
ADONN: Adaptive Design of Optimized Deep
Neural Networks for Embedded Systems

Mohammad Loni, Masoud Daneshtalab, Mikael Sjödin
School of Innovation, Design and Engineering, Mälardalen University

Västerås, Sweden
{mohammad.loni, masoud.daneshtalab, mikael.sjodin}@mdh.se

Abstract—Nowadays, many modern applications, e.g. au-
tonomous system, and cloud data services need to capture and
process a big amount of raw data at runtime, that ultimately
necessitates a high-performance computing model. Deep Neural
Network (DNN) has already revealed its learning capabilities
in runtime data processing for modern applications. However,
DNNs are becoming more deep sophisticated models for gaining
higher accuracy which require a remarkable computing capacity.
Considering high-performance cloud infrastructure as a supplier
of required computational throughput is often not feasible.
Instead, we intend to find a near-sensor processing solution
which will lower the need for network bandwidth and increase
privacy and power efficiency, as well as guaranteeing worst-
case response-times. Toward this goal, we introduce ADONN
framework, which aims to automatically design a highly robust
DNN architecture for embedded devices as the closest processing
unit to the sensors. ADONN adroitly searches the design space
to find improved neural architectures. Our proposed framework
takes advantage of a multi-objective evolutionary approach,
which exploits a pruned design space inspired by a dense
architecture. Unlike recent works that mainly have tried to
generate highly accurate networks, ADONN also considers the
network size factor as the second objective to build a highly
optimized network fitting with limited computational resource
budgets while delivers comparable accuracy level. In comparison
with the best result on CIFAR-10 dataset, a generated network
by ADONN presents up to 26.4 compression rate while loses only
4% accuracy. In addition, ADONN maps the generated DNN on
the commodity programmable devices including ARM Processor,
Hiph-Performance CPU, GPU, and FPGA.

Index Terms—Neural Architectural Search, Approximation
Computing, Neural Processing Unit, Multi-Objective Optimiza-
tion

I. INTRODUCTION

According to International Data Corporation (IDC) in 2017,
the size of world’s information is increasing with an explosive
growth and would be 140 ZB by 2050 [1] where the conven-
tional computing model cannot scale-up anymore due to the
failure of Dennard scaling and Moore’s law [2]. Approximate
computing can be counted as a propitious alternative for the
context of big data while the failure of traditional energy
and performance scaling paradigm in affording of modern
applications requirements leads computing landscape towards
inefficiency. In addition, most of new technologies such as
quantum computing, die stacking and 3D chip technologies,
diamond transistors, and neuromorphic computing attempt
to overcome the scaling challenges, however, they are not
sufficiently mature. These technologies require huge changes

across the system stack, from software systems to new hard-
ware architectures, which is incompatible with the nature
of current software structures [3]. Approximation computing
attempts to improve power and performance utilization by de-
preciating outputs quality of imprecision tolerance applications
such as objects recognition, data analytics, search engines and
autonomous systems. Although there exist a variety of approx-
imation techniques, finding the best approach has remained
as a challenging issue since it requires a considerable try to
balance a trade-off between efficiency and accuracy. Among
approximate techniques, DNN provides a higher accuracy, a
greater power/performance efficiency, and a better robustness
[4], particularly when the approximation targets applications
like vision and speech recognition functions. A DNN model
highly depends on the approximate function which can be a
Multi-Layer Perceptron (MLP) neural network with a single
layer down to a many back-to-back deep layers.

Nevertheless, DNNs are ever-evolving, memory intensive,
and complex processing models containing thousand to mil-
lions operations for the entire model which make their im-
plementation overwhelming even for expert developers. Gen-
erally, there are two approaches aiming to tackle these chal-
lenges: 1© diminishing the network size by leveraging network
pruning techniques during training phase [5] and 2© employing
customized hardware accelerators [13], [9], [35]. However
optimizing the network architecture at design time should be
taken into account as the third approach since the choice of
the architecture strongly impacts on both the performance and
the output quality of DNNs. To benefit from this opportunity,
we propose a neural acceleration framework, named ADONN,
which automatically generates a robust DNN in terms of
network accuracy and network size, then maps the generated
network to an embedded device. Unlike previous neural archi-
tectural solutions that their focus are only on improving the
accuracy level, ADONN also considers network size as the
second objective of the search space in order to adaptively
find a fit DNN for limited resource embedded devices. For
this, ADONN is equipped with a multi-objective optimization
(MO2) method to solve neural architectural search problem
by finding a set of Pareto-optimal surfaces. The design space
has been pruned by taking inspirations from a cutting-edge
architecture, DenseNet [6], to boost the convergence speed to
an optimal result. To the best of our knowledge, ADONN
is the first framework which uses a multi-objective neuro-

Fig. 1. The overview of ADONN framework.

evolutionary approach for the space exploration of finding
optimal deep neural architectures while mapping the generated
network to the given hardware.

