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Manual testing is still a predominant and an important approach for validation of computer systems, par- 

ticularly in certain domains such as safety-critical systems. Knowing the execution time of test cases is 

important to perform test scheduling, prioritization and progress monitoring. In this work, we present, 

apply and evaluate ESPRET (EStimation and PRediction of Execution Time) as our tool for estimating and 

predicting the execution time of manual test cases based on their test specifications. Our approach works 

by extracting timing information for various steps in manual test specification. This information is then 

used to estimate the maximum time for test steps that have not previously been executed, but for which 

textual specifications exist. As part of our approach, natural language parsing of the specifications is per- 

formed to identify word combinations to check whether existing timing information on various test steps 

is already available or not. Since executing test cases on the several machines may take different time, we 

predict the actual execution time for test cases by a set of regression models. Finally, an empirical eval- 

uation of the approach and tool has been performed on a railway use case at Bombardier Transportation 

(BT) in Sweden. 

© 2018 Elsevier Inc. All rights reserved. 
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1. Introduction 

As is well known, an efficient and effective software testing

process is important for delivering high quality software prod-

ucts ( Casey, 2008; Afzal et al., 2016 ). Software testing is overall

costly and a time-consuming process. This is even more true for

manual testing which requires a tester to perform the test oper-

ations on the system under test (SUT) without the help of test

automation ( Itkonen et al., 2007 ). Test automation has therefore

become a popular approach to reduce the cost of software test-

ing; a computer can follow a sequence of steps more quickly than

a tester and can run the tests overnight to present the results in

the morning ( Dustin et al., 2009; Strandberg et al., 2016 ). On the

other hand, the labor that is saved in actual testing through au-

tomation must instead be spent on writing the test program. De-

pending on the type of application to be tested and the automa-

tion tools that are chosen, this may itself require more labor than

a manual testing approach, at least in the beginning of a testing

process ( Flemström et al., 2018 ). In addition, test automation in its
∗ Corresponding author. 

E-mail addresses: sahar.tahvili@ri.se (S. Tahvili), wasif.afzal@mdh.se (W. Afzal), 

mehrdad.saadatmand@ri.se (M. Saadatmand), markus.bohlin@ri.se (M. Bohlin), 

san15014@student.mdh.se (S.H. Ameerjan). 

n  

t  

p  

p  

i  

https://doi.org/10.1016/j.jss.2018.09.003 

0164-1212/© 2018 Elsevier Inc. All rights reserved. 
ost current form is neither able to cover human intuition, infer-

nce, inductive reasoning, nor can it change course in the middle

f a test run to examine something that had not been previously

onsidered ( Casey, 2008 ). Therefore, manual testing still has a crit-

cal role in the software testing process and cannot be easily re-

laced. 

Over the past few years, the interest in industry to find ways

o improve effectiveness and efficiency of software testing ( Garousi

t al., 2017b; Afzal et al., 2015 ) has grown. Effective software test-

ng processes and decision supports for these should reduce the

otal cost of testing and result in earlier fault detection ( Kasurinen

t al., 2010; Tahvili et al., 2016a; Engström and Runeson, 2011 ), and

everal factors such as coverage, test strategy, test implementation,

lanning and analysis of test results should be considered ( Felderer

nd Ramler, 2014; Strandberg et al., 2018 ). In this context, test case

election and prioritization are quickly becoming an inseparable

art of an overall test strategy ( Singh and Sahib, 2014 ). There are

everal methods proposed for test case selection, prioritization and

cheduling ( Li et al., 2007; Engström and Runeson, 2011; Kasuri-

en et al., 2010; Hao et al., 2016 ), where the initial problem of

est prioritization is recognized as a multi criteria decision making

roblem, meaning that a set of criteria must be identified before

reparing test cases for execution. The execution time of test cases

s one of the important criteria that impacts test scheduling, pri-
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ritization and progress monitoring. In our previous works ( Tahvili

t al., 2016b; Tahvili, 2016 ), we proposed a multi criteria decision

upport system (DSS) for selecting and prioritizing manual test

ases at integration testing level, considering some criteria such as

xecution time, dependency and requirement coverage. 

This paper is an improved version of Tahvili et al. (2017) , which

resents a novel automated approach for estimating and predict-

ng the execution time of manual test cases based on test speci-

cations and available historical data on previously executed test

ases. The execution time of test cases is categorized by us into

wo main groups: 1- the maximum execution time (MT) and 2-

he actual execution time (AT), where MT is supposed to be a con-

tant and AT is a variable time value. Later in this paper, the for-

al definitions of MT and AT are provided. Our proposed approach

orks by extracting timing information for various steps in manual

est cases. This information is then used to estimate the maximum

ime for test steps that have not previously been executed, but for

hich textual specifications exist. As part of our approach, natu-

al language parsing of the specifications is performed to identify

ord combinations, which in turn are used to check whether exist-

ng timing information on various test activities is already available

r not. Additionally, a set of regression models is used to predict

he actual execution time (AT) for manual test cases. 

ESPRET (EStimation and PRediction of Execution Time) is the

ool implementation of our proposed approach for estimating and

redicting the execution time of test cases. ESPRET estimates the

xecution time of manual test cases by recognizing some critical

nd key elements in textual test specifications and analyzing the

istorical test data. Since the actual execution time for test cases is

n essence a system dependent time (variable value), the polyno-

ial and spline regression models have been applied for providing

 prediction of this time. Moreover, the prediction error of the re-

ression models has been measured in order to evaluate the pre-

iction algorithms. An empirical study at Bombardier Transporta-

ion (BT) is also done to evaluate the proposed approach, as part

f our industry-academia collaboration strategy to facilitate knowl-

dge transfer and innovation ( Garousi et al., 2017a ). 

The organization of this paper is laid out as follows:

ection 2 provides a background of the initial problem and also an

verview of research on execution time prediction, Section 3 de-

cribes the proposed approach. An industrial case study has been

esigned in Section 4 , threats to validity and delimitations are dis-

ussed in Section 5 . Section 6 is about the discussion and some fu-

ure direction of the present work and finally Section 7 concludes

he paper. 

. Background and related work 

A typical goal in software testing is to detect as many defects

s possible given the allocated testing resources. Therefore, recog-

izing the required time and budget for creating and executing test

ases plays a vital role in an effective testing strategy ( Tahvili et al.,

016a; Afzal and Torkar, 2008 ). Computing the overall time for ex-

cuting manual test cases, however, is a challenging task. Building

 time estimation model entails data analysis and most organiza-

ions lack sufficient historical data ( Angelis et al., 2001 ). Without

he experience data, it will be difficult to create an accurate esti-

ation of the execution time. Moreover, manual test specifications

re written in natural text by a group of testers with different level

f writing and testing skills, which makes the initial problem more

omplicated. 

Estimation and prediction of software resources has been an

nteresting area of investigation in software engineering for sev-

ral years. The overwhelming goal of such investigations is to as-

ist in planning of resources and to complete various develop-

ent tasks effectively and efficiently. Some examples of estima-
ion and prediction research in software engineering includes soft-

are fault/defect prediction, software effort/cost estimation and

oftware maintenance effort prediction. A variety of model build-

ng techniques have been investigated including regression anal-

sis, neural networks, case-based reasoning and soft computing

echniques. 

Prediction of software testing effort has received less research

s compared to other prediction and estimation tasks in software

ngineering. For software test effort estimation and prediction, one

actor of importance relates to the ability of making accurate pre-

ictions early in the development process. It is a common under-

tanding that models developed using lines of code would enable

redictions to be available much later than, for example, mod-

ls developed from requirements. Similarly, predictions based on

est specifications would also enable timely decision-support when

ompared with predictions based on lines of code. Below we dis-

uss representative relevant papers with a discussion of their pros

nd cons. We end this section with a discussion on our approach,

hile the details of our approach are presented in Section 3 . 

Nageswaran (2001) presented an use case points (UCP) ap-

roach for estimation of software testing effort. UCP identifies the

umber of actors, use cases, software requirements, technical and

nvironmental factors for estimating the test effort. Thus, UCP is

ot dependent on lines of code (LoC) and function points (FP). The

equired test effort can be estimated in the early stages of soft-

are development process. Although UCP can estimate the test ef-

ort as a whole, including test plan, design, execution, monitoring

nd reporting, it is not able to capture each and every instance

f test activity such as one test case execution ( Zhu et al., 2008 ).

rivastava et al. (2012) , proposed a similar approach to UCP for test

ffort estimation, called Cuckoo search method. This method also

tilizes use cases to estimate the effort for testing. The principal

ifference between Cuckoo search and UCP is the way that they

ssign a value to their parameters. UCP assigns a fixed value (or

eightage) to the parameters (e.g. actors, use cases) while a range

f static or dynamic values for each parameter would be assigned

y Cuckoo search, depending on the target system. Additionally,

uckoo search takes into account the expertise of development and

esting team. In order to apply Cuckoo search for estimating the re-

uired effort for a new project, historical data on at least on one

roject is required. 

