

What are the needs for components in vehicular systems?

- An industrial perspective -

Anders Möller
Mälardalen University

CC Systems AB
Anders.Moller@mdh.se

Joakim Fröberg
Mälardalen University

Volvo Construction Equipment
Joakim.Froberg@mdh.se

Mikael Sjödin
Mälardalen University
Mikael.Sjodin@mdh.se

Abstract

During the last few years, component-based software
engineering for embedded systems has received a large
amount of attention. Often, however, the approach has
been to adopt existing component technologies to be more
suited for embedded systems. These "embeddified"
versions of desktop/Internet technologies seldom find their
way into the embedded systems market, for instance, due
to unpredictable timing behaviour and high resource
demands.

Our hypothesis is that there is no one-component
technology suitable for all segments of the embedded
systems market. Instead, we believe that different segments
of the embedded systems market may be best served by
different component technologies.

In this paper, we focus on the market for heavy
vehicles, such as wheel loaders and forest harvesters. Our
approach is to study companies within this market segment
and find their requirements on a component technology.
This paper presents work in progress, based on initial
findings from interviews with senior technical staff at two
Swedish companies, within the studied segment.

1. Introduction

This paper presents initial results of an ongoing project
called “Component Technology for Heavy Vehicles”
(HEAVE). The project is in its initial phase, and has
started with interviews of senior technical staff at two
Swedish companies. The goal of the project is to identify,
define, and evaluate a software component technology
within the business segment of heavy vehicles.

A component technology consists of a component
model, an infrastructure (middleware), and tools for
creating, composing, and analysing components. During
the last decade, the PC-/web-oriented software engineering
community has achieved tremendous progress in
component oriented software construction. Today, it is
possible to download components on the fly and have
them executed within the context of another program such
as a web browser or a word processor. Software
developing companies can purchase off-the-shelf
components and embed them into their own software
products. Technologies like CORBA [1], Java Beans [2],

.NET [3], and other component models are used on a daily
basis in systems software development. However, existing
component technologies are not applicable to most
embedded computer systems, since they do not consider
aspects such as safety, timing, and memory consumption
that are crucial for many embedded control systems. Some
attempts have been made to adapt component technologies
to embedded systems, like Minimum CORBA [4] for
example. However, these adaptations have not been
generally accepted in the embedded systems segments.
The reason for this is mainly due to the diversified nature
of the embedded systems domain. Different market
segments have different requirements on a component
technology, and often, these requirements are not fulfilled
simply by stripping down existing component
technologies.

2. Project Outline

Instead of starting from an existing technology and
trying to “embeddify” it, this project takes a different
approach in that it will start unbiased and identify the
specific requirements on a component technology for the
heavy vehicles segment.

It is important to keep in mind that the embedded
systems market is extremely diversified in terms of
requirements placed on the software. For instance, it is
obvious that software requirements for consumer products,
telephony switches, and avionics are quite different, hence
our focus on one single market segment. It is important to
realise that the development of a component technology is
substantially simplified by focusing on a specific market
segment. Within this market segment, the conditions for
software development should be similar enough to allow a
lightweight and efficient component technology to be
established.

When the requirements are understood, we will study
to what extent existing technologies fulfil those
requirements. We will also assess to what extent existing
technologies can be adapted in order to fulfil the
requirements, or whether selected parts like tools,
middleware, message-formats, and file-formats can be
reused if a new component technology needs to be
developed.

Once we have a better understanding of the
requirements and understand to what extent existing

technologies fulfil those requirements, we will make a
specification of a suitable component technology. The
specification will cover issues like component
representation, interface descriptions, middleware
functionality, component interoperability, message
formats, etc.

From the specification, we will build a test bed
implementation of the component technology, reusing as
much as possible of the existing technologies. The test bed
will be used to evaluate the component technology, and for
a pilot project implementing some functions in a real
vehicle environment.

