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Abstract—Model-based development and component-based
software engineering have emerged as a promising approach to
deal with enormous software complexity in automotive systems.
This approach supports the development of software archi-
tectures by interconnecting (and reusing) software components
(SWCs) at various abstraction levels. Automotive software ar-
chitectures are often modeled with chains of SWCs, also called
cause-effect chains that are constrained by timing requirements.
Based on the variations in activation patterns of SWCs, a single
model of a cause-effect chain at a higher abstraction level can
conform to several valid refined models of the chain at a lower
abstraction level, which is closer to the system implementation.
As a consequence, the total number of valid implementation-
level models generated by the existing techniques increases
exponentially, thereby significantly increasing the runtime of
the timing analysis engines and liming the scalability of the
existing techniques. This paper computes an upper bound on the
activation pattern combinations that may result from a system
of cause-effect chains in a given high-level model of the software
architecture. An efficient algorithm is presented that traverses
only a reduced number of possible combinations of the cause-
effect chains, resulting in the timing analysis of a significantly
lower number of implementation-level models of the software
architecture. A proof of concept is provided by conducting a case
study that shows significant reduction in the runtime of timing
analysis engines, i.e., the timing behavior of the considered system
is verified by performing the timing analysis of only 27% of all
possible combinations of the cause-effect chains.

I. INTRODUCTION

Embedded software development in modern automotive sys-
tems is very challenging due to continuous increase in software
size and complexity. Already today, the size of the software is
in the range of 100 million lines of code, which is distributed
over 50 to 120 on-board computers, called Electronic Control
Units (ECUs) [1], [2]. In addition to the software complexity
and complex coordination among the ECUs, many automotive
systems are subject to stringent timing requirements that must
be verified during the development and before running the sys-
tem. Model-Based Development (MBD) [3] and Component-
Based Software Engineering (CBSE) [4] are proving effective
in dealing with the software complexity, e.g., AUTOSAR [5]
and RCM [6] are two examples of the component models that
employ the principles of MBD and CBSE. In addition, the
multi-abstraction development methodologies such as EAST-
ADL [7] are able to lower the complexity by allowing the soft-
ware development at various abstraction levels (correspond-
ing to development phases), e.g., design and implementation
levels. The design level represents an earlier phase during
the development, where a high-level software architecture of
the system is modeled. Whereas, the implementation level
represents a later phase during the development containing
concrete implementation of the software architecture, which
is closer to the system implementation. The challenge of
pre-runtime verification of timing requirements at various
abstraction levels can be met by integrating schedulability

analysis techniques [8], [9] with the component models for
the automotive software development.

A. Problem Statement and Related Work
Software architectures in automotive embedded systems are

often modeled with Software Component (SWC) chains that
originate by reading sensor signals and terminate by producing
actuator signals, e.g., five different SWC chains are shown
in Fig. 1. These chains are also referred to as cause-effect
chains. Within a cause-effect chain, the data is always shared
between any two neighboring SWCs as it can be seen in all the
chains in Fig. 1. However, a SWC may receive an activation
trigger either from an independent trigger source (e.g., SWC2

in Fig. 1(b) and Fig. 1(d)) or from its predecessor SWC (e.g.,
SWC2 in Fig. 1(c) and Fig. 1(e)). In the top-down development
process for automotive embedded systems, such as the one
described by EAST-ADL [7], there is no clear separation
between the trigger and data flows along the chain at the earlier
development phases. For example, Fig. 1(a) shows a chain at
the design level (earlier development phase), where the data
flows from the sensor to the actuator via SWC1 and SWC2 by
means of flow ports (data ports). At the later development
phases, such as the implementation level, the data flow is
separated from the trigger flow in the chains. For example,
trigger information about each SWC in the four cause-effect
chains shown in Fig. 1(b)-(e) are explicitly modeled.