Accumulated efficiency is another method proposed by

. Silva et al. (2009) , which focuses on team efficiency to es-

imate the execution effort of a test suite. Accumulated efficiency

aptures and analyses LoC and therefore cannot be utilized in the

arly stages of software development. However, this method does

ot require historical analysis and natural language processing

echniques. Accumulated efficiency estimates the whole testing ef-

ort instead of estimating effort f or individual test case executions

nd has been designed for the systems with a web interface. 

de Almeida et al. (2009) proposed an alternative method, called

eighted Nageswaran, for estimating the required effort to test a

oftware based on use cases. Since different test cases have dif-

erent influence in their effort s, the Weighted Nageswaran method

lassifies test cases into simple, medium and complex groups,

ased on the required efforts. 

Sharma and Kushwaha (2013, 2010) proposed a test metric for

he estimation of software testing effort, using software require-

ent specification (SRS) document. The proposed method works

y extracting the requirements from the SRS document and assign-

ng complexities to them based on their level. With the help of the

eightage assigned to the requirements based on complexity, test

ffort is estimated. Since this method is based on a SRS document,

he required effort can be estimated in the early stage of software

evelopment. On the other side, using requirement specification

nstead of test specification might be less reliable as one needs
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Table 1 

Summary of related work. 

Reference Purpose of paper Drawback 

Nageswaran (2001) An use case points (UCP) approach for estimation of 

software testing effort 

A gross estimate of testing effort and not on individual test 

activities 

Srivastava et al. (2012) An use case points (UCP) approach for estimation of 

software testing effort using Cuckoo search 

Historical data on at least one project required 

e. Silva et al. (2009) Uses team efficiency to estimate the execution effort of a 

test suite 

Use of LoC make it not unfit for estimation in early stages 

de Almeida et al. (2009) Uses use case information to estimate test effort A gross estimate of testing effort and not on individual test 

activities 

Sharma and 

Kushwaha (2013) Sharma and 

Kushwaha (2010) 

Uses SRS to estimate testing effort Needs to ensure traceability between requirements and 

test specification 

Aranha and Borba (2007) Uses test steps and execution points for estimating test 

execution effort 

Use of controlled natural language may impose restrictions 

Torkar et al. (2010) A dynamic Bayesian network is used for predicting test 

effort in an iterative software development environment 

A number of variables are used including test team size, 

length of iteration and number of identified faults to 

name a few 

Nguyen et al. (2013) Measures the size of the test case based on its checkpoints, 

preconditions and test data, as well as the type of 

testing. 

The test cases have to be available at the time the 

estimation is performed. 
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erties. 
to ensure the traceability between requirements and test specifi-

cations. Aranha and Borba in Aranha and Borba (2007) overcame

the mentioned limitation in Sharma and Kushwaha (2013) by using

test specification instead of requirements specification. The pro-

posed approach is based on an estimation model, which extracts

test steps of a test specification document. It works based on test

case size (the number of steps) and execution points for estimating

the test execution effort. The execution points are fixed based on

the historical data of previously executed test cases. The proposed

method requires a controlled natural language (CNL) text, which

means a standard format of language should be used in the test

specifications. In other words, testers have some restrictions in the

usage of lexicon and grammar for creating test cases, otherwise the

proposed method is not able to estimate the required time for exe-

cution. There is a limitation of writing an action in many different

ways. This approach identifies that each and every test step has

one main verb and zero or many arguments supporting the main

verb. Each and every verb identified in a test step represents the

action and arguments add more information to the action. For us-

ing this method for effort estimation, test cases should be readily

available. Moreover, this method uses test steps for execution time

estimation. Therefore, the cost of estimation is high. Each time, the

relation between test execution time and execution points has to

be shown. 

A number of test effort estimation methods are appli-

cable for iterative software development. Silva et al.’s ap-

proach ( e. Silva et al., 2009 ) was discussed earlier in this

section and belongs to one such methods. Their approach is

applicable in cases where several test cycles are performed. A

similar approach is presented in Torkar et al. (2010) where a

dynamic Bayesian network is used for predicting test effort in

an iterative software development environment. A number of

variables are used to make the predictions, including test team

size, length of iteration and number of identified faults to name

a few. Nguyen et al. (2013) named their approach as qEstimation,

which measures the size of the test case based on its checkpoints,

preconditions and test data, as well as the type of testing. A

checkpoint, precondition, data, and type of the test case is used

to evaluate a test case’s complexity. The size estimate is then

translated into effort and a feedback mechanism improves the

estimation process for the next testing cycle. Table 1 presents a

summary of the related work. 

In our proposed approach, we use test specifications to es-

timate the execution time, without using execution points (as

in Aranha and Borba (2007) ). A test or a test case specifica-
ion refers to the documentation of a set of one or more test

ases ( ISO/IEC/IEEE 29119-1:2013, E ). In our context, a test case

onsists of a set of pre-conditions, inputs (called as test steps),

nd expected results. We make use of several elements in a man-

ally written test case such as its size in terms of number of test

teps, number of “waiting” steps and the number of pre-conditions.

oreover, scripted versions of the manual test specifications as

ell as test logs are utilized (more details on our approach are

iven in Section 3 ). Our approach does not require CNL in test

ases, which makes the model more general. The concept of actual

xecution time has been proposed by us in Tahvili et al. (2017) and

he continuous comparison between actual time (AT) and maxi-

um (MT) helps us to estimate a more accurate value for MT.

e have also estimated the error rates for our method. Addition-

lly, ESPRET has been implemented as a tool for aiding testers and

est managers in estimating the test case execution time. 

. Description of the proposed approach 

In this section, we describe the details of our proposed ap-

roach for estimating the maximum execution time (MT) and pre-

icting the actual execution time (AT) of manual test cases. This

s done by determining the MT and AT values of test steps consti-

uting a test case. Our approach takes multiple test process arti-

acts (e.g., test specification, requirement specification, test scripts,

est logs) as input and produces the output in the form of a time

alue representing test execution time of test cases (as a summa-

ion of execution time of their test steps). It is important to note

hat there can be other factors which can contribute to the over-

ll time required for executing a test case, such as skill of testers,

etup times, and other human factors. However, in this work, we

o not take such factors into account. 

Generally, there is a difference between the maximum length of

ime that a test case is allowed to execute and the actual time that

he same test case could take for the execution on a specific ma-

hine. Therefore, the concept of execution time can be categorized

nto two main groups: 

• Maximum execution time (MT): is the maximum time that a

test activity (or a test case) is allowed to take for execution.

Assuming the maximum execution time for a test step is t sec-

onds, if the system takes more time than t , the test step is con-

sidered as a failure. MT is independent from the system prop-
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1 Dynamic object-oriented requirements system. 
The maximum execution time is a non-negotiable deadline,

hich describes the reliability or the correct functional behavior.

n the most cases, the MT value is explicitly explained in the soft-

are requirements specifications, such as: Auxiliary compressor is

ermanently blocked within 3 s when requested . The blocking pro-

ess for the auxiliary compressor can be tested by one (or more)

est cases, where the maximum length of time that the test case(s)

s allowed to take is 3 s. This blocking process might take less than

 s on different machines, but if this process takes more than 3 s

even one millisecond), the mentioned requirement is not fulfilled.

• Actual Execution Time (AT): is the real time ( t ′ ) taken by the

system executing a test activity (e.g., a test step or a test case),

which is dependent on the system properties. The actual execu-

tion time per test step is equal or less than maximum execution

time ( t ′ ≤ t ). 

The actual execution time of a test case is a machine dependent

ariable, meaning that having multiple machines running the same

est case may take different times ( Bush et al., 1989 ). 

The MT value can be used as a timeout value when developing

est scripts. Therefore, estimating a good margin for MT is impor-

ant from the time-saving aspect. In other words, a too low MT

alue will result in test cases to fail due to timeout issue and not

ecessarily a fault in the system. However, estimating a too large

T value for a test case will lead to unnecessary waiting between

teps and thus wasting of testing time. In fact, the MT and AT val-

es are related to each other, where AT can be predicted based

n MT and a safe margin for the value of MT can be determined

ia monitoring of several ATs on different machines. Based on the

bove definitions, our approach consists of the following. The de-

ails of each phase will be elaborated in subsequent subsections. 

1. Parsing and historical data collection: in this phase, the AT value

of previously executed test steps (test logs), as well as the MT

value of test steps in existing test scripts (if any) are collected

( Phase 1 ). 

2. The estimation phase : the MT values are estimated for test cases

in this phase. Several approaches such as NLP and log analysis

are utilized ( Phase 2 ). 

3. The prediction phase : the AT values are predicted for test cases

through applying the regression models ( Phase 3 ). 

