monitoring, according to McDowell and Helmbold [30], is the process of
gathering information about a program’s execution intoentries. Further,
logging is defined as the process of storingrecordsof the entries to a medium.
By monitoring the execution of a program, and then logging the entries, we
can analyze the execution off-line in some form of model of the platform that
was used, an issue which will be covered in Section 2.5 - the current chapter
will deal with the problem of performing a recording. Implementations ranges
from additional software that is added to the system at some level, to tailored
hardware, to hybrid approaches.

Because recording provides us with detailed information about a systems
execution, detailed enough to recreate the execution, we can apply cyclic
debugging to a recorded system. By recording significant events, whose
occurrences cannot be definitely determined offline, we may alleviate all the
problems of cyclical debugging that where presented in Section 2.2.6.

2.4.1 The probe effect and the correlation problem

There are similarities between the probe effect and the correlation (or observer-
) problem. In this section we explain the two, and point out differences and
similarities. We shall also discuss the observability problem.

The probe effect

The probe effect[9], which is another name forHeisenbergs uncertainty
principle7 when applied to software engineering [24, 30, 50], can become

7They have also been called Heisenbugs [45].
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visible when code is added or removed to a system, when breakpoints are used
to debug the system, or when the system is modified in some other way that
will effect execution times. Modifying the system in any way may alter the
timing in the system. Extra code will require computing- and other resources,
the removal of code will free resources that can be used by tasks that would
have been blocked, and modifications to data may change the program flow.
Differences in the temporal behavior may in turn result in that the modifications
have a different result on the system performance than expected.

It is quite convenient to use real-time systems when exemplifying the probe
effect. Imagine a system of two tasks that compete for execution resources,
where some synchronization problem exists between the two tasks. Say that
the two tasks control an external process, but that one of the tasks occasionally
issues control commands too soon after that the previous task has issued a
command, thus preventing the previous command from effecting the external
process as intended. This would have lead to a failure, and a debugging-effort
is launched.

In order to debug the system, we would like to probe into the state of the
tasks so that we could determine the cause of the problem. However, if we
implement this probe by inserting someauxiliary code(code that does not aid
the progress of the system) that will monitor the system, that code will effect
the system. If we are unlucky, it will do so in a way that the time between the
two control commands is lengthened, thus causing the bug to disappear during
some executions which may very well be just that subset which we examine. If
we then remove the probes, the bug will reappear. Also the opposite is possible,
by adding probes to a system, we may cause errors to appear that where not
previously present. Also a combination of the two is possible, by adding probes
to the system, we may remove one error, only to invoke another.

The last example is perhaps the most intriguing, we may then find ourselves
identifying the wrong bug, and correcting that one instead of the real one.
This problem should be detected by a regression testing procedure (see Section
2.5.3).

Debugging is not the only situation in which the probe effect may effect the
system, it is also possible that modifications to old systems, or bugfixes, cause
the same problems. One may view it as that the removal of code is equivalent
with removing a probe from the system, and that adding functionality can cause
the same problems as adding a probe to the system. A general rule is that if the
source code is modified, probe effect related problems may arise.

There are however two exceptions to this rule.
Schütz notes in “Fundamental Issues in Testing Distributed Real-Time
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Systems” [48] that it is possible to remove code if the only consequence of
the removal is that the idle task of the system will receive more execution
time. However, this is rather hard to ensure unless the system is time-triggered.
Schütz states that, in a time-triggered system, provided that the scheduled
execution slot of the task that is to be removed is not adjacent to the slot of
any other task (except the idle task), the task is in atemporal firewall, and may
be removed without consequence to the remaining system. This is provided of
course that the task does not perform any work that is used by other entities in
the system.

The second exception has been noted by Thane in his PhD dissertation [57,
s4.3.3;p42]. Thane starts with the same premise that Schütz did; that code
can be removed if the only consequence of the removal is that the idle task of
the operating system receives a larger percentage of the total system execution
time. He then states that this requirement is satisfied if the task from where
the code is removed has the lowest of priorities among the tasks in the system
(appart from the idle task) and it is established that the task never blocks the
execution of other tasks remaining in the system. Thus, the task from where
the probes is removed cannot control mutual exclusion or communication
primitives, such as semaphores or other, shared with tasks remaining in the
system. The use of schemes such as direct inheritance or similar for deadlock
avoidance will limit the use of such primitives even further.

Note that these solutions are only feasible under the assumption that the
operation of the hardware (instruction pipelines, caches etc.) is not affected by
the removal of the probes.

The correlation problem

In “Fundamentals of Distributed System Observation” published 1996 [8],
Fidge describe the problem of obtaining a truthful view of the events in an
observed system. For example, as a distributed system is being observed, if the
observer cannot be tightly coupled with the system it is observing, problems
related to the observers apprehension of the ordering of events on different
nodes may occur. Depending on variations in the propagation time of observer
notifications, the ordering of events may be confused. We shall refer to this as
thecorrelation problem.

According to Fidge, we may divide the correlation problem into at least
four sub-problems [8]: (1.) multiple observers may see different event
orderings, (2.) observers may see incorrect orderings of events, (3.) different
executions may yield different event orderings, and (4.) events may have
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arbitrary event orderings. All are more or less results of the absence of an
exact global time-base, and/or the fact that network propagation times are
not constant. Because of the lack of a exact global time, we cannot rely on
any time-stamp taken at the node where the event occurred, if the observer is
situated on another node.

1. In a system where many observers are used, different observers may
see different event orderings, because the propagation of the event
notification requires different time to different destinations.

2. As the propagation through a network may differ between two network
packages, a package that is sent after another may arrive earlier. Thus, if
two events occur on different nodes at different times, the notification of
the last event may arrive at the observer before the first notification has
arrived, thus erroneously implying that the last event occurred before the
first.

3. Because the clock rate of each node will diverge slightly from the ideal
clock and the other clocks in the system, and the rate of that deviation
partly depends on environmental aspects, even different invocations of a
distributed system will differ.

4. Some of the events in the system are unrelated, and may therefore be
allowed to occur in arbitrary orderings. The problem with this is that an
observer must know and recognize that, as different tests are run, it is
allowed to have differing orderings between some of the events.

Item number (4.) in the list above is related to Polednas PhD dissertation
“Replica Determinism in Fault-Tolerant Real-Time Systems” from 1994 [42].
Poledna direct the problem ofreplica determinismwhen using redundancy as
a mean to increase the fault-tolerance of a real-time system. In other words,
he directs the problem of ensuring that two components, that are supposed
to perform the same task, have the same behavior when they are operating
correctly. This is related as (4.) describe that we must be able to correlate
executions that are temporally differentiated and Poledna does the same for
spatially differentiated executions.

The observability problem

It should be noted that Schütz discusses a subject which he calls observability
[48]. Schütz states that a system must beobservable, meaning that it must be
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possible to extract sufficient information from the system. What is “sufficient”
is determined by the present fault hypothesis.

Conclusion

Thus, we may conclude that the probe effect causes changes to the program
execution, whereas the correlation problem affects our perceived view of the
program execution, and the observability problem directs the problem of being
able to observe. The first and second of these are however related in that it may
be difficult to differentiate between problems resulting from probe effects and
problems resulting from the correlation problem.

2.4.2 Measuring consumed computation resources

If the logging of system events is to be used in debugging purposes, it is
important to relate events to software execution. It must be possible to state
how much execution resources a task has consumed between two records in
the log. There are at least two ways of doing this, one is to use a hardware
platform which supports instruction counting, cycle counting or similar, the
other is to use a software implementation.

An example of a hardware solution is implemented in the Intel x86
architecture. A processor cycle counter is accessible through the use of the
assembler instructionRDTSC. Note however that this implementation is not
reliable in architectures such as Pentium II, Pentium Pro, and onwards. The
reason therefore is that more advanced models in the x86 family use out-or-
order execution which can lead to pessimistic or optimistic measurements.

In their article “Debugging Parallel Programs with Instant Replay”
published in 1989 [31], Mellor-Crummey and LeBlanc present a method that
can instrument assembler-code with counters, thus enabling the counting of
executed instructions, the method is called Software Instruction Counter (SIC).
The authors note that the code of a program consists of short sequences
of sequential code, called basic blocks, and conditional, or unconditional,
connections between some of the basic blocks (by branches, jumps, or function
calls). These one-way connections can either connect a basic block with a
later (with higher address-value than the present), a forward branch, or with a
prior block, a backward branch. To uniquely mark each instruction instance
that is executed, the authors state that a combination of the program counter
value and the number of backward branches required for the execution to reach
the instruction from a known starting point is sufficient. They can therefore
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construct a low-cost software-based instruction counter which only resource
requirements except a small computation overhead is a reserved data-register
which is used solely for performance reasons.

Consistent temporal view

An issue that may arise when trying to relate several executions on different
nodes is the lack of a synchronized global clock [30]. As events occur on
concurrent nodes, some system architectures cannot produce a correct order
between them. If this is a requirement of the debugging method, some measure
must be taken. Tightly coupled parallel systems, and multitasking single-node
systems, are able to produce a correct ordering because all system entities
depend on the same real-time clock [64, s3.1;p51]. But, because of the
correlation problem (See Section 2.4.1), distributed systems can only make
weak assumptions about the ordering of events provided that they do not use
an algorithm for global clock synchronization [17].

Ordering of events can be eitherpartial, or total [64, s2.1;p30]. Where
partial order describes the local sequence of events (in our context locally is
on a specific node), and total order describes the global order of events. Thus,
unsynchronized systems cannot determine the exact total order of events, but
they may be able to find an estimation of the global order by using a method
for clock synchronization, or logic clocks [19].

In the classic paper “Time, Clocks, and the Ordering of Events in a
Distributed System” by Lamport in 1978 [19], the author describes a now
classic method for implementing a logic time-base in systems that lack a global
time-base. The method, normally referred to asLamport clocks, is based upon
the counting of events, its purpose is to derive a total order on all events in the
system (where the definition of an event is application specific). Each node and
each shared object that implements the method has its current opinion of the
time stored. As a significant event occurs, it is given the time-stamp equal to the
largest of the current local clock value of the node and the shared object, plus a
value which normally is one (1). After which the local clock value of both the
node and of the shared object are set to the same value as the time-stamp.

Another classic paper that directs the problem of synchronization in
distributed environments is “Clock Synchronization in Distributed Real-Time
Systems” written in 1987 by Kopetz and Ochsenreiter [17]. The paper presents
an algorithm for global clock synchronization.
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2.4.3 Global state

One problem that one has to face when implementing a strategy that use
monitoring of a system is that the initial state of the system must be known
in order to understand the context of the events recorded by the monitor. In
some real-time systems, this can easily be done by using the Least Common
Multiple (LCM) of the periods of the tasks that reside on a specific node. That
LCM would describe the periodicity of the system, and in some systems, these
LCM’s can be said to be individually unrelated.

For example in a simple control application, it may be possible to view one
sampling-actuating loop iteration without knowledge of outputs and flows in all
prior iterations. Note that many systems are not this simple; it is common that
there exist some dependency-relation between iterations wherefore the scheme
cannot be used without adaptation. Such an adaptation may be checkpointing
of some global variables at the end of the execution of an iteration.

Note that, assuming that checkpoints are used, only making one checkpoint
in the beginning of the execution is not sufficient. Because very long recording
sessions require very much memory resources in order to keep the logs, and
those resources are finite, it is required that old log records be evicted as the
memory is exhausted. The eviction is made in favor for newer records, that are
of larger relevance for the current propagation of the execution. In other words,
a circular queue ADT (abstract data type) could be used for logging the records
[53]. Thus, we cannot assume that we will always be able to start simulating
the system from the beginning. In fact, we may not even desire to do so; as it
may take a very long session to produce a fault that we wish to examine, and
simulation is much more demanding than native execution [10, s4.4.4;p58], it
may be profitable to be able to start the simulation in the middle of a trace.
Netzer et al. has directed this problem in their Incremental Replay approach
(see Section 2.4.5).

Note however, that there may be better solutions than a simple circular
queue. Messages could be assumed to have a timespan in which they are
important for the system execution. At the end of that timespan, they can be
evicted without consequence for the replay. It is not necessarily so, that the
lengths of that timespan is the same for all types of records, wherefore other
structures could be preferable (see Section 2.6.5).

Checkpointing

The reason for making checkpoints of a system is to be able to start over with
the execution at some later point [38, 69]. There are to our knowledge three
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main applications for this ability: The first case applies to systems that can
sense an error in their execution, and as a response to this can decide to roll-
back and try again. The second case applies to systems that have some source
of non-determinism in them; in order to apply cyclic debugging strategies
to these systems, a record - replay approach can be used. The third, and
final, application is to allow deterministic testing of non-deterministic systems.
Sources of non-determinism may be race conditions due to some level of
parallelism, or other. We can differentiate between applications that need to
recreate a system state in that the first performs on-line, where as the second
and third are applied off-line. Also, on-line recreations must not necessarily
receive the same inputs as the execution that was recreated, whereas the sole
purpose of the second and third application is to recreate the system with as
much adherence to the original execution as possible.

Zambonelli and Netzer [69] state that the use of checkpointing is always
required when recreating a system state. We argue that this is at least dependent
on the task model used. Considering for example a terminating task model
similar to that implemented in the Asterix real-time operating system presented
by Thane et al. in the article “The Asterix Real-Time Kernel” published in
2001 [62]. As a task conforming to that model is always terminated at the end
of each instance (the alternative is usually to issue a relative sleep-command),
there is no need to save its state. Only the input parameters to the next instance
are required, but so are the input states to new tasks in a non-terminating task
model.

For which ever reason, restarting the execution of a system is only feasible
if certain requirements on the point from where the system is started are
fulfilled. Chow and Johnson formulates in [4, s13.1;p510] the requirements
for starting points used in replay or recovery of distributed systems:

“The restarting state of any processor should not casually follow
the restarting state of another processor.”

The quote captures, in one sentence, the requirement that the starting point
must be a fully consistent state in the execution of the system. All messages,
and other events, that are in transit (i.e. sent but not received) must be known,
and there must be no messages that are received but not sent if they cannot be
deterministically recreated. The latter of the two, messages that are received
but not sent, are normally referred to asorphanmessages.

Another, equally beautiful phrasing of this condition was formulated by
Wang and Fuchs in “Optimal Message Log Reclamation for Uncoordinated
Checkpointing” [67]:
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“. . . we define aconsistent global checkpointas a set ofN
checkpoints, one from each process, no two of which are related
through thehappened-beforerelation.”

