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Abstract. A modern way of enhancing elderly people’s quality of life is
by employing various Ambient Assisted Living solutions that facilitate an
independent and safe living for their users. This is achieved by integrating
computerized functions such as health and home monitoring, fall detec-
tion, reminders, etc. Such systems are safety critical, therefore ensuring
at design time that they operate correctly, but also in a timely and robust
manner is important. Most of the solutions are not analyzed formally at
design time, especially if such Ambient Assisted Living functions are in-
tegrated within the same design. To address this concern, we propose a
framework that relies on an abstract component-based description of the
system’s architecture in the Architecture Analysis and Design Language.
To ensure scalability of analysis, we transform the AADL models into
a network of stochastic timed automata amenable to statistical analysis
of various quality-of-service attributes. The architecture that we analyze
is developed as part of the project CAMI, co-financed by the European
Commission, and consists of a variety of health and home sensors, a data
collector, local and cloud processing, as well as an artificial-intelligence-
based decision support system. Our contribution paves the way towards
achieving design-time assured integrated Ambient Assisted Living solu-
tions, which in turn could reduce verification effort at later stages.

1 Introduction

The elderly segment of the population often face cognitive decline, chronic age-
related diseases, limitations in mobility, vision, and hearing. In this context,
Ambient Assisted Living (AAL) solutions can enhance the elderly’s quality of
life by providing integrated computerized functions aimed to help the users in
their independent and safe daily living. Modern AAL systems are equipped with
a wide variety of integrated features, like health monitoring, home monitoring,
fall detection, robotic platform support, and support for communication with
caregivers [20]. AAL systems are complex safety-critical systems, operating in a
dynamic and unpredictable environment (e.g. due to involvement of humans in
the loop, like elderly users, caregivers), hence it is desirable that these systems
are analyzed to ensure that they meet their functional and extra-functional re-
quirements. As for any other computerized system, formal techniques such as
model checking can also be applied to AAL; however, the task is not trivial due



to the complexity of models that include artificial intelligence (AI) techniques,
redundant components for fault tolerance, etc.

In this paper, we address this challenge by formally analyzing architectural
specifications of integrated AAL solutions. Although here we focus on a partic-
ular system, the method is general and can be applied to similar AAL solutions
[16]. The AAL system that we model and analyze is developed as part of the
project CAMI 1, co-financed by the European Commission under the Ambient
Assisted Living Joint Program of H2020. The system consists of various sensors,
actuators, user interfaces, cloud services used to store and process data, and also
an intelligent decision support system (DSS) that we design and analyze in this
work. Our DSS uses a combination of AI reasoning techniques, such as fuzzy
logic, rule-based reasoning (RBR), and case-based reasoning (CBR) for efficient
decision making.

Our contribution starts with specifying the AAL system architecture in the
Architecture Analysis and Design Language (AADL) [11] (see Section 3.1).
AADL is chosen due to the rich set of modeling constructs and its suitabil-
ity in specifying real-time systems. In this work, we assume fault-tolerant AAL
systems, which we model as a set of interacting abstract components in AADL.
To specify each component’s functional behavior and error behavior, we use
the standardized annex sets of AADL, Behavior Annex (BA), and Error Annex
(EA), respectively.

Although existing AADL IDE tools like OSATE [1] support initial architec-
ture analysis with respect to latency (timing properties), schedulability, etc., the
worst-case timing assumptions are often adopted without considering the com-
ponent behaviors, which often leads to pessimistic estimations [4]. Thus, there
is a need to adopt formal analysis methods like model checking to analyze the
functional correctness of an architecture, or the system’s timeliness or reliabil-
ity, within the architectural framework itself. To carry out such analysis and to
tackle the latter’s scalability, we resort to statistical analysis rather than exhaus-
tive model checking to ensure the system’s correctness. Hence, we give semantics
to the AADL components in terms of stochastic timed automata (STA) that can
be statistically model checked with UPPAAL SMC [8] ( See Section 3.2). Since
our AADL model considers probabilities of failure and recovery of various com-
ponents, a straightforward encoding would be within a probabilistic framework
such as that of PRISM [14], for exhaustive verification. However, the latter does
not scale to the size of our model so we resort to an SMC encoding, based on
UPPAAL SMC [8]. Although the analysis results are not exact, simulation-based
methods are sometimes the only choice for reasoning of complex Cyber Physiscal
Systems [4,19].

In brief, the contributions of this work are as follows: i) an abstract component-
based AADL architectural model of the integrated AAL system CAMI (Section
4), ii) an AI-based DSS and its abstract component-based specification (Section
2), iii) a formal definition of the proposed AADL components in terms of STA
(Section 5), and iv) the formal analysis of the STA model against various func-

1 http://www.aal-europe.eu/projects/cami/



Fig. 1: The CAMI AAL System Architecture [18]

tional requirements and quality-of-service (QoS) properties with UPPAAL SMC
(Section 6). We compare to related work in Section 7, and conclude the paper
in Section 8.

2 Use case: CAMI AAL Architecture

In this section, we describe our use case, the CAMI AAL system architecture
[18]. The system architecture is shown in Fig.1, and follows the structure of many
commercial AAL systems with various sensors, data collector, DSS, security
and privacy, database systems, user interfaces (UI), local and cloud computing
support. The major components of CAMI are briefly described below:

– Sensor unit: Comprises various sensors ranging from health monitoring to
home monitoring, physical exercise monitoring, and fall detection.