Moreover, in this paper, we introduce m t as the system base-

ine reaction time, which represents the response time that system

nder test (SUT) takes to react to a given input. The baseline time

alue is assigned as a maximum execution time for the steps of

ewly designed test cases, which have never been executed before

nd there exists no similar and matching activity for the steps of

uch test cases. The initial m t value in the present work is assumed

s 3 s in consultation with the testers and engineers at Bombardier

ransportation. However, the baseline value can be determined in

ny other environment by monitoring the response time on sev-

ral machines over a period of time. Fig. 1 provides a summary

nd illustrates the start and end points, the different steps and the

hases of our proposed approach. 

.1. Parsing and historical data collection 

For some test steps, MT and AT values can already exist. There-

ore, in this phase, different sources such as test logs, test scripts,

est specifications, and even requirement specifications and al-

eady known timing constraints (e.g., by consulting test experts)

re used to build a database of test steps with MT and/or AT

alues. Whenever a test step is executed for the first time, its

ctual execution time will also be stored as its maximum time

i.e., MT stored = AT stored ). In future executions of the same test step,

he new actual execution time will replace the stored one (i.e.
T stored = AT new 

). Also, if the stored maximum execution time for this

tep is less than the new actual execution time, we store the new

ctual execution time as maximum execution time of this step (i.e.

T stored = AT new 

). 

Test specifications are usually written in a natural language,

hus the natural language processing (NLP) methods need to be ap-

lied for analyzing a test specification. Table 2 represents a part of

 real, industrial test specification from a safety-critical train con-

rol management system, where the description of steps is out-

ined. Table 2 has been extracted from the IBM rational DOORS 1 

atabase server at Bombardier Transportation and consists of sev-

ral steps with a set of actions and expected reactions. 

As we can see in Table 2 , a typical manual test case specifi-

ation at BT starts with an Initial State and ends with the Clean

p . Recognizing this pattern has helped us to track the test steps

mong other information (e.g. testers ID, testing date, corre-

ponding requirement) described textually in a test specification.

oreover, the overall time for performing some of the test steps

re explicitly specified in some test specifications. For instance,

n step 3, the logout process should be done in 10 s, which is

he maximum allowed time for this step. In step 4, the testers

eed just wait for 20 s before starting the next step, thus the

aximum execution time for this step is equal to 20 s. Sometimes,

he timing information for executing a test case is specified in the

orresponding requirement. For example in one of the software

equirement specification (SRS) for the air supply system at BT, it

entions that: Auxiliary compressor is permanently blocked or has

ot run for 30 s when requested . As is obvious in this example, the

aximum execution time for the corresponding test case (or test

tep) to this requirement can be extracted from the requirement

pecification. In our proposed approach, we capture and utilize all

vailable timing information in the test specification, test scripts

nd sometimes the requirements specifications. As outlined earlier

n this section, we parse and collect historical data for test cases

n Phase 1 . As a test specification is written by (various) testers, the

nitial problem does not involve Controlled Natural Language (CNL)

ext. In our recent work ( Tahvili et al., 2017 ), we offered a solution

or this problem by parsing the key characters in test cases in order

o reduce or eliminate ambiguity and to identify the key elements

f test cases. Generally, in order to understand the entire sentence,

e need to understand some keywords per sentence, which are

alled the critical elements ( Revlin, 2012 ). In other words, the

ritical elements are the main building blocks of a sentence, which

an be divided into the Verb Phrases (VPs) and the Noun Phrases

NPs). In linguistics, the NP represents the objects and VP usually

escribes the actions of the object(s) in a sentence ( Knott, 2012 ). 

To make our proposed approach more efficient, for each test

tep (each sentence), ESPRET just captures Verb and Objective Ar-

ument as the critical elements per test step. Through processing

f the critical elements, the main goal of a test step can be recog-

ized and furthermore some redundant elements such as propo-

itions, subjects and adjectives are removed automatically from a

est case specification, which reduces the size of our database. For

nstance, the test step 3 in Table 2 , is parsed by NLTK (Natural Lan-

uage Toolkit in Python) as: 

The query: 
Logout from A1 cab through removing the key 

ard cab in 10 seconds. 
Parse: 
VP (VB Logout) 
PP (IN from) 
NP (NN A1) (NN cab) 
PP (IN through) 
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Fig. 1. The steps of the proposed approach. 
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VP (VBG removing) 
NP (DT the) (JJ key) (NN card) (NN cab) 
NP (CD 10) (NNS seconds) 
Where VP, NP, PP, DT, JJ, CD, NNS denotes verb phrase, noun

phrase, prepositional phrase, determiner, adjective, cardinal digit

and noun plural respectively. However, different forms of a verb

(bare form (VB), past tense (VBD), -ing form (VBG), etc.) are shown

after parsing. ESPRET captures the Verbs and the unique nouns (NN)

which comes after the VP as the Objective Argument . In the ex-

ample above, cab is a duplicated word which is removed auto-

matically and the following elements are saved in our database

by ESPRET as: 

Logout A1 cab removing card . 
Moreover, the cardinal digits (if existing) are saved as the MT

value for the corresponding Verbs and Objective Argument . To deal

with some (possible) anomalous results, some of the key elements

parsed by NLTK are adjusted in our database manually. Since the

test specifications are written by testers with different experience
 p  
evels and language skills, therefore the required effort for anomaly

etection is dependent on the quality of the test specification. 

.2. The algorithm for estimating the maximum execution time 

As the output of the previous phase, a set of verb and argument

airs that represent previously executed test steps are stored with

heir MT or both MT and AT values. In this phase, the test steps of

ther test cases are parsed and an MT value for them is estimated.

stimation of the MT values is done as follows. 

The goal is to check whether a matching test step (i.e., pair of

ame Verb and Argument ) has been executed before or not. To pro-

ide a clarification of the concept of MT and AT, we analyze the

est step number 6 in Table 2 , which is Active cab 1 . This activa-

ion process may take different actual times, but the maximum al-

owed time for this process is, for example, 3 s. If this test step

akes one more millisecond than 3 s for execution, the activation

rocess will be stopped. However, the actual execution time is a
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Table 2 

A test specification example from the safety-critical train control management system - Bombardier Transportation. 

Test case name: Auxiliary compressor control Date: 2018-01-20 

Test case ID Test level (s) Test Result Comments 

3EST0 0 0233-3484 - RCM (v.1) Sw/Hw Integration 

Test configuration 

TCMS baseline: TCMS 1.2.3.0 

Test rig: VCS Release 1.16.5 

VCS Platform 3.24.0 

Requirement(s) 

SRS-BHH-LineVolt1707 

SRS-BHH-Speed2051 

Tester ID 

BR 490 − 1211 

Initial State 

No active cab 

Step Action Reaction Pass / Fail 

1 Ensure no cabs are active, enter train data entry view on IDU Automatic dropping active (yes/no) 

2 Activate cab A 2 lock and set signal braking mode from ATP to 109 Signal braking mode to IDU is set to 109 

3 Logout from A 1 cab through removing the key card cab in 10 s MIO-S “head light half-beam on right” = False 

4 Wait 20 s 

5 Reset dynamic brake in the train for 5 s IDU in B 1 car as On 

6 Active cab 1 

7 Clean up 
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L  
ariable time, which might change per execution even on the same

achine. Therefore, the AT values need to be predicted from the

T values. In the example above, executing Active cab 1 on sev-

ral machines might take different time. Therefore, both MT and

T values need to be considered. A time value will be assigned

o these Verb and Objective Argument pairs as the maximum ex-

cution time. As part of this process, ESPRET first performs a log

nalysis on the previously executed test cases in our database. The

oal is to check whether a matching test step (i.e., pair of same

erb and argument) has been executed before or not. If a match

s found, the MT value will be assigned for the newly parsed test

tep. In the case that ESPRET cannot find any matches from histor-

cal data for the parsed element, the baseline time value ( m t ) as

efined previously, is assigned for its MT. Knowing the maximum

xecution time (MT) for test cases can itself help testers and test

anagers for test case selection and prioritization. The test man-

gers can schedule test cases for execution based on the maximum

ime that each test case takes. Therefore, ESPRET can be utilized as

 supportive tool for making decisions on test scheduling. 

The estimated MT values for test steps in this phase are used

s independent variables for predicting the AT values through per-

orming a regression analysis in the next phase. There are multi-

le reasons of our selection of independent and dependent vari-

bles. First, the values of MT are readily available to us and are not

hangeable before the first execution. There is no additional infor-

ation available for the test cases’ execution time before the first

xecution except the inserted timing information in the require-

ent and test specifications. Second, in the context of the safety

ritical real-time system (the train control management system),

iming is of fundamental importance since missed deadlines can

ause catastrophic accidents. Previous research on worst case ex-

cution time (WCET) analysis of tasks show that determination of

pper bounds on execution time is necessary in the development

nd validation of real-time systems ( Wilhelm et al., 2008 ). Since

oth AT and MT represent the same construct (i.e. time), they both

re interesting candidates for variables in our context. 