The happened-before relation mentioned in the quote was defined by Lamport
in 1978 [19].

The states, or set of distributed states, that fulfill the constraints that are
placed on a feasible starting point for replay or recovery is normally referred
to as arecovery line[4, s13.1;p510].

The nature of distributed systems makes it hard to ensure that a recovery
line can be identified in the logs of checkpoints, mechanisms must be applied
that can alleviate the problem. According to Wang and Fuchs [67], there are
mainly three different strategies to distributed checkpointing: Uncoordinated
checkpointing, coordinated checkpointing, and log-based techniques. Chow
and Johnson [4] divide the log based techniques into thee sub-categories:
Synchronous logging, asynchronous logging, and adaptive logging.

Uncoordinated Checkpointing As there is no coordination between nodes
concerning the timing of checkpoint acquisition, there are no guarantees
for the existence of a valid recovery line. When trying to obtain a
recovery line by selecting a set of checkpoints, one from each system
entity (processor, process, or other), there is a (substantial) risk that a
pair of checkpoints in the set are inconsistent. There are two different
scenarios; One scenario is that the checkpoint at the receiving entity
represent a state when a particular message cannot not yet have been
received, but the checkpoint at the sending entity represent a state when
the message must have been sent - i.e. the message is in transit. The
other scenario is that the checkpoint at the receiving entity represents the
state when a message must have been received, but the checkpoint at the
sending entity represent a state where the message cannot have been sent
- the message is referred to as anorphanmessage.

As such a set of checkpoints violates the requirements for a recovery
line, other checkpoints must be chosen, there are however no guarantees
for that the next set of checkpoints are consistent, and so forth.
This undesired effect is referred to as thedominoeffect or cascading
rollbacks.

Coordinated Checkpointing The main contribution of coordinated check-
pointing is that each acquired checkpoint is a member of at least one
recovery line, thus alleviating the problem of cascading rollbacks.
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Synchronous Logging Logging messages that are sent in the system is also a
form of checkpointing. In synchronous logging, each message is logged
before it is delivered. This can be said to be the easy way out, there are
other more troublesome logging policies.

Asynchronous Logging In difference from synchronous logging,
asynchronous logging allows the activities of logging messages
and delivering them to execute in parallel or out of order. Problems will
arise due to this more relaxed policy, but the advantage lies in lower
latencies in package delivery.

One problem with asynchronous logging is of course that all messages
are not always in the log after a system halt or crash. If the system
stops, or experience a severe failure in the logging mechanism, as
a log-message is in transit, the log does not reflect the complete
system execution. Threatening to prevent system replay, this situation
can be detected usingdependency tracking[54], that is to track the
dependencies between checkpoints on different entities.

Adaptive Logging It is not always required to log every single message in
order to recreate a system state. Adaptive logging mechanisms can
identify which messages can be ignored.

As we can see in this description, some approaches optimistically hope
that a recovery line can be found in the available data collected, and some
others pessimistically ensure during run-time that such a line will be found.
The advantages of the latter class of approaches is that it is ensured that a
replay is possible, but the drawback is in run-time performance. For the first
class, optimistic approaches, the opposite is true.

Control- and data flow

Platter is to our knowledge the first to differentiate between system entities
when discussing monitoring of computer systems. In the article “Real-Time
Execution Monitoring” [41] from 1984, he defined a process state to consist of
two parts: thedata- and thecontrol- substrate. The data substrate represents
the data structures currently under control of the process, while the control
substrate represents the current point of execution.

Thane [57, s4.2;p37] classifies monitoring subjects into three categories:
Data flow, Control flow, and Resources. Where the data flow concerns the
flow of data between different architectural components on some level, the



48 Paper A: Debugging Parallel Systems: A State of the Art Report

control flow is an abstraction of the path taken through a system - this could
for example be described by the ordering and timing of events and interrupts,
the results and timing of task switches, and other issues that can describe
the execution flow. The last category, resources, describes the uses of shared
physical resources. We can log CPU utilization, memory use and other issues.

The control flow of the system consists of the sequences of instructions
executed by the processors(s), and relevant8 timing information regarding that
execution. The data flow of the system is represented both by the relevant9

alterations of system data during run-time, and timing information regarding
these alterations. In order to successfully replay the recorded system, both the
control- and the data-flow must be monitored with a sufficient degree of detail
which is defined by the replay technique used.

2.4.4 Sufficient monitoring

The scope of a monitoring activity must be well-defined, if the scope alters,
this will give rise to a probe effect. This effect may or may not be visible,
but to this day the only general10 way to guarantee that the effect of altered
monitoring scope is negligible is by using exhaustive testing.

Implied by the scope of the monitoring activities, and the prior knowledge
about the system, is the level to which the system execution is known,
and therefore also which types of errors that can be located, analyzed,
and corrected. If the monitoring is exhaustive, all thinkable errors can be
reproduced, but every abstraction opens the door for errors to escape the
debugging process unnoticed. Thus, we must have a fault hypothesis (see
Section 2.2.3) before we can define the monitoring activities in the system.

Logging

The product of a monitoring activity can be logged on to a data storage, thus
creating a log of an execution. The contents of the log at a given time, together
with a knowledge of the system and a system model, can allow us to replay the
recorded execution of the system.

8What timing information that is “relevant” here is defined by system interactions. Timing is
only relevant if two subsystems affecting each other, through communication or other interference.

9What data operations that are “relevant” is defined by what cannot be reconstructed by
deterministic re-execution of the software.

10Remember the temporal firewall presented by Schütz [48] which allows guarantees in a very
special case.
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An important factor that will influence the design of a system is the amount
of memory resources required to keep the log.

We have previously (in Section 2.2.2) defined the terms fault, error, and
failure. In order to debug a system we must be able to follow the propagation
of an error to a failure. The time from the execution of the error until it has
propagated to a failure is theincubation timeof a failure. The incubation
time of a system, together with other factors, implies how long the log of the
monitoring activities must be. Of course, the length of the log is important
input to the process of calculating the memory resources required for the log.
As the fault hypothesis defines which failures that may occur, it is an important
factor when finding the incubation times of the system.

A factor which was consistently ignored in the above argumentation is the
system knowledge required. This is a very important factor when defining the
fault hypothesis, the incubation time, the length of the log, and the memory
resources required to keep the log. It is therefore a pity that it differs so much
between systems.

2.4.5 Discussing recording approaches

In this section, we will discuss and compare three different basic approaches to
recording: software, hardware, and hybrid monitoring.

It is also possible to classify recording approaches based on how they effect
the system during use, Schütz [48] states three classes based on how they
handle the probe effect: by ignoring the effect, by minimizing the impact on
the system during debugging, or by avoiding the probe effect. Classification
into these three classes require inspection of particular implementations.

Hardware

Hardware recording mechanisms are tailored devices, they need to be adopted
to the target system, which suggests that this is a rather expensive approach.
On the other hand, they do not have to intrude at all on the device functionality
[64, s2.3;p37].

Basic approaches to hardware recording include bus snooping, to spy or
listen to the messages sent over the system bus. The quantities of messages,
and their relative size, result in that large quantities of data must be logged.
Another problem with hardware implementations is that they must look at
very low level information [64, s2.3.2;p37], the data that is visible has low
information content relative to the program execution. That is to say that
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a single bus message can not say much about the execution of a program,
whereas (for example) the name of the current state can say a lot about the
traversing of a state-machine. It is then up to off-line methods to interpret
the collected information that is output from the recording process, correlate
them to the system software and hardware, and translate the result into a
format that is understandable to humans [16]. Needless to say, the amount of
information may be quite extensive, but this problem is more or less inherent
in the recording methodology. Also, implementations, and to some extent
even solutions, are platform specific. Furthermore, advances in hardware
technology makes it more and more interesting to integrate solutions to a
single chip, so called System-on-Chip (SoC) solutions [64, s5;p103]. SoC
solutions are not observable as they limit the insight to the internals of the
system, and it is therefore more difficult to construct hardware implementa-
tions for these systems provided that they are not incorporated on the chip
[16]. A solution could be to move also the recording into the chip, but this is
approach is of course only available to the designers of the device. Monitoring
primitives implemented in hardware cannot be added to a SoC-design at a later
stage. Thus, SoC technology is obstructing the use of commercial-off-the-shelf
components where recording is required. We shall, in Section 2.4.5, survey a
proposed hybrid methodology for recording the executions of SoC’s.

In their work on a “non-interference monitoring and replay mechanism”,
Tsai et al. [65, 66] present a hardware solution for monitoring by bus snooping.
In their solution, they use a duplicate processor that executes in parallel
with the target. As the thought recovery line (Section 2.4.3) is reached, the
duplicate processor is frozen and its state is logged - that state can then be used
during replay to start the replay from. Even though they claim in the title of
their papers on the subject that their method provides these services without
interference of the target environment, they do admit that they require the use
of one occurrence of an interrupt to synchronize the two processors at the start
of the monitoring session (which is not necessarily identical to the start of the
system).

Boundary Scan IEEE Standard 1149.1 defines test logic [13]. The standard
is a result from work by the Joint Test Action Group (JTAG)11 The Boundary
Scan method can be used to test Integrated Circuits (IC’s), interconnections
between different assembled IC’s, and to observe and modify the operation of
an IC. Provided that the processors of the system implements Boundary Scan,
it is feasible to force replay of a execution through the use of that interface.

11The group has a homepage at www.jtag.com.
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The replay method could provide the data and instruction flow through the
Boundary Scan interface, and force execution of the correct instructions with
the correct data. On the positive side, this allows us to have a replay facility
on the real hardware, without modifications to that hardware. However, the
Boundary Scan interface, through which all data and all instructions is to be
feed, is a serial interface with a large shift register, a solution that infers large
temporal penalties on the replay of the execution. In the case of recording, it
seems that the same problem provides a limit for the granularity of the process,
the serial interface constitutes a severe bottleneck.

In their article “Emerging On-Chip Debugging Techniques for Real-
Time Embedded Systems” published in 2000 [29], MacNamee and Heffernan
discusses the issue of On-Chip Debugging (OnCD) with a state of the practice
point of view. OnCD has the capability of addressing the problem of recording
the executions of complex processor architectures, especially those with on-
chip caches, as it uses recording hardware that reside inside the components.
However, solutions available today lack real-time capabilities in for example
memory monitoring (an example is the Motorola ColdFire). The lack of real-
time monitoring of memory resources can be explained by the fact that real-
time monitoring requires the recording mechanism to be prioritized over the
application, thus leading to intrusive recording.

Logic Analysers are often used to monitor the behavior of hardware
components. There are many devices available on the market, they have the
capability to hook on to, and monitor, buses that transport data or instructions
between physical modules of a system. On the positive side, logic analyzers
are not necessarily intrusive on the target functionality, not even in the temporal
domain. However, traces available are very low-level, and not all required
information may be available. Systems that have very integrated designs,
perhaps with on-chip caches, or even multiple processors on one chip, do
not pass all required information on buses that are physically available for the
logic analyzer [16]. But the fact still remains that logic analyzers are used in
many commercial projects, and even though they cannot solve all problems,
or even provide good solutions to all of the problems that they can solve, they
are among the better solutions commercially available for debugging real-time
systems today.

Several of Motorola’s (www.mot-sps.com) MicroController Units
(MCU’s) support the Background Debug Mode (BDM) [11] interface, this
interface is utilized in their EValuation Board (EVB) products that facilitate
remote debugging of the MCU’s. The BDM interface allows an user to control
a remote target MCU and access both memory and I/O devices via a serial
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interface. BDM uses a small amount of on-chip support logic, some additional
microcode in the CPU module, and a dedicated serial port.

The BDM interface provides a set of instructions that can be issued in
order to examine the state of the device. Instructions may be either hardware
instructions, in which case they are not necessarily very intrusive on the
functionality of the device, or they may be firmware instructions, which are
intrusive. Hardware instructions allow reading or writing to all memory
locations of the device, these operations are initially given the lowest priority,
i.e. they are only executed if no other instructions are pending, but a fairness
policy is used if the instructions are not issued within a predefined time.
Firmware instructions must be issued in a special firmware-mode, and then
the debugger can read and write registers on the device.

Motorola also provides a On-Chip Emulation (OnCE) interface with some
models, the interface combines features of BDM and JTAG debugging.

Domain Technologies Inc. (www.domaintec.com) provides a tool called
BoxView that is based on the Boundary Scan and OnCE technologies. Several
BoxView devices can be connected via a BoxServer so that multiple targets
can be controlled synchronously. If OnCE is used as a method of debugging,
systems of up to two nodes can be debugged. In JTAG mode that number is
255. Note that this approach does not use a replay approach to debugging,
and therefore is not suitable for real-time systems. Agilent Technologies
(www.agilent.com) provides a large range of logic analyzers and processor
specific high-level language debuggers, but they do not use the replay approach
either. They do however, allow non-intrusive data and control flow monitoring
with the possibility to correlate spatially differing observations to the temporal
domain.

The Nexus 5001 standard (www.ieee-isto.org/Nexus5001) [29, 52]
describes a hardware solution that supports debugging and tracing of embedded
systems, it also supports debugging of superscalar and pipelined architectures.
We will in this section provide information on selected parts of the standard.

There are four different classes of compliance in the Nexus 5001 standard
(1 - 4 where 4 is the strongest), class 2 must have a Boundary Scan interface,
and class 2 - 4 must have a standard specific connection called AUX (however,
they may also optionally implement a Boundary Scan interface).

The AUX interface is a parallel medium with 1 - 16 pins, the bandwidth
requirement of the implementation may dictate the width of the AUX interface.
It is a packet based medium, which result in that packet-arrival-times cannot
be determined at the time of transmission. Therefore, assumptions may not be
made of the relative order of, for example, a change of ownership and a taken



2.4 Recording, monitoring and logging, execution traces 53

branch.
There are three different tracing mechanisms available in the standard:

Ownership trace Implementations of class 2, 3, and 4, must support
ownership traces which can monitor process ownership while the
processor runs in real-time. This provides a macroscopic view (of
task orderings etc.) that can be used to monitor ownerships of shared
resources such as code pages in a virtual memory system etc.

Program trace Class 2, 3, and 4 type devices must provide a completely
hardware-controlled facility that allows monitoring of program flow
while the processor runs in real-time. The information is flushed via
the AUX. At the occurrences of branches and exception (also known as
program flow discontinuities), trace information is passed to the system
observer via the AUX medium.