– Data Collector Unit: Collects data from the sensors and assigns labels and
criticality-based priorities for handling events.

– Local processor (CAMI Gateway): Processes the data from the Data Collec-
tor Unit. It has two major sub-components:

• Message Queue (MQ): Queues up the data output from the Data Collec-
tor and sorts it according to its priority such that the head of the queue
is the sensor data/event with the highest priority. In Fig.1, the MQ is
the Event Stream Manager.

• Decision Support System (DSS): The brain of the architecture where
the data from the MQ gets processed. To handle the complexity associ-
ated with the integration of multiple functionalities and to process the
interdependencies among simultaneously-occurring events in the AAL
environment, we design a novel intelligent context-aware DSS sys-
tem for CAMI that utilizes various AI reasoning schemes to decide on
further actions to be taken (e.g., raise an alarm and inform the caregiver,
issue a reminder etc.). The DSS architecture is detailed in Section 2.1.



– Cloud processor: Is employed for data storage and processing. A redundant
copy of the DSS is maintained in the cloud to avoid the single point of failure
of the architecture. In this paper, we have considered only one redundant
DSS copy in the cloud due to cost and maintenance efficiency.

2.1 CAMI’s Decision Support System

The DSS architecture that we propose is shown in Fig. 2. Our architecture is

Fig. 2: The DSS architecture

inspired by the work of Zhou et al. [27], where the authors have proposed a
context-aware, CBR-based ambient intelligence system for AAL applications. In
comparison, our DSS combines multiple AI reasoning techniques in an effective
way. We employ context modeling (CM) with fuzzy reasoning, RBR in addition
to CBR, which help to deal efficiently with multiple AAL scenarios. Context
modeling is performed by identifying the context space based on: (i) the personal
profile of the user, (ii) the activity of daily living (DA) performed by the user,
(iii) spatio-temporal properties, (iv) environment and (v) health parameters.
The parameters of context space are either profiled, sensed, or predicted. Fuzzy
reasoning is used for detecting DA [23], and also for determining sensor-data
deviations. To take decisions in various situations, we employ RBR first, next
CBR, that is, upon a context-change, RBR triggers first and checks if there exists
a rule to handle that particular context, if not, it allows the CBR system to tackle
the context based on its learning from previous scenarios. Developing an efficient
case base, case matching and formulating the adaptation rules are the most
complex aspects of a CBR system. In our system, each time an RBR outputs
a rule, we save it as a case in the CBR system with the case-id represented by
the DA of the user, the context space represented by the case features, and the
triggered rule represented by the solution of the particular case. The Knowledge
Base (KB) stores the context, rules, and cases. For detailed description of the
internal structure of DSS, the reader can refer to the technical report [16].

2.2 Use Case Scenarios and System Requirements

The CAMI system assists the elderly user in a variety of health, home-related,
and social inclusion functionalities. In this paper, we focus on one of the critical
scenarios where CAMI comes into assistance of an elderly user, Jim, who falls
frequently and suffers from chronic cardiac disease and slight memory loss.

Scenario 1: Jim has sudden pulse variations, detected by the pulse mon-
itoring sensor of CAMI, which are critical for cardiac patients. If the pulse is



low, CAMI alerts the caregiver of a low pulse. If the pulse is high, CAMI checks
whether the user is currently exercising (if this is the case, a high pulse is con-
sidered as normal) and if not, it sends an alert to the caregiver.

Scenario 2 : Jim is cooking his breakfast. He suddenly feels dizzy and falls.
The gas-based cooker is still on, and eventually starts a fire in Jim’s house. In
this case, the CAMI system detects the simultaneously-occurring events, and
alerts the firefighter and caregiver of both events [17]. Further, if there are any
health parameter variations detected for Jim along with the fall (for instance, a
low pulse), the fall event can be associated with the low pulse, and the caregiver
notified accordingly, which can help a further diagnosis. This scenario is safety
critical and has to be processed in real time.

We present the functional requirement that is derived from the above sce-
narios and also the QoS requirements that CAMI should satisfy:
R1: If there is a pulse data deviation indicating high pulse, the DA is “not
exercising”, and the user has a cardiac disease history, then the DSS sends a
notification to the caregiver, within 20 s. This relates to Scenario 1.
R2: If fire and fall are detected simultaneously, then the DSS should detect the
presence of the simultaneous events and send notifications to both firefighters
and caregiver, within 20 s. This relates to Scenario 2.
R3: The decisions taken by the local DSS are updated in the cloud DSS such
that they are eventually synchronized. This requirement relates to the data-
consistency requirement of CAMI.
R4: If the local DSS fails, then the cloud DSS eventually becomes active. It
corresponds to the fault-tolerance aspect of the CAMI system.

The overall goal is to analyze that the CAMI architecture meets the above
requirements. We achieve this by first specifying a simplified version of CAMI
in AADL, and then by semantically encoding the specification into a network of
STA (NSTA) that we statistically model check with UPPAAL SMC.

3 Preliminaries

In this section, we briefly overview AADL, STA and UPPAAL SMC.

3.1 Architecture Analysis and Design Language

AADL [11] is a textual and graphical language in which one can model and
analyze a real-time system’s hardware and software architecture as hierarchies
of components at various levels of abstraction. AADL component categories like
Application Software, Execution Platform and System are used to represent the
run-time architecture of the system, however a more generalized representation
is possible by specifying it as abstract.