.3. Regression analysis for prediction of the actual execution time 

In this phase, in order to predict the actual execution time of

est cases (those whose steps have not been executed before) a

egression analysis is performed. Generally, regression models con-
ider the relation between a dependent and an independent (ex-

lanatory) variable simultaneously, where the dependent variable

s predicted by an independent variable. In the present work, the

alue of the actual execution time has been considered as a depen-

ent variable which can be predicted by the value of the maximum

xecution time (independent value). 

Using different types of regression models can provide a pre-

iction of the actual execution time for test cases, in such a way

hat, the AT value is modeled based on the MT value. In our previ-

us work ( Tahvili et al., 2017 ), we have applied a linear regression

pproach for predicting the AT values, where we assumed that the

elationship between each dependent (AT) and independent (MT)

ariable pair is linear or straight line. However, the AT and MT

alues do not necessarily exhibit a linear relationship and there-

ore adding more features to the regression model can provide a

etter fitting ( Refaeilzadeh et al., 2009 ). Furthermore, analyzing re-

ults from several experiments indicate that the linear assumption

n practice is rarely true and a polynomial curve fitting might suit

he data points better. Note that the polynomials are not able to

odel thresholds and also observations at one range of the pre-

ictor might have a strong influence on what the model does at

 different range ( Harrell, 2001 ). Thus, to provide a more accurate

rediction of the AT values, we utilize a higher degree polynomial

egression and a multivariate adaptive regression splines (MARS) in

he present work. MARS is a nonparametric regression technique

hich can model nonlinearities and produce continuous models

ith continuous derivatives ( Friedman and Roosen, 1995 ). The fol-

owing assumptions must hold for building a regression model: 

Suppose (t 1 , t 
′ 
1 
) , (t 2 , t 

′ 
2 
) , . . . , (t n , t 

′ 
n ) represents MT (indepen-

ent) and AT (dependent) respectively for n test steps ( n ≥ 3), then

 polynomial regression can be formulated as: 

 

′ = β0 + β1 t + β2 t 
2 + · · · + βm −1 t 

m −1 + ε, (1)

here βi (i = 0 , · · · , m − 1 , m ≥ 2) are unknown parameters and ε
s a Gaussian error term which is tested to be sufficiently close to

 normal distribution with mean 0 and standard deviation 1.4 (see

igs. 2 and 3 ). 

The β i can be determined by the least squares method as: 

 m −1 = 

n ∑ 

i =1 

(β0 + β1 t i + β2 t 
2 
i + · · · + βm −1 t 

m −1 
i 

− t ′ i ) 2 (2)
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Fig. 2. Empirical CDF (ECDF) for the polynomial fit residuals compared to a normal 

CDF. 
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Fig. 3. Empirical CDF (ECDF) for the spline fit residuals compared to a normal CDF. 
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2 The C 30 is the project name of the new subway carriages ordered by Stockholm 

public transport in 2008. In 2013, Bombardier was awarded contracts for wagons 

based on the MOVIA platform ( BOMBARDIER, 2017 ). 
the condition for L m −1 to be a minimum is that: 

∂L m −1 

∂β j 

= 0 (3)

for ( j = 0 , · · · , m − 1) , which means that, the amount of unknown

parameters of β i should be obtained to minimize L m −1 . Briefly AT

(dependent variable) is modeled by MT (independent variable). 

Lower degree polynomials have specific names, for example

quadratic when m = 2 , cubic when m = 3 , and quartic (or 4 th de-

gree) when m = 4 . To choose the optimal polynomial degree and

to fit the optimal polynomial to the dataset, we measure the val-

idation and the training errors for both polynomial and spline re-

gression models by applying the cross-validation technique. Even

though the fitted curve passes through almost all points, it is not

necessary for it to perform well on unseen data ( Chang et al.,

2010 ). The reason behind this is that regression models are spe-

cialized to the structure in the training dataset. Applying the pro-

posed regression models on unseen data may provide more accu-

rate evaluation of the model’s performance. 
.4. System architecture, implementation and database creation 

The overall implementation architecture of ESPRET is given in

ig. 4 . The historical data on previously executed test steps are col-

ected from different sources such as: test specifications (e.g. in

DF, docx file), log files (e.g. XML), scripts (in case there exists a

cripted version of a manual test case) and requirement specifi-

ation (if the timing information exists in the corresponding re-

uirement). In our implementation, a MySQL database has been

reated to store the information of test cases as well as the test

teps constituting each test case. All test cases are extracted from

he DOORS database as a separate Word file. For each test step of

 test case, a record is inserted in the database, where the Verb

nd Objective Argument pair along with maximum and actual exe-

ution times of that step is recorded. As explained before, the verb

nd objective argument will be extracted through parsing the test

pecifications. ESPRET provides a user-friendly interface as shown

n Fig. 5 . 

For this purpose, in ESPRET , we make use of NLTK (Natural Lan-

uage Toolkit) in Python. The NLTK can also be used in deep learn-

ng through attempting to learn multiple levels of representation

nd abstraction that helps to make sense of different types of data

uch as natural texts ( Dipayan, 2017 ). We however did not use the

eep learning feature in our approach and is left as an interest-

ng future work. For the parsing part, the NLTK Python platform

s used in order to provide the entire Natural Language Process-

ng (NLP) methodology such as tokenizing, stemming, chunking,

hinking, lemmatizing and text classification ( Bird et al., 2009 ). The

LTK helps us to parse various elements of each test step. Further-

ore, a MySQL database has been created for capturing the parsed

lements where a subset of raw test data from DOORS database

re parsed, analyzed and later recorded in our separate database. 

. Empirical evaluation 

In order to analyze the feasibility of ESPRET , we carried out an

ndustrial case study at BT in Sweden, inspired by the guidelines

f Runeson and Höst ( Runeson and Höst, 2008 ) and specifically the

ay guidelines are followed in the paper by Engström et al. (2011) .

he software testing at BT is performed both manually and au-

omatically, in such a way that the unit and regression testing is

andled automatically, and only integration testing is performed

anually. Moreover, the system level testing is handled by some

pproved suppliers to BT at the supplier’s facility, separate from

he normal testing process at BT. 

.1. Unit of analysis and procedure 

The units of analysis in the case under study are manual test

ases at the level of integration testing for a safety-critical train

ontrol subsystem at BT. The proposed approach is however not

estricted to integration testing level and can be applied to any

ther manual testing procedure at any level of testing (e.g. unit,

egression and system level) in other domains. The case study is

erformed in several steps: 

a) a total of 32 test suites (consists several test cases) for the un-

derground subway train project in Stockholm ( C 30 2 ) have been

extracted from the DOORS database at BT, 

b) the extracted test cases are parsed by ESPRET . A total number

of 3273 test steps have been recorded in our database, 
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Fig. 4. The implementation architecture of ESPRET. 

Fig. 5. The User Interface of ESPRET . 
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Table 3 

The maximum execution time for the corresponding parsed test steps, exported 

from ESPRET database. 

Step Test Case ID Verb Objective Argument MT(s) 

1 3EST 0 0 0236 − 8017 Login system A 4 

2 3EST 0 0 0236 − 8017 Login system B 23 

3 3EST 0 0 0236 − 8017 Login system C 42 

4 3EST 0 0 0236 − 8017 Wait 20 

5 3EST 0 0 0236 − 8017 Turn on MIO-S DX 4 

6 3EST 0 0 0236 − 8017 Set MC, 100% traction 57 

7 3EST 0 0 0236 − 8017 Login IDU maintainer, A1 cab 9 

8 3EST 0 0 0236 − 8017 Logout removing key, A1 cab 9 

9 3EST 0 0 0236 − 8017 Open door A1 cab 13 

10 3EST 0 0 0236 − 8017 Login IDU, Driver, A2 cab 6 

11 3EST 0 0 0236 − 8017 Logout removing key, A2 cab 3 

12 3EST 0 0 0236 − 8017 Login full beam, button desk 23 

� � � � �

217 3EST 0 0 0236 − 8017 Active emergency break 42 

218 3EST 0 0 0236 − 8017 Deactivate A1 cab 23 

219 3EST 0 0 0236 − 8017 Press emergency, stop button 25 
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c) more than 1100 test execution results (log files) have been an-

alyzed, 

d) two types of regression models (polynomial and spline) are ap-

plied for predicting the actual execution time for manual test

cases, 

e) the performance of the proposed regression models is evalu-

ated through applying the cross-validation technique, 

f) the models’ generalization ability is evaluated by applying the

regression models on a set of unseen data. 

.2. Case study report 

As is shown in Fig. 5 , the user can easily insert a new test case

pecification file as an input, the expected output of ESPRET is the

equired maximum time for execution of the intended test case

pecification. Table 3 shows the test steps parsed by ESPRET for the

est case illustrated in Fig. 5 . 