An overview of the proposed framework is illustrated in
Fig. 1. The configuration file of ADONN comprises prede-
fined parameters for the MO2 algorithm and network training
parameters. As shown in Fig. 1, the input of the framework
is a dataset for generating a neural network. To approximate
execution of an application, developer first needs to identify
the approximation region of the code, then provides a training
dataset for the specified code block in order to be mimicked
by a DNN generated by ADONN. Approximation region of
the code should be both hotspot and less sensitive to quality
loss in both data and operations. We can define a hotspot as a
code region which consumes considerable energy or occupies
the main part of execution time [7]. In nutshell, our main
contributions in ADONN are threefold:

• Developed a multi-objective neuro-evolutionary method
to discover near-optimal DNN architectures in terms of
the accuracy and the network size.

• Supporting both Multi-Layer Perceptron (MLP) and Con-
volutional Neural Network (CNN) models fitting with the
required accuracy of diverse applications from mathemat-
ical function to image classification.

• Adaptive finding the best architecture regarding resource
budget and execution time constraints. Then, mapping the
generated network on different platforms to evaluate the
applicability of ADONN is our last contribution.

The organization of the paper is as following. Section
II gives background information on CNN and the MO2 al-
gorithm. Section III describes ADONN framework. Section
IV presents and analyzes the experimental results. Section
V reviews related work in this scope. Finally, section VI
summarizes conclusion and future work.

II. BACKGROUND

A. An Overview of CNNs

CNN is one of the most popular DNN models used to
represent the information in a supervised manner suited for

visual recognition. The CNN is composed of multiple back-
to-back layers, where input image is fed to the first layer. Each
layer gets feature maps information from previous layers, and
generates new output feature maps by using a filter kernel.
The convolution, pooling, normalization, and activation layers
are used for feature extraction, and fully connected layers are
responsible for classification. The performance criteria of a
DNN include the ability to classify data that has never seen
before, inference time, and learning rate which all depend on
the multiple hyper-parameters of network architecture.

After computational analysis of a popular CNN, VGG-
16 [31], we can conclude that convolutional layers (Conv.)
are extremely computational intensive which contain 99.3%
of total computation while Fully-Connected Layers (FCLs)
are mainly memory-intensive that utilize more than 80% of
data. Thus, for optimizing a CNN architecture, convolutional
parameters including the number of convolutional layers, the
sizes of each layer, and the filter size should be considered
as the networks optimization hyperparameters. Moreover, the
choice of activation functions in DNNs outstandingly influence
on the training performance since the heart of neural networks
is an activation function applied to a linear transformation. So,
the activation function is also considered as a pivotal metric
in designing the DNN architecture.

B. Multi-Objective Optimization (MO2)

In this context, we use MO2 to solve neural architectural
search problem by finding a set of Pareto-optimal sets of
network hyperparameters. In this work, we mainly consider
two key objectives for the network optimization, classifi-
cation accuracy and network size. Non-Dominated Sorting
Genetic Algorithm (NSGA-II) [8], is a powerful meta-heuristic
population-based evolutionary algorithm solving MO2 prob-
lems which aims to adaptively fit a set of candidates to
Pareto frontier. NSGA-II works as follows. In the first step,
an offspring population Ut is formed from a parent population
Pt by using Genetic Programming (GP), both with size N.
Then we combine Ut and Pt to devise a third population Rt of
size 2*N. Next, NSGA-II extracts a population (with size N)
from Rt by employing a multiple objectives non-dominated

sorting and crowding distance comparison. The main aim
of non-dominated sorting is to find a set of solution which
cannot dominant each other. Moreover, by doing crowding
distance sorting, we can orchestrate the density of solution
for each Pareto front. NSGA-II selects the best N candidates
for generating the next population called Pt+1. This procedure
is repeated for the next generations until exceeds a prede-
fined maximum number of generations or satisfies developer’s
criterion including a desired level of accuracy/network size.
Although ADONN walks toward an optimal solution, it does
not always guarantee to reach developer’s criterion. Fig. 2
plots the Pareto frontier of improved individuals (Pi) for three
different generations.