A component in AADL can be defined by its type and implementation: the
first defines the interface of the component and its externally observable at-
tributes, whereas the second defines its internal structure. AADL allows possi-
ble component interactions via ports/features, shared data, subprograms, and pa-
rameter connections. In AADL, the input/output ports can be defined as: event
ports, data ports, and event-data ports. Based on the component interactions,



explicit data flows can be defined across the interfaces of AADL components by
specifying the components as flow source, flow path or flow sink. The compo-
nents can also be associated with various properties, like the period and execution
time and the dispatch protocol. The dispatch protocol specifies if the component
trigger is periodic or aperiodic. We also employ various user-defined properties
for representing the probabilistic distribution of an aperiodic event and the rate
at which a component recovers from the failure.

The AADL core language can be extended via annex sublanguages and user-
defined properties. In this work, we employ the standardized annexes of AADL
for describing the functional and error behavior of a component, namely the Be-
havior Annex (BA) [12] and the Error Annex (EA) [9] respectively, which model
behaviors as transition systems. Given finite sets of states and state variables,
the behavior of a component is defined by a set of state transitions of the form

s
guard, actions−−−−−−−−−→ s′, where s, s′ are states, guard is a boolean condition on the

values of state variables or presence of events/data in the component’s input
ports, and actions are performed over the transition and may update state vari-
ables, or generate new outputs. Similarly, the EA models the error behavior of
a component as transitions between states triggered by error events. It is also
possible to represent the different types of errors, recovery paradigms, as well as
the probability distributions associated with the error states and events.

In this paper, we focus on abstract components that allow us to defer from
the run-time architecture of the system. These generic component categories
can be parametrized, and can be refined later in the design process through the
“extends” capability of AADL. AADL allows us to archive these components
and reuse them. For this, we partition them into two public packages in AADL,
namely component library and reference architecture [10]. A component library
creates a repository of component types and implementations with simple hier-
archy. It can be established via two packages: (i) Interfaces Library comprising
generic components like sensors, actuators and user-interfaces (UI), and (ii) Con-
troller Library that includes the control logic. The Reference architecture creates
a repository of components of complex hierarchy, e.g. the top-level system ar-
chitecture.

3.2 Stochastic Timed Automata and UPPAAL SMC

A timed automaton as used in the model checker UPPAAL is a formal notation
used in describing real-time systems [2], and is defined by the following tuple:

TA = 〈L, l0, A, V, C,E, I〉 (1)

where: L is a finite set of locations, l0 ∈ L is the initial location, A = Σ ∪ τ is a
set of actions, where Σ is a finite set of synchronizing actions(c! denotes the send
action, and c? the receiving action) partitioned into inputs and outputs, Σ =
Σi ∪Σo, and τ /∈ Σ denotes internal or empty actions without synchronization,
V is a set of data variables, C is a set of clocks, E ⊆ L×B(C, V )×A× 2C × L
is the set of edges, where B(C, V ) is the set of guards over C and V , that is,
conjunctive formulas of clock constraints (B(C)), of the form x ./ n or x−y ./ n,



where x, y ∈ C, n ∈ N, ./∈ {<,≤,=,≥, >}, and non-clock constraints over V
(B(V )), and I : L −→ Bdc(C) is a function that assigns invariants to locations,
where Bdc(C) ⊆ B(C) is the set of downward-closed clock constraints with
./∈ {<,≤,=}. The invariants bound the time that can be spent in locations,
hence ensuring progress of TA’s execution. An edge from location l to location

l′ is denoted by l
g,a,r−−−→ l, where g is the guard of the edge, c? (or c!) is a

synchronization action a is an update action, and r is the clock reset set, that
is, the clocks that are set to 0 by the edge. A location can be marked as urgent
(marked with a U) or committed (marked with a C) indicating that time cannot
progress in such locations. The latter is more restrictive, indicating that the next
edge to be traversed needs to start from a committed location.

The semantics of TA is a labeled transition system. The states of the labeled
transition system are pairs (l, u), where l ∈ L is the current location, and u ∈ RC

≥0
is the clock valuation in location l. The initial state is denoted by (l0, u0), where
∀x ∈ C, u0(x) = 0. Let u � g denote the clock value u that satisfies guard g. We
use u+ d to denote the time elapse where all the clock values have increased by
d, for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l, u >
d−→< l, u + d > if u � I(l) and (u + d′) � I(l),

for 0 ≤ d′ ≤ d, and

(ii) Action transitions: < l, u >
a−→< l′, u′ > if l

g,a,r−−−→ l′, a ∈ Σ, u � g, clock
valuation u′ in the target state (l′, u′) is derived from u by resetting all clocks
in the reset set r of the edge, such that u′ � I(l′).

UPPAAL SMC [8] provides statistical model checking for stochastic timed
automata (STA). The stochastic interpretation refines the TA with: (i) proba-
bilistic choices between multiple enabled transition, where the output probabil-
ity function γ may be defined by the user, and (ii) probability distributions for
non-deterministic time delays, where the delay density function µ is a uniform
distribution for time-bounded delays or an exponential distribution with user-
defined rates for cases of unbounded delays. Formally, an STA is defined by the
tuple:

STA = 〈TA, µ, γ〉 (2)

The delay density function (µ) over delays in R≥0 is either a uniform or an
exponential distribution depending on the invariant in l. With El we denote

the disjunction of guards g such that l
g,o,-−−−→ - ∈ E for some output o. Then

d(l, v) denotes the infimum delay before the output is enabled, d(l, v) =inf {d ∈
R≥0 : v + d � E(l)}, whereas D(l, v) =sup {d ∈ R≥0 : v + d � I(l)} is the
supremum delay. If the supremum delay D(l, v) < ∞, then the delay density
function µ in a given state s is the same as a uniform distribution over the
interval [d(l, v);D(l, v)]. Otherwise, when the upper bound on the delays out of
s does not exist, µs is set to an exponential distribution with a rate P (l), where
P : L → R≥0 is an additional distribution rate specified for the automaton.
The output probability function γs for every state s = (l, v) ∈ S is the uniform
distribution over the set {o : (l, g, o, -, -) ∈ E ∧ v � g}.