Program trace messages can be of two types, either direct branch
messages, or indirect branches that are also used to describe the
occurrence of an exception. The difference between the two is that direct
branch messages are self-contained, and indirect messages are related to
the previous message that was sent. Using long sequences of indirect
messages in long traces can result in that the loss of information (as
a consequence of space exhaustion) reduces the ability to reconstruct
the execution. To alleviate this problem, certain events can be set to
trigger the use of direct messages, something which is also triggered
periodically at the minimum rate of every 256 program trace message.

Data trace To monitor memory operations while the processor runs in real-
time, class 3 and 4 implementations must provide the possibility of
tracing writes, and may optionally trace also read instructions.

The standard also specifies that devices of class 3 and 4 must allow read
and write access by the debugger to any memory location during run-time as
well as when the execution is halted. It is up to the implementer to determine
through which interface this facility is accessible.

Software

Similarly to the cyclic debugging approach described above, software
implemented recording mechanisms is also vulnerable to the probe effect. That
probe effect may, however, be avoided by allowing traces to remain inside the
release version of the program [64, s3.1;p51].
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Remaining probes will of course cause performance degradation, but one
may argue that they shall remain also because this allows us to introduce
a form of black-box to the software, similar to that of airplanes [57]. The
black-box may then be used if a released system experiences a failure during
execution. However, Kranzlmüller [18, s4.2.1;p84], pointed out that the
monitoring activities need to be defined quite early in the design process, and
that the logging of the monitoring data may present a problem.

Software monitoring can either be performed at system, or process (task)
level [64, s3.5;p68]. Monitoring at system level enables the monitor to see
operating system specifics in the system. It is possible to view many of the
data structures that effect system performance, such as Translate Look-aside
Buffer (TLB) entries that describe the mappings between virtual and physical
memory, also task control blocks, semaphore queues, and many other data
structures are visible. Issues related to the control flow of the system that are
visible on system level include interrupt occurrences, task switches and paths
through code within system-calls. Monitoring at the task level will not allow
monitoring of these, but other possibilities are open, such as events related to
the specific task that is monitored. Concerning the data flow, we can observe
local and global variables, and of the control flow, we can record the executions
flow through a program.

Thane [57, s4.3.3;p41] describes four architectural solutions for software
monitoring: kernel probes, software-probes, probe-tasks, and probe-nodes.
Where kernel probes can monitor operating system events such as task-
switches and interference due to interrupt occurrences. Software-probes are
additions to the monitored task, they are auxiliary outputs from that task.
Probe-tasks have as their only functional objective to monitor other tasks,
either by cooperation from software-probes, or by snooping shared resources.
Finally, probe-nodes are dedicated nodes that either snoop the communication
medium used by other tasks, or receive input from either software-probes or
probe-tasks.

Stewart and Gentleman [53] recommend the use of data structure audits,
a construct which is also described by Leveson in [25, s16.4.1;p419] where
it is also referred to as independent monitoring. An auditor could for example
check whether a data structure is self-consistent, or simply monitor its changes.
Auditing can be performed by a probe-task, also known as a spy task, and can
be a more or less complex operation.

Logging algorithms in message passing systems must choose one of two
main approaches, they can either log messages that are sent, or include all
nodes that are transmitting messages in the replay of the system execution.
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Zambonelli and Netzer et al. discusses the situation in “Critical-Path-Based
Message Logging for Incremental Replay of Message-Passing Programs” and
“An Efficient Logging Algorithm for Incremental Replay of Message-Passing
Applications” [38, 69]. The authors state that logging all messages is resource
demanding during the reference execution, but recreating all messages during
the replay can be very demanding during that process. This is therefore a trade-
off situation. They discuss whether it would be possible to make a compromise:
If all nodes record sufficient information about their execution, save all external
messages, to facilitate replay it is theoretically possible to recreate all messages
that occur in the system by replaying the execution of all nodes. Now, if it is
judged that it would require large computations in order to recreate a particular
message the message is logged, otherwise it is not, and must be recreated
during the replay. The incremental replay approach also allows a replay session
to start at a point which is not the starting point of the system. A feature which
is very useful when the reference execution was long. Later, also Thane and
Hansson [59] has provided this feature (see Section 2.5.4).

Netzer presented a method based on the Instant Replay method in two
articles published in 1993, “Optimal Tracing and Replay for Debugging
Shared-Memory Parallel Programs” and “Trace Size vs Parallelism in Trace-
and-Replay Debugging of Shared-Memory Programs” [35, 36]. The objective
of Netzers work was to improve the possibility of detecting races, and still
minimize the logging of system events. The author argues that, as the
computing capacity increase with respect to storage access time, it is favorable
to trade log size to computation complexity. Viewing the interactions on shared
objects as a graph, where accesses are vertices, and the flow is represented as
edges, we can see that some of the edges are implied by the program flow.
By transitive reduction of the graph, omitting all edges that are implied by
program flow, Netzer is able to reduce the information required to describe
the execution of the system. Ronsse et al. surveyed the approach in the article
“Execution Replay and Debugging” [44], where they presented the following
relevant disadvantages of the method: The use of vector clocks [1] limits the
possibilities for dynamic task creation as the size of the clocks varies with the
number of processes in the system. The overhead due to clock comparisons
can be expected to be big.

In “A New Trace and Replay System for Shared Memory Programs based
on Lamport Clocks” published in 1994 [26], Levrouw et al. presented ROLT,
the Reconstruction Of Lamport Timestamps. The method is an improvement
of Netzers method described above. Instead of using vector clocks, as Netzer,
the authors use Lamport clocks (see Section 2.4.2). The gain of using Lamport
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clocks lies in ease of maintenance, but it also opens a possibility to optimize
the Netzer algorithm. Looking at the Lamport algorithm, there are two possible
actions at the receipt of an event: Either the clock value of the local task
is incremented by one, or it is replaced with the value of the shared object
incremented by one. The former is a deterministic action, where as the latter
in nondeterministic. It is sufficient to log an entry only in the nondeterminis-
tic case. The penalty inferred by the use of this optimization is that a loged
entry (a record) must consist of both the clock value before the occurrence of
the event, and the clock value after the event. During replay, the omitted logs
can then be deterministically recreated. Ronsse and Zwaenepoel presents an
implementation of the ROLT method on a Treadmarks [14] platform in [46].
The Treadmarks is a distributed shared-memory system.

DEEP by Veridan Systems (www.psrv.com) is a tool for debugging
of Message Passing Interface (MPI)12 programs. The debugger uses a
reocord/replay approach, and allows the setting of breakpoints, instruction
stepping and inspection of data-structures. The process of instrumentation,
which is performed by a tool prior to compilation, can be parameterized to use
different degrees of monitoring. Aspects that can be modified are different
levels of loop profiling, external function profiling, I/O call profiling, and
message passing profiling. During debugging, a lot of information can be
gathered describing the balances of CPU usages, message send and message
receive balances for individual nodes etc.

Hybrid

According to Tsai et al. [64, s5.1;p104] hybrid implementations come in
two flavors,memory-mapped, andcoprocessormonitoring. Memory-mapped
monitoring uses a snooping device that listens to the bus, and reacts to
operations on certain addresses. These addresses may either be snooping
device registers that are memory-mapped into the address space of the task,
or just a dedicated RAM area. Each event that should be monitored is forced
to make a memory operation on the address that is associated with that event,
which will allow the monitor to detect its occurrence. Coprocessor monitoring
uses a device that is a coprocessor to the processor that executes the application
that is to be monitored, events are forced to issue coprocessor instructions to the
coprocessor as the events that are to be monitored will occur. The coprocessor
monitoring approach requires, of course, that the architecture targeted allows
the use of coprocessors.

12See www-unix.mcs.anl.gov/mpi/ for information about the MPI standard.
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From Applied Microsystems (www.amc.com) comes the CodeTEST Trace
Analysis tool that provide hardware assisted software based tracing of program
execution. An extra stage is inserted into the compile stage where unique tags
are added to the program code according to some parameters (thereby leaving
the original source code unchanged). A database is also created to relate the
unique markers to specific lines of code.

Depending on where in the development stage the system is, different
solutions are then used to collect information from the execution. Early in the
design process a collection task that forwards the information to a remote host
is run together with the normal task set; later in the process, tags are modified
to only perform a memory read to a dedicated area, a hardware probe that can
snoop the bus is then used to collect the information and send it to the remote
host. Even though it is not intended to do so, at least the latter kind of probes
can be left in the system in order to avoid probe effect related problems.

In “A Hardware and Software Monitor for High-Level System-on-Chip
Verification” [49], El Shobaki and Lindh presents a method for recording
the execution of SoC’s with a built in hardware component named MAMon
(Multipurpose/Multiprocessor Application Monitor). The MAMon component
is integrated with the design, and allows both hardware and hybrid monitoring.
By using a hybrid approach, MAMon enables system level monitoring (see
Section 2.4.5), while non-intrusive hardware monitoring can be used for The
MAMon component can be used both with software based and hardware based
[27] real-time operating systems. In the case where the operating system
is hardware based, task information can be extracted non-intrusively from
the kernel. However, integration of the MAMon into a SoC-system is only
available to the hardware-designer.

Discussion

It seems that different monitoring implementatations monitors the system
at different levels; hardware implementations monitor low-level details,
while software probes monitor the high-level flow of the implementation.
Consequently, a fourth type of monitoring would be above the level of
software, to view the system as a closed box, and only monitor the effects
that are visible to users of the system. Imagine a real-time control system,
responsible for maintaining a certain amount of the water in a cistern. To
monitor the system from a level above the software could then be to monitor
the amount of water in the cistern, in order to evaluate the implementation of
the control algorithm.
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We note that there are different levels of monitoring, and that each level
have different advantages and drawbacks. Thus, we can state that monitoring
at different levels is not strictly comparable. It is therefore likely that several
differenet levels of monitoring should be used concurrently, in order to obtain
an overall picture of the system. But the choice of monitoring level is of course
also dependent upon the bug-location hypothesis, and fault hypothesis.

If we for example assume a fault hypothesis that allows the potential
presence of errors in the operating system, we must monitor the system on
a low enough level, only probing individual tasks would not be sufficient. If
we would like to recreate the execution of a nondeterministic program where
all inputs are not available (see Section 2.2.4), or if parts of the log has been
forfeited (see Section 2.4.3), we must make detailed recordings of the paths
and data of the particular task. In such cases, we must be able to add probes
into the application code.

2.5 Replaying the execution of a computer system

We have now provided a more detailed view of how the execution of a parallel
system could be recorded, in this section we will probe the issue of execution
replay in greater detail.

2.5.1 The stampede effect and the bystander effect

There are similarities, not only between deadlock and livelock, or between
the probe effect, the correlation problem, and the observability problem, but
also between the stampede and bystander effects. Snelling and Hoffmann
describes the two in their article “A Comparative Study of Libraries for Parallel
Processing” published in 1988 [50]:

The stampede effect

As one task is forced to halt, by failure of execution or other reason, also all
other tasks must be halted. If not, the other tasks may be able to corrupt data
shared with the halted task. In the case of a failure, this will make it very hard
to, by some form of postmortem analysis, find out exactly what happened.

We provide an example: Say that a task arrives too soon to a specific
point in its execution. Because the task is early, off-line-assumptions about
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the state of shared resources are not valid, and the state of the resource may
have a state that designers assumed it couldn’t have. As the task uses the
resource it eventually crashes, but a second task that is still alive replaces the
erroneous data with correct values before the whole system terminates. It is
then impossible to, by only viewing the memory state of the crashed system,
determine what went wrong.

The bystander effect

Similairly to the stampede effect, the bystander effect also describes cases
where tasks affect the state of others, but here the affected task terminates
because other tasks are executing and violating some convention. Imagine
that a failure occurs in a task, it will then seem probable that the cause of
the problem resides inside that task. But either errors in the handling of virtual
memory, or by infection through shared resources may cause a bystander to be
affected by an error in a task that remains unaffected from its fault.

The bystander error is similar to the input error described above, where
a task erroneously makes use of faulty input received from another task, but
the bystander error concerns input through interference that the affected task is
unaware of. For example if the data used by a taskTA is modified by another
taskTB without the knowledge ofTA. If the task is not aware that it is receiving
an external input, it cannot be held responsible for its inability to detect errors
in that input.

Conclusion

When constructing a model for replay of an execution, care must be taken in
order to guarantee that the stampede- and bystander effects are not allowed to
show.

Both effects may become visible if the system is allowed to continue
execution past a failure of a task without reporting this to the user. If the replay
was not a success in terms of sensing an occurred failure, one of two problems
may follow: Another bystander task may become infected. The traces of the
failure may be erased by the execution of a stampeding “innocent” task.

This can become a reality if the replay mechanism has no clear sense of
the system specification, but is also a potential problem during the activity
of recording the execution, failure to log a change to a monitored entity may
produce the same problems.
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2.5.2 Irreproducibility and completeness

The irreproducibility effect and the completeness problem are similar to each
other in that both of them only emerge in nondeterministic13 parallel programs
[50] [18, s4.2.3;p87].

Irreproducibility effect

The reproducibility problem, also known as the irreproducibility effect or the
non-repeatibility effect [18, 50], describes the fact that a certain behavior in
a nondeterministic system cannot be repeated on command. Thus, it may
be quite problematic to verify that a certain bug has been removed (see also
Section 2.5.3 on regression testing), and also to distinguish between different
bugs [18, s4.2.6;p94].

In his thesis, starting from a definition of deterministic systems compatible
with Kranzlmüller’s definition of non-deterministic systems (see Section
2.2.4), and a definition forPartial Determinism, Thane [57, s3.2.2;p29]
classifies systems with respect to their reproducibility:

A partially deterministic system has a certain behavior that can be defined
by a known set of inputs or conditions, of which only a subset can be observed.
A system isReproducibleprovided that it is a deterministic system, and that
all inputs that have impact on system performance are controllable. A system
is said to bePartially Reproducibleif it is deterministic, and a subset of the
parameters that impact system performance are controllable.

Note that, since it could never be determined that the reproduced execution
is identical to the original execution, a reproduction of a partially determinis-
tic system cannot be validated. To solve this problem it is imperative that
the nondeterministic elements of the system are recorded, an issue which we
discuss in Chapter 2.4.

The completeness problem

In order to ensure that a system complies to its specification it is required that
the testing procedure is performed under realistic conditions. Properties that
must be tested are both that the system reacts as intended on different input
data, and (in the case of real-time systems) that the temporal behavior of the
system satisfies the requirements. As different invocations of a nondeterminis-
tic program, per definition, can behave differently even though all controllable

13Sometimes also referred to as nondeterminacy or indeterminacy.
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inputs are identical in all invocations, it is very difficult to determine the
coverage of testing procedures. It is difficult to ensure completeness in the
testing.