As we can see, ESPRET has assigned MT values for all test

teps from the database. The maximum execution time in step 11

as not accessible from our database, which implies that this test

tep never got executed before. Therefore, the baseline time value
(m t = 3) has been assigned for this test step. As stated in Table 3 ,

here is no Objective Argument for test step 4, which is defined as

0 s waiting between steps 3 and 5. ESPRET captures the new test

ase specifications continuously and as soon as a test case is ex-

cuted, the result of actual execution time will be entered in our

atabase. Table 4 shows the maximum and actual execution times

or some executed test cases (within the test suites) for the C 30

roject, consisting of the test suite id and names. 

Since a test case will be executed usually more than one time,

he AT column in Table 4 need to be updated continuously. On the

ther hand, in any successful execution, the value of MT should

e bigger or equal to the AT value. Therefore, the MT values need

o be compared to the AT values after each execution; in any case

f ESPRET meets MT ≤ AT , the value of MT will be updated with the

T value (making MT = AT ). Note that the missing values (null) in

he AT column in Table 4 represent those test cases which have

ot been executed yet. 

In this paper, the results of 1187 test executions results for the

 30 project test cases from a particular machine are captured to be
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Table 4 

Maximum and actual execution time for the C 30 project test cases. 

Nr Test suites ID Test suites name MT AT 

1 3EST 0 0 0236 − 6005 Drive and Brake functions 01: 03: 24 00: 57: 54 

2 3EST 0 0 0236 − 3456 Safe-Bogie 02: 10: 11 01: 54: 33 

3 3EST 0 0 0236 − 8003 Bogie 01: 08: 43 01: 00: 12 

4 3EST 0 0 0236 − 3455 Interior lighting 03: 06: 03 03: 01: 00 

5 3EST 0 0 0236 − 008 Safe-Exterior lights 01: 04: 10 01: 00: 24 

6 3EST 0 0 0236 − 2756 CCTV 02: 04: 39 01: 45: 12 

7 3EST 0 0 0236 − 8002 OSTS- Exterior lights functions 02: 00: 39 01: 54: 12 

8 3EST 0 0 0236 − 8010 Safe - Drive and Brake function 02: 04: 27 01: 54: 24 

9 3EST 0 0 0236 − 8013 Air Supply 02: 02: 33 01: 40: 58 

10 3EST 0 0 0236 − 8014 Safe-Reinitiate VCS 03: 03: 25 02: 48: 15 

11 3EST 0 0 0236 − 8019 Fire 03: 02: 02 03: 00: 24 

12 3EST 0 0 0236 − 0178 General Requirements 04: 05: 04 03: 44: 54 

13 3EST 0 0 0236 − 0179 ATP Function 01: 30: 00 01: 20: 11 

14 3EST 0 0 0236 − 8027 Emergency mode operation 02: 02: 16 02: 01: 45 

15 3EST 0 0 0236 − 8020 Vehicle coupler 02: 03: 26 01: 23: 00 

16 3EST 0 0 0236 − 8001 Outputs and IDU status 01: 03: 37 01: 00: 42 

� � � � �

28 3EST 0 0 0236 − 8029 Emergency mode operation 01: 04: 27 (null) 

29 3EST 0 0 0236 − 7011 DVS 01: 05: 07 (null) 

30 3EST 0 0 0236 − 2012 Exterior and interior access function 00: 02: 00 (null) 

31 3EST 0 0 0236 − 1415 HVITS 01: 01: 58 (null) 

32 3EST 0 0 0236 − 1703 TCMS functions 01: 07: 38 (null) 

Table 5 

The descriptive statistics of the C 30 project dataset. 

MT AT 

Mean 7.20134793597304 3.77085088458298 

Standard Error 0.413201966649295 0.242390555835765 

Median 2 2 

Mode 2 0 

Standard Deviation 14.2359921341386 8.35104942565821 

Pooled 2374 5.4861 

1st quartile 2 0 

2nd quartile 2 2 

3rd quartile 6 3 

Kurtosis 15.52456396 8286 8 32.5290676464134 

Skewness 3.8008364 99304 94 5.19707054804772 

Range 90 73 

Minimum 0 0 

Maximum 90 73 

Count 1187 1187 
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Fig. 6. The boxplot of the C 30 dataset. 
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utilized for the regression analysis. Both polynomial and spline re-

gression models are implemented in MATLAB (the source code im-

plementation is available at Tahvili (2018) ). The mentioned mod-

els are first fed with the labeled data, where the MT column is

extracted from ESPRET ’s database and the AT column is obtained

through log analysis. To provide some basic information about the

variables in the dataset (MT and AT) and also to highlight the po-

tential relationships between the MT and AT, the descriptive statis-

tics of the used dataset is summarized in Table 5 . 

Fig. 6 shows the box plot of the utilized dataset, which repre-

sents the distribution of the data based on the five-numbers sum-

mary: minimum, 1st quartile, median, 3rd quartile and maximum

(see Table 5 ). In the both MT and AT boxes, the central mark indi-

cates the median (is overlapped with the 1st quartile edge in the

MT box) and the bottom and top edges of the box indicate the 25th

and 75th percentiles. 

The whiskers (the minimums and maximums outside of the 1st

and 3rd quartiles) are plotted with lines and the outliers are in-

dividually depicted by using the red ‘+’ symbol. Analyzing the

whiskers in Fig. 6 shows that in most cases, the maximum exe-

cution time for the C 30 project test cases is between 0 and 10

s whereas the actual execution time varies between 0 and 7 s.
owever, some test cases in the C 30 project require more MT and

hereby AT for execution. They are detected as outliers in Fig. 6 .

ence the outliers in the C 30 project dataset just represent the ex-

reme cases; we have decided to include them as part of the data

n our analysis so to represent those test cases that take a long

xecution time. 

Figs. 7 and 8 represent the polynomial and spline regression fit-

ing respectively. As illustrated in Fig. 7 , we have applied 4 differ-

nt regression techniques (linear, quadratic, cubic and 4 th ) on the

est results dataset for recognizing the best fitting predictor. As can

e seen in both Figs. 7 and 8 , the higher degrees polynomial and

pline are exhibiting a better fitting, compared with the liner re-

ression model. Therefore, the quadratic, cubic and 4 th degree re-

ression models might provide a more accurate prediction for the

T values. 

Moreover, the R-squared, which denotes the proportion of the

ariance in the dependent variable that is predictable from the in-

ependent variable ( Devore, 2011 ), is calculated by Eq. (4) as fol-



S. Tahvili et al. / The Journal of Systems and Software 146 (2018) 26–41 35 

Table 6 

R-squared for polynomial and spline models and fit coefficients for polynomial models (Px and Sx are polyno- 

mial and spline fits of degree x). 

P1 P2 P3 P4 S1 S2 S3 S4 

R 2 0.91289 0.95833 0.9703 0.97081 0.38723 0.91938 0.97095 0.9711 

β0 −0 . 26537 0.93525 −0 . 030871 −0 . 26497 

β1 0.56048 0.21586 0.58813 0.7289 

β2 0 0.0050369 −0 . 0082397 −0 . 022131 

β3 0 0 0.0 0 010596 0.0 0 044052 

β4 0 0 0 −2 . 19 E − 06 
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Fig. 7. Polynomial regression. 
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Fig. 8. Spline regression. 

l

R

 

c  

t  

(

 

a  

e  

s  

t

4

 

a  

s  

e  

t  

s  

e  

m  

2  

j

 

n  

e  

s  

c  

2  

h  

c  

a  

A  

m  

T  

b  

t  

w  

a  

fi  

t  

p  

c  

t  

p  

d  

o  

u  

t  

a  

l  

c  

a  

w  

t  

t  

p  

o  

i  

b  

b  
ows and given in Table 6 . 

 

2 ≡ 1 −

∑ 

i 

(AT i − m (MT i )) 
2 

∑ 

i 

(AT i − MEAN (AT )) 2 
, (4) 

The R-squared ( R 2 ) is always between 0 and 1 and implies how

lose the data are to the fitted regression line. Table 6 represents

he R-squared for polynomial and spline models and fit coefficients

 β i in Eq. (2) ) for polynomial models. 

According to Table 6 , the R-squared for the both polynomial

nd spline models is higher than 0.9 in all cases except the lin-
ar spline. However, there is a large number of coefficients for the

pline models which does not provide any additional information

o the fitted regression spline model. 

.3. Model validation 

To further analyze the performance of the regression models

nd to determine optimum parameter values, it is necessary to

tudy the error rates of regression models and polynomial mod-

ls ( Muller et al., 2001 ). In a practical setting, error rates are es-

imated for a sample dataset, which poses validity threats to the

tudy if the dataset is small ( Jain et al., 20 0 0 ). However, there is an

ssential risk of overfitting a regression model which reduces the

odel’s generalizability outside the original dataset ( Muller et al.,

001 ). It is therefore a standard practice to split a dataset into dis-

oint training and testing sets. 