At the design level, the system designer has to make an
important decision about modeling the trigger flows along the
chain, i.e, whether to activate each SWC by an independent
trigger source (periodic clock) or by the predecessor SWC.
This decision has a significant impact on the timing behavior
of the chain because the data-propagation delays from the
input to the output of the chain is affected by the trigger pattern
along the chain. This can be demonstrated by applying any
existing data-propagation delay analysis such as [10], [11],
[12], [13]. The effect of periods on data-propagation delays
is investigated in [14], [15] by leveraging the analysis in the
above-mentioned works. Another set of previous works [11],
[12] focus on generating job-level dependencies to meet the
data-propagation delay constraints. In [16], a set of priorities,
offsets and task-processor mapping is selected with the goal
of meeting data-propagation delay constraints.

So far, only few techniques exist that focus on the trigger
selection along the cause-effect chains. The works in [17],
[18] automatically help the designer in selecting the most
suitable trigger patterns in the chain with respect to the data-
propagation delay constraints. The existing techniques, in the
first step, generate all valid implementation-level models of
the chain, e.g., four implementation-level models shown in
Fig. 1(b)-(e) are generated from the design-level model of
the chain in Fig. 1(a) based on various trigger patterns in the
chain. In the second step, all implementation-level models are
timing analyzed, the analysis results are verified against the
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Fig. 1: (a) Example of a two-component chain at the design level, (b) Four
equivalent implementation-level models based on various trigger patterns in
the chain in (a).

timing requirements, and the most suitable implementation-
level model is presented to the designer.

There are several limitations in the existing techniques.
First, the computational complexity is exponential because, in
general, 2N implementation-level models need to be generated
and timing analyzed for every cause-effect chain, where N
represents the number of SWCs along the chain. This hampers
with the applicability of the existing techniques to large and
complex systems, thereby limiting the scalability. Second, the
existing techniques have been applied only to the cause-effect
chains, where SWCs in the chains are triggered by the trigger
sources with same periods. There is a lack of guidelines
for generating all valid implementation-level models in the
case of multi-rate cause-effect chains, where SWCs in the
chains are triggered by trigger sources with different periods.
Without such a support, non-determinism can be introduced
when generating the implementation-level models from a
single design-level model of the chain. For example, assume
that SWC1 and SWC2 in the implementation-level model
shown in Fig. 1(b) are triggered by 8 ms and 4 ms periodic
clocks respectively. When the implementation-level model in
Fig. 1(c) is generated, the existing techniques do not provide
any guidance for selecting the trigger period of SWC2, which
is triggered by its predecessor SWC1. Should SWC2 receive
a periodic trigger with 4 ms period or a sporadic trigger with
8 ms (inherited from its predecessor)? This ambiguity intro-
duces non-determinism in the implementation-level models of
multi-rate chains. Third, the existing techniques focus on a
single cause-effect chain with no guidelines for generating all
possible models in the system of cause-effect chains.

B. Paper Contribution
The main contributions of this paper are as follows.
• The possible trigger sources for SWCs (design-time entities)

or tasks1 (runtime entities) in the cause-effect chains are
identified in a way that ambiguity in the described model
is avoided. This is done by the concept of chain segments.

• Computation of an upper bound on the activation patterns
for a system of cause-effect chains that need to be analyzed.

• The main contribution of this paper is an efficient algorithm
that utilizes the idea of activation pattern subsets, i.e., sets
of activation patterns that have the same data-propagation
delay for a certain cause-effect chain. This allows to reduce
the number of activation patterns that need to be timing
analyzed to verify the timing behavior of the system,
thereby reducing runtime of the timing analysis engines. The
generated set of activation patterns correspond to a small
subset of all valid implementation-level models of a single
design-level model of the software architecture.

• A case-study demonstrates the proof of concept for the
proposed algorithm, where the algorithm runtime is reduced
to 27% of the worst-case runtime by the existing techniques.

1A one-to-one mapping is considered between a task and SWC.
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Fig. 2: (a) Two-SWC chain at the design level, (b) runtime model of the chain,
(c) data-propagation delay in the chain.

II. SYSTEM MODEL

This section describes the system model. The application
is run on a single-core single-processor platform under Fixed
Priority Scheduling [19] and Rate Monotonic priority assign-
ment. Tasks that have the same assigned period have the same
priority and are scheduled in Round Robin manner.