3. Requirements Capture

To better understand the needs in the business area of
heavy vehicles, this project has started with interviews
with senior technical staff at two Swedish companies,
Volvo Construction Equipment [5] and CC Systems [6].
Both companies develop on-board electronics and
software systems for heavy vehicles, like dumpers and
combat vehicles. They experience similar problems,
related to the development of software for embedded real-
time systems. By cooperating in this research project, in
ennobling a component technology for heavy vehicles,
their joint desire is to improve the development process of
on-board software systems.

3.1. Technical background

Distributed systems in mobile applications become
more and more complex; vehicles are equipped with
advanced electronics both as means of improving their
capacity and functionality, and as a mean to decrease
production costs. The electronic systems developer faces
challenges of shorter development time and keeping the
electronics part of the product cost to a minimum.

Companies often develop new systems in an
evolutionary way, i.e. new systems are partially based
upon previously developed systems. Typically, a company
also develops a product-line, i.e. a variety of related
systems. A product-line approach [7] to development is an
effort to create an overall development process taking into
account a whole series of similar products. The aim is to
avoid sub-optimisation and lift the focus from single
products. By focusing on the software architecture,
developers want to get a high-level view of the system’s
properties.

Not having a well specified development procedure to
coordinate development in terms of processes, methods,
and technology, makes development expensive. One way
of reducing time spent on development is to reuse software
components and architectural solutions between products.
There are different aspects of the advantages of using a
component-based approach. These aspects can be divided
into operational properties (e.g. reliability, safety, and real-
timeliness) and development properties (e.g. reusability,

scalability, configurability, and maintainability). One of
the most important resulting effects of using a component-
based approach is a shorter and more predictable
development time.

Common desktop/Internet component technologies,
such as COM, Java Beans, and CORBA, are considered
unfit for use in the on-vehicle control systems because of
their excessive resource usage and unpredictable timing
behaviour. However, selected parts like tools and message
formats and ideas from these technologies can be reused.

To have companies actually using a component-based
software approach, the component models and middleware
must be fit for their specific needs. Aiming too high, by
trying to find the component technology, that can be used
in all distributed embedded real-time systems, will most
likely lead to yet another flexible but far too memory- and
time consuming model.

3.2. CC Systems

CC Systems (CCS) is developing and supplying
advanced distributed embedded real-time control systems
with focus on mobile applications. Examples of control
systems, including both hardware and software, developed
by CCS are forest harvesters and combat vehicles.

3.2.1. Company background. Systems developed by CCS
are built to manage rough environments, and are
characterised by safety criticality, high functionality, and
the requirements on robustness and availability are high. In
the future, CCS will focus on being a platform supplier
(hardware, device drivers, and middleware), as a
complement to being a specialised application
development company. The companies using the platform
developed by CCS should develop their own applications,
using market leading tools and methods (e.g. Rhapsody
[8], IEC 61131-3 [9]).

CCS´ goal is to use a component-based approach
towards software construction, to enhance the ability to
reuse and analyse applications and because it reduces the
degrees of freedom for application developers. This
reduction of freedom, in turn, will minimise the risk for
software errors, since component assembly can only be
done in a predefined manner.

CCS expects that future systems will need a higher
degree of configurability and greater ability to integrate
third party software. Use of a component approach will
facilitate the needed flexibility.

3.2.2. Technical Future. The component model used,
preferably based on a standard modelling language like
UML [10], UML-2 [11] or UML-RT [12] should be
platform independent and provide support for integration
with third party software.

The component model should preferably be based on
passive components focusing on a pipe-and-filter [15]
solution. A component should be open source, i.e. no

binaries, and must be platform independent. In order to
support platform independency, the components are not to
use the operating system primitives or the processor
features directly. Components can, for example, be a
gathering of objects using a common API. The
components should be configured at compile-time to make
them smaller and easier to analyse statically. All
components must have a pre-calculated worst case
execution time, making it possible to schedule tasks off-
line, to check if the tasks meet their deadlines, and to
analyse the end-to-end timing behaviour of the complete
system.

Some important questions need answers: Which are the
reasons why existing component technologies for
embedded systems are not used more frequently? Is it
possible to use selected parts of the existing CBSE
techniques (like tools and message formats) to develop a
specialised heavy vehicle component technique? Is it
possible to use a subset of an existing technology, by
retaining selected parts like message formats for example,
and still provide an opportunity to communicate with
other, more powerful, nodes running the full version of
that technology?