Testing the complete set of possible combinations of known input data and
all execution orderings is normally referred to asexhaustive testing. Even in
a very small system the number of test cases is very large, and it increases
drastically as the system grows. Therefore, exhaustive testing is normally not
an option as it would require too long time14 to perform. The alternative is
to only test a subset of the input combinations, which leads to that only a
certain level of confidence may be ascribed to the systems capability to fulfill
its specification. The level of confidence relates directly to how well the system
was tested. It is true that small parts of the system, that are considered as
especially important, could be selected for exhaustive testing. This would of
course increase the confidence in the system, but is directly comparable to
testing only a small subset of the possible input combinations to the system.

Also, the completeness problem implies that even if the system would
be tested with all possible combinations of inputs, bugs may still remain
because different execution orderings in the system also affects the output
and temporal behavior of the system. If the number of possible executions
orderings are unknown, it may be difficult to determine the level of confidence
that can be ascribed to the system. Thane et al. discuss this problem in
[58, 60, 61] where they propose a method for testing real-time systems. The
method describes how all possible orderings in a system can be identified, how
all sequences of interleaving due to interrupts, blocking by semaphores, or
scheduling decisions can be listed. They can then group a particular monitored
execution with an execution ordering. By running a sufficient number of
tests and relating each test to its ordering, it is then possible to increase the
confidence in the orderings that become subjected to testing. However, that
simplified approach would either cause some of the less probable execution
orderings to be insufficiently tested, or excessive testing due to the improbabil-
ity or probability of experiencing those orderings. Therefore, reproducibility
in the testing is ensured by enforcing execution orderings during testing. By
performing a sufficient amount of tests of a sufficient number of orderings,
the confidence in the system can then be calculated based on the confidence
in each ordering. In their articles, Thane et al. states that the number of
execution orderings, and therefore also the testability of the system, is directly

14Consider a program that subtracts one32-bit integer from another, it would require(232)2 test
cases. If one test case can be run each nano-second, that would result in(264 ·10−9)/(60·60·24),
or approximately200’000, days of testing.
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proportional to the number of preemption points and the jitter present in the
system. Note that the confidence in a system according to Thane et al. can
be a 2-dimensional property, a confidence in each execution ordering, and a
confidence in covered execution orderings.

2.5.3 Regression testing

As a bug is identified, and an attempt to remove it has been made, two things
must be confirmed: The fix must not have introduced further bugs in the system
and the bug must have been effectively removed. In deterministic systems,
the process to confirm this is normally calledRegression Testing[3], and it is
performed by simply rerunning all previously performed tests after which the
remaining tests can be performed.

However, in the case of nondeterministic systems, simply rerunning the
previous test suite without errors does not prove any of the statements described
in the above paragraph [3].

Carver and Tai propose [3] that this problem may be rectified by
forcing deterministic executions according to given synchronization sequences.
However, Thane and Hansson states [59] that a given execution trace of a
program is only valid for an altered version of that program if the alteration
does not affect the execution, which implies that the regression testing
procedure cannot make use of pre-bugfix recorded logs.

Neri et al. elaborates further on the problem in “Debugging Distributed
Applications with Replay Capabilities” published in 1997 [33], they point out
several practical problems with reusing logs. If an executable is modified,
either by re-compilation or re-linking (note that it is not required that the
code is changed, different options to linkersetceteramay accomplish the same
problem), address references may be changed. Therefore, in order to solve this
problem, they propose that check-sums of binaries should be calculated, and
that these should be added to the log, in order to detect the problem. Also the
use a virtual memory and caching schemes requires some thought, as physical
addresses may change between executions, causing differing behavior in the
caches if initial memory states are not identical. This could result in that two
executions, that in all other aspects are identical, may have differing logs.

Thus, we conclude that the area of regression testing of parallel systems
needs further research.
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2.5.4 Uses of logs

McDowell and Helmbold [30] stated three different uses of execution logs,
Browsing, Replay, and Simulation. Which method that can be used depends
on how much information that is logged from the reference execution.

Browsing

Browsingis the act of viewing the recorded history in a very simplified model
of the target platform. When browsing event histories, it may even be possible
to use the same model for different architectures. The programmer can observe
the ordering of events in the system, and draw conclusions from that. The
perhaps most significant advantage of this approach is that it allows a large
level of abstraction from the sometimes too detailed view normally provided in
traditional debuggers [30].

The MAMon monitoring component for SoC systems presented by
Shobaki and Lindh [49] is one example of an approach that uses browsing
of event histories to display the contents of the log.

Replay

A new replay executionis performed on the target environment, but the replay
execution is forced to correspond to the original reference execution. The
programmer is therefore allowed to stop the system, even to stop only some
of the system entities, because the replay mechanism will not allow the replay
to violate constraints derived from the reference execution.

Kilgore and Chase presents a method in “Re-execution of Distributed
Programs to Detect Bugs Hidden by Racing Messages”, published in 1997,
[15] which is targeted at message passing systems that arepiece-wise
deterministic. They define a piece-wise deterministic system to be a system
whose only element of nondeterminism is the ordering of message deliveries.15

In other words, given two instances of the same program executions, provided
that all messages are delivered in the same order to both instances, the two will
be identical. The Kilgore and Chase approach identifies possible data races in
a program execution, and can then, according to some rules, reorder the sent
messages with the intention to provoke a failure.

Russinovich and Cogswell present a method that facilitates deterministic

15However, it seems reasonable that also the timing of the message deliverances can have impact
on system performance, especially in real-time systems, but also in other systems.
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replay on nondeterministic shared-memory uni-processor systems in “Replay
for Concurrent Non-Deterministic Shared-Memory Applications” (1996) [47].
The approach is calledrepeatable scheduling algorithm, and it ensures
deterministic replay by forcing the system to make the same scheduling
decisions during replay as during the reference execution. In order to do so,
it requires the use of Software Instruction Counters. If the initial state of the
reference and the replay executions are identical, this will guarantee that the
two executions are identical.

Lumpp et al. stresses the fact there are other issues than errors in parallel
systems that may profit from the parallel debugging methodologies. Because
dynamic methods that facilitate replay in these systems will also provide
detailed knowledge on low-level system functionality, they can also be used
for performance debugging[28]. They present a debugger for distributed
shared memory systems. Suárez et al. [55] also presents work in the area of
performance debugging, they are targeted at distributed embedded real-time
systems.

Boothe presents a method for bidirectional stepping through sequential
code in “Efficient Algorithms for Bidirectional Debugging” [2]. By using
Software Instruction Counters (see Section 2.4.2), and also counting the
function entry- and exit- points (there may be several different exit points
from a function), executions logs are created. The logs will contain sufficient
information to facilitate execution replay, and also to identify individual
instructions. Breakpoints are specified as counter configurations. As individual
instructions can be identified in an orderly fashion, the debugger can also
perform backwards stepping. If the counters are set to indicate the previous
instruction, and the program is re-executed, this will create the illusion that the
program is being stepped backwards.

Thoai et al. [63] present Shortcut Replay for distributed systems, which
allows the replay to start from a state other then the initial state of the system.
They use uncoordinated checkpointing (see Section 2.4.3), but show that replay
does not have to consider the risk that orphan messages (see Section 2.4.3)
complicates the process of finding a recovery line. In their technology, they do
not make use of memory excluding checkpoints or other means of reducing the
perturbation of recording.

Instant Replay was presented in 1987 by LeBlanc and Mellor-Crummey
[23]. The method aims at facilitating replay for tightly coupled systems,
but it is claimed to be extendible also to loosely coupled systems. They
make no assumption about the availability of synchronized clocks, or globally-
consistent logical time. By providing the same inputs to the system, and
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recording the relative order of accesses to shared objects, the repeatibility of
the system is ensured. However, as Instant Replay performs best if it can be
assumed that there are available high-level communication primitives that can
be assumed to be correct. In other cases, each individual memory reference
must be logged, thus leading to large logs. As the method monitors the accesses
to the shared objects on a very coarse-grained level, they cannot detect data
races inside these access sequences [35].

Paik et al. [39] present their Concurrent Program Debugging Environment
(CPDE), which provide replay for UNIX processes. By providing compiler
options, they facilitate the creation of one executable version of the system
that produces a log, and one that can be replayed by consuming the afore
mentioned log. In their work, no reference to the way they correlate events and
location in the code with unique markers (e.g., software instruction counters, or
timestamps). Hence, they cannot replay asynchronous events such as interrupts
etc.

In their method for performing replay of Ada programs, Tai et al. [56]
assumes that the run-time system does not experience non-determinism due to
interrupts, abort statements, dynamic task allocation, etc. Neither do they make
any explicit refrences to how this can be solved. By transforming programP
into two other programs,P ′ andP ′′, such thatP ′ will produce a log that is
consumed byP ′′ in order to force a deterministic execution, they can debug
programP ′. However, using this method will tempt developers to release
versionP of the program; due to the probe effect, this version is not verified.

In “Using Deterministic Replay for Debugging of Distributed Real-Time
Systems” [59] Thane and Hansson describes a method for deterministic replay
of distributed real-time systems. The method is based on an operating system
that provides monitoring primitives for task level monitoring, and that also
monitors its internal event sequences. They use a software implementation,
and avoid the probe effect by leaving probes in the system. For the ordering of
events, they assume that the system provides a synchronized global time-base.

Simulation

By using a simulator of the target system, and forcing it to behave in a way that
will produce a replay execution that is identical to the reference execution, the
programmer can make repeated executions of the system.

This requires either that the model used, the simulator, models the real
target system sufficiently accurate for the application, or that it can be forced
to execute the system according to the traces recorded previously during the
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reference execution. As the simulator will execute the same code as that which
was run during the reference execution (see Section 2.5.3), we can state that
the above stated requirement “sufficiently accurate” would be satisfied when
the log produced during the simulation does not deviate from the reference
log.

2.5.5 Visualizing the debugging process

As stated by Kranzlmüller [18, s4.2.1;p84] it is very important that the
programmer can understand the context of the debugging process, what is
being debugged at a certain time. However, in large systems, especially in
cases where the compiler has used optimization techniques, this may be rather
difficult.

The systems that we target in our work are rather complex, meaning that
a lot of information about their current state is required in order to fully
understand what is happening. This is of course a relative measure. In order to
put a bit more perspective on the issue we can add that all information needed to
solve the task of efficiently debugging the system should be readily displayed
on a normal computer screen. In addition, it must do so in such a fashion that a
programmer can understand and use the information displayed without feeling
that he or she is compromised by the interface.

This is a potentially large problem in this type of systems, we must find new
means of refining, distilling, and displaying, information to the programmer.

McDowell and Helmbold [30] presented four means of presenting this
information. Also Pancake and Utter have done some work in the area [40].

2.6 Future work

After that a more comprehensive historical investigation has been completed,
when we have surveyed actual solution proposals to the sketched methods
presented here, we will commence work on one or more of the topics presented
in this section.

2.6.1 Deterministic replay

We will in our future work concentrate on the simulated deterministic replay
approach, using software implementations, it seems that there are some issues
that require investigation.



2.6 Future work 67

External devices in simulated replay is an issue that has not been
investigated; how can we debug a system that uses a hard disk, possibly even a
swapping algorithm? This points at a problem that is inherent in the simulation
approach, namely that a simulated machine does not always behave in the
same way that a real system would. Reasons to this are varying. In some
cases, simplifications of the model are judged not to give great impact on
performance. In other cases, it is not possible to build a model that behaves
exactly as the original component.

An issue that is constantly present in deterministic replay, but is aggravated
when we target more complex parallel systems, is that of the amount of data
produced by a monitoring mechanism. As the amount of data that is needed per
time unit grows, this may also affect the system performance, thereby reducing
the use of the method. A checkpointing system could reduce the amount of data
needed to perform the replay of the system, but would consume resources from
the system during run-time. How to perform these checkpointing operations so
that their impact on performance is minimized, and keep consistency in the
monitoring traces is an important issue in the context. Another approach is
to accept that some of the collected data will be lost, and adopt to that fact.
Browsing (see Section 2.5.4) as method of replay would perhaps not suffer
as much from this approach as replay and simulation (see Sections 2.5.4 and
2.5.4). To which extent we could perform these, under these restrictions, more
complicated methods of replay, is an interesting topic.

Furthermore, there are other inherent issues of the simulated replay
approach that could be improved. The simulation of parallel architectures
enforce a large slowdown, simulating software takes in the order of hundred,
or even thousand, times as long as native execution [10, s4.4.4;p58]. In other
cases, this is an overhead that one must learn to live with, but in the case of
simulated replay, we have additional information about the execution that may
help us to reduce that overhead.

In Section 2.4.3 we motivated the need of a well defined starting point
when using simulated replay. If we are to make effective use of the determinis-
tic simulated replay methodology on parallel architectures, we must determine
how we may find such a starting point when the simulation has proceeded long
enough to have overwritten part of the gathered log. In Section 2.4.5, we imply
that we may view such systems as nondeterministic or partially determinis-
tic (see Section 2.5.2). The loss of some of the information that defines the
execution may satisfy the rules for nondeterministic systems (see Section 2.2.4)
if there is not a sufficiently large amount of task level (see Section 2.4.5) traces,
in which case it may satisfy the criteria for a partially deterministic system.
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Whether they are reproducible, or partially reproducible (see Section 2.2.4)
remains to be seen.

2.6.2 Debugging component based systems

In Section 2.4.5, we saw that some systems require that monitoring is
performed also on task level, that control and data flow inside individual tasks
must, in some cases, be monitored. This requires that the source code of
those tasks is available and possible to modify, such is not always the case
in Component Based Software Engineering (CBSE). However, we in such
systems we may insert probes into the code that uses the component(s), and
if we have control over the operating system, we can monitor the system on
that level.

An interesting question is to what extent such systems may be observed
and replayed; is it possible to find all bugs inside the code that is available for
change, and is it possible to identify faulty components?

If the bug resides inside a component, it is desirable to be able to describe
the situation that produced a failure to the vendors of the component. In order
to do so we should record all interaction sequences between the user of the
component and the component, but has the same problem with long executions
as described in Section 2.4.3.

It is, of course, possible to build components that have built-in monitoring
facilities. But this requires either very extensive monitoring, by the user
adjustable monitoring (which is difficult due to the probe effect), or very
detailed comprehension of how the component is used in a special case. As
one of the major gains of CBSE is increased reuse, and users want to use the
components in slightly differing contexts, it may be difficult not to do over
enthusiastic monitoring if the level of monitoring granularity is static.