A. Task Model
We consider an application that consist of a set of SWCs.

Each SWC is directly mapped to a task τ . Γ describes the
complete task-set, where each task τi ∈ Γ can be described
by the tuple {Ci, Ti, Di}. Ci describes the task’s Worst-Case
Execution Time (WCET), Ti describes its minimum inter-
arrival time, and Di describes the relative deadline of the
task. In this work, we assume that tasks are subject to implicit
deadlines, i.e. the deadline Di of a task is equal to its period Ti.
Tasks themselves exchange data using register communication.
This means, a sending task writes to a shared register (i.e. a
global variable) and a receiving task reads from the shared
register. For example, two tasks τ1 and τ2 share register Reg2

as shown in Fig. 2(b). This way of communication leaves
both tasks independent of each other’s execution, but also
leads to over- and under-sampling situations. Oversampling
occurs when the receiving task is activated with a smaller
period than the sending task. The receiving task reads the
shared value more often than the sending task updates it,
which leads to multiple reads of the same data as shown in
Fig. 2(c). Similarly, under-sampling occurs when the period
of the sending task is smaller than the receiving task’s period.
In this case, some values that are written to the shared register
are never read by the receiving task.

B. Cause-Effect Chain
Cause-Effect Chains are specified on semantically related

tasks and describe the way data propagates through the system.
The end-to-end propagation delay of a cause-effect chain
can be subject to timing constraints, where different delay
semantics are possible [12]. In general, a cause-effect chain
ζ is a Directed Acyclic Graph (DAG), where the vertices
representing tasks ∈ Γ, and the edges of the DAG represent
the data propagation through the cause-effect chain. All cause-
effect chains that are specified on the application are in the
set Z . Note that a cause-effect chain can have forks and joins,
but only one start and end vertex can exist. This means, a
cause-effect chain with multiple paths can be seen as a number
of single-path cause-effect chains that share the same timing
constraints. Thus, without loss of generality, in the following
all cause-effect chains are sequential.

A sporadic trigger can be defined for the cause-effect chain.
This trigger can then be used to activate the initial task in the
cause-effect chain. Note that this trigger source represents a
trigger option for the system but only at a later point the exact
trigger source is selected. A cause-effect chain that is initiated
by arriving network messages can for example be triggered by



!" !# !$ !% !&

!'

!( !)

*
=
50

m
s

* = 50ms * = 100ms

* = 200ms

!0 Periodic Task
Cause-Effect Chain 12
Cause-Effect Chain 13
Chain Segment

!4

Fig. 3: Running example: two connected cause-effect chains and the different
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a sporadic event if the message arrival initiates the first task in
the cause-effect chain, or by a periodic clock if the messages
are received based on polling.

Cause-effect chains in industrial applications include tasks
of different activation periods, however, as stated in [20],
cyclic dependencies between periods do not exist. I.e. tasks
of same period appear consecutively in a cause-effect chain.
We call such a sequence of same period tasks a chain segment
Ψ. A chain segment Ψ hence is represented as a list of tasks
{τ1, τ2, . . . , τk}.

The chain itself can then be represented as a list of n chain
segments ζ = {Ψ1,Ψ2, . . . ,Ψn}.

Fig. 3 introduces a running example, consisting of two
cause-effect chains that in total contain nine tasks (shown
by dotted green arrows and full blue arrows respectively).
The chain segments are represented by dashed boxes, where
each task within a box has the same prescribed period. Note
that both cause-effect chains include the task τB . In this
example, there is no sporadic trigger specified for the cause-
effect chains, and both cause-effect chains have a specified
maximum data age constraint of 100 ms (not shown in the
figure).

C. Task Activation
While each task has an assigned period, the activation

trigger is not yet determined. In general, a task can either
be triggered by a periodic clock (where the period is equal
to the tasks initial minimum inter-arrival time), or by the
termination of another task. In general, for a cause-effect
chain, each task can be triggered either by the periodic clock
or by it’s predecessor task. However, to avoid inconsistency
(as discussed in Sec. I-A) the first task in a chain segment can
not be triggered by a predecessor task in the same chain.