A model in UPPAAL SMC consists of a network of interacting STA (NSTA)
that communicate via broadcast channels and shared variables. In a broadcast



synchronization one sender c! can synchronize with an arbitrary number of re-
ceivers c?. In the network, the automata repeatedly race against each other,
that is, they independently and stochastically decide how much to delay before
delivering the output, and what output to broadcast at that moment, with the
“winner” being the component that chooses the minimum delay. UPPAAL SMC
uses an extension of weighted metric temporal logic (WMTL) [7] to evaluate a
property Pr(∗x≤Cφ), where ∗ stands for ♦(eventually) or �(always), which cal-
culates the probability that φ is satisfied within cost x ≤ C, but also hypothesis
testing and probability comparison.

4 AADL Model of CAMI

In this section, we present the modeling framework used for representing the
CAMI AAL architecture. We use a generic representation of the components by
specifying them as abstract, which can be easily extended to specific run-time
architecture models.

For developing the abstract model, we classify the AADL components as:

– Atomic Components (AC): components that do not have hierarchy in
terms of sub-components with interfaces, but might contain sub-components
without interfaces.

– Composite Components (CC): hierarchical components that contain sub-
components with or without interfaces.

For instance, “data” is a sub-component in AADL without interface and it can
be part of an AC or CC hierarchy.

In the CAMI architecture, the Sensors, UI, and Data Collector are modeled
as AC, whereas the Local Controller, and the Cloud Controller are modeled as
CC. The DSS is modeled as a CC with sub-components like CM, CBR and RBR.
The fuzzy system is modeled as one of the sub-components of CM. Among all
the elements involved in CM, activity recognition (detecting the DA of the user)
is highly complex and requires analysis of multiple sensor parameters, so in our
current model we have abstracted the module by associating a DA with the user
profile in the context model. Similarly, we abstract away the algorithms of the
CBR reasoning and only show how RBR outputs can successfully build the case
base of the CBR module. We also model a redundant copy of the DSS component
in the cloud processor.

An example of an AC in the CAMI architecture is the RBR component of
the DSS. In this paper, we illustrate the RBR for R1 (Scenario 1), described
in Section 2.1. The RBR component type, implementation, BA, and EA are
shown in Fig. 3. The component type definition specifies its name, category
(i.e., “abstract”) and interfaces. The RBR component type describes that it gets
activated aperiodically according to a probabilistic distribution, has an execution
time of 1 s, a failure recovery rate defined by the distribution, and illustrates the
data flows between the respective input and output ports. The implementation
definition of RBR defines the data sub-components like the fuzzy data output,
personal information and daily activity of the user, which form the context-
space of Scenario 1.



BA
states
Waiting: initial complete final state;
Operational: state;
transitions
Waiting -[on dispatch input]->Operational {if (fuzzyo_pulse ="high" and DA != 
“exercising” and u_prof =" cardiac_patient”){output := "not_caregiver_highpulse"}
EA
states
Waiting: initial state;
Failed_Transient: state;
Failed_Permanent:state;
LReset: state;
Failed_ep:state;
events
Reset: recover event;
TF: error event;
PF: error event;
Transitions
t1: Waiting –[PF]->Failed_Permanent
t2: Waiting -[TF]->Failed_Transient;
t3: Failed_Transient -[Reset]-> {LReset with 0.9,
Failed_Permanent with 0.1};
t4: LReset-[]->{Waiting with 0.8, Failed_Permanent with 0.2}
properties
EMV2::DurationDistribution => [ Duration => 1s..2s; applies to Reset;
EMV2::OccurrenceDistribution =>[ProbabilityValue => 0.9; Distribution => Fixed;] 
applies to Reset;

abstract RBR
features
input: in event data port;
output: out event data port;
flows
F1 : flow path input -> output;
properties
Dispatch_Protocol => Aperiodic;
property_eventgeneration::AperiodicEventGeneration=>1.0;
property eventgeneration ::Distribution=> Exponential;
property_failure_recovery::FailureRecoveryRate=>1.0;
property_failure_recovery::Distribution=> Exponential;
Compute_Execution_Time =>1s..1s;
end RBR;

abstract implementation RBR.impl
fuzzy_out_pulse:data fuzzified_data_pulse;
DA: data ADL;
u_profile: data user;
end RBR.impl

RBR (Component Type + Implementation) RBR (BA+EA)

Fig. 3: An excerpt of the RBR component model

The BA has two states, Waiting and Operational. Waiting represents the
initial state where the component waits for an input from the pulse sensor, and
Operational is the state to which a component switches upon receiving the input
(if it has not failed). In the Operational state, the system monitors the fuzzy
logic output to identify any pulse variations. The fuzzy reasoning is not shown
in Fig.4 due to space constraints, however we present the underlying reasoning
in a nutshell. First of all, fuzzy data memberships are assigned to the range of
pulse data values : Low [40 70], Normal [55 135], and High [110 300], where the
numbers represent heart beats per minute. The pulse data read from the sensor
are classified as Low, Normal or High.

