
From Modeling to Test Case Generation in the
Industrial Embedded System Domain

Aliya Hussain1, Saurabh Tiwari1, Jagadish Suryadevara2, and Eduard Enoiu1

1 Mälardalen University, Sweden
2 Volvo Construction Equipment AB, Sweden

ahn16022@student.mdh.se, saurabh.tiwari@mdh.se,

jagadish.suryadevara@volvo.com, eduard.paul.enoiu@mdh.se

Abstract. Model-based testing (MBT) is the process of generating test
cases from specification models representing system requirements and
the desired functionality. The generated test cases are then executed on
the system under test in an attempt to obtain a pass or fail verdict.
While different MBT techniques have been developed, only a few target
the real-world industrial embedded system domain and show evidence on
its applicability. As a consequence, there is a serious need to investigate
the use of MBT and the evidence on how modeling and test generation
can improve the current way of manually creating test cases based on
natural language requirements. In this paper, we describe an on-going
investigation being carried out to improve the current testing processes
by using the MBT approach within an industrial context. Our results
suggest that activity and structure diagrams, developed under MBT,
are useful for describing the test specification of an accelerator pedal
control function. The use of MBT results in less number of test cases
compared to manual testing performed by industrial engineers.

Keywords: MBT · Systems Engineering · Test Cases · Modeling

1 Introduction

Model-based testing (MBT) is an approach of automatically designing test cases
based on behavioral models of system requirements [3]. These models represent
the expected behaviour of the system under test (SUT). The testing process
mainly consists of three high-level steps namely, creation, execution and evalu-
ation of a test case. The test case creation is the most important part of this
process as it involves the design of the preconditions, test steps and the expected
output. The test case creation is a challenging activity and it has a direct impact
on the ability to find faults and the quality of the resulting product. MBT au-
tomates the test creation by using abstract models developed at an earlier stage
of the development process and promises to be a more efficient and effective
method than manual testing [1][2].

In this study we present the results of an investigation at VCE (Volvo CE3),
the stakeholder’s requirements, needs, and concerns written in natural language.

3 Volvo Construction Equipment AB, Sweden



2 Hussain et al.

Fig. 1. Overview of MBT test case creation method and the current manual testing
practice (NL stands for natural language).

Manual test cases are manually created using these requirements based on the
test engineer’s domain knowledge and experience. In Fig. 1, we illustrate the
overview of how MBT differs in its high-level process to manual testing.

We describe the modelling and test generation process using Conformiq Cre-
ator as well as an exploratory comparison between manual testing and MBT in
terms of number of test cases and test goal categories. The goal is to facilitate
the use of automated test case creation using models of the system specification
and show its applicability. We demonstrate how the MBT process is used (as
described in Fig. 1) for modeling a realistic function controlling the ‘Accelerator
Pedal’ using activity diagrams (i.e, to specify the actions) and structure diagrams
(i.e, to visualize the possible set of input and output parameters used). These
diagrams are used by the MBT tool (Conformiq Creator4) to automatically gen-
erate test cases. Based on our initial investigations, we report our findings as
well as point to future work.

2 Background

The study evaluates MBT use in an industrial scenario using a system provided
by VCE. In this company, a management solution for systems engineering and
software development (simply referred as the SE-Tool) is used as an adaption
of the commercial tool Systemweaver5. This solution is a generic system mod-
elling solution that supports the use of models (e.g., EAST-ADL6 standard for
automotive domain) and is a collaborative environment with support for sys-
tem development. In this study we focus on the Complete Analysis Function

(CAF) implemented in the SE-Tool framework and representing the functional

4 https://www.conformiq.com/
5 http://systemweaver.se/
6 We refer the reader to the standard for further details: http://www.east-adl.info/



From Modeling to Test Case Generation in Industrial Embedded System 3

Fig. 2. View of Complete Analysis Function (CAF) for Accelerator Pedal function

architecture (i.e., the analysis level) of the Electrical and Electronic (E2E) con-
trol system w.r.to corresponding machine feature.