Fig. 2. Illustration of Pareto Front for the improved set of solutions based
on NSGA-II algorithm.

III. ADONN
This section describes the ADONN framework which is

composed of frontend and backend layers. The frontend is
responsible to generate the optimized DNN while the backend
layer deals with hardware configuration and mapping.

The hand-craft designing of DNN architectures needs a deep
expertise and a large number of trial and error imposing a
considerable design cost and efficiency risk. Thereby, tailoring
the DNN architecture automatically has emerged as an efficient
alternative solution in the machine learning community. This
approach is considered for the frontend layer of our framework
in which we propose a MO2 based on a template architecture
to generate DNNs.

a) Template Architecture: We investigate an
evolutionary-based approach to search the design space
inspired from DenseNet to vanish the probability of
generating colossal networks which passed the one hundred
deep layers obstacle. This decision leads ADONN to generate
compact-inclined networks in a reasonable time by gaining
from human experience in designing efficient DNNs. The
basic template architecture of the network is shown in
Fig. 3a. The generated network consist of back-to-back
Condense Layers for feature extraction while each layer
consists of multiple Convolution Layers. Each Convolution
Block includes Batch Normalization, Activation Function,
2D Convolution and Dropout layers, respectively. The final
classification is integrated by the max-pooling and the
fullyconnected layers as the output layer with the softmax

activation function. To pass maximum information between
layers in the network, all the layers are connected to each
other in a feed-forward manner such that each layer receives
the additional feature map information from the whole former
layer and combining them by using a concatenation layer.
This structure leading us to enlarge sharing information and
shorten path from the first layer to the last layer.

b) Search Space Alg1orithm: The main architectural
hyperparameters of DNNs are listed in Table I. For cutting
back the search space, the range of each hyperparameter
is limited. Different combinations of these parameters form
several architectures with various performances. Finding a
near-optimal network architecture of the combination of these
hyperparameters is the main goal of the search algorithm.
In the other word, we can model the DNN architecture se-
lection problem as the hyperparameter optimization problem.
ADONN is equipped with the fast and multi-objective GP,
NSGA-II, to discover near-optimal set of hyperparameters
considering both the accuracy and the network size as the
objectives. Total trainable network weights is defined as the
network size objective since the performance and energy
efficiency of the backend accelerator highly rely on inner
product operations which are execution bottleneck of DNNs
[9].

TABLE I
THE CNN HYPERPARAMETERS USED AS SEARCHING NEURAL DESIGN

SPACE PARAMETERS.

Parameter Deep CNN
Activation Function hard-sigmoid, relu, elu,

tanh, sigmoid, softplus, linear
Condense Layer 1, 2, 3, 4

Convolution Layer 16, 28, 40, 52
Kernel Size 3x3, 5x5
Optimizer rmsprop, adam, sgd,

adagrad, adadelta, adamax, nadam

Network hyperparameters are represented as a string of
genomes using direct encoding and the recombination of
these genes occurs with one-point crossover operation shown
in Fig. 3b. The neural architectural exploration algorithm is
explained in four steps as following: 1© After generating
random initial parent population Pt with size N, ADONN
generates a network model based on the hyperparameters of
each genome in the parent population. Then ADONN trains
each individual model to calculate the network accuracy and
network size for all the models. 2© The offspring populating Ut
will be created by using GP including crossover and mutation
steps. 3© The NSGA-II sorts the combination of Tt and Pt to
find the next generation parent population of N acceptable
individuals which cannot dominant each other in terms of
accuracy and network size. 4© This process will continue until
attaining the predefined maximum number of generations. The
entire search procedure is summarized in Algorithm 1. Fig. 3c
illustrates a schematic of generated architecture including one
Condense Layer and five Convolution Layers. Compare to
DenseNet, ADONN generates more accurate networks with

Fig. 3. (a) The template architecture of generated networks. (b) Genome type. (c) The schematic of a generated network.

superior flexibility regarding resource limitation of the back-
end platform. To increase the rate of optimal discovering, we
monitor all genomes in all previous generations. The output of
the frontend layer is a set of improved network architectures on
the Pareto curve with different network accuracies and sizes.