If a high pulse is detected by the RBR, then the user context is tracked
by checking the elderly person’s activity of daily living and disease history. If
the activity is “not exercising” and the user has a cardiac disease history, a
notification alert is raised and sent to the caregiver. The information is encoded
as a rule in the BA depicted in Fig. 3. Upon triggering a particular rule, the
RBR output is stored in the DB as a case input for CBR, where the case-id is
represented by DA, case features are the context space and the case solution is
the RBR output. The RBR output is also synchronized with Cloud DSS such
that data consistency is maintained.

The EA uses four states to represent failure: Failed Transient, LReset, Failed
Permanent, and Failed ep. The state Failed Transient models transient failures,
from which a recovery is possible via a reset event. Since reset is modeled as an
internal event that occurs with respect to a probabilistic distribution, we model
an additional location LReset to encode a component’s reset action upon the
successful generation of the reset event. Failed Permanent models a permanent
failure of the RBR, from which the component cannot recover. Failed ep mod-
els a failure due to error propagation from its predecessor components. In the



abstract DSS
features
input: in event data port ;
decision_out: out event data port;
properties
Dispatch_Protocol => Aperiodic;
property_eventgeneration::AperiodicEventGeneration=>10.0;
property eventgeneration ::Distribution=> Exponential;
property_failure_recovery::FailureRecoveryRate=>1.0;
property_failure_recovery::Distribution=> Exponential;
end DSS;
abstract implementation DSS.impl
prototypes
RBR_DSS:abstract RBR;
CBR_DSS:abstract CBR;
CM_DSS:abstract context_model;
subcomponents
RBR:abstract RBR_DSS;
CBR:abstract CBR_DSS;
CM:abstract CM_DSS;
connections
C1: port input -> CM.input;
C2: port CM.output-> RBR.input;
C3: port RBR.output-> CBR.input;
C4: port CBR.output-> decision_out;

annex EMV2{**
composite error behavior
[RBR.Failed_Permanent and CBR.Failed_Permanent and
CM.Failed_Permanent] -> Failed_Permanent;
[RBR.Failed_Transient and CBR.Failed_Transient and 
CM.Failed_Transient] -> Failed_Transient;
[RBR.Operational or CBR.Operational or 
CM.Operational]-> Wait;
EMV2::OccurrenceDistribution =>[ProbabilityValue => 10; 
Distribution =>Exponential;] applies to Failed_Permanent, 
Failed_Transient , Wait;
end composite;**};

DSS (Component Type +Implementation) DSS (EA)

Fig. 4: An excerpt of the DSS component model

EA of Fig. 3, we show two of the states - Waiting and Failed Transient, plus
their transitions based on a TF event (event that causes transient failures) and
reset event. If a TF event occurs when the component starts, the latter moves
to the Failed Transient state. From Failed Transient, the system can generate a
reset event with occurrence probability of 0.9 and moves to LReset. If the recov-
ery is successful with the reset event, the system moves to Waiting state with
probability 0.8, else it moves to Failed Permanent with probability 0.2. In this
work, we have considered the Waiting state in the EA and BA to be similar. In
Fig. 4, we present an excerpt of the DSS component, as an example of CC. The
component type definition is similar to that of an AC, except that we do not
define explicitly properties like execution time of a CC (it is considered based
on the execution time of each component, respectively). However, component
implementation shows the prototypes used to define sub-components and con-
nections between them. The EA shows the composite error behavior of DSS and
shows that the DSS moves to Failed Transient or Failed Permanent, if all of its
sub-components move to these states, respectively. No BA is created for the DSS
since the behavior is defined by the BA of the sub-components.

The assumptions of CAMI’s AADL model are: (i) all the system components
have a reliability of 99.98%, (ii) each sensor has a periodic activation, (iii) all
the system components interact via ports without any delay of communication,
and (iv) the output is produced in the Operational state, without any loss of
information during transmission.

In the following, we define the syntax of AAL-relevant AADL components
as tuples, and their semantics in terms of stochastic timed automata.

5 Semantics of AAL-Relevant AADL Components

In this section, we introduce the tuple definition of an AADL component, for
which we provide formal semantics as a network of STA.

An AADL component that we employ in this paper is defined by the following
tuple:

AADLComp = 〈Comptype, Compimp, EA,BA〉, (3)



where Comptype represents the component type, Compimp represents the compo-
nent implementation, BA the behavioral annex specification, and EA the error
annex.

The RBR component of DSS is an AC defined by its type, implementation,
BA and EA (Fig. 4), as follows:

RBRAADL = 〈Comptype RBR, Compimp RBR, EARBR, BARBR〉 (4)

As a whole, the DSS in our CAMI architecture is a CC, and hence it is defined
by its type, implementation and EA (no BA) as shown in Fig. 5. Formally, it
can be represented as follows:

DSSAADL = 〈Comptype DSS, Compimp DSS, EADSS〉 (5)

In the following we present the semantic encoding of RBR abd DSS, respec-
tively, in terms of STA.

Definition 1 (Formal Encoding of RBR). Let us assume an RBR compo-
nent defined by Equation 4. We define the formal encoding of RBR as the fol-
lowing network of synchronized STA: RBRNSTA = RBRiSTA||RBRaSTA, where
RBRiSTA is the “interface” STA of the RBR component and RBRaSTA is the
“annex” STA that encodes both the behavior and the error annex information.