In a cause-effect chain, the activation of a task by its
predecessor is beneficial as it introduces an execution ordering
between successive tasks’ instances in the cause-effect chain
which reduces the experienced worst-case data-propagation
delays. On the other hand, it restricts the scheduling decisions
and may render task sets unschedulable. For the running
example, this means that τA, τF , τD, and τH need to be
triggered by a periodic clock, whereas all other tasks may
additionally be triggered by their predecessors.

D. Timing Analysis
The timing analysis considered in this paper corresponds

to the state-of-the-art data-propagation delay analysis [10],
which has been implemented in several industrial tools such as
SymTA/S [21] and Rubus-ICE [9]. The analysis can calculate
various types of data-propagation delays in the cause-effect
chains, e.g., Fig. 2 (c) highlights one such delay, called the
age delay, in a cause-effect chain that consists of two SWCs

shown in Fig. 2 (a). This means, the two-SWC chain in Fig. 2
(a) corresponds to the two-task chain at run-time in Fig. 2 (b).
The tasks τ1 and τ2 are activated independently with periods
of 12 ms and 4 ms respectively. Assuming the priority of τ1 to
be higher than τ2, the data can propagate from the input (Reg1)
to the output of the chain (Reg3) through three different paths
identified by the red dotted arrows between τ1 and τ2 in Fig. 2
(c). The data age delay is equal to the delay in the longest path
among all these paths from the input to the output of the chain.
It is interesting to note that the calculations for the age delay
depend only on the activation times of the first and last tasks
and response time of the last task in the longest path in the
chain [10]. The response times of the tasks are calculated using
the state-of-the-art response-time analysis [19], [22], [23].

III. COMPUTATION OF POSSIBLE ACTIVATION PATTERNS

A. Single Cause-effect Chain
The number of tasks in one chain segment Ψi is denoted as
|Ψi|. The number of possible activation pattern combinations
αi that need to be checked can be expressed as:

αi = 2|Ψi−1| (1)

While the first task in a chain segment is always triggered by
an independent periodic clock, the activation of all consecutive
tasks in the chain segment may either be triggered by a
independent periodic clock or by the predecessor task.

Based on Equation 1, the total number of activation pattern
combinations in a cause-effect chain ζj can be expressed as:

βj =

{
2 ·

∏
∀Ψi∈ζj αi if ζi has sporadic trigger∏

∀Ψi∈ζj αi otherwise
(2)

The initial factor of 2 needs to be added if a sporadic trigger is
specified for the cause-effect chain and thus the first task can
be activated either by the period clock or the sporadic trigger.
ζ1 in the running example includes two chain segments, τA,

τB , and τC in the first segment, and τD and τE in the second.
Thus, α1 = 4 and α2 = 2. The total number of possible
activation patterns β is computed as: β1 = α1 · α2 = 8. As
the second cause-effect chain has the same pattern as the first
cause-effect chain, also β2 = 8.

In contrast, an approach that does not consider the chain
segments would compute β1 = 16 and β2 = 16 activation
pattern combinations that then need to be checked for the
respective cause-effect chain.

B. Multiple Cause-effect Chains
If a system contains n cause-effect chains, the same task

may be part of multiple such chains. A straight forward way
to compute all possible combinations in the system is obtained
by multiplying the combinations of each cause-effect chain:

βΓ =
∏
∀ζi∈Z

βi (3)

For the running example this would mean that there are
βΓ = β1 · β2 = 8 · 8 = 64 possible combinations (the simple
approach [17] that does not consider the chain segments would
even lead to βΓ = 256 combinations). However, in a system
where two cause-effect chains share a common task, this leads
to an over-approximation of the number of valid combinations
that need to be checked. This is the case because a task which
is common in more than one cause-effect chain is considered
in every chains’ set of possible activation patterns. Hence,
Eq. 3 accounts for cases in which a shared task is triggered



by more than one predecessor. In our running example these
are all combinations where τB is triggered by both, τA and
τF . According to the system model this is not possible.