Efficient mapping of the generated network on hardware
is the next step. Using Application-Specific Integrated Cir-
cuit (ASIC) as a customized ADONNs backend accelera-
tor can gain considerable power and performance efficiency,
nonetheless, ASIC cannot be reconfigured and reprogrammed.
Graphic Processing Units (GPUs) are popular performance-
centric accelerators refereed as another possibility to cope with
diminishing the efficiency trend in the multi-core era [11].
Although GPUs offer a higher level of programmability and
memory bandwidth, they suffer from huge power consumption
and are efficient only for data parallel kernels and dense
data structures [12]. On the other hand, the combination of
supporting arbitrary forms of parallelism, flexibility, and power
efficiency of off-the-shelf Field-Programmable Gate Arrays
(FPGAs) provide a promising opportunity for efficient neu-
ral network implementation. Unfortunately, on-chip memory
limitation, relatively primitive memory abstraction model, and
the lack of efficient high-level APIs are the major bottlenecks
of FPGA as a neural-based accelerator [9]. In fact, each of
these hardware devices offers various capabilities for the real
work problems. Section IV.c presents implementation results
on different processing platforms.

IV. METHODOLOGY

To get the sense of practicality of the results, we need
to evaluate ADONN using well-known datasets and compare
with cutting-edge architectures. We first introduce employed
training datasets, then the classification and implementation re-
sults will be presented. ADONN searches the optimal network
architecture using partial training by using just 16 epochs since
this epoch number is enough for making the decision. Fig. 4
plots the validation loss and validation accuracy progression
by increasing the number of epochs for Net-CNN-Arch.3 with
0.14 million parameters. We got roughly 90% of maximum

achievable accuracy after 16 epochs. ADONN utilizes the
Keras Library [10] for training the network.

Fig. 4. Accuracy and loss Validation for Net-CNN-3 with 0.14M parameters.

A. Training Datasets

a) MNIST [14]: This is a dataset of black and white
images for handwritten digit recognition containing 60,000
training and 10,000 testing images, respectively. Each image
in the MNIST dataset is a 28x28 pixels with ten labeled output
as 0 to 9 numbers.

b) CIFAR-10 [15]: This is a complex colorful benchmark
dataset of natural images, each with 32x32 pixels which is
mainly used for object recognition. This benchmark contains
ten labeled output classes. CIFAR-10 training and testing
datasets contain 50000 and 1000 images, respectively.

B. Classification Results

The near-optimal Pareto frontier results are illustrated in
Fig. 5 to Fig. 8 on MNIST and CIFAR-10 datasets after just
five generations. We got these results where ADONNs configu-
ration file was set with the following parameters: dropout=0.2,
epoch=16, batch size=128, number of generations=5, and
random initial population with the size equal to 30. As can be
seen, Pareto-optimal curves shifted toward left implying that
our results have gotten improved set of network architecture
candidates.

Fig. 5. Pareto frontier plots for MLP architecture generated for MNIST
dataset.

Fig. 6. Pareto frontier plots for CNN architecture generated for MNIST
dataset.

Fig. 7. Pareto frontier plots for MLP architecture generated for CIFAR-10
dataset.

Fig. 8. Pareto frontier plots for CNN architecture generated for CIFAR-10
dataset.

Algorithm 1: Pseudo Code of ADONN Procedure
Input: N: Population Size, G: Max. Number of

Generations, H: Possible Hyperparameters
Output: A Set of Optimal Architectures on Pareto

Frontier
Function ADONN(N , G, H):

P0= Random Population (N, H); //Creating initial
random solutions with size N
Objectives Function (P0, Size (P0));
//Evaluating the objectives of each solution in the
population
U0= Selection Crossover Mutation (P0);
//Generating the offspring population by doing
random crossover and mutation
t=1;
while (t < G) or (Criterion Not satisfied) do