– RBRiSTA is defined as an STA [16] of the form: 〈L, l0, A, V, C,E, I, µ, γ〉,
where:

• L = {Idle, Start, Op, Fail}, l0 = Idle;

• A = {start RBRi?, start RBR!, stop RBR!, stop RBRi!} ∪ {x = 0},
where A comprises the set of synchronization channels associated with
its input-output ports (start RBR!, stop RBR!), plus the synchronization
channels to concord with DSS (start RBRi?,stop RBRi!) and the reset
actions on clock x;

• V = out port ∪ in port ∪ {PF RBR, TF RBR}, where out port and
in port represent the set of output and input ports, respectively, and the
boolean variables, PF RBR, TF RBR, represent the error events;

• C = {x} is the clock that models the execution-time of RBR (T e = 1);

• E = {Idle start RBRi?−−−−−−−−→ start, start
start RBR!,x=0−−−−−−−−−−→ Op,

Op
TF RBR==1∨PF RBR==1∧x==1−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, Op

x==1,stop RBR!−−−−−−−−−−−→ stop,

stop
stop RBRi!−−−−−−−→ Idle, Fail

TF RBR==0∧PF RBR==0−−−−−−−−−−−−−−−−−−−→ Idle,

Fail
TF RBR==1∧PF RBR==1−−−−−−−−−−−−−−−−−−−→ Fail};

• I(Op) = x ≤ 1;

• P (Idle) = 1, P (Fail) = 1, given by γ, where P (Idle) = 1 represents the
occurrence distribution of aperiodic events and P (Fail) = 1 represents
the probability of leaving location Fail;

– The RBRaSTA is created in a similar way with:



(a) RBRiSTA (b) RBRaSTA

Fig. 5: The NSTA for the RBR

• L = {Wait,Op, TrF, PrF, Fail ep, LReset, L1, L2}, l0 = Wait, where L
comprises the set of states in the EA and BA, respectively, plus additional
committed locations (L1, L2) that ensure that receiving is deterministic
in UPPAAL SMC;

• A = {start RBR?, stop RBR?} ∪ {rules(), TF RBR = 0, TF RBR =
1, PF RBR = 1, reset RBR = 0, reset RBR = 1, err pRBR = 0, err p
RBR = 1, err p = 1, y = 0}, where A is composed of the actions defined
in the BA and EA, plus the synchronizations channels to concord with
RBRiSTA (start RBR?, stop RBR?), and the reset of clock y;

• V = {PF RBR, TF RBR, reset RBR, err pRBR, errp}, where V con-
sists of the set of error events defined in the EA;

• C = {y} models the duration of the “component reset”;

• E = {Wait
start RBR?−−−−−−−−→ L1, L1

TF RBR=1,err pRBR=1−−−−−−−−−−−−−−−−−→ TrF, L1
PF RBR=1,err pRBR=1−−−−−−−−−−−−−−−−−→ PrF,L1 −→ L2, L2 −→ Op,Op

stop RBR?,rules()−−−−−−−−−−−−→
Wait, TrF

reset RBR=1,y=0−−−−−−−−−−−−→ LReset,

T rF
PF RBR=1,err pRBR=1,reset RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

LReset
TF RBR=0,err pRBR=0,reset RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→Wait,

LReset
PF RBR=1,err pRBR=1,reset RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

Wait
err p==1−−−−−−→ Fail ep}, where E consists of the transitions in EA, BA

and those between L1 and L2;
• I(LReset) = y ≤ 2;
• P (Wait) = 10, given by γ, that is the occurrence-distribution of Wait;

• L1
0.9998−−−−→ L2, L1

0.001−−−→ TrF , L1
0.001−−−→ PrF, assigned by µ, where µ is

the occurrence-distribution of error events.

Figure 5 depicts the NSTA for the RBR, as described by Definition 1.

Definition 2 (Formal Encoding of DSS). The formal encoding of the DSS
defined by the tuple in Equation 5 is also a network of two synchronized STA,



(a) DSSiSTA (b) DSSaSTA

Fig. 6: The NSTA for the DSS

DSSNSTA = DSSiSTA||DSSaSTA, where DSSiSTA is the “interface” STA of the
DSS component, and DSSaSTA is the “annex” STA that encodes the information
from the error annex in AADL.

– DSSiSTA is defined as follows:
• L = {Wait, CM,RBR,CBR,Fail, L1Sync, L2Sync, L3Sync, L4Sync},
l0 = Wait, where L comprises the the sub-componenets of the DSS
(CM, RBR, CBR), plus additional locations to ensure synchronization
(L1Sync, L2Sync, L3Sync, L4Sync), and location Fail to model the com-
ponent failure.