The CAF acts as a container for a collection of Analysis Functions (AF)
and Function Devices (FD). An analysis function specifies a required function
(within the E2E system) as a black-box mapping of inputs to outputs and a
functional device (FD) that specifies the interface to other sub-systems, sensors
or actuators. The HMI functional device is a special kind of functional device
that is intended to be used for the operator interface; it defines components
such as levers, switches and buttons for the operator interface. The SE-tool also
provides the graphical overview of a CAF by showing all inputs and outputs as
well as the interface with other subsystems.

The CAF function for the ‘Accelerator Pedal ’ is shown in Fig. 2. The purpose
of this function is to evaluate pedal position requested from the operator (per-
son who operates a machine through an appropriate interface). The inputs and
outputs specified for the function are described, in terms of interface, as follows:

– Input Parameters: Accelerator Pedal Primary Position, Accelerator Pedal
Secondary Position, Machine Speed Limitation Control, and AutoDig Re-
quest. The values of both Accelerator Pedal Positions, primary and sec-
ondary, are obtained form the two sensors attached to the “Acceleration
Pedal”. On the other hand, the Machine Speed Limitation function provides
Machine Speed Limitation Control values and the AutoDig function provides
the AutoDigRequest values.

– Output Parameters: Accelerator Pedal Primary Position, Evaluated Ac-
celerator Pedal Position Unlimited, Evaluated Accelerator Pedal Position,
and Malfunctioning Accelerator Pedal value. In a nutshell, the “Accelerator
Pedal” function translates the accelerator request from the operator into the
corresponding “propulsion force request” which is passed on to and finally
actuated by the Drive-Line System (DLS).



4 Hussain et al.

Fig. 3. An activity diagram showing the Double Erroneous Accelerator Pedal behavior.

3 The Modeling Approach

As shown in Fig. 1, in this paper, we describe a modeling approach to develop
test models that enables automatic test case generation. The first step of the ap-
proach is to create, albeit manually (in future to be partly automated based on
requirement models) a model from the CAF-based function specifications. Essen-
tially, two types of models are created, namely, activity diagrams (i.e., represent-
ing behavioral models) and structure diagrams (i.e., representing a combinatorial
model). We note here, that the structure diagram is limited to the input and
output specifications. These diagrams created for the Accelerator Pedal function
are described as follows:

– Activity diagrams: The activity diagram shown in Fig. 3 specifies the sys-
tem behavior corresponding to the “Double Erroneous Accelerator Pedal”
state of Accelerator Pedal. In the first activity node all input values are
initialized and saved in the corresponding data objects. The value of Au-
toDigRequest is checked if its value falls out of range. In case this is true,
the variable is reset in the next state. Similarly, Machine Speed Limitation
Control value is adjusted. In addition, the Accelerator Pedal Primary Posi-
tion and Accelerator Pedal Secondary Position are checked. If both values
are out of range the output is set accordingly.

– Structure Diagram: The structure diagram as shown in Fig. 4, is created
based on the Accelerator Pedal CAF for defining the interfaces available for
testing. Firstly, the inputs and outputs of the function are identified. The
Accelerator Pedal Input Signal interface contains several message objects
and each message object corresponds to a specific input of a function. The
message objects in the Accelerator Pedal Output Signal interface specifies
the function outputs.

In the next section, we describe the main results obtained using the modelled
diagrams in the context of generating test cases as well as a comparison between
MBT and manual test cases.