In this subsection, we measure the performance of the poly-

omial and spline regression models by estimating the prediction

rror, which provides the training accuracy over the training test

et. In the most real cases, the expected prediction error cannot be

alculated precisely and must therefore be estimated ( Chen et al.,

012 ). There are several methods to accomplish this, such as

old-out validation, k -fold cross-validation and leave-one-out

ross-validation which have been applied for developing appropri-

te estimators of the prediction error ( Refaeilzadeh et al., 2009;

fzal et al., 2012 ). As mentioned earlier, test cases will be executed

ore than one time, continuously until the end of the project.

herefore, a large number of data points have been recorded

y ESPRET for various executions. As it was mentioned earlier in

his section, more than 1100 log files have been analyzed by us,

hich might increase the risk of capturing the noise of the data

nd also low bias but high variance and thereby can lead to over-

tting. On the other hand, selecting a small dataset for training

he model might cause under-fitting, and both cases can lead to

oor model performance. In the present work, we apply k -fold

ross-validation technique to assessing the performance of predic-

ion models. Cross-validation is a technique to test a model on its

redicative performance. In the k -fold cross-validation, the whole

ataset should be divided randomly into k non-overlapped subsets

f roughly equal size, let D 1 , D 2 , . . . , D K , then for k = 1 , . . . , k a

nion of subsets 
⋃ K 

i =1: i � = k D i is utilized for fitting a model and

he remaining subset D k for validation ( Chen et al., 2012 ). The

verage of the k estimates of the prediction errors from each

oop presents the final prediction error. The partitions used in

ross-validation help to simulate an independent dataset and get

 better assessment of a model’s predictive performance. In other

ords, after fitting the model on to the training data (partitions),

he performance will be measured against each validation set and

hen averaged, gaining a better assessment of how the model will

erform when asked to predict for new observations. The number

f partitions to construct depends on the number of observations

n the sample dataset as well as the decision made regarding the

ias-variance trade-off, with more partitions leading to a smaller

ias but a higher variance ( Refaeilzadeh et al., 2009 ). While a
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Fig. 9. Polynomial cross-validation. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Spline cross-validation. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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model may minimize the Mean Squared Error (MSE) on the train-

ing data, it can be optimistic in its predictive error. The square

root of the MSE yields the Root Mean Square Error (RMSE), which

provides a better measure of goodness of fit than a correlation

coefficient ( Martens and Martens, 2001 ). 

For a dataset ( MT, AT ) with n data points and a model m , the

RMSE of the model m , is defined as: 

RM SE = 

√ ∑ 

i ( m (M T i ) − AT i ) 
2 

n 

, (5)

where the vector norm is the Euclidean norm. For more than one

iteration and partition, we define Mean Validation Error (MVE) as:

M V E = 

1 

N · K 

N ∑ 

i =1 

K ∑ 

j=1 

√ (
m i, j (M T i, j ) − AT i, j 

)2 

n i, j 

(6)

where N is the number of random partitionings (iterations) of ( MT,

AT ), K is the number of partitions (folds) in one partitioning, ( MT i, j ,

AT i, j ) is the jth partition of the ith partitioning (the validation

dataset), n i, j is the size of the of the validation dataset and m i, j 

is the fitted model of the ith partitioning when the jth partition is

excluded. 

Moreover, the Mean Training Error (MTE) can be calculated as:

M T E = 

1 

N · K 

N ∑ 

i =1 

K ∑ 

j=1 

√ (
m i, j ( M T i, j ) − AT i, j 

)2 

n i, j 

(7)

where 
(
MT i, j , AT i, j 

)
is the complementary dataset to ( MT i, j , AT i, j )

(the training dataset) and n i, j is the size of the training dataset. 

We need to consider that both MVE and MTE represents av-

erage of RMSE for all randomly selected partitionings. In other

words, by using MVE and MTE, we are computing the RMSEs in

every single partition for every single K . The unit of measurement

is seconds for both MVE and RMSE, where in MVE we measure the

average of RMSE on the lot of randomly selected cross-validation

datasets. The mean squared error (MSE), root mean squared error

(RMSE) or mean training error (MTE) could be used to summarize

the errors. 

In addition, the k -fold cross-validation still suffers from issues

of high variance ( Alves et al., 2013 ). Since, it is not certain which

data points will end up in the validation set, the result might be

entirely different for different sets. Therefore, in the present work,

we perform MVE and MTE and we assume k = 5 for partitioning

1187 data points. However, at each iteration a different result set

might be obtained, thus we run the model with 10, 100 and 10 0 0

iterations, in order to find the most accurate values for both MVE

and MTE. 

Figs. 9 and 10 represent the result of the k -fold cross-validation

for computing the prediction error for polynomial and spline re-

gression models. The RMSE is measured for the degrees on poly-

nomials and spline. The unit of measurement for RMSE is seconds

( Y -axis) and X -axis represents the polynomial degree ( Fig. 9 ). As

we can see in Fig. 9 , the cross-validation error decreased sharply

from 2.5 s of time between degree 1 and degree 3 and it goes

asymptotically to 1.4 s. We also observe a significant reduction for

the spline’s prediction error in Fig. 10 but it does not tend to zero

and it increases again from degree 4 to 5. According to Fig. 9 ,

a degree 3 or 4 polynomial seems to fit the model the closest

while also holding the most predictive power. Every blue line in

the Figs. 9 and 10 is a mean of the five-different root mean square

errors of the cross-validation test for each partition. 

The resulting evaluation metric is known as model accuracy,

which is a better estimate of out of sample performance than train-

ing accuracy because we fitted and tested the model on different
ets of data. The model accuracy does not reward overly complex

odels and thus it helps us to avoid overfitting. However, there is

 drawback to the train-test split procedure. It turns out that the

odel accuracy is a high variance estimate of out of sample accu-

acy, which means the model accuracy can change a lot, depending

n which observations happen to be in the testing set. 

Table 7 shows the mean cross-validation and training error for

0, 100 and 1000 iterations which are performed to approaching a

ore accurate value for MVE and MTE. 

According to Table 7 , the spline regression models are provided

ess values for both mean validation and mean training errors. Fur-

hermore, both MVE and MTE are decreased when a higher de-

ree is applied on the dataset. In the experiments, a small increase

n the mean validation error was further observed for fifth degree

olynomials and splines. The differences between 10, 100 and 10 0 0

terations are small, and no significant change is observed as the

umber of iterations increased. 

As Table 7 represents, 100 and 10 0 0 iterations have same values

n some degrees, but both are better than 10. 
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Table 7 

Mean validation error (MVE) and mean training error (MTE) for various 

iterations. 

Number of Polynomial Spline 

iterations (n) MVE MTE MVE MTE 

10 Linear 2.4713 2.4588 2.4029 2.3643 

Quadratic 1.7190 1.7014 1.4422 1.4197 

Cubic 1.4540 1.4357 1.4407 1.4152 

4 th degree 1.4511 1.4219 1.4288 1.4071 

100 Linear 2.4811 2.4575 2.3955 2.3644 

Quadratic 1.7183 1.7014 1.4402 1.4194 

Cubic 1.4554 1.4356 1.4398 1.4155 

4 th degree 1.4476 1.4224 1.4347 1.4066 

10 0 0 Linear 2.4833 2.4576 2.3982 2.3637 

Quadratic 1.7193 1.7013 1.4412 1.4194 

Cubic 1.4552 1.4356 1.4409 1.4153 

4 th degree 1.4456 1.4227 1.4353 1.4065 
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.4. Model evaluation using unseen data 

The ability to perform well on unseen data is called gen-

ralization and is the desirable characteristic of any demanded

odel ( Chen et al., 2012 ). To achieve the previously specified goal,

e trained the mentioned regression models on the labeled data

rom the C 30 project at Bombardier to allow the models to de-

elop quantitative relationships between MT and AT. In this sub-

ection, we evaluate the trained regression models, for their ability

o predict AT using unseen data not part of the training set. The

nseen data is gathered from another ongoing testing project at

ombardier Transportation, called BR 490 3 project. 

Evaluating the predictive performance of models using un-

een data is a critical step in a model development, which can

e performed by measuring different factors, e.g. the percent-

ge prediction error , the absolute and relative predictive perfor-

ance ( Guang et al., 1995 ). In this subsection, we measure the pre-

ictive performance of the polynomial and spline regression mod-

ls on the unseen data, though applying the percentage of predic-

ions error ( ε) using the following equation ( Guang et al., 1995 ):

 = 

| P redicted time − Recorded time | 
Recorded time 

× 100 (8) 

here the predicted time is forecasted by the polynomial and

pline regression models and the recorded time is captured after

xecution from the system log files. As stated before, the actual

xecution time, is a machine dependent value and it varies from

ne machine to another. To avoid any confusion, we just analyzed

he results of passed test cases in a particular machine (machine

 ). Table 8 represents the results of the predicted AT values for 50

nseen test steps from the BR 490 project, where the AT values are

redicted using both polynomial and spline regression models in

arious degrees. The maximum execution time for the test cases is

n input to the regression models, which are already trained by the

abeled dataset from C 30 project ( Subsection 4.3 ). Moreover, the

ecorded actual execution time for the new dataset (unseen data)

as been obtained from the log files (inserted in the Recorded AT

olumn in Table 8 ) from machine A . However, the inserted data

n Recorded AT column can be different on any other machine. It

as mentioned before that, the maximum execution time (inserted

n the MT column) should be greater or equal to the actual execu-

ion time (inserted in Recorded AT column), comparing these two

olumns in Table 8 indicates that the condition is true. As we can

ee in Table 8 , the predicted values for AT are different by using

ifferent regression models. 
3 The BR 490 series is an electric rail car specifically for the S-Bahn Hamburg 

mbH network in production at Bombardier Hennigsdorf facility. 