3.3. Volvo Construction Equipment

Volvo Construction Equipment (VCE) is one of the
world’s major manufacturers of construction equipment,
with a product range encompassing wheel loaders,
excavators, motor graders, and more. What they all have in
common is that they demand appropriate technical
solutions and equipment that can help them to improve
their performance. The focus of this project will only be on
the on-board electronics and software systems part of the
VCE business area.

3.3.1. Company background. VCE develops both on-
board electronics and software. The systems are distributed
embedded real-time systems, which must perform in an
environment with limited hardware resources.

To accommodate reuse of software components and
methodology between products, VCE has incorporated a
component model for the real-time application domain.
However, they wishes to strengthen its competence with
component-based software development in general. The
resulting component technology will be used to extend
their current practises within component engineering. VCE
expect that achieving a higher competence and better
approach to component-based software engineering will
significantly reduce software related costs.

Today VCE uses the real-time operating systems
Rubus [13]. Besides an operating system, Rubus
encompasses a component model, and tools for assembling
components. All Rubus components have a known worst-
case execution time. Rubus also provides a tool to produce
off-line static schedules for the component execution.

Hence, Rubus provides a good foundation for building
component-based distributed real-time systems.

The design of VCE's current software architecture was
done with the intent of using it for a relatively long time.
The architecture was to be a base for development of
several products over time. In order to be successful in the
development effort, the desired properties (such as
timeliness, and memory consumption) of the system were
considered already at the architecturing stage.

3.3.2. Technical Future. VCE uses software components
both to develop the infrastructure that applications execute
upon (this infrastructure can be viewed as a kind of
middleware), as well as for the actual applications. Today,
a typical software component is a rather big entity (e.g. a
component for transmission control).

Analysing the software components source code using
tools like Lint [14] is important to reduce the risk of
software failures in components. Memory usage and
worst-case execution time are important non-functional
properties that need to be statically analysed.

Overall, analysability and testing is important to VCE.
The component model used by VCE today, gives some
support for analysing timing related issues, but lack
support for end-to-end timing analysis. VCE are also
interested in functional testing of the components and the
complete systems. Automatic generation of test cases are
considered a highly desirable tool for the future. In
addition, tools for on-line monitoring of the software and
debug tools are considered important.

The only model of computation supported by the
Rubus component model is the pipe-and-filter [15] model.
However, VCE has seen little (or no) need for other
models of computation. This reflects the fact that most
software in VCE's system is control related

There are no urgent needs for communication with
third party software components. However, VCE is
interested in having the opportunity to use third party
software inside the components and also, taking the long
view, to communicate with other (third-party) hardware
nodes running, for example, CORBA.

Today, VCE uses a component-based approach for
development of their product line. One significant problem
that has emerged due to the component-based approach is
version and variant management. Shifting to component-
based software-engineering causes novel problems for
administration of the components’ life-cycles. That is, new
processes are needed to administer variant development
and feedback of component modifications to the projects
using the component.

4. Related Work

Technologies like COM/DCOM [3], CORBA [1, 4],
Java Beans/Enterprise Java Beans [2], .NET [20] are
readily available and used by developers on a daily basis.

However, these technologies have all been developed for
the PC-/Internet-market, and are usually not suitable for
embedded control systems.

The IEC 61131-3 standard [9] allows component-based
development of simple control applications. The port-
based objects [16] approach goes one-step further and
allows reusable components to be interconnected by means
of input and output ports. The Rubus operating system (by
Arcticus [13]) provides an implementation of port-based
objects that can be executed in a distributed environment.

The European research project PECOS (PErvasive
COmponent Systems) [17, 18] focuses on the architectural
issues of component-based software construction for
embedded systems. PECOS has an architectural focus and
its ambition to target the complete embedded systems
market.

Within the software engineering community, Aspect
Oriented Programming (AOP) [19] has recently received a
large amount of attention. AOP provides a mechanism to
configure software at compile-time.