From Modeling to Test Case Generation in Industrial Embedded System 5

Fig. 4. Structure Diagram for Accelerator Pedal

Table 1. Example of the test case derived in the TIL2 format compatible with the
VCE test environment

S.No. Action Expected Result
1 Accelerator Pedal Primary Position = 101;

Accelerator Pedal Secondary Position = -
1; AutoDig Request = -1; Machine Speed;
Limitation Control = -1

Accelerator Pedal Primary Alarm = ALARM;
Accelerator Pedal Secondary Alarm = ALARM;
Malfunctioning Acceleration Pedal = MALFUNC-
TION; Evaluated Accelerator Pedal Position = Do
not Care; Evaluated Accelerator Pedal Position
Unlimited = -1; Diff Alarm Accelerator Pedal =
NORMAL

4 Preliminary Results

The model of the Accelerator Pedal function is created manually and we val-
idated the models by performing informal interviews with VCE test engineers
responsible for testing the function under test to ensure model correctness and
consistency. As a next step, the model is used as input to the Conformiq Creator
tool to automatically generate test cases covering the created activity diagrams.
Typically, the representation of a manually created test case in the SE-Tool is
performed in the test instruction language version 2 (TIL-2)7 format to facilitate
the use of an automated test execution and evaluation environment. The test
cases derived from the proposed MBT approach are exported to a compatible
format (i.e., TIL-2). An example of a generated test case is shown in Table 1.

In order to contribute to the state-of-art, we compared MBT test cases with
manual test cases created by industrial engineers. We conducted a preliminary
empirical investigation in terms of covering different test goals and number of test
cases. Together with several test engineers from VCE we defined six categories
of test goals used when performing rigorous manual testing. These six categories
are shown in Table 2 and cover a set of realistic testing goals for the function
under test. Our results suggest that tests derived using the MBT approach are
similar in nature and can be used to cover all test goal categories at a lower
cost in terms of number of test cases created per each category; just for one of
these categories (i.e., Erroneous Detectors (Single and double)) the number of

7 ISO/IEC/IEEE 29119-3:2013; Software and systems engineering – Software testing
– Part 3: Test documentation



6 Hussain et al.

Table 2. Test Goal Category and Number of test cases (TCs) comparison between
manually created test cases by industrial engineers and MBT-based test cases.

Test Goal Category Manual TCs MBT-based TCs
Normal Operation 13 3
Differing Detectors 6 1
Pedal Position Output 8 2
Erroneous Detectors (Single and double) 5 3
Erroneous Autodig request and Machine limitation Control 22 3
All input erroneous combination 23 4
Total 77 8

test cases between the two techniques is similar. Overall, the total number of
test cases created using MBT (i.e., 8 TCs) is significantly lower than for manual
testing (i.e., 77 TCs). We have also found that these 8 TCs belong to multiple
categories. A more detailed efficiency and effectiveness measurement would be
needed to obtain more confidence in the results obtained in this study.

5 Conclusions and Future Work

In this paper, we present an investigation into the use of model-based testing in
the embedded system context. We use the Conformiq Creator tool to model the
behavior and structure of a function controlling the accelerator pedal provided
by Volvo CE. We automatically create test cases covering the model and compare
these test cases in terms of test goal coverage and number of test cases to assess
the applicability of MBT in this context. The approach has shown encouraging
results. As future work, we plan to also investigate the efficiency and effectiveness
of MBT test-case generation. We plan to semi-automatically generate diagrams
out of CAF specifications to reduce the effort of creating test models. In addition,
we need to investigate the use of complex data types and timing aspects into
the test model, since Conformiq Creator does not support decimal numbers or
how to directly represent timing requirements.

Acknowledgments

This work is partially funded from the Electronic Component Systems for Euro-
pean Leadership Joint Undertaking under grant agreement No. 737494 and The
Swedish Innovation Agency, Vinnova (MegaM@Rt2). We would like to thank
Kimmo Nupponen and the Conformiq team for their support.

References

1. Gudmundsson, V., Schulze, C., Ganesan, D., Lindvall, M., Wiegand, R.: An ini-
tial evaluation of model-based testing. In: 2013 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). pp. 13–14 (Nov 2013)

2. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sostawa,
B., Zölch, R., Stauner, T.: One evaluation of model-based testing and its automation.
In: Proceedings of the 27th International Conference on Software Engineering. pp.
392–401. ICSE ’05, ACM, New York, NY, USA (2005)

3. Schieferdecker, I.: Model-based testing. IEEE Software 29(1), 14–18 (Jan 2012)