 

 

 

As we observed in Table 7 , the 4 th degree and the cubic spline

egression models respectively have a less MVE value compared

ith the linear and quadratic in all three iterations. In fact, the

pline regression model in degree 4 fits the training dataset better

or the C 30 project. In order to identify the best fitting regression

odel for the BR 490 project, the percentage of prediction error ( ε)

s measured on the prediction results in Table 8 by using Eq. (8) .

able 9 shows the percentage of prediction errors ( ε), which can

e utilized to compare the accuracy of the predicted time. 

According to Table 9 , the mean percentage of prediction er-

or lies between 30% − 40% , which has been confirmed as good

nough by our industrial partner for estimation purposes. Note

hat the best predicting model is dependent on the nature of the

ata and since the actual execution time is a machine-dependent

alue and might change for each execution, there is some inher-

nt uncertainty in the prediction. The expected percentage of the

rediction error can be more precisely estimated with the addition

f more execution results. Moreover, the upper bound on the val-

es of MT and AT adds to the uncertainty in the prediction results.

he C 30 project has maximum execution times between 0 and 90 s

see Table 5 ), whereas the maximum execution time for the BR 490

roject can be as large as 600 s. The differences between MT and

T values is another important factor in the prediction accuracy.

he performance of the regression models for a dataset which has

 close relationship in the dependent and independent variables

ight be different. Therefore, for a dataset such as C 30 project the

 degree spline regression model shows the best performance but

ot on the BR 490. 

. Threats to validity 

In this section, we discuss the validity threats, the research lim-

tations and challenges in conducting this study. 

• Construct validity addresses if the study measures what we in-

tend it to measure ( Robson, 2011 ). The largest threat to con-

struct validity in this study is using the time-frame of test cases

for estimating the maximum execution time. The overall execu-

tion time of a manual test case is a sum of several factors such

as skill of testers, times for the installation process, the setup

time for preparing the testing environment and some other hu-

man factors. All mentioned factors are time consuming and an

accurate time measurement of such factors may yield better es-

timation of the maximum execution time for manual test cases.
• Internal validity addresses the conclusions of the

study ( Runeson and Höst, 2008 ). In order to reduce the

threats to internal validity, multiple test process artifacts such

as test specification, requirement specification, test scripts and

test logs are used. One of the threats is related to the structure

of test cases in the study. In this study, the natural language

processing was performed on a set of well-defined test cases,

which are parsed and analyzed quickly by the NLTK. For a

more complicated structure of test cases, NLTK may or may

not perform accordingly, which can impact the captured data

in the database. 
• External validity refers to the generalization of the find-

ings ( Wohlin et al., 20 0 0 ). ESPRET has been applied on a lim-

ited number of test cases for two industrial projects at Bom-

bardier Transportation. However, the findings should be ap-

plicable to similar contexts. We have provided as much con-

text information as possible to enable comparison to other pro-

posed approaches and studies. Moreover, the regression analy-

sis ( phase 3 ) is performed on a set of unseen data, in such way

that the regression models are trained by the dataset from C 30

project and tested on the dataset from BR 490 project. 
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Table 8 

Maximum execution time and predicted actual execution time for the BR 490 project by using different degrees of polynomial and 

spline. The recorded AT column represents the actual time that every test step took for execution on a particular machine ( A ) at 

Bombardier Transportation. 

Nr. MT Predicted AT (Polynomial) Predicted AT (Spline) Recorded AT 

Linear Quadratic Cubic 4 th degree Linear Quadratic Cubic 4 th degree Machine A 

1 320 179 586 282 106 225 669 268 114 317 

2 18 9.82 6.45 8.5 8.02 9.94 7.48 9.07 9.38 16 

3 45 25 20.8 19.4 18.2 29.2 21.5 20.3 19.5 31 

4 48 26.6 22.9 20.9 20.8 31.3 23.6 21.9 21.3 45 

5 173 96.7 189 404 220 120 208 394 224 164 

6 18 9.82 6.45 8.5 8.02 9.94 7.48 9.07 9.38 10 

7 69 38.4 39.8 36.1 39.7 46.2 41.3 37.5 40 55 

8 19 10.4 6.85 8.9 8.33 10.6 7.84 9.46 9.7 18 

9 210 117 268 741 110 147 300 716 106 189 

10 19 10.4 6.85 8.9 8.33 10.6 7.84 9.46 9.7 16 

11 400 224 893 570 312 282 103 543 339 366 

12 250 140 370 129 288 175 417 123 307 234 

13 180 101 203 457 319 125 224 445 329 164 

14 59 32.8 31.2 27.7 29.6 39.1 32.2 29 29.8 55 

15 65 36.2 36.2 32.5 35.4 43.4 37.5 33.8 35.7 62 

16 600 336 194 203 197 424 227 191 216 588 

17 120 67 99.4 135 75 82.5 107 135 79.6 109 

18 45 25 20.8 19.4 18.9 29.2 21.5 20.3 19.5 39 

19 77 42.9 47.7 44.8 48.7 51.9 49.5 46.3 49.3 74 

20 100 55.8 72.9 82.3 72.5 68.3 77.4 83.5 75 81 

21 90 50.2 61.2 63.4 63.3 61.2 64.5 64.8 64.8 80 

22 99 55.2 71.7 80.3 71.8 67.6 76 81.5 74.2 90 

23 29 16 11.4 12.7 11.5 17.8 12.1 13.3 12.7 27 

24 14 7.58 4.94 6.88 6.73 7.09 6.16 7.45 7.99 10 

25 65 36.2 36.2 32.5 35.4 43.4 37.5 33.8 35.7 40 

26 52 28.2 25.8 23.2 23.7 34.1 26.5 24.3 24.1 44 

27 590 330 188 192 183 417 223 185 250 587 

28 9 4.78 3.29 4.67 4.81 3.53 4.79 5.29 5.8 6 

29 11 5.9 3.92 8.58 5.63 4.95 5.3 6.18 6.75 8 

30 124 69.2 105 148 71.3 85.4 113 148 76.3 108 

31 90 50.2 61.2 63.4 63.3 61.2 64.5 64.8 64.8 74 

32 66 36.7 37.1 33.4 36.5 44.1 38.5 34.7 36.7 60 

33 109 60.8 84.3 103 77.2 74.7 90 104 80.7 90 

34 36 19.9 15.2 15.4 14.2 22.7 15.8 16.2 15.1 28 

35 29 16 11.4 12.7 11.5 17.8 12.1 13.3 12.7 17 

36 26 14.3 9.95 11.6 10.5 15.6 10.7 12.2 11.8 14 

37 14 7.58 4.94 6.88 6.73 7.09 6.16 7.45 7.99 13 

38 74 41.2 44.5 41.3 45.2 49.8 46.4 42.8 45.7 44 

39 8 4.22 2.98 4.2 4.37 2.82 4.55 4.83 5.28 6 

40 9 4.78 3.29 4.67 4.81 3.53 4.79 5.29 5.8 4 

41 11 5.9 3.92 5.58 5.63 4.95 5.3 6.18 6.75 9 

42 10 5.34 3.6 5.13 5.23 4.24 5.04 5.74 6.29 4 

43 15 8.14 5.31 7.29 7.06 7.8 6.48 7.86 8.36 10 

44 73 40.6 43.5 40.2 44.1 49.1 45.3 41.7 44.5 70 

45 60 33.4 32 28.5 30.5 39.8 33.1 29.7 30.8 50 

46 56 31.1 28.8 25.7 26.9 37 29.7 26.8 27.2 47 

47 61 33.9 32 29.2 31.5 40.5 33.9 30.5 31.7 56 

48 88 49.1 58.9 60.1 61.2 59.8 62 61.6 62.5 81 

49 35 19.4 14.7 15 13.7 22 15.3 15.7 14.7 31 

50 30 16.5 11.9 13.1 11.8 18.5 12.6 13.7 13 25 

Table 9 

The mean percentage of prediction error ( ε) 

for polynomial and spline regression models. 