5. Contribution

The scientific contributions of the HEAVE project are
mainly the study of actual requirements from an industrial
perspective and the survey of to what extent those
requirements are fulfilled by existing component
technologies. In addition, the implementation of a test bed
and a pilot project will have a scientific value, illustrating
how a technology based on industrial requirements can be
used to solve problems that are not solved by commodity
technologies.

For the participating companies the specification of a
component technology that is suitable for the considered
market segment will be the main contribution. The test bed
implementation and pilot project will also provide valuable
insight into how the new component technology can be
used by the participating companies. An indirect
contribution for the participating companies is also the
increased competence within component-based software
construction gained during the project work.

6. Summary

In this paper, we have described work in progress
within a project called "Component Technology for Heavy
Vehicles" (HEAVE). The project goal is to investigate the
needs and requirements for component-based software
engineering for heavy vehicles.

The approach of this project is to start from actual
requirements on a component technology, and focus on a
single market segment (in this case the segment for heavy
vehicles). After the requirements have been documented,
the next step is to define a component technology that
satisfies those requirements. The goal in this second phase
is to reuse as much as possible for existing component
technologies. Examples that will be considered for reuse

are message formats, middlewares, interface description
languages, etc.

We have presented two companies that develop on-
board electronics and software for heavy vehicles, such as
wheel loaders, dumpers, forest harvesters, and combat
vehicles. The companies’ technical background has been
described. We have noticed that, for a component
technology to be applicable, the whole systems
development context needs to be considered, i.e. not only
the specific properties of components and middleware
needs to be addressed but also issues like the component
life cycles, variant handling, static (i.e. off-line) analysis,
and testing needs to be considered to some extent. It is
however important to keep in mind that a component
technology alone cannot be expected to solve all these
issues. Nevertheless, for a component technology to be
accepted in this market segment it cannot introduce
difficulties in these important (non-functional) domains of
systems development.

7. References

[1] Object Management Group. CORBA Home Page. http://www.-
omg.org/corba/

[2] SUN Microsystems. Java homepage. http://java.sun.com/

[3] Microsoft. Microsoft COM Technologies. http://www.microsoft.com

[4] Object Managment Group. Minimum CORBA 1.0, http://www.-
omg.org/technology/documents/formal/minimum_CORBA.htm

[5] CC Systems AB homepage, http://www.cc-systems.com

[6] Volvo Construction Equipment homepage, http://volvoce.com

[7] Clements, P., Northrop, L., Software Product Lines, Addison-Wesley,
August 2001, ISBN 0-201-70332-7

[8] I-Logix homepage, Rhapsody, http://www.ilogix.com/

[9] IEC. Application and Implementation of IEC 61131-3, 1995.

[10] Selic, B., Rumbaugh, J., Using UML for modelling complex real-
time systems, Rational Software Corporation 1998

[11] J.Warmer, T.Clark, UML 2.0 The future of OCL, Report of the
workshop held on October 2, 2000, York

[12] Douglas, B.P., Real-Time UML – Developing efficient objects for
embedded systems, Addison Wesley Longman, Inc, 1998

[13] Arcticus Systems Home Page. http://www.arcticus.se.

[14] S. C. Johnsson, Lint, a C Program Checker, Comp. Sci. Tech Rep.
No 65 (D), updated version TM 78-1273-3

[15] M. Shaw, D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. PrenticeHall 1996

[16] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of Dynamically
Reconfigurable Real-Time Software Using Port-Based Objects.
IEEE Transactionson Software Engineering, 23(12), 1997.

[17] PECOS Project Web Site. http://www.pecos-project.org.

[18] P. O. Müller, C. M. Stich, and C. Zeidler. Building Reliable
Component-Based Software Systems, chapter Component Based
Embedded Systems, pages 303-323. Artech House publisher, 2002.
ISBN 1-58053-327-2.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira L., J.-
M.Loingtier, and J. Irwin. Aspect oriented programming. In 11th
European Conference on Object-Oriented Programming, volume
1241 of LNCS, pages 220_242. Springer Verlag, 1997.

[20] Microsoft. .NET home page. http://www.microsoft.com/net/