• A = {start DSSLC?, start CMi!, stop CMi?, start RBRi!, stop RBRi?,
start CBRi!, stop CBRi?, stop DSSLC!, start DSSCC!}∪{iCM in =
iDSSLC in, iRBR in = iCM out, iCBR in = iRBR out, iDSSLC out
= iCBR out, iDSSCC in = iDSSLC out},where A consists of the syn-
chronizations actions with DSS sub-components, and the assignments
associated with the corresponding connections and flows;

• V = {iDSSLC in, iCM in, iRBR in, iCBR in, iDSSCC in, iDSSLC
out, iCM out, iRBR out, iCBR out, iDSSLC out, PF DSS, TF DSS},
where V is defined in the similar way as that of RBRiSTA;

• E = {Wait
start DSSLC?−−−−−−−−−−→ L1Sync, L1Sync

start CMi!,iCM in=iDSSLC in−−−−−−−−−−−−−−−−−−−−−→
CM,CM

stop CMi?−−−−−−−→ L2Sync, L2Sync
start RBRi!,iRBR in=iCM out−−−−−−−−−−−−−−−−−−−−−→ RBR,

RBR
stop RBRi?−−−−−−−−→ L3Sync, L3Sync

start CBRi!,iCBR in=iRBR out−−−−−−−−−−−−−−−−−−−−−−→ CBR,

CBR
stop CBRi?−−−−−−−−→ L4Sync, L4Sync

stop DSSLC!,iDSSLC out=iCBR out,iDSSCC in=iDSSLC out−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Wait,

CM
(TF DSS=1∨PF DSS=1),start DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, RBR

(TF DSS=1∨PF DSS=1),start DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, CBR
(TF DSS=1∨PF DSS=1),start DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, Fail
(TF DSS==1∨PF DSS==1)−−−−−−−−−−−−−−−−−−−−→ Fail, Fail

(TF DSS==0∧PF DSS==0)−−−−−−−−−−−−−−−−−−−−→Wait},



where E is defined with respect to the connections between the respective
sub-components and their synchronizations;

• P (Wait)=10, P (CM)=10, P (RBR)=10, P (CBR)=10, P (Fail)=1, de-
fined by γ.

– The DSSaSTA is defined in a similar way as RBRaSTA, except that the
encoding is done with the elements of the EA. (Note: There is no BA defined
for CC)

• L = {Wait, T rF, PrF}, l0 = Wait;

• A = {TF DSS = 0, TF DSS = 1, PF DSS = 1};
• V = {TF DSS, TF CM,TF RBR, TF CBR,PF CM,PF RBR,
PF CBR,PF DSS};

• E = {Wait
TF CM==1∧TF RBR==1∧TF CBR==1,TF DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ TrF,

Wait
PF CM==1∧PF RBR==1∧PF CBR==1,PF DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF, PrF

PF DSS==1−−−−−−−−−→ PrF, TrF
TF CM==0∨TF RBR==0∨TF CBR==0,TF DSS=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Wait};
• P (Wait) = 10, P (TrF ) = 10, P (PrF ) = 10, defined by γ.

Figure 6 depicts the NSTA for the DSS, as described by the Definition 2.

6 Statistical Analysis of CAMI with UPPAAL SMC

In this section, we check if the STA encoding of CAMI satisfies the requirements
introduced in Section 2.2.

Req. Query Result Runs

R1

Pr[<= 1000]([]((M pulse.pulse not == 3)

imply (110 <= sd w.data val <= 300 and

M pulse.FIS out == 3 and DA == 1 and

upro.disease history == 3 and M pulse.s1 <= 20))

Pr [0.99975,1] with

confidence 0.998 3868

Pr[<= 1000](<> (M pulse.pulse not == 3))

Pr [0.99975,1] with

confidence 0.998 4901

R2

Pr[<= 1000]([]( M firefall.fire not == 2 and

M firefall.fall not == 2 imply

((se w.fall == 1 or sd nw.data val == 1) and

se nw.fire == 1 and M firefall.s1 <= 20))

Pr [0.99975,1] with

confidence 0.998 3868
Pr[<= 1000](<> (Pr[<= 100](<> (M firefall.

fall not == 2 and M firefall.fire not == 2))

Pr [0.99975,1] with

confidence 0.998 7905

R3

Pr[<= 1000]([](M consistency.stop imply

(RBR om == iCBRCCm)))

Pr [0.99975,1] with

confidence 0.998 3868

Pr[<= 1000](<> (M consistency.stop))

Pr [0.99975,1] with

confidence 0.998 5777

R4

Pr[<= 1000]([](INT CC.DSSCC imply

PF DSS == 1))

Pr [0.99975,1] with

confidence 0.998 3868

Pr[<= 1000](<> (INT CC.DSSCC))

Pr [0.01,0.04] with

confidence 0.998 2885

Table 1: Verification results



We verify the system requirements using UPPAAL SMC [8]. To check that
our CAMI DSS meets its requirements, we employ a monitor STA that moni-
tors the sensor values, the respective DSS output, and the corresponding clock.
The verification results are tabulated in Table 1. The system satisfies all the
functional requirements corresponding to Scenarios 1 and 2 (R1 and R2) with
high probabilities (close to 1) and with high confidence. Requirements R3 and
R4 are related the QoS attributes of the CAMI architecture. R3 checks the data
consistency of Local DSS and Cloud DSS and requires that the RBR outputs
of the local DSS get stored in the case-base of the cloud DSS. This requirement
is satisfied with a high probability of [0.99975, 1] and high confidence of 0.998.
Query R4 is related the fault-tolerance of CAMI. We see from Table 1 that the
probability of cloud DSS to become activated (R4) is [0.01, 0.04]; this is because
it gets activated only when the local DSS has failed and the failure probability of
local DSS is between [0.01, 0.04] for a simulation over 1000 time units. However,
if the local DSS has failed, we see that the probability of cloud DSS getting
activated is very high [0.99975, 1] with a confidence of 0.998, which satisfies
our requirement. Most of the requirements are verified with queries that contain
terms of the form A imply B, therefore a pre-check of each corresponding “A”,
being reachable is first carried out.