Rt=Combine (Pt, Ut);
//Merging Parent and Offspring population,
the size of Pt+1 is 2 ∗N
Objectives Function (Pt+1, Size (Pt+1));
Sortt=Non Dominant Sort(Pt+1);
//Sorting the first population in fronts
pfs[t]=Crowding Distance Sorting(Sortt);
//Symmetric disturbing offspring population
by crowding distance sort to build Pareto
frontier and save it in pfs
Pt+1=pfs[t];// Creating Next Population
Ut+1=Selection Crossover Mutation (Pt+1);
Objectives Function (Ut+1, Size (Ut+1));

return pfs[G];
Function Objectives_Function(Population P,

Size N):
i=1;
while (i < N) do

List [i]= Extract Network Parameters(Pi);
model[i]= Create Model (List [i]);
//Generating a DNN model using network
hyperparameters
Acc.[i], #Params[i]=Train Evaluate
(model[i]); // Train the ntwork to get
validation accuracy and num. network
parameters

return Accuracy, #Parameters;

We have verified the effectiveness of ADONN compare
to the error rate and total number of trainable parameters
of the other cutting-edge approaches shown in Table II. For
getting the results presented in Table II, we fully trained
networks with 300 epochs. Network architectures with highest
accuracy are employed as the baseline of the comparisons.
Compare to a reinforcement learning solution, MetaQNN, we
lost 0.06% accuracy for MNIST dataset while we have 43x
compression rate. Not only compare to MetaQNN, but only
also the superiority of ADONN’s optimization rate is clear for

MNIST dataset.
Net-CNN-Arch.1, Net-CNN-Arch.2, and Net-CNN-Arch.3

are three different nodes of Pareto frontier selected from
fifth generation. These three nodes have different network
objectives which give a vast authority to ADONN to select
the most appropriate architecture based on the execution
time constraints or resource limitation of the target hardware
platform. Net-CNN-Arch.1 loses 4% accuracy compared to
the most accurate networks [26], while has 26.4x less param-
eters. Moreover, MLP model presents comparable accuracy
for MNIST, but it cannot provide acceptable accuracy for
CIFAR-10, revealing we need more complex architectures
for modern dataset. In nutshell, ADONN strikes better the
balance between network accuracy and network size compare
to reinforcement learning-based solutions, evolutionary-based
approaches and hand-craft designs.

TABLE II
COMPARISON RESULTS OF ERROR RATE ON MNIST AND CIFAR-10

DATASETS.

Dataset Method #Params (x106) Error (%)
MetaQNN [21] 5.59 0.35

EDEN [28] 1.8 1.6
SimpleNet [29] 0.3 0.25

MNIST Wan et al. [30] - 0.21
Our MNIST-MLP 0.19 1.2
Our MNIST-CNN 0.13 0.41

NAS-v1/v3 [22] 4.2/37.4 5.50/3.65
SimpleNet [29] 5.48 4.68
VGG-16 [31] 138 7.55

DenseNet (k=12)-40 [6] 1.0 7.0
DenseNet (k=12)-100 [6] 7 5.77
DenseNet (k=24)-100 [6] 27.2 5.83

EDEN [28] 0.17 25.6
ResNet-20 [27] 0.27 8.75
ResNet-110 [27] 1.7 6.43

CIFAR-10 Masanori et al. [24] 1.68 5.98
Block-QNN-22L [23] 39.8 3.54

MetaQNN [21] 6.92 11.18
Real et al. [25] 5.4 5.4

Gastaldi et al. [26] 26.4 2.86
Our Net-MLP 0.66 37.0

Our Net-CNN-Arch.1 1.0 6.9
Our Net-CNN-Arch.2 0.49 8.7
Our Net-CNN-Arch.3 0.14 14.1

C. Implementation Results

To verify the practical impact of ADONN, we used four
prevalent hardware platforms, Xilinx UltraScale plus FPGA,
NVIDIA Tesla M60 GPU, Intel Core i7-7820, and ARM
Cortex-A15. Table III summarizes the specification of test
platforms. We picked out four congruent networks offering
better accuracy per parameters including ResNet-20, ResNet-
110, DenseNet (k=12)-100, and DenseNet (k=24)-100 to com-
pare with the generated networks by ADONN. We also did
not use any network compression technique to only assess the
influence of network architecture on inference time. Due to
the sake of brevity, we just present the implementation results
of the more complex dataset, CIFAR-10. Keras framework
automatically uses cuDNN to compile a neural network for
GPU. For getting FPGA results, the Amazon EC2 deep
learning F1.2xlarge instance has been used.

TABLE III
HARDWARE PLATFORM DETAILS.