2.6.3 Design patterns for design of observable systems

As we have pointed out in this report, an inherent problem with recording
computer systems is the costs. These costs can be measured both in a temporal
and in a spatial dimension, and it is an implementation specific choice in which
dimension to optimize the behavior of the recording mechanism.

We believe it possible to find some general rules that, should they be
acknowledged in the system design, can reduce the recording-enforced penalty
that represent one of these dimensions.
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Sketched examples of design patterns

For example, these rules could restrict the spatial scattering of data that is to
be monitored. In a system, the meaning of a task instance should be defined
to facilitate Incremental Replay (see Section 2.4.5 and [38, 69] on Incremental
Replay). Between each such task instance, at least all data which cannot be
reproduced must be recorded. If all this data is stored in a easy to reach
structure, this would certainly ease the recording effort.

Other rules could restrict the use (and re-use) of temporary variables, so that
they could be excluded from the subset of monitored variables. We note that
a variable that potentially has scope between two iterations of a task must be
monitored in order to allow the independent recreation of a particular instance.
If a temporary variable is allowed a greater scope then necessary, or if the same
variable is re-used in independent operations, this can lead to an increased need
of monitoring that really could be optimized.

Yet other rules could assist in reducing the jitter in the system. The presence
and span of jitter in a system increases non-determinism, and therefore also the
potential for race conditions. Should the amount of jitter be reduced, this would
reduce the number of entries in the control-flow monitoring without requiring
individual entries to be larger. The reasons for jitter in a system are many,
ranging from accumulating effects due to inter-task dependencies, to varying
execution times due to non-determinism in selections. Ways to reduce jitter in a
system should therefore also be many, some could aim to reduce the amount of
selections in the system, others to shorten the chains of inter-task dependencies.

2.6.4 Comparing tools for debugging

As we have seen in this report, there exist a couple of different tools that can
be used when debugging. We have also seen that there are some costs involved
when using these tools. What we have not seen is a comparison between the
tools, we have not seen which tool is the most efficient in some relevant aspect.

The reason for this insufficiency is that existing implementations have
been made on different, incomparable, platforms. Thus, a strict comparison
is not feasible, other means of comparison must be made. In their article “A
Taxonomy of Distributed Debuggers Based on Execution Replay” [7], Dionne
et al. present a taxonomy which can be used to classify debuggers with respect
to nine (9) criterion’s. This, together with a fault hypothesis, can be used to
choose a tool suitable for a given project.

However, the presented taxonomy does not cover any real-time aspects.
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There are also other insufficiencies, one of these being the way the probe effect
is handled; Schütz [48] states three classes based on how they handle the probe
effect: by ignoring the effect, by minimizing the impact on the system during
debugging, or by avoiding the probe effect. Other insufficiencies are in the
range of solution alternatives in surveyed topics: Integration of probes to the
system is said to be possible by automatic- (complete or partial) or manual
insertion, where manual insertion is tailor made for a particular system, and
automatic is performed with a tool. As we have seen in this report, also other
methods are possible (see Section 2.4.5 and the kernel probes suggested by
Thane which are integrated manually but also reusable).

Furthermore, the range of tools which have been mapped with the
taxonomy is small. In future work, we plan to remedy this and also to extend
the taxonomy.

2.6.5 Efficient memory usage when logging

Stewart and Gentleman [53] mentioned the applicability of circular queues as
an infrastructure when logging monitoring entries into records. It seems that
the potential for keeping redundant information in such a scheme is larger then
needed. This was also implied by Ronsse et al. [44], they stated that records
should be evicted as soon as they are without use.

When using a circular queue structure, garbage collection is trivial;
entries can be logged in chronological order on the medium, and as space is
exhausted the oldest record is replaced with the newest one. Thus, the on-line
performance of the garbage collection algorithm ensures that no large penalty
is imposed on the system.

However, there are other performance related drawbacks to this simplistic
scheme. These issues do not concern the on-line performance of the algorithm,
but the off-line usefulness-ratio of the logged information. That is to say how
many of the logged records that can be used in a replay. In the circular queue
solution, no respect is paid to the relative context of the information that is
expunged and the information that is allowed to remain. The usefulness of the
information handled is ignored. Thus, we cannot assume that the final product
is optimal with respect to the off-line usefulness of logged data.

Furthermore, out of a complexity perspective for the programmer, it is
desirable to allow replay of only a subset of the system. As only a subset
of the system is replayed, only that subset must be monitored - thereby
requiring less of the limited memory resources. But, as mentioned in Section
2.4.1, probes should not be removed from, or added to, the system because
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it invalidates previous verification efforts. But, if the functionality of the
garbage collection algorithm could be altered without introducing a probe
effect, memory resources could be saved.

We intend to develop a new infrastructure for logging of monitoring
activities. The intention of that work should be to reduce the amount of
unusable information that will accumulate in the log.

2.6.6 Conferences and research groups of interest

Forums in which future results in the field of debugging of parallel systems may
be published include several groups. Some results have been published in real-
time forums, others have been published in the distributed and parallel systems
community. But there are also channels primarily dedicated to distribute results
in the domain of testing and debugging of computer systems.

Examples of journals, conferences, and workshops are the IEEE
Transactions Parallel and Distributed Systems, the IEEE Symposium on
Reliable Distributed Systems, the ACM International Symposium on Software
Testing and Analysis, the Workshop on Automated and Algorithmic
Debugging, the Euromicro Conference on Real-Time Systems, and the IEEE
Real-Time and Embedded Technology and Applications Symposium.

Among the research groups and their projects that are currently active in
the field, we mention the following:

TUM at the Fakultät für Informatik of the Technische Universität
München, there is a group that does work in programming
development environment and tools. Their homepage is located at
wwwbode.cs.tum.edu/Par/tools/index.html.

Johannes Kepler Universität in Linz, Austria, has a group at the Department
for Graphics and Parallel Processing. The group has a project that deals
with the debugging of distributed memory machines, a project homepage
is available at www.gup.uni-linz.ac.at/research/debugging/index.php

The Australian National University in collaboration with Fujitsu
Laboratories Ltd. has a rather extensive research program called
CAP which has published some work in the area of debugging
parallel computers. The homepage of the program is available at
cap.anu.edu.au/.

PARIS in the Department of Electronics and Information Systems at
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Universiteit Gent, Belgium, has a group lead by Koen De Bosschere
that have active research in the field of debugging parallel programs.
At www.elis.rug.ac.be/ELISgroups/paris/index.html, the PARIS group
is presented. On the related site sunmp.elis.rug.ac.be/recplay/, they
describe their project called RecPlay.

2.7 Summary

We have in this report surveyed the different problems that exists in debugging
of parallel applications, and different effects that influence parallel program
execution. A successful approach to debugging must direct all of these, or
suffer from limited applicability. We have described why the classic cyclic
debugging approach cannot be used as-is on parallel systems, and we have
given an introduction to replay which can facilitate the use of cyclic debugging
in these systems. As there are several approaches to perform the recording
required by the replay, we have also briefly described the main approaches to
do this.

Of the different papers that were read during this work, the following are
perhaps more important than others:

Schütz [48] provides a very comprehensive survey of the research area of
testing distributed real-time systems up until 1994.

We note that McDowell and Helmbold provided a comprehensive summary
of the area of parallel debugging in their now classic paper on parallel
debugging [30]. They explain many of the general problems that are
encountered when trying to debug parallel programs, and also provide some
views on the different solutions available. This paper gives a very good
introduction to the field.

The probe effect was first named by Gait in “A Probe Effect in Concurrent
Programs” published in 1986 [9]. However, LeDoux and Parker have
previously mentioned the phenomenon in “Saving Traces for Ada Debugging”
[24], but referred to it as Heisenbergs Uncertainty principle.16

Among recent dissertations in the field, we mention Henrik Thane [57]
(2000), and Dieter Kranzlmuller [18] (2000).

16As the first draft of Gaits paper was received by the review committee in late 1984, we can
not say for sure which of the two groups that actually thought of the problem first. It may even be
someone completely different who deserves the credit.
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Abstract

Repeatable executions are required in order to successfully debug a
computer system. However, for real-time systems, interactions with the
environment and race conditions in the execution of multitasking real-time
systems software make reproducible behavior difficult to achieve. Earlier work
on debugging of real-time software has established the use of adeterministic
replay, a record/replay solution, as a viable approach to reproduce executions.

When combining the deterministic replay approach with infinite loop
recorders (similar to black-box recorders in airplanes) for post-mortem
debugging, it is essential that the recordings are sufficiently long and detailed
in order to be able to re-execute the system. Basic problems however, are
how to find a well-defined starting point within the recording, and how to
find a reachable state in the rebooted/restarted system to match that instance?
Previous work has not presented solutions to these fundamental problems,
in this paper we do. We also present some implementation details from an
industrial case study.
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3.1 Introduction

Traditionally, debugging is performed by means ofcyclic debugging[4].
After that a system has failed during test or operation, repeated re-
executions of the system together with diagnostics is used to track down
the suspected perpetrator; the bug. Typically, the diagnostic process is
simplified by basic mechanisms in the debugging environment, e.g. interactive
breakpoints, tracing, etc. Cyclic debugging of multi-tasking real-time software
is distinguished from cyclic debugging of single tasking non-real time software
by the need to account for race conditions and potential non-deterministic
re-executions, as well as non-deterministic inputs [14]. Earlier work on
debugging of real-time software has established the use ofdeterministic replay,
a record/replay solution, as a viable solution to create repeatable executions
[1, 6, 13, 17, 15, 19]. When combining the deterministic replay approach
with infinite loop recorders (analogous to black-box recorders in airplanes)
for post-mortem debugging of embedded systems, it is essential that the
recordings are sufficiently long and detailed in order facilitate re-execution
of the system. However, while saving sufficient amounts of information, the
limited amount of resources (temporally and spatially) available must still be
respected. Fundamental problems to solve are:

• how to find a well defined starting point in the recording that matches
the state of the restarted real-time system, and

• how to find/change the startup state of the system to match one instance
within the recording?

In this paper we explain, and present solutions to the two problems
described above, which in previous related works have not been addressed.

We will also present details from a recent case-study performed on an
industrial robot system that is using the VxWorks operating system. The case-
study was a feasibility test of the monitoring/replay methodology in general,
and our method in particular.

The remainder of this paper is organized as follows:
Section 3.2 present some background to the area, after which Section

3.3 describe the problems directed in this paper. In Section 3.4, we present
our proposed solution to these problems. In Section 3.5, we describe an
implementation of the proposed method that was a part of a recent case-study.
Section 3.6 provides a short survey of related work. The paper is concluded in
Section 3.7, where we also provide some discussions on future work.
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3.2 Background

The general idea behind deterministic replay is to record (tomonitorandlog)
sufficient information about areference execution, typically one that ended in
a failure, of the non-deterministic system to facilitatereplay. Replay can be
described as the production of a facsimile of the reference execution based on
that recording. While cyclically replaying thatreplay executionof the system
it is possible to cyclically debug the system.

The level of detail and length of the recording defines the accuracy of the
replayed (facsimile-) execution relative to the reference execution. Which level
of accuracy required is in turn dictated by thefault hypothesis, i.e. what type of
bugs do we assume may exist, and the infrastructure, i.e. what type of bugs are
possible [14]. The more intricate bugs we assume can exist in the system, the
more information we need to record. By using our method of recording and
deterministically replaying executions, we extend the sequential failure fault
hypothesis to also include ordering-, synchronization and timing failures [14].

Recordings are facilitated by inserting probes into the system. These
probes will produce auxiliary outputs, buffered into logs during the reference
execution. Probes can be implemented in hardware, software, or be a hybrid
of those two. The difference between the approaches is essentially defined by
the amount of perturbation introduced, i.e. clock cycles consumed or amount
of memory used. If probes are added, removed, or altered over time, so that
the level of perturbation varies, the system will suffer aprobe effect[3], which
may change the behavior of the system - and prove counterproductive (as it
will invalidate previous verification efforts). Thus, probes that incur significant
perturbation should be left permanently even after deployment [18]. For more
elaborate discussions on this see [4, 14]. The fact that the overhead incurred by
the probes should be accounted for in the schedulability analysis also suggests
that the overhead should be deterministic and limited.

A recording consists of two parts [10]:

• the data-flowdescribes variations in local and global variables, as well
as inputs or output used by the task set, while

• the control-flow describes alterations in the execution, e.g., scheduled
preemptions, blocking system calls, or interrupts.

Together with the system source code, this information defines the
execution of the system.

For post-mortem debugging of embedded systems, the information held
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by the recordings is essential for a successfully produced replay execution.
As these systems have long up-times, if this information was to cover the
entire execution it would consume large quantities of memory. However, a
trait of these systems is that the amount of resources (temporally and spatially)
available is limited. In order to minimize the amount of memory needed for
a recording that captures a reference execution it is possible to apply infinite
loop recorders to a system based on finite length cyclic arrays. The problem to
solve, however, is how to start the system and make it behave like during the
reference execution? This problem can also be described by the two questions
formulated in Section 3.1. Previous related work has not provided us with
answers to this.

3.3 Starting points for replay executions

To deterministically set up the production of a facsimile - to setup a determinis-
tic replay of a recorded reference execution - we need to do two things:

• First, correlate the recordings and identify potential starting points for
each task. A starting point consists of a control-flow event and a
corresponding and sufficient beginning condition (state, message-body,
etc) in the data-flow recording. (The data-flow entry is namedsaturated
point, as it describes a sufficient data-state of the individual task.)

• Second, it is necessary to re-execute the restarted/rebooted target system
to a point in the program, typically a potentially blocking system call
that matches a saturated point in the recording. From this point onwards,
the target system can subsequently be deterministically re-executed by a
replay-mechanism until the end of the recording.

3.3.1 Finding starting points in the recording

To define astarting pointfor a replay execution it is required that we have a
sufficient set of accurate information for replay of the reference execution at
the time of that starting point. That is, the recording at that instant must have
captured the sufficient conditions for a specific task instance, such that from
that instant it is possible, with the remaining information in the recording, to
re-execute the system to the end of the recording (e.g. the failure); switching
tasks in and out, substituting the contents of state variables, messages, and
peripheral inputs with the recorded values. Starting points are defined by the
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cut set of the data-flow and the control-flow. Thus, there must, for any valid
starting point in the control-flow recording, exist a corresponding beginning
condition (state, message, etc) in the data-flow recording. Figure 3.1 illustrates
this cut set.