For each task τi ∈ Γ we define the set Φi denoting all
sporadic triggers that are options for this task resulting from
the system model. A sporadic trigger is added to Φi in the
following cases:
1) If τi is the initial task of a cause-effect chain and there is

a sporadic trigger source defined for the cause-effect chain,
then this sporadic trigger is added to Φi.

2) Each predecessor task of τi in a cause-effect chain is part
of Φi, if the two tasks are in the same activation pattern.

Note that each trigger can be included in Φi at most one time.
In order to get the number of all possible valid combinations

the product of all tasks’ total number of possible activation
sources needs to be computed (Φi triggers by other task plus
one trigger through the periodic clock).

βΓ =
∏
∀τi∈Γ

(Φi + 1) (4)

Again we look at the running example. Tasks τA, τD, τF ,
and τH are all first tasks in their respective chain segments
and thus ΦA = ΦD = ΦF = ΦH = 0. Tasks τC , τE , τG,
and τI are part of only one cause-effect chain which leads
to ΦC = ΦE = ΦG = ΦI = 1. Finally, τB is part of both
cause-effect chains which leads to ΦB = 2. With these values,
βΓ results in only 48 combinations of activation patterns that
need to be verified.

To improve the readability, in the remainder of the paper
we refer to βΓ as the set of all activation patterns2.

IV. VERIFYING DATA-PROPAGATION DELAY OF THE
SYSTEM UNDER ALL GENERATED ACTIVATION PATTERNS

In this section we present an algorithm that generates all
possible valid combinations of activation patterns such that
all timing constraints are met. To overcome the combinatorial
complexity of all possible settings that may be valid candidates
and thus need to be tested, we identify the property of
activation pattern subset and show how it can be applied to
efficiently generate all schedulable activation pattern combi-
nations without exhaustively verifying all of them.

A. Activation Pattern Subset
In Section III-B we have shown how to generate the set

βΓ of all possible candidate activation patterns for a system
of cause-effect chains. To verify all timing constraints, timing
analysis of the data-propagation delay needs to be performed
for each cause-effect chain with each activation pattern in βΓ.

However, in systems that contain multiple cause-effect
chains, several activation patterns in βΓ are redundant to check
for a cause-effect chain ζk, as each activation pattern leads to
the same result of the data-propagation delay analysis. We
call these subsets δ ∈ βΓ activation pattern subset. For a
given cause-effect chain ζk, two activation patterns p ∈ βΓ

and p′ ∈ βΓ are in the same activation pattern subset δkj , if:
1) ∀τi ∈ ζk the activation in p and p′ is the same.
2) ∀τi /∈ ζk that is in trigger relation to a task ∈ ζi and has a

specified trigger (i.e. not clock driven) the same trigger is
specified in p and p′.

3) ∀τi /∈ ζk that have no specified trigger in p and a specified
trigger in p′ have no trigger relation to a task of ζk.

2The concrete computation of all combinations is left out due to space
limitations but can be done in a straight-forward way.

In the following we show that the above statement holds.
Lemma 1: When analyzing the maximum data-propagation

delay of a cause-effect chain ζk, all activation patterns that
are part of δkj result in the same maximum data-propagation
delay.

Proof 1: For the data-propagation delay of a cause-effect
chain, either the start or the release time of the involved tasks
has to change [10]. Hence, we have to show that the start
and the release time of tasks in a cause-effect chain does not
change for different activation pattern that are part of the same
activation pattern subset δkj . For two activation patterns p and
p′ of the same activation pattern subset it holds that if tasks that
have different trigger specified in p and p′, then these trigger
do not directly or indirectly activate a task of the cause-effect
chain. I.e. by definition the resulting release time of the tasks
in the chain are the same.

The interference experienced by the tasks in the chain also
have to be identical in p and p′ for them to be in the same
activation pattern subset. We know that tasks that can have
a trigger relation to any task, they must have the same initial
period specified, i.e. they also have the same priority assigned.
Thus, as long as there is no direct or indirect trigger path to a
task of the chain, the timing analysis has to consider that all
tasks arrive just before the task under analysis. Hence, they are
considered as interference (regardless of the trigger relations
amongst each other). Hence, also the response time of all tasks
in a cause-effect chain are the same for p and p′. �

B. Relevant Activation Pattern Combinations
In order to find all possible activation pattern combinations

that result in a maximum data age of a cause-effect chain
ζk which is smaller than the specified timing constraint, the
concept of activation pattern subset can be applied.