Platform CPU GPU ARM FPGA
Frequency (GHz) 2.9 1.178 1.9 .8
Technology (nm) 14 28 28 16 (FinFET+)

TDP (W) 45 300 5 -
FF= 2.5(x106)

Cores/Total Thread 4/8 4096 8/8 LUT= 1.18(x106)
CUDA Cores DSP= 6800

Memory 8MB Cache 16GB GDDR5 2.5MB Cache BRAM= 75.5 Mb
Approx. Price (USD) 378$ 7,532$ 60$/board -

Unlike CPUs, we do need an initialization phase to copy
data to GPU/FPGA’s internal memory, before lunching pro-
cessing kernel. Usually, kernel time is used for reporting
runtime results, however, considering the communication time
is vital for embedded implementations, especially for mis-
sion critical applications since these applications are mainly
latency-oriented. Due to this reason, the total execution time
must be taken into account as the evaluation metric. In
addition, we believe compacting a network potentially could
diminish the overhead of communication time since less num-
ber of data packets need to be copied via PCI-Express bus. To
increase the precision of results, we got them for 10000 times
and the average time is leveraged for presenting the results.
Fig. 9 to Fig. 12 plot accuracy, the logarithmic scale (to im-
prove visual comprehension) of the number of parameters and
the speedup compared to the baseline, DenseNet (k=12)-100.
The main reason of selecting DenseNet (k=12)-100 as the ideal
baseline is that it delivers better accuracy-parameters trade-
off in comparison with the other networks. Unlike accuracy
and the number of parameters, execution time is a platform
aware metric and highly depends on hardware implementation,
compiler, and the software stack. Therefore, there is no exact
speedup similarity among different hardware platforms. The
results show that for each hardware platform there is a firm
relation among inference time, network accuracy and network
parameters. In nutshell, we can conclude: 1© the networks
with more parameters have higher accuracy, 2© after getting
a network more complex, the speedup rate will be decrease,
e.g. we got maximum speedup up to 39% on FPGA platform
with minimum number of parameters for Net-CNN-3, while
DenseNet (k=24)-100 with the best accuracy result always has
shown at least 0.33 speed-down. 3© The execution time is
scaled by changing the number of parameters demonstrating
the considering network size as a design objective decreases
both the communication and kernel execution times.

V. RELATED WORK

A. Automatic Designing Deep Neural Network

In this section, we address state-of-the-art approaches point-
ing to automatically design the architecture of DNNs. These
approaches could be categorized into the hyper-parameter opti-
mization, reinforcement learning and evolutionary approaches.

a) Hyperparameter Optimization: From machine learn-
ing point of view, we can model DNN architecture designing
problem as the hyperparameter optimization. There have been
proposed many hyperparameter tuning methods, such as Grid

Fig. 9. Speedup of ADONN generated networks in comparison to network
size and accuracy on ARM platforms.

Fig. 10. Speedup of ADONN generated networks in comparison to network
size and accuracy on CPU platforms.

Fig. 11. Speedup of ADONN generated networks in comparison to network
size and accuracy on FPGA platforms.

Fig. 12. Speedup of ADONN generated networks in comparison to network
size and accuracy on GPU platforms.

Search (GS) [16], gradient search [17], Random Search (RS)
[18], and Bayesian optimization-based method [19]. However
GS is relatively slow, using RS is challenging due to extremely
random sampling in the search space, and Bayesian-based
methods suffer from immense computational cost. In addition,
these methods are suitable only for search models with a fixed-
length space and hard to design more flexible architectures
from scratch [20].

b) Reinforcement Learning: Recently there has been
much work at the intersection of reinforcement learning and
deep learning which show better results for image classifica-
tion applications compared to best hand-craft DNN accuracy
results. Baker et al. [21] have proposed a meta-modeling
approach based on reinforcement learning to produce CNN
architectures. In this paper A Q-learning agent explores and
exploits a space of model architectures with greedy strategy
and experience replay. In [22], a recurrent neural network
(RNN) was used to generate neural network architectures, and
the RNN was trained with reinforcement learning to maxi-
mize the expected accuracy on a learning task. This method
uses distributed training and asynchronous parameter updates
with 800 graphic processing units (GPUs) to accelerate the
reinforcement learning process. In [23], a block-wise network
generation pipeline called BlockQNN has been provided to
automatically build high-performance networks using the Q-
Learning paradigm with epsilon-greedy exploration strategy.
Despite their success, these models are considerably too slow
and require huge computational resources in both training
and prediction steps, e.g. MetaQNN [21] contains 11.18 M
trainable parameters and used 10 GPUs for 8-10 days to train
a CIFAR-10 classifier.