Reference Execution :

-c cs c sc c s c c
Log Contents :

-c sc c s c c
F easible Replay Executions :

-c c s c c
-c c

−Logging control-flow.

−Logging data-flow, external input.c
−Logging data-flow, state variables.s

Figure 3.1: Replay execution based on log from a reference execution.

As the size of the data that describe the full context of any given task is
usually substantial, it is not feasible to allow the replay execution to start at
an arbitrary point in the reference execution (e.g. at preemptions or interrupt
hits) since this would entail saving the entire task context. We select a set of
points from which the start of replay can begin: viable starting points are task
activation (first time) and blocking system calls. This does not mean that we
cannot reproduce preemptions or interrupts, only that we cannot start at such
events.

3.3.2 Finding starting points for the replay execution

Using some debugging infrastructure, e.g., an ordinary interactive debugger or
a breakpoint interface in the real-time operating system, breakpoints should
initially be set for all potential starting points: typically all blocking system



3.3 Starting points for replay executions 85

calls and task entries in the restarted/rebooted target system. This is usually
sufficient since preemptions or interrupt hit points are not valid starting points.
Each task in the target system is started with the same parameters as during the
reference execution. When, eventually, a task makes a system call, it will hit a
breakpoint. As the execution of the task is halted, all entries in the recording
with that system call reference and task identity can be used as starting points
for a replay. Thus, if at least one saturated starting point that matches the
system call is found in the recording, the beginning conditions (e.g., message
contents, variable contents, etc.) is substituted with the recorded values. When
a starting point has been reached for every task (or desired sub set) in the
recording, we can start replaying the system.

Reference Execution

-

6

ts t1 t2

1

2

Replay Execution

-

6

ts t1 t2

1

2

Figure 3.2: Execution-traces for reference and replay executions.

Note that, as we can see in Figure 3.2, the replay may begin at different
times for different tasks. Replay of task1 is initiated at timet1, while replay
of task2 is not initiated untilt2 > t1. In the span betweent1 andt2, task1
may complete a number of iterations. This implies that a replayed task, which
requires input from another task in the set of replayed tasks, may be forced to
rely on the contents of the accumulated log for the required input.
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3.3.3 Replay

When the initialization is ready, the replay will step forward as the time
index is incremented at each control-flow event that is successfully matched.
In addition, if a subsequent preemption or interrupt event for the current
task is found in the control-flow, its corresponding conditional breakpoint
is set, making it possible to replay this event as that breakpoint is hit.
Once breakpoints representing such asynchronous events as preemptions and
interrupts are hit and successfully matched, they can be removed in order to
enhance the performance of the replay session. Since we have eliminated the
dependency of the external process in real-time and replaced the temporal and
functional context of the application with the recorded data- and control-flow
timelines, we can replay the system history repeatedly.

3.4 Starting point prerequisites

In this section, we define what constitutes a starting point for a deterministic
replay execution in a real-time system.

3.4.1 Definitions and assumptions

We differ between aglobal and alocal starting point. A local starting point
is a starting point for a specific task, a global starting point is a set of local
starting points which can be used as starting point for the set of tasks that are
to be replayed. We definesystem call referencesto be calls to the same system
call from the same program counter (PC) value, andsystem call instancesto
be incarnations of calls to the same system call but possibly from different
references. The set of all system calls is labeledC.

For local starting points, we assume that:
We are able to incorporate probes into the operating system.Some of

the probes must be simplekernel probes[14], i.e. integrated into the operating
system. These receive some parameters from the operating system, and their
execution is protected from interrupts.

System call references are monitored.The set of all monitored instances
of any system call inC is labeledE. A call by a task from program counter
valuepc, to a system callc ∈ C is denoteden ∈ E, wheren is a unique and
temporally ordered identifier for elements inE. Together with the entry, it is
possible to store also a data-segment which is a subset of the tasks data-flow.

Interrupts, exceptions, and preemptions are monitored.The set of all
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monitored interrupts, exceptions, and preemptions is labeledI. The unionF =
E ∪ I is the set of control-flow events.

A subset of the events inE are of a setEs that can be used as local
starting points, the entry points of these system calls are labeledpotential
local starting points, the set of which is denotedCs ⊆ C. Simultaneously
with the monitoring of potential starting points, the full data-flow is also
monitored (e.g. state variables). Thus, a monitored evente ∈ E is a 5-tuple
e = 〈n, c, i, pc, d〉, wherei denotes the task which was executing when the
monitoring was performed.

The size of the setF is assumed to be large,some of the entries are
later evicted from memory as the space available to store them in is relatively
small. This eviction is performed by aneviction scheduler[5]. At the end of
the monitoring session,Flog ⊆ F denotes the set of entries that still remain in
memory - which are still in the log.

A subsetF s
log of the events at potential local starting points is the set

of local starting points. A local starting point is an event which is inEs and
which is still in the log.

A started task will always reach a potential local starting pointwithout
help from the replay engine or other external process outside the system.

The phase of initialization is deterministic for all tasks.When a system
is restarted, there is a phase of initialization before the system reaches its first
potential local starting point. That phase is deterministic.

We define a global starting point as a set of local starting pointsS where it
is true that:

There is one and only one local starting point for each task per global
starting point S. If there is more then one feasible local starting point, one is
chosen.

The replay is not dependent on any irreproducible communication.
Given an instance of a communication between two tasks, where the event
en represents the act of transmitting a message andem the act of receiving the
same. If the global starting point for the receiving task is prior toem, it is either
true that the global starting point for the sending task is prior toen, or that one
of the two events are still represented by entries in the log.

3.4.2 Finding starting points

Using an ordinary interactive debugger, we initially place breakpoints at all
potential starting points. Each task to be replayed is started with the same
parameters as during the reference execution. As a task calls a system call, such
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that that system call is a potential starting point, it will hit its first breakpoint.
As the execution of the task is halted, all entries inFlog with that system call
reference and task identity can be used as starting points for a replay. Thus, if at
least one such entry is found inFlog, the data-stated of the task is substituted
for the data-state from one such entry, after which it is considered that the
data-state of the task and the corresponding data-state of its predecessor from
the reference execution are indistinguishable.

When a local starting point has been reached for every task in the entire set
of tasks to be replayed, the global starting pointS has been established.

Other schemes for replay have allowed such intermediate messages to be
partially supplied by the replayed instance of the producing task [8, 20] by
usingadaptive logging. However, as previously published solutions make on-
line decisions about whether to log or not to log a monitored event originating
from high-perturbing software probes, there is an increase of the jitter in the
system. Jitter will reduce the testability of the system [16], wherefore gains
in time overhead for the logging-procedure must be balanced with respect
to this. It would however be possible to make certain gains with regard to
memory resources required, without compromising the testability, but that
would require eviction strategies such as that presented in [5].

3.4.3 Multiple consecutive starting points

Above, we posted the assumptions that a started task will always reach a
potential starting point and that the phase of initialization will always be
deterministic. If we assume that tasks are constructed as control-loops; a
setup sequence is followed by an infinite loop. This, together with a wish
to always be able to replay a reference execution, leads to the requirement that
the first feasible starting point must lie at the first instruction of the infinite
loop. In addition, the setup sequence cannot be non-deterministic, wherefore
it cannot operate on any semaphores or similar. These are clearly unfortunate
limitations.

If we wish to have other task-constructs, such as the one in Figure 3.3, we
must take additional steps to ensure the presence of local starting points in the
log. This can be performed by ensuring that a subset of the collected pool of
recordings is conserved in the recordings from the reference execution: If at
least one entry of every feasible local starting point that is encountered during
the reference execution is kept in the log, together with sufficient information
to allow a replay to the next consecutive feasible starting point in the execution,
we can allow more complex task-constructs.
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Figure 3.3 shows a setup where both the statesS1 andS2 can be used as
local starting points. However, a recording that has spent too many iterations in
S2 may no longer have entries fromS1 in the log. Wherefore a starting point
cannot be found. Thus, we must separate the logs that store entries from the
two events. A simple approach could be to have separate circular queues for
the two. This will ensure that entries that describe the transition fromS1 to S2
are always accessible if they occurred during the reference execution. Thus,
entries fromS2 can always be replayed if they occurred during the reference
execution.

?

��
��
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%�
�- -��

��
S2

&�
��

Figure 3.3: A task with a modechange.

Previously proposed schemes for logging data, have either been centralized
circular queues [11], which is a FIFO-queue, or have such characteristics that
they compromise testability (see Section 3.4.2 on adaptive logging). Hence,
such methods cannot be efficiently used in this context.

3.4.4 Replay

When the global starting pointS has been established, conditional breakpoints
are set at all unique program counter values where events occurred such that
they are inI, and also still inFlog. These breakpoints represents events that
should be replayed, but have such properties that the address at which they
occur is not deterministic.

Breakpoints are also set at the entry points of all system calls which are not
potential starting points. Previously positioned breakpoints at the entry points
of all potential starting points remain in place. Thereafter, the replay can be
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commenced.
The replay uses the positioned breakpoints to control the preemption order

implied by the entries in the accumulated log. Tasks at breakpoints are released
in the pattern dictated by the control-flow. As system calls are encountered, for
which there is a valid entry in the data-flow, that data is injected into the task
at the correct points with respect to the control-flow.

As feasible starting points (which are references to potentially blocking
system calls) are encountered, we can choose to start from another instance
of that system call reference. This can be describes as jumping forwards or
backwards in time.

3.5 Implementation

An implementation of this method was part of an industrial case study [12, 17],
which aimed to achieve deterministic replay for post-mortem debugging of an
industrial robot control system. The developer of the investigated system is
among the largest industrial robot manufacturers in the world, ABB Robotics.
Their system consists of several computing control systems, signal processing
systems and I/O units. We applied our methods to a part of the system that
consists of a plentitude of tasks, approximately 2.5 million lines of C code, and
is run on the commercial VxWorks real-time operating system (RTOS).

As stated earlier, the complete data- and control-flow, together with the
application code defines an unique execution of the application. In our
implementation, control-flow and data-flow are monitored separately by the
use of software probes inserted in the application code and in the kernel.
Although more elaborate schemes have been proposed [5], we use basic cyclic
buffers for system control-flow and data-flow logging.

3.5.1 Data-flow recording

The data-flow probes are made up of simple monitoring functions, called
within the code of each task. During the reference execution, when called,
these probes store the values of selected static variables, messages received, or
external sensors read. During the replay execution, however, this operation is
reversed, such that the information is read from the data-flow log rather than
being stored onto it. As the replay execution is also executing the deterministic
phase of initialization, we do not have to record the state of variables that are
part of the parameterization. The selection of which data to store/retrieve at
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each data-flow probing is managed by the use of data filters, defined by the
developer.

3.5.2 Control-flow recording

As for the control-flow probes, these are less application-specific but much
more kernel-bound. Since VxWorks does not ship with complete source-code
(yet), we have made use of the kernel hooks included in the RTOS. Using
these, code can be inserted for execution in task switches, interrupts, and other
kernel events. These hook probes, combined with a set of system call wrappers,
allow us to instrument all task switches in the sense of determining their cause,
internal ordering and location of the occurrence.

3.5.3 Correlating data- and control-flow

To be able to perform a replay of the reference execution, the data-flow and
the control-flow logs need to be correlated. For example, a local starting point
es ∈ F s

log is made up of a log point where the control-flow and data-flow entries
for that task coincide.

TaskA()
{

int gvar = 0;

while(FOREVER)
{

msgQReceive(msgQId, &msg,
maxNBytes, timeout1);

probe(MSG_PROBE);
.
subr(gvar);
gvar++;
.
semTake(sem, timeout2);
.

}
}

Figure 3.4: Probed code example.
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Consider, for instance, the example code in Figure 3.4. The potentially
blocking system callmsgQReceive is followed by a software probe, storing
(or retrieving) the contents of the received message. In addition, the value of
the global variablegvar should be stored due to the fact that it helps define the
state of the task in each iteration of the loop. If the global variable is not stored,
the replay execution will always start with agvar -value of zero, corrupting the
correlation between data- and control-flow of the reference execution facsimile.

In the case of an empty message queue, the task will make a transition to
a waiting state and thus cause a task switch, which will be logged as an entry
in the control-flow log. When a message arrives to the queue, the task will be
awakened and the software probe will execute, storing the received message in
the data-flow log. This is an example of a situation where control- and data-
flow log entries coincide, producing a potential local starting point for this task.

On the other hand, look at the next potentially blocking system call,
semTake . When executed, if the semaphore is taken, this call will cause
a running- to waiting- state transition for this task as well. This transition
will be stored in the control-flow log and will be essential for the determinis-
tic reproduction of the execution. However, since no data-flow is stored in
conjunction with this, the task state cannot be restored during the replay
execution at this location and the control-flow log entry is not part of the
potential local starting point set,F s.

3.5.4 Starting the replay execution

As stated earlier, the replay execution is initiated by breakpoints being set at
all potential local starting points in the code of the system. In VxWorks, this
is done by issuing breakpoint commands to the on-target debug task. Once
these breakpoints are set, the system application can be started and executed
up until all tasks have hit their first breakpoint. This will leave the entire
application in a suspended state, from which we are able to chose, from local
starting points in the log, which task to release for execution first. The chosen
task is released and deterministically executed up until its next breakpointed
location of task interleaving (blocking system call, preemption or interrupt)
in the log. Reaching this location might call for enforcing of synchronization
mechanisms, such as semaphores or message queues that did not block during
the reference execution. At this point, a new selection is made, based on the
log sequence, about which task to choose for execution.
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3.5.5 Concerns about the reproduction of inter-task
communication activities

By viewing each task in the replay execution as an fairly autonomous and
isolated entity, we ensure that the state consistency of the global starting point
does not depend on any irreproducible communication. In our implementa-
tion, a message sent by a taskA to a subsequent taskB is logged using a
data-flow probe in the execution of taskB. Using this approach, tasksA and
B operate in isolated environments during the replay execution and taskB
does not have to rely on the correct deliverance of messages from taskA in
order to be reproduced deterministically. However, monitoring all inter-task
communication explicitly might be a time-consuming and expensive activity
and a more thorough analysis of the system task execution behavior could
let us identify periodic transactions of tasks, within which some messages
can be assumed to be reproducible during replay [9]. We have chosen not
to exploit this fact, which may allow a reduction in the overhead from the
monitoring activities, as the jitter of current technologies [9] will compromise
the testability of the system [16].