As each of the activation patterns in one subset results in
the same maximum data-propagation delay for ζk, only one
candidate out of each activation pattern subset of ζk needs
to be analyzed to verify ζk’s timing constraint. We define
the function getRelevantPatterns(ζk, βΓ) to return a set
of activation patterns that include one candidate pattern for
each activation pattern subset that can be identified for ζk.

If a tested activation pattern p ∈ δkj results in the verdict
unschedulable for the cause-effect chain ζk, then it can be
removed from all possible candidate combinations in βΓ for
this chain. Due to the property of δ, all other activation patterns
that are part of δkj can also be removed from βΓ. We define the
function getSubset(p, ζk, βΓ) to return the activation pattern
subset δkj which has p as member.

C. Efficient Algorithm to Generate Valid Activation Patterns
The properties of the activation pattern subset can be used

while traversing the search space of all βΓ possible activation
pattern combinations (see Sec. III-B) for each cause-effect
chain ∈ Z . Algorithm 1 presents the pseudocode of such an
algorithm. The algorithm receives the set of all cause-effect
chains Z , the set of all tasks Γ, and the set of all possible
activation patterns βΓ. The objective of the algorithm is to
return a subset of βΓ, where each activation pattern p yields a
schedulable system (i.e. all specified timing constraints, both
on tasks but also on cause-effect chains, are met). This is
represented by the set βout which initially holds all activation
patterns of βΓ (line 2).

The algorithm has to verify the timing properties for each
cause-effect chain (line 3). For each cause-effect chain, one
candidate pattern of all activation pattern subsets for the chain



Algorithm 1: GenerateValidActivationPattern(Z,Γ, βΓ)
1 begin
2 βout = βΓ;
3 for ∀ζi ∈ Z do
4 βouti = βΓ;
5 βζi = getRelevantPatterns(ζi, βΓ);
6 for ∀p ∈ βζi do
7 if Analysis(ζi, p, Γ) 6= schedulable then
8 βouti = getSubset(p, ζi, βΓ);
9 βout = βout − βouti ;

10 return βout

needs to be analyzed. In line 5, the set of activation pattern
candidates is obtained. Each of the patterns is then analyzed
(line 7). If the analysis result indicates that a timing constraint
is violated, i.e. the result unschedulable is returned, the
activation pattern subset to which p belongs is computed and
subsequently removed from the output set βout. As this is
done for each cause-effect chain, the set βout is gradually
reduced by all activation patterns that violate the constraints
on the cause-effect chains. Thus, after all cause-effect chains
are analyzed, the remaining patterns are the ones that do
not violate timing constraint of any cause-effect chain in the
system.

V. CASE STUDY

A case-study is used to demonstrate the applicability of the
proposed approach. An application with 15 different tasks is
considered (τA to τO). The parameters of each task are shown
in Table I, additionally the predecessor and successor tasks of
each task are shown. There are two cause-effect chains in the
application, denoted by ζ1 and ζ2. ζ1 is specified as: τA →
τB → τC → τD → τE . And ζ2 is specified as: τE → τF →
τB → τH → τI . Each cause-effect chains has a specified
maximum data age constraint of 100 ms. Note that these are
the cause effect chains shown in Fig. 3. Thus, the maximum
number of trigger patterns that need to be checked for each
cause-effect chain in order to provide the system designer with
all combinations which result in a schedulable system is βΓ =
48, according to Sec. III-B.

A. Pattern Generation
First we demonstrate the reduction in search space ob-

tained by the function getRelevantPattern that is based
on Lemma 1. Fig. 4 shows all trigger pattern ∈ βΓ, where
tasks that are part of a cause-effect chain are shown (tasks not
part of a cause-effect chain are activated by a periodic clock
and thus do not introduce additional trigger combinations).