7 Related Work
In recent years, there has been a lot of work in the area of AAL due to the need of
supporting an increased elderly population [20]. Moreover, many functionalities
that need to be tackled by AAL solutions are of a safety-critical nature, e.g.,
health emergencies like cardiac arrest, fall of the elderly, and home emergencies
like fire at home, etc. [25], therefore work on their modeling and analysis is fully
justified.

The formal assurance of AAL systems has been the focus of some related re-
search in the recent years. Parente et al. provide a list of various formal methods
that can be used for AAL systems [24]. In another interesting work, Rodrigues
et al. [26] perform a dependability analysis of AAL architectures using UML
and PRISM. Other interesting research work uses temporal reasoning [3,22] and
Markov Decision Processes to formally verify the reliability of AAL systems [21].
Although these approaches target the formal analysis of AAL systems, most of
the above work addresses only simple scenarios and are not used to analyze
complex behaviors resulting from integrating critical AAL functions (e.g. fire
and fall), as well as their decision making. In addition, these approaches do not
aim to develop an overall framework for the verification of AAL systems, starting
from an integrated architectural design, their design specifications, followed by
a verification strategy, as proposed in this paper.

The use of Architecture Description Languages (ADL) to specify AAL designs
has not been exercised previously, yet this is common when designing automo-
tive or automation systems. There have also been approaches to formally verify
AADL designs in other domains. The transformation approach from AADL to
TA or variants has been already addressed by related work [5,13,15]. Although
these approaches are automated verification techniques, there is a lack of focus



on abstract components/patterns with stochastic properties. In addition, these
approaches also suffer from state-space explosion, therefore they might not scale
well to complex AAL designs. Nevertheless, there is interesting research that
deals with stochastic properties and statistical model checking for the analysis
of extended AADL models. One such example is in the work of Bruintjes et al.
[6], where the authors have used SMC approach for timed reachability analysis of
extended AADL designs. Although our approach also focuses on linear systems,
it is different from the mentioned work in the fact that we focus on abstract com-
ponents, and also introduce BA modeling for capturing the functional behavior
of our modules, specifically for modeling the behavior of intelligent DSS. In their
work, Bruintjes et al. use the SLIM Language, which is strongly based on AADL
and is specific to avionics and automotive industry, including the error behavior
and modes. However, we use the AADL core language with its standardized an-
nex sets (EA and BA) for the architecture specification, thereby enabling us to
represent the functional and error behaviour with the architecture model. The
abstract component based modeling also brings exensiblity and reusability to our
approach. Moreover, the authors only consider the event occurrences or delay
variations using uniform or exponential distributions, wheras by employing our
user-defined properties, we can also specify other distributions. Furthermore, the
approach of Bruintjes et al. only deals with evaluation of time-bounded queries,
however we also evaluate properties like reliability, data consistency, etc., along
with timeliness. Another interesting work [4], possibly carried out in parallel
with our work, employs statistical model checking using UPPAAL SMC to eval-
uate the performance of nonlinear hybrid models with uncertainty modeled in
extended AADL. Although the approach is not specific to the AAL domain, it is
promising to specify complex CPS systems considering uncertainties from phys-
ical environment. Unlike our model, the authors use Priced Timed Automata
(PTA) models. In comparison, our approach considers only linear models that
evolve continuously (yet the analysis is carried out in discrete time due to sam-
pling of continuous data). In brief, the two approaches resemble, yet our approach
is all contained in the core language of AADL (as different from the mentioned
work where the authors resort to other annexes integrated in OSATE), is tai-
lored to systems that contain AI components, and assumes the random failure
of various components, which is not considered in the related work.

8 Conclusions and Future Work

In this paper, we have presented a framework for the formal modeling and anal-
ysis of integrated AAL systems, instantiated on CAMI that includes a variety of
sensors, data collector unit, intelligent decision support system, user interfaces,
and local and cloud processing schemes.

As a first step, CAMI is represented as interacting abstract components in
AADL, using a commercially available tool, OSATE [1]. To provide scalable
formal analysis of the AAL system, we have semantically encoded the AADL
CAMI model into a network of stochastic timed automata. The resulting formal
model has been analyzed with UPPAAL SMC to ensure that the required func-
tional behavior with timeliness, reliability and fault-tolerance is enforced with



high probability and accuracy. The framework is intended to augment existing
AAL solutions with formal analysis support and provide analysis prior to imple-
mentation. Such an analysis is beneficial for AAL systems, which are real-time,
safety-critical systems, and require high levels of dependability.

Due to the heterogeneity of components available in the AAL domain, the
component failure probabilities, periods and execution times are not chosen with
respect to any specific category of components, nevertheless the results presented
in the paper are promising as the components that have been proposed can be
refined further. The verification results are specific to our CAMI architecture,
however one can use the approach to verify any set of requirements for various
architecture types defined by the generic architectural model documented in the
extended technical report of this work [16]. It is worth mentioning that the results
are derived assuming high reliability of individual architecture components and
considering specific values for the periods and execution times. However, taking
into account the wide variety of available sensors and other components, we can
easily adapt the values to account for requirements of any specific architecture.

In the future, we plan to enhance our DSS model with more rules for RBR
and full functionality support of CBR and activity recognition, thereby provid-
ing an extensive analysis of AAL systems behaviors in possible critical scenarios.
Another interesting direction to proceed with is providing automated tool sup-
port for the semantic encoding.
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