3.6 Related work

With respect to related work in the field of replay debugging of concurrent
programs and real-time systems most references are quite old. Recent
advancement in the field has been meagre. On the special topic of finding
starting points for replay of real-time systems, no comprehensive studies have
been published hitherto. The only work known to have some similarities [8, 20]
is limited to replay of message passing in concurrent software, and does not
cover real-time issues like scheduled preemptions, access to critical sections,
or interrupts. Also, the jitter of these solutions causes the testability to be
compromised.

On the general topic of deterministic replay previous work published
has either been relying on special hardware [2, 19], or on special compilers
generating dedicated instrumented code [2, 7]. This has limited the applicabil-
ity of their solutions on standard hardware and standard real-time operating
system software. Other approaches do not rely on special compilers or
hardware but lack in the respect that they can only replay concurrent
program execution events like rendezvous, but not real-time specific events
like scheduled preemptions, asynchronous interrupts or mutual exclusion
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operations [1, 13, 20]. For a more elaborate discussion on related work see
[4]. Earlier versions of our deterministic replay technique, which supported
replay of interrupts, preemption of tasks and distributed transactions, have been
presented previously [14, 15, 17]. However, none of those papers elaborated
on how to identify starting points.

3.7 Conclusions

In this paper, we presented a method for initiating a replay execution based on
a previous reference execution.

The replay execution can, deterministically, be cyclically repeated, it is
possible to stop the execution by inserting breakpoints at arbitrary positions,
and variables used can be inspected. It is therefore possible to use the replay
execution when cyclically debugging non-deterministic real-time systems.

Previous work with replay has not been concerned with the problem of
initiating the replay execution; to our knowledge, the method presented here is
the only known to this date.

3.7.1 Future work

In Section 3.4.3, we described a simple solution to the problem of allowing
replay of more complex task structures then simple control loops. In our future
work, we will elaborate on this, and investigate solutions based on the logging
structure that we presented in [5].

We will also direct the issue, described in Section 3.5.5, of re-executing
rather then logging intermediate messages.
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Abstract

Deterministic replay is a technique that allows cyclic debugging of multi-
tasking real-time systems, the technique requires costly recording of data
during system execution. This paper presents an implementation and an
evaluation of a logging structure intended for use when recording the execution
of a sporadic real-time system using a limited memory space. The resulting
log can be transparently used by a known replay-mechanism to deterministi-
cally reproduce the executions - a key requirement for cyclic debugging. We
motivate and define the different requirements on logging structures used for
recording executions of sporadic real-time systems, and show by simulation
that the presented logging structure outperforms the only previously known
competitor.
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4.1 Introduction

Cyclic debuggingis the commonly used term for the process of debugging a
system using an ordinary debugger (e.g., using gdb). It is an iterative process
that restarts the system over and over again (with the same input) to pinpoint
the bug, hence “cyclic”. A requirement for successful cyclic debugging is a
repeatable execution - a requirement that some concurrent systems, real-time
systems, etc., cannot fulfill.

Reproduction of execution behavior throughreplay has previously been
presented as plausible means for successfully realizing cyclic debugging of
systems that incorporate elements of non-deterministic behavior and/or time-
dependence (e.g. real-time systems) [8, 9, 12, 16]. Byrecording observed
and extracted information that describe an execution of a system (hereafter
referred to asto record an execution, or the recording effort), that reference
executioncan be recreated deterministically offline by replaying the elements
of non-determinism. Thesereplay executionscan then be debugged using a
standard integrated development environment (IDE), a recent publication [11]
even showed the applicability of the method in industrial state-of-practice real-
time systems.

One of the main issues with replay is the memory requirements of
implementations; recording an entire execution often requires large amounts
of memory. If the memory resources available to the recording effort are
considered to be small in relation to the size of the data that must be logged,
these systems must allow the replay to start from a state other then the initial
state of the system. Previous work has shown [11, 15] that this can be
performed by taking memory excluding checkpoints [7] from where the system
can be restarted. However, it is then not certain that a replay execution can be
performed for any reference execution [4]. In this paper, we present a method
that can guarantee the success of replay even when memory space is sparse.
In addition, we will show by simulation that our method outperforms the only
known competitor.

The organization of the remainder of this paper is as follows: Section 4.2
will provide a background and a motivation for the work presented in the
following sections. Following, Section 4.3 will present a system model and
the sparse related work found in literature. The contribution of the paper is
presented in Section 4.4, after which the paper is concluded in Section 4.5.
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4.2 Background and motivation

The general idea behind replay is to, by insertingprobes into the system,
record (to monitorandlog) sufficient information about areference execution
of the non-deterministic system to facilitate the offline reproduction of areplay
execution. The replay execution can thus be described as a facsimile of the
reference execution. As the replay execution has avirtual time, and all inputs
are recreated deterministically, the execution can be examined and halted
without intruding on the system functionality - thus, the system is repeatable,
and can be subjected to cyclical debugging.

Implementation strategies for probes are: software (SW), hardware (HW),
or some hybrid (HY) of those; implementation strategies can be compared with
respect to the perturbation-cost (SW - high, HW -low), economical-cost (SW -
low, HW - high), and portability (SW - high, HW - low).

We assume that probes are implemented in software, and that they are run
on the same nodes as the rest of the system. Also, we assume thatdeterminis-
tic replay [11, 15], a recent implementation of the replay strategy using a
commercial-off-the-shelf (COTS) IDE, is used. The implementation does
not assume that the log from the reference execution describes the reference
execution in its entirety; by using memory excluding checkpoints, the replay
is allowed to start from a state other then the initial state of the system, which
implies that some sequences of the log may be discarded before completion
of the reference execution. In this paper, we are concerned with thelogging
structurethat takes the decisions of which information to keep; the logging
structure is the algorithm that discards older log records for newer ones.

4.2.1 Starting replay

A recent publication by Huselius et al. [4] presents a method for initiating a
deterministic replay together with the system requirements for that method.
This method is currently the only one known to us that discuss this issue. From
the system requirements, it was deduced that the logging structure plays an
important role in guaranteeing a successful replay; without a suitable logging
structure, if the code of the system deviates from a simple control-loop-model,
it is not guaranteed that sufficient information of the reference execution
remains to allow a correct replay.

Basically, the method restarts the system by treating each task
independently, this will lead to a situation where tasks may start their replay
at different points in the virtual time of the replay execution. However, the



4.2 Background and motivation 101

replay cannot be considered to be correct until all tasks are started. We name
the interval in which all tasks are concurrently replayed: theshortest interval
of replay(SIR).

The method for starting a replay stipulates that, for each task in the system
that is to be replayed,potential starting pointsare identified in the code offline
as a part of the monitoring effort. During the reference execution, memory
excluding checkpoints [7] of the taskstate are taken at these locations. In order
to replay a taskset, the individual tasks are restarted from scratch with the same
input as during the reference execution. As a task reaches a potential local
starting point, its context is replaced according to the log (thus, the potential
starting point is indeed a starting point). When all tasks have encountered such
starting points, the replay can continue as dictated by the log [4]. The first
potential local starting point encountered during an execution, for which there
are useable entries in the log, is called theused starting point.
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Figure 4.1: A task with several potential starting points.

One of the requirements posted by this method is that the execution of
the individual task, up until it reaches the used starting point, is determinis-
tic. Depicting the task as a finite state-machine (FSM), where potential local
starting points are vertices and the possible execution paths between them are
edges, we can see a problem illustrated by the example in Figure 4.1: In
preparation for the replay, the task will be restarted after which it would end
up in stateS1 from where the replay must be started (remember: the execution
must be deterministic until the first encountered starting point). However, the
reference execution had to manage information from two monitored starting
points - what if no information remain that describe a taskstate valid inS1?
Say that all available information in the log describe taskstates valid inS2 - as
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the information aboutS2 cannot be used until the replay execution has been
shepherded there fromS1, that would result in a situation where the replay
cannot be performed.

Based on the above discussion, we formulate the following requirement:
the logging structure must ensure that sufficient information is available in the
log at the end of the reference execution to enable the replay to use or reproduce
also the most recently monitored entry during the replay. We note that this is
difficult if the FSM of tasks in the system arenon-deterministic(using the
definition of non-determinism by Milner [6]), but that the appropriate logging
structure can ensure that the stated requirement will be fulfilled.

4.2.2 Length of replay

As Thane noted [12], theoretically, the SIR must cover the period of time from
the infection of the system (the execution of a bug) to the failure of the system
(when the presence of the executed bug is sensed by the system-environment).
We call this period theincubation periodof the system. In practice however, as
we cannot know exactly which bugs are present in the system, the worst case
incubation period of a system is not quantifiable. It is therefore the amount of
memory assigned to the recording effort, and the rate with which this memory
is effectively used, that limit the length of the SIR for a given system.

Thus, the goal of the logging effort must clearly be to extend the SIR for
a particular execution of a given system as far as possible with the resources
available. Hence, we can use the length of the SIR as a measure of the logging
efficiency.

4.2.3 Contributions

The logging structure presented here has the ability to guarantee the possibility
to perform replay of implementations that have a network of potential starting
points as described in Section 4.2.1. Further, we show by simulation that
the presented logging structure outperforms the only known competitor when
monitoring sporadic real-time systems.

4.3 Logging

As argued by Thane and Hansson [13]: An executed instance of a multi-
tasking system can be seen as a sequential program, anexecution scenario
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is a serialization of a multi-tasking system into a single-tasking system. Thus,
a multi-tasking system can be seen as a set of single-tasking systems, each of
which must be tested separately. The number of possible serializations of a
system is increasing with the amount of jitter, as each execution scenario must
be tested separately, jitter will increase the required testing effort. Hence, jitter
compromises testability.

Based on this discussion, we conclude that an important constraint on a
logging structure concerns the execution time of its implementation: In order
not to compromise testability, the implementation should not introduce any
additional jitter into the system [2]. One way to ensure this is to show that the
implementation of the logging structure has a constant execution time.

Due to the effects of cashes, pipelines, etc., a constant execution time
should be supported by a suitable hardware platform such as that presented
by Delvai et al. [1]. However, the negative effect of jitter on testability has
exponential characteristics [14], which leads to that even small reductions in
jitter will have significant impact on testability.

4.3.1 Related work

Surveying the field of available logging structures, one finds that only a
few alternatives are available today: As noted by Stewart Gentleman [9],
the commonly used solution is a First-In-First-Out (FIFO) logging structure.
There is also a method calledadaptive logging, presented by Zambonelli and
Netzer [16], but the online decision-maker of that method has substantial jitter-
properties that will compromise the testability of the system it is used in. Sultan
et al. presented a lazy garbage collection for distributed systems [10]. As
the checkpointing process does not require a distributed solution to facilitate
replay [4], and the checkpointing and garbage collection of their proposed
method is transparent and unrelated to the application (thus inferring jitter in
to the system), their method is not adaptable to the situation described here. A
method presented by Huselius [2], on which this work is based, is called the
Constant Execution Time Eviction Scheduler (CETES). CETES is an immature
method that, since it requires all entries to be of the same size, cannot be
efficiently used in real-world systems.

The relative recent interest in logging schemes [4], and the fact that not all
replay-methods assume a limited memory, could be the reason for the small
number of proposed alternatives. In embedded real-time systems however, the
limited memory is indeed a reality.
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4.3.2 System model

We assume an instrumented, preemptive, sporadic, online scheduled, multi-
tasking real-time system where probes are implemented in software and
are allowed to have their execution protected from interrupts. Tasks can
communicate with each other and with the environment. Each task emits a
single newjob at a time, with a periodicity varying in the interval described by
the task deadline andsporadicity. A new job of a task cannot be emitted prior
to the completion of a previous.

The recording effort probes control-flow events (such as context-switches)
and data-flow events (such as communication and checkpoints of task data-
state). Eacheventobserved by a probe results in anentry that is logged in
memory in one or morerecords. The recording effort is assigned a memory-
space on which both the implementation of the logging structure and the logs
are to be kept (thus, smaller implementations will have larger space to keep
logs).

4.3.3 FIFO logging structures

Concerning the FIFO scheme, three approaches seem feasible; either, Global
FIFO (FIFO within the system), or Local FIFO (FIFO within tasks), or Starting
point FIFO (FIFO within starting points). In Global FIFO (GFIFO), all
memory available for logging is partitioned into a single FIFO-queue. In Local
FIFO (LFIFO), each task will log entries to a dedicated queue, a separate queue
is reserved for entries relevant for all tasks. In Starting point FIFO (SFIFO),
each starting point will log entries to a dedicated queue, a separate queue is
reserved for entries relevant for all starting points. An implementation of the
LFIFO scheme is found in a previous publication [3].

Obvious difficulties with the three alternatives are as follows: a GFIFO-
alternative must be able to accommodate several different sizes of entries,
an LFIFO- or SFIFO- alternative must (based on entry sizes and arrival
frequencies) calculate relative memory-requirements between queues.

Further, as GFIFO cannot distinguish between entries at all, the correct
starting of a replay is not guaranteed (see Section 4.2.1). As GFIFO does not
allocate memory to specific tasks, it cannot be guaranteed that all events from
a certain probe will be represented in the queue; probes may be starved with
respect to logging capacity. Thus, GFIFO is clearly unsuitable in this context
and will not be investigated further in this article.

In the same way that GFIFO cannot serve a plentitude of tasks, LFIFO
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cannot serve a plentitude of starting points. In order to use a FIFO solution
as a logging structure for tasks with more then one starting point, the FIFO
must be within starting points (SFIFO). However, assuming a task with several
non-deterministic transitions between potential starting points, similar to that
described in Figure 4.1, it is not possible to efficiently partition the available
memory over the queues. Thus, SFIFO is clearly unsuitable in the context of
this paper, and will not be investigated further in this article.

It seems that, assuming tasks with networks of potential starting points as
described in Section 4.2.1, a dynamic logging structure is required.

4.3.4 CETES logging structures

A previous publication [2] introduces the Constant Execution Time Eviction
Scheduler (CETES), a novel logging structure that allows dynamically
adjustable distribution of memory resources to individual logging efforts. The
algorithm maintains the LFIFO- and SFIFO- concept of queues, but allows the
lengths of these to vary based on the contents of the log.

In addition, CETES (and ECETES) provide the developer with a tool that
provide online control of the log-content without modifying the execution time
of the application; a set of constraints are available to control the lengths,
temporal span, and priority of each queue [2, 5]. These can, for example,
be used to ensure that a particular queue will always contain all logged entries
with in a temporal interval. They can also be used to switch on and of the
logging of entries inserted to a queue (the perturbation will always stay the
same though).