For the cause-effect chain ζ1, the number of activation
pattern subsets is 14, thus only 14 out of the 48 activation
patterns from the set βΓ need to be analyzed for ζ1. This is
shown in Fig. 4 by the dashed boxes labeled δ1

1 to δ1
14. An

activation pattern is part of the visualized subset only if a
mark is placed in the dashed box below the pattern (either
a check for the result schedulable or a cross for the result
unschedulable, when testing the respective cause-effect chain).
Similarly, the number of activation pattern subsets for cause-
effect chain ζ2 is 12, thus only 12 out of the 48 activation
patterns of βΓ need to be analyzed for ζ2. The generated
subsets that are provided by getRelevantPattern for both
chains requires only 26 tests in total, instead of 96 (i.e. when
testing all 48 pattern of βΓ for each cause-effect chain). This
means, the amount of tested configurations is reduced to only
27% of the exhaustive test. Always the first activation pattern

TABLE I: Application properties of the case study.

Period T WCET C Predecessor Successor
τA 50ms 159 µs - -
τB 50ms 109 µs τA, τB τC , τH
τC 50ms 139 µs τB τD

τD 100ms 111 µs τC τE

τE 100ms 179 µs τD -
τF 50ms 93 µs - τG

τG 50ms 198 µs τF τB

τH 200ms 103 µs τB τI

τI 200ms 134 µs τH -
τJ 50ms 124 µs - -
τK 50ms 182 µs - -
τL 100ms 127 µs - -
τM 10ms 155 µs - -
τN 20ms 159 µs - -
τO 20ms 193 µs - -

of each activation pattern subset is selected for timing analysis,
and all timing analysis results are obtained using Rubus-
ICE [9].

As a result, 24 valid activation pattern are identified for ζ1,
and 23 for ζ2, as shown in Fig. 4. The intersection of the two
sets reported by the algorithm includes 12 activation patterns
that result in a schedulable system (i.e. all tasks’ deadlines are
met and all timing constraints of the cause-effect chains are
met as well), this can also be seen in Fig. 4.

B. Runtime
The execution time of the algorithm is one of the key

motivating factors for this work. In our experimental setup,
the algorithm has a total execution time of 119.62 s. The
total execution time is comprised of the timing analysis of
ζ1 and ζ2, for each identified activation patterns (24 and 12
respectively), plus the execution time of Algorithm 1. The
analysis of the data-propagation delay [10], [9] experiences
an average analysis time of 4.64 s, with a standard deviation
of 0.19 s for ζ1. ζ2 has an average analysis time of 4.55 s with
a standard deviation of 0.17 s. On the other hand, Algorithm 1
experiences an execution time of 11 ms (max. observed value
out of 1000 experiment runs, excluding the timing analysis
of the cause-effect chains). In comparison, only the timing
analysis of 48 combinations for each cause-effect chain would
take 441 s (the proposed algorithm requires only 27% of
this time). Thus, the time to analyse the cause-effect chains
contributes the majority of the total runtime. The reduction in
execution time due to the limited subset of activation patterns
that need to be tested outweighs the additional complexity that
is required to find this subset.

VI. SUMMARY AND CONCLUSION

The possibility to represent one model of the high-level
software architecture with several lower-level models (that are
closer to the system implementation) during the automotive
software development process poses challenges for the system
developers. Especially when timing properties of data propa-
gation through cause-effect chains are of importance. Chang-
ing activation triggers of software components (design-time
entities) or tasks (runtime entities) in the cause-effect chains
can have significant impact on the timing behavior of the
overall system. The large number of possible activation pattern
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Fig. 4: (Top) Visualization of all activation patterns (tasks not part of the chain are not visualized, but triggered by their periodic clock). (Bottom) the activation
pattern subsets for both cause effect chains with the results of the timing analysis.

combinations in a system of cause-effect chains agravates
the problem of identifying valid combinations, i.e. a trigger
combination that results in a schedulable system. We observe
properties of such systems that allow us to test only a limited
number of activation patterns, while still covering the whole
search space which can reduce the design time significantly
by automating such a process. A case study demonstrates
this, where all valid activation patterns are computed by the
presented algorithm in only 27% of the time compared with
the time it takes to test all possible patterns by the existing
approaches.
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