c) Evolutionary-based approaches: Suganuma et al. [24]
tried to automatically construct CNN architectures for an
image classification task based on Cartesian genetic program-
ming (CGP). The CNN structure and connectivity represented
by the CGP encoding method are optimized to maximize the
validation accuracy. Sun et al. [20] proposed a new method
using genetic algorithms for evolving the architectures and
connection weight initialization values of a deep CNN. In their
proposed algorithm, an efficient variable-length gene encoding
strategy is designed to represent the different building blocks
and the unpredictable optimal depth in convolutional neural
networks. In addition, a new representation scheme is devel-
oped for effectively initializing connection weights which is
expected to avoid networks getting stuck into local minima.
Real et al [25] proposed y simple evolutionary techniques at
unprecedented scales to discover models for the CIFAR-10 and
CIFAR-100 datasets. They used novel and intuitive mutation
operators that navigate large search spaces.

B. DNN Acceleration

After reviewing literature, various approximation code ac-
celerators have been found [32], [33], [34], and [35]. However
the main weakness of them is the NN architecture selection
procedure. Prior work mainly used a simple search methodol-
ogy to explore a small design space which is not applicable for

real-world applications. Moreover, they just generate a deep
multi-layer network which is obsolete and does not produce
competitive accurate results for modern applications such as
object recognition.

VI. CONCLUSION AND FUTURE WORK

DNNs are both computational and memory intensive pro-
cessing patterns, leading to difficult implementation especially
on embedded devises. The importance of the problem will
be more highlighted when we need to keep processing close
to sensors due to guaranteeing privacy, increasing energy
efficiency and ensuring worst-case response-times. To tackle
this problem, we proposed ADONN, a framework which
automatically generates a highly-optimized DNN for com-
mercial of-the-shelf embedded devices. ADONN alleviates
the huge computational cost of DNNs by benefiting from
squeezing the network architecture at design time. To reach
this goal, ADONN integrates a multi-objective optimization
strategy to optimally search the design space of DNNs. For
generating an embedded implementable accelerator, ADONN
considers the number of trainable parameters of the network
as the second objective of search algorithm in order to find
a highly optimized DNN. The evaluation results demonstrate
the effectiveness of ADONN on both pure kernel time and
communication time. In addition, providing an optimized set
of solutions fitting with various Developer’s criterion is an
attractive benefits of ADONN. Implementing an automatic
profiler for exploring approximation regions of code will be
also remain as future work.

ACKNOWLEDGMENT

This work has been supported by KKS within the projects
DeepMaker and DPAC.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, Data Age 2025 - The Evolution
of Data to Life-Critical: Don not Focus on Big Data; Focus on the Data
That is Big, IDC White Pap., no. April, pp. 125, 2017.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D.
Burger, Dark silicon and the end of multicore scaling, IEEE Micro, vol.
32, no. 3, pp. 122134, 2012.

[3] Ungerer, T., Fey, I.D., Knebel, M., Bagherzadeh, N., Bartolini, S., Ber-
tels, K., Bradatsch, C., Carrasco, J.M.G., De Bosschere, K., Duranton,
M., DACLE, C.L.: Report on Disruptive Technologies for years 2020-
2030.

[4] M. Wyse, ”Modeling Approximate Computing Techniques,” Academic
paper.

[5] J. T. and W. D. Song Han, Jeff Pool, Learning both Weights and
Connections for Efficient Neural Networks, in Advances in Neural
Information Processing Systems, 2015, vol. 50, no. 2, pp. 1135–1143.

[6] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, Densely
connected convolutional networks, In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, vol. 1, no. 2, p. 3.
2017.

[7] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
AxBench: A multiplatform benchmark suite for approximate computing,
IEEE Des. Test, vol. 34, no. 2, pp. 6068, 2017.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182197, 2002.

[9] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, Caffeine:Towards
Uniformed Representation and Acceleration for Deep Convolutional
Neural Networks, Proc. 35th Int. Conf. Comput. Des. - ICCAD 16,
no. August, pp. 18, 2016.

[10] F. Chollet, Keras, GitHub, 2015. [Online]. Available:
https://github.com/fchollet/keras.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D.
Burger, Power challenges may end the multicore era, Commun. ACM,
vol. 56, no. 2, p. 93, 2013.