The mean percentage of prediction error 

Degree Polynomial Spline 

Linear 32.33 24.83 

Quadratic 40.32 36.23 

Cubic 45.23 43.32 

4 th degree 37.18 34.09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Conclusion validity addresses the factors which can affect

the observations and may lead to an inaccurate conclu-

sion ( Cozby and Rawn, 2012 ). In other words, an inadequate

data analysis can yield conclusions that a proper analysis of

the data would not have supported ( Drost, 2011 ). In order to
address this issue, we have measured both training and cross-

validation errors on the training dataset (the C 30 project) and

have further measured the generalization error on an unseen

dataset (the B 490 project). Furthermore, noise removal has

been performed on the training data. The percentage predic-

tion error discussed in Table 9 indicates that the proposed re-

gression analysis on unseen data is acceptable and that the ap-

proach is likely to generalize well to other projects within the

same domain. 
• Reliability addresses the repeatability of the

study ( Runeson and Höst, 2008 ). Occasionally, the NLTK is

not able to parse all the characters in a sentence correctly,

which is related to the positions of the components of a

sentence. Sometimes if a test step starts with a verb, NLTK

identifies the verb as a noun. For instance, in the test step:

‘Wait for 23 s’ , the word Wait can sometimes be identified as a
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Table 10 

The most frequently used verbs in the test cases. 

Nr Verb Count Nr Verb Count Nr Verb Count 

1 Set 591 6 Force 155 11 Lock 125 

2 Active 287 7 Wait 149 12 Try 120 

3 Turn 183 8 Turn on 142 13 Open 118 

4 Remove 172 9 Deactivate 139 14 Push 118 

5 Press 169 10 Drive 131 15 Restore 111 
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noun (and sometimes as a verb) by the NLTK. Our parsing algo-

rithm in such a case, recognizes the first word of a sentence as

a verb and the remaining sentence is parsed to identify nouns.

The obtained nouns are then used as arguments which support

the main verb. 

In addition, most of the language parsing techniques have per-

ormance issues when a large set of data is processed. There are

emerits in the available tools for natural language processing.

mong them, the NLTK is comparatively better in processing and

arsing natural language. One of the advantages of using NLTK is

hat it supports parsing multiple languages, but still it exhibits per-

ormance issue for parsing a large set of test specifications. 

. Discussion and future extensions 

Our goal is to design, implement and evaluate a tool that esti-

ates the execution time of test cases based on test specifications.

o this end, we make the following contributions: 

• We have proposed an NLP-based approach to parse critical ele-

ments of each test step. The maximum execution time for vari-

ous parsed test steps have been extracted by analyzing multiple

test process artifacts. The proposed approach has been imple-

mented as a tool called ESPRET . 
• The evaluation of the proposed approach was performed

through applying ESPRET on an industrial testing project ( C 30)

in a safety-critical train control management subsystem (Bom-

bardier Transportation). Furthermore, the actual execution time

for C 30 project’s test cases, has been predicted by performing

a regression analysis, using polynomial and spline regression

models. 
• The prediction error of the proposed regression models has

been measured by k -fold cross-validation method. 
• The proposed regression models are applied on a set of unseen

data, using another industrial testing project BR 490 at Bom-

bardier Transportation. Moreover, the percentage of the predic-

tion error has been measured to show the performance of the

methods on the unseen data. 

Knowing the execution time of test cases provides an overview

f the overall time for testing a system, which can lead to on-time

elivery of the final product ( Tahvili et al., 2015 ). Running ESPRET

n the early stage of a testing process can give an opportunity for

he test managers and the testers to prioritize and schedule test

ases for execution. One of the improvements we are seeking is

he more accurate, easy and faster discovery of the relationship be-

ween Verb and Objective Argument in our database. Perhaps associ-

tion rule mining is applicable here. Association rules are based on

he criteria support and confidence to identify the most important

elationships. Support is an indicator to show how frequently an

tem appears in the database and confidence indicates the num-

er of times it has been found ( Hipp et al., 20 0 0 ). A total num-

er of 149 unique verbs have been recorded by ESPRET until today.

able 10 shows the number of 15 most frequent verbs used in the

est specifications at BT. 

In the future, ESPRET will be able to predict the related Objec-

ive Argument by analyzing the presented Verbs in Table 10 in the
atabase. In other words, when ESPRET faces a verb in a new test

tep (such as verb ‘Set’ in the Table 10 ), some suggestions (such

s ‘temperature’ or ‘pressure’ ) which might be a match for ‘Set’ will

ppear automatically. 

Creating a library for test cases and synonyms, is one of the po-

ential aspect that can make ESPRET more efficient. The recorded

arsed elements in the database can be classified into different

roups in order to be replaced by the synonyms. If a new element

s detected and encountered, ESPRET will be able to compare this

lement with a similar (synonym) element in the database. 

As stated before, the overall time for executing a test case man-

ally by testers depends on both system properties and testers

kills. For instance, the required time that an inexperienced tester

eeds to execute a test case (e.g., finding a signal in the simulation

oftware) is higher than an experienced tester. In this work, we

ust focused on the required time that a system takes to execute

est cases by analyzing the test specifications. In the future, some

ther effective parameters such as the system properties, testing

nvironment and human factors (education, experience, skills,

orking environment, etc.) can be considered for estimating the

verall execution time for manual test cases. Considering that the

ost for executing test cases is a function of execution time, we

ay assess the required cost for testing by using this study. We al-

eady have started working on the cost estimation for performing

he testing projects at Bombardier Transportation. 

In another usage scenario, ESPRET may even play a supporting

ole for test automation. One of the classical mistakes of a test

utomation team is not choosing right test cases for automation.

t Bombardier Transportation, the test specifications are used as

 starting point for the generation of test automation scripts. The

utomated tests serve as support for manual testing in a smaller

rial set of tests. In the scripted version of a test specification,

he value of maximum time is assigned as a timeout value. The

cripted timeout value specifies the maximum amount of time

hat a script can run before it is terminated. If the processing

ime of the script exceeds the maximum value that has been des-

gnated for the scripted timeout value, an error will be gener-

ted ( Yamamoto, 2013 ). Furthermore, by analyzing the recorded

est step in the ESPRET ’s database, we can recognize which test

teps are frequently used into several test cases. 

The test automation scripts are only a support device to manual

esting and at Bombardier Transportation, the test specifications

re used as an initial information for generation of test scripts.

he test specifications used in this study are well-structured. As

xplained in Section 5 , sometimes the NLTK has a performance is-

ue on parsing. The SpaCy toolkit (Industrial-Strength Natural Lan-

uage Processing), is an open-source software library for advanced

atural language processing and it would be a potential candidate

o replace the NLTK. 

By computing the percentage of prediction error for the pro-

osed regression models, we have a general overview of how well

he regression techniques will perform on a new dataset. How-

ver, other prediction techniques can be examined. For instance,

he neural networks (NNS) can be utilized for the prediction

nd forecasting of AT variables. Moreover, the Wilcoxon signed-

ank ( Dietterich, 1998 ) test or t -test can be utilized as way to com-
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pare the performance of different prediction methods in the future.

More experimentation with testing the accuracy of ESPRET for esti-

mating MT is part of future work, e.g., experimenting ESPRET when

a certain number of test steps with baseline MT values exist. 

7. Conclusion 

Estimation and prediction of the execution time for test cases

can potentially play a vital role in test case selection, prioritiza-

tion, scheduling and automation. Since the required time for run-

ning test cases is not available before execution, we need to es-

timate a time value for test cases to enable their scheduling. In

this paper, we introduced, applied and evaluated our proposed ap-

proach and tool, ESPRET , for estimating and predicting the execu-

tion time for manual test cases. Our proposed approach takes mul-

tiple test process artifacts such as test specification, requirement

specification, test scripts and test logs as input. ESPRET is designed

based on parsing of textual test specifications. ESPRET reads the

test specification (e.g., in the format of word document files) and

stores the Verbs and Objective Argument via parsing of all test steps.

Our tool has been implemented using NLTK (the Natural Language

Toolkit), written in Python. Moreover, a MySQL database has been

created for recording the parsed elements. By continuous monitor-

ing of the historical execution data, ESPRET assigns a time value for

each test step. ESPRET sums up the execution time of each test step

and produces the maximum execution time for the corresponding

test case. In order to predict the actual execution time for man-

ual test cases, different degrees of the polynomial and spline re-

gression models have been applied in this work. In short, a rela-

tionship model between the AT and MT values, as dependent and

explanatory variables respectively, is established using regression

models, which is utilized for predicting the AT values of test cases

with no execution records. Moreover, the validation and testing er-

rors of the proposed regression models are measured by using k -

fold cross-validation. Both polynomial and spline regression mod-

els have been trained with the dataset form the C 30 project and

then the AT values for the BR 490 project are predicted. Our empir-

ical evaluations at Bombardier Transportation and analysis of the

results of two industrial projects show that ESPRET is an applicable

tool for estimating and predicting the execution time for manual

test cases. Finally, ESPRET can be utilized as a supportive tool for

making decisions on prioritization, selection, and general schedul-

ing of test cases based on their estimated execution time values. 
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