For a given entry size, the sequence of instructions executed is deterministic
(see Table 4.5), which will result (assuming the SPEAR hardware) in a constant
execution time for a given entry size. As a result, the execution time of the
implementation is constant for monitoring a given entry, wherefore the jitter of
the system is not increased, and the level of testability is therefore maintained.

However, the CETES implementation requires that all entries are of
the same size, and the possibilities to control the properties of the queues
are limited. The Extended Constant Execution Time Eviction Scheduler
(ECETES), briefly described in [5], is introduced to remedy these issues. From
the CETES-perspective, the primary improvement that comes with ECETES is
the possibility to log also entries with varying sizes. In this article, we present
an evaluation of this improved logging structure.
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4.4 ECETES

The CETES and ECETES algorithms have a common basic functionality:
Logging an entry of a number of records is preceded by the act of evicting
the same number of records from a single queue. The output from the eviction
process is a consistent chain of emptied record-bins that are then filled with
the new entry. The process of eviction is the core to the functionality, and
is identical in both the implementations (the eviction process is described in
previous publications [2, 3, 5]). The basic structure of the eviction process
is as follows: each available queue is examined only one time. Based on the
examination process, the queue that is judged to loose least in terms of replay
time from being subjected to eviction is chosen.

The source code to the current ECETES implementation is found in a recent
technical report [3]. Compared to CETES, enhancements are as follows:

Entry sizes are allowed to vary between entries, even in the same queue.
This is performed by implementing a 1-to-N mapping between entries and
records; each entry can consist of one or many fixed-size records. The CETES-
structure has, in order not to compromise testability, a constant execution time;
each entry takes the same time to log, independent of queue-state or entry-state.
As ECETES allows entries originating from different probes to have different
sizes, logging two arbitrary entries may not take a constant time, but logging
two entries of the same size always do. Figure 4.2 describes the assembler
instruction-flow of the implementation, each loop in the function is performed
a fixed number of times for an entry of a given size. Assuming that an entry
produced by monitoring a given event always will produce an entry of the same
size, this is a sufficient condition for maintaining the system testability.

The above mentioned examination each queue is performed by comparing
queue properties and the properties of one of the records in each queue; CETES
compared the next-to-last records of each queue, but ECETES does it a bit
differently: If n records are to be evicted, the(n+1):th record counted from the
end of the queue is examined. This way, the process of eviction will identify
a consistent chain of records in a single queue, and evict the records in that
chain.

This is not an optimal solution, but it is the only working solution known to
present day. The constraints on the execution time of the implementation limits
the possibilities to realize a solution that is optimal according to the criteria
defined in Section 4.2.2. We are thus forced to settle for a heuristic. A more
efficient method would be to examine all records in the pool, and decide not on
a whole consistent chain of records to evict, but hand-pick every single record.
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Figure 4.2: Instruction-flow of the ECETES-implementation (see Table 4.5 for
labels).

However, in any real system, such an approach would inflict too heavily on the
execution time of the algorithm.

As entries of different sizes (originating from different probes) can be
logged in the same queue, all data-flow for one task can be logged in the same
queue. When starting a replay, the first entry that will be of importance is an
entry describing a checkpoint of the task-state. Thus, all records that are not
part of a complete checkpoint, or has an older complete checkpoint in the queue
can be marked as unneeded. (In the current implementation, ECETES will
mark only unneeded records that are not part of any checkpoint.) As unneeded
records can be evicted without penalty, these are considered first by ECETES.

4.4.1 Example

See Figure 4.3, where we have as system of two ECETES-queues (A andB).
Each queue receives entries to log into records, and has a vector of logged
records associated to it. There is a header for each of the queues (H A and
H B), these contain the constraints posted on the queue (see Section 4.3.4),
and pointers to the first and last element in its vector of records. Also each
record contains some information concerning its age and information about
where to locate its neighbors.
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Figure 4.3: ECETES example.

Now, imagine that we have a new entry consisting of two records to store
in queueA. Before storing the new records, we must identify a queue from
where to evict two records. This identification is performed by examining the
queue-headers, and one record from each queue (A3 andB3). These records
are picked as they are the oldest records that will remain in the respective
queue if two reocrds are evicted. Essentially, provided that it will not lead
to a violation of the queue-constraints, the queue to which the oldest of the
two records belong will the subjected to the eviction. Here,B3 is the oldest,
soB will have to surrender its two oldest records (B1 andB2). The two new
records (A7 andA8) can then be inserted, and the new records are then linked
with their designated queue.

4.4.2 Evaluation of the ECETES logging structure

Due to the dynamic properties of the queues in the structure, it is possible
to guarantee replay of systems with multiple starting points while keeping an
efficient memory utilization. Thus, the part of the motivation (see Section
4.2.3) described in Section 4.2.1 is fulfilled by the ECETES log structure. In
this section, we shall present an evaluation that was made to ensure that also
the other part of the motivation (see Section 4.2.2) was improved relative to the
only other known useable log structure, LFIFO.

We evaluated the ECETES logging structure by comparing it to the LFIFO
logging structure in a simulator, the simulation intended to validate the
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hypothesis that ECETES outperforms LFIFO in sporadic real-time systems.
The validation is performed by measuring, given a certain memory budget,
which of the tested methods that will provide the longest shortest interval of
replay (SIR) (see Section 4.2.1) in such a system.

The simulator

The simulator used was tailor-made for the evaluation, code to the implementa-
tion is provided in a previous publication [3]. The task model is a fixed-
priority scheduled sporadic task, priorities are set according to rate-monotonic,
and complies to the system model specified in Section 4.3.2. Although the
simulator is capable of modeling inter-task communication (IPC), this feature
was not used during the validation process.

Simulation

We performed simulations with three different tasksets, the properties of the
sets used are as displayed in tables Table 4.1, Table 4.2, and Table 4.3. Each
taskset was subjected to 23 instances of simulation with different values on the
sporadicity of the tasks of the taskset. Each instance was simulated 100’000
times.

Properties Task A Task B

Deadline [time units (tu)] 2000 8000
Execution time [tu] 990 - 999 3960 - 3999
Data-state [bytes] 1100 1100
IPC’s in [number] 0 0
IPC’s out [number] 0 0

Table 4.1: Simulator taskset 4.1.

In the setup for both ECETES and LFIFO, for each task, a queue was
assigned to log the data-flow, and the monitored checkpoints. One queue was
also assigned to monitor the control-flow of the entire system. In the case of
the LFIFO logging structure, if the tasks of the system have IPC-queues for
communication, these would most likely have to be assigned separate queues
as the LFIFO-implementation used does not support different entry-sizes in
the same queue. The ECETES implementation can, as entries from different
probes can have different sizes, allow such entries to be logged together with
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the data-state checkpoint of the receiving task.

Properties Task A Task B

Deadline 4000 8000
Execution time 990 - 999 3960 - 3999
Data-state 1100 1100
IPC’s in 0 0
IPC’s out 0 0

Table 4.2: Simulator taskset 4.2.

The LFIFO logging structure requires some parameterization regarding
individual queue-lengths, these are calculated as follows: Checkpoints of the
data-state are taken at the start of each job. Each system call that may result
in a preemption (e.g.,semaphoreTake() ) may, in the worst case, result
in two context switches per execution. By counting the maximum number
of potentially blocking system calls that may, in the worst case, be executed
for each job, the worst-case number of preemptions under some period of the
system execution can be calculated.

Properties Task A Task B Task C

Deadline 2000 4000 8000
Execution time 990 - 999 990 - 999 990 - 999
Data-state 1100 1100 1100
IPC’s in 0 0 0
IPC’s out 0 0 0

Table 4.3: Simulator taskset 4.3.

However, the worst-case calculation of control-flow entries is very
pessimistic. Further, it is also expected that the size of a control-flow message
will be much smaller than a data-flow message [11]. But in this setup, as we use
the same entry size for all entries, a gained control-flow entry for the ECETES
algorithm would reflect unproportionally in the results; if all entries are of
the same size, a gained control-flow entry for the ECETES can be directly
transferred to a data-flow entry, but in a real system, it would probably take
several control-flow entries to do the same. Thus, in our simulation setup, we
chose not to consider the memory allocated for logging the control-flow of the
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system as it would unjustly favor the ECETES logging structure.

Overhead

We can measure overhead in two ways; spatial overhead describes the amount
of memory consumed by an implementation, temporal overhead describes the
execution resources required to execute it. In the system model above we
assumed a hardware similar to the SPEAR-example. However, the work on
that platform has not yet resulted in a C-compiler. We therefore choose to
display the spatial overhead measured on the Intel platform, the same platform
used for the simulations.

Post TS 4.1 TS 4.2 TS 4.3

ECETES queues 3# 3# 4#
ECETES records 72# 63# 102#
ECETES max records 3# 3# 3#

Assembler code 389 389 389
Queue headers 96 96 128
Entry index 36 36 48
Records 74752 66560 105472
TOTAL ECETES 75273 66057 106037

TOTAL LFIFO 76214 66074 106662

Table 4.4: Spatial overhead in bytes of the Intel implementation.

For the test cases described in tables Table 4.1, Table 4.2, and Table 4.3,
the overhead of the current ECETES implementation on an Intel platform is
as follows: The temporal overhead is described by Table 4.5, whereIterations
describe the number of times a block of code is executed for each call to the
function, andInst (or Instructions) describe the size of each block in assembler
code instructions as described by Figure 4.2. Note that the instruction count of
loopL2 does not include the body of the functionmemcopy() , which is called
from within that loop (also note that all calls to the function memcopy has the
same size-parameter: the maximum record size). Regarding the iterations,
queuesis a constant describing the number of queues that are defined in the
monitoring activity,recordsis the number of record required to log the entry,
and max recordsis a constant describing the maximum number of records
required to log an entry in the system.
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Path Inst Iterations

Sequence S1 26 1
Loop L1 92 queues
Sequence S2 43 1
Loop L2 36 records
Sequence S3 35 1
Loop L3 34 max records
Sequence S4 7 1

Table 4.5: Temporal overhead in assembler instructions of the Intel
implementation (see Table 4.4 for constants).

The spatial overhead is described by Table 4.4, whereTS is taskset. In
the same table, also the corresponding LFIFO overhead is shown (for more
information on the LFIFO overhead, we refer to the technical report that
introduced the CETES logging structure [2]). Note that the test was configured
in favor of the LFIFO logging structure; the spatial LFIFO overhead is strictly
larger then the corresponding ECETES overhead.

Simulation results

A given taskset has a sporadicity variable which is used for all tasks in the set.
For each of the above defined tasksets, we performed a suite of 23 simulation
setups with varying sporadicity. For each setup, a total of 100’000 simulations
where performed, accumulating a total of3 · 23 · 100′000 = 6′900′000
simulations. The length of each simulation was allowed to vary randomly
between high numbers (relative to the size of the memory allocated for the
recording) so that the logging structure had to prioritize between the entries
logged in every simulation. Also the execution times of each issued job was
randomized within an interval as described by the taskset specifications above.

For each simulation performed, the shortest interval of replay (SIR) was
measured based on the log contents from each of the algorithms. The result
from a simulation is the relation between the ECETES and LFIFO SIR’s; a
result of100% describes a tie between the subjects of the evaluation, a result
below100% indicates a win in favor of LFIFO, a result exceeding100% is a
win in favor of ECETES.

The results of the evaluation are displayed in tables: Table 4.4 for taskset
4.1, Table 4.5 for taskset 4.2, and Table 4.6 for taskset 4.3. Each simulation
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Figure 4.4: Simulation results using taskset 4.1.

suite has a column of five marks representing the five quartiles (Q0, Q1,
Q2, Q3, and Q4, from the bottom and up) of the result. The graphs should
be interpreted so that when Q2 has crossed the100% barrier, the ECETES
algorithm wins over, or out-performs, LFIFO in a majority of cases (assuming
the current setting).

The profile ofQ0-values maintains a close-to-constant value in a given
taskset-simulation, thus indicating that the number of simulations performed
for each simulation setup is sufficient to provide a sound result.

The simulation of taskset 4.1, accounted for in Figure 4.4, shows that
ECETES outperforms LFIFO already at low levels of sporadicity relative to the
periodicities of the tasks in the set (Q2 breaks the100%-barrier at a sporadicity
somewhere between 700 and 800 time units).

As we can see, this result is then further confirmed by the simulation of
taskset 4.3, the simulation is accounted for in Figure 4.6: When a third task is
added to the taskset, the sporadicity of the system execution is increased, and
the ECETES performs even better in relation to LFIFO.

In order to concretize, we examine a particular simulation instance: With
taskset 4.3, when the sprodicity is set to1000 time units (tu), Task A has a
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Figure 4.5: Simulation results using taskset 4.2.

periodicity in the closed interval [2000,2999] tu, the same closed interval for
Task B is [4000,4999] tu, and [8000,8999] tu for Task C. In this particular
simulation run, we measured that the Q2 SIR of ECETES was39362 tu, and
the same value for LFIFO was37867 tu. Thus, the gain from using ECETES,
in this particular simulation instance, seems clear.

In taskset 4.2, the simulation is accounted for in Figure 4.5, the periodicities
of the tasks are spread in a larger interval of time, but the sporadicity constant
varies in the same interval as in the simulations of the other tasksets. We can
see that although ECETES eventually starts to gain on LFIFO, it does not out-
perform it under the sporadicity interval simulated. As the tasks are issued with
a lower frequency, ECETES requires larger amounts of sporadicity in order to
out-perform LFIFO.

Concluding the report of the simulation results, our evaluation suggest that,
as far as ECETES is concerned, a relation exists between the periodicities and
the sporadicity of the taskset. The nature of this relation is however not known
at present time.
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Figure 4.6: Simulation results using taskset 4.3.

4.5 Conclusions

It has previously been established that controlling the memory usage during
recording of a reference execution is essential for the success of a following
replay [4]. In this paper, we have presented the evaluation of an algorithm that
can make efficient use of memory resources while guaranteeing the possibility
to perform a correct replay based on a reference execution. Simulations
presented here show that the proposed ECETES logging structure outperforms
conventional FIFO-techniques in sporadic real-time systems.

4.5.1 Future work

There are still improvements that can be made to the proposed ECETES
logging structure. These include improving the marking ofunneededrecords,
and working on the selection technique which currently assumes the contents
of the log prior to the insertion of the new record, a better performance would
be reached would the resulting contents be considered instead.

Also the evaluation can be further improved, the effectiveness of the
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ECETES is dependent of the relative sizes of logged entries; if these sizes
are very similar, or at least multiples of each other, ECETES performs much
better. This issue is not reflected in the validation performed here.

Last, the relation between sporadicity and periodicity must also be further
investigated.
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