[12] B. Falsafi, B. Dally, D. Singh, D. Chiou, J. J. Yi, and R. Sendag, FPGAs
versus GPUs in Data centers, IEEE Micro, vol. 37, no. 1, pp. 6072, 2017.

[13] H. Sharma Jongse Park Emmanuel Amaro Bradley Thwaites Praneetha
Kotha Anmol Gupta Joon Kyung Kim Asit Mishra Hadi Esmaeilzadeh,
DNNWEAVER: From High-Level Deep Network Models to FPGA
Acceleration, IEEE Int. Conf. Mechatronics, Electron. Automot. Eng.,
no. 2, pp. 7680, 2015.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient Based Learning
Applied to Document Recognition, Proc. IEEE, vol. 86, no. 11, pp.
22782324, 1998.

[15] A. Krizhevsky and G. Hinton. Cifar-10 dataset.
https://www.cs.toronto.edu/ kriz/cifar.html.

[16] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kgl, Algorithms for Hyper-
Parameter Optimization, in Advances in Neural Information Processing
Systems (NIPS), 2011, pp. 25462554.

[17] Y. Bengio, Gradient-based optimization of hyperparameters, in Neural
computation, no. 8, pp. 1889-1900, 2000.

[18] J. Bergstra JAMESBERGSTRA and U. Yoshua Bengio YOSHUABEN-
GIO, Random Search for Hyper-Parameter Optimization, J. Mach.
Learn. Res., vol. 13, pp. 281305, 2012.

[19] J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian Optimiza-
tion of Machine Learning Algorithms, Adv. Neural Inf. Process. Syst.,
vol. 25, pp. 29602968, 2012.

[20] Y. Sun, B. Xue, and M. Zhang, Evolving Deep Convolutional Neural
Networks for Image Classification, arXiv prepr. arXiv:1710.10741, 2017.

[21] B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing Neural Network
Architectures using Reinforcement Learning, arXiv Prepr., pp. 116,
2016.

[22] B. Zoph, and Q.V. Le, Neural architecture search with reinforcement
learning, arXiv prepr. arXiv:1611.01578, 2016.

[23] Z. Zhong, J. Yan, and C.L. Liu, Practical Network Blocks Design with
Q-Learning, arXiv prepr. arXiv:1708.05552, 2017.

[24] M. Suganuma, S. Shirakawa, and T. Nagao, A genetic programming ap-
proach to designing convolutional neural network architectures, GECCO
2017 - Proc. 2017 Genet. Evol. Comput. Conf., pp. 497504, 2017.

[25] E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, Q. Le, and
A. Kurakin, Large-scale evolution of image classifiers, arXiv prepr.
arXiv:1703.01041, 2017.

[26] X. Gastaldi, Shake-shake regularization, arXiv prepr. arXiv:1705.07485,
2017.

[27] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770778.

[28] E. Dufourq, and B.A. Bassett, EDEN: Evolutionary Deep Networks for
Efficient Machine Learning, arXiv prepr. arXiv:1709.09161, 2017.

[29] S.H. Hasanpour, M. Rouhani, M. Fayyaz, and M. Sabokrou, Lets keep
it simple, Using simple architectures to outperform deeper and more
complex architectures, arXiv prepr. arXiv:1608.06037, 2016.

[30] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, Regularization
of neural networks using dropconnect, Icml, no. 1, pp. 109111, 2013.

[31] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for
Large-Scale Image Recognition, Int. Conf. Learn. Represent., pp. 114,
2015.

[32] B. Grigorian and G. Reinman, Accelerating divergent applications on
SIMD architectures using neural networks, in 2014 32nd IEEE Interna-
tional Conference on Computer Design, ICCD 2014, 2014, pp. 317323.

[33] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and C.
Wu, Leveraging the Error Resilience of Neural Networks for Designing
Highly Energy Efficient Accelerators, IEEE Trans. Comput. Des. Integr.
Circuits Syst., vol. 34, no. 8, pp. 12231235, 2015.

[34] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, SNNAP: Approximate computing on programmable SoCs
via neural acceleration, in 2015 IEEE 21st International Symposium
on High Performance Computer Architecture, HPCA 2015, 2015, pp.
603614.

[35] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Es-
maeilzadeh, Neural acceleration for GPU throughput processors, in
Proceedings of the 48th International Symposium on Microarchitecture
- MICRO-48, 2015, pp. 482493.

