
Irfa
n

 Sljivo
 A

SSU
R

A
N

C
E A

W
A

R
E C

O
N

TR
A

C
T-BA

SED
 D

ESIG
N

 FO
R SA

FETY-C
R

ITIC
A

L SYSTEM
S	

2018

ISBN 978-91-7485-401-5
ISSN 1651-4238

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Mälardalen University Doctoral Dissertation 268

Assurance Aware Contract-based Design

for Safety-Critical Systems

Irfan Sljivo

Mälardalen University Press Dissertations
No. 268

ASSURANCE AWARE CONTRACT-BASED
DESIGN FOR SAFETY-CRITICAL SYSTEMS

Irfan Sljivo

2018

School of Innovation, Design and Engineering

1

Copyright © Irfan Sljivo, 2018
ISBN 978-91-7485-401-5
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

2

Mälardalen University Press Dissertations
No. 268

ASSURANCE AWARE CONTRACT-BASED DESIGN FOR SAFETY-CRITICAL SYSTEMS

Irfan Sljivo

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras
tisdagen den 2 oktober 2018, 13.30 i Gamma, Mälardalens högskola, Västerås.

Fakultetsopponent: Associate Professor Mario Trapp,
Fraunhofer Institute for Experimental Software Engineering

Akademin för innovation, design och teknik

3

Abstract
Safety-critical systems are those systems whose malfunctioning can result in harm or loss of human
life, or damage to property or the environment. Such systems usually need to comply with a domain-
specific safety standard, which often require a safety case in form of an explained argument supported
by evidence to show that the system is acceptably safe to operate in a given context. Developing safety-
critical systems to comply with safety standards is a time-consuming and costly process. It can often be
the case that the development of the safety case is more costly than the development of the system itself.

Component-based development is a method that separates the development of the components of a
system from the development of the system itself. The latter is done by composing reusable components
that are developed independently of the system. Safety-critical systems require that the safety case of
such components is integrated in the overall safety case of the system. For this purpose, the reusable
components, together with their safety case, can be described via specifications called contracts. By
checking the contracts of each component of the system against each other, it is possible to determine
if the components can be composed together and still fulfil the contract specifications. Contract-based
design combined with component-based development has the potential to reduce the cost and time
needed to develop both the system and the accompanying safety case. Such contract-based design
can then be used to facilitate reuse of parts of the system as well as verifying that the system fulfils
certain requirements. While contract-based design can be used to verify that a system meets certain
requirements based on its contract-specification, actually assuring that the system behaves according
to the verification results require additional evidence. Hence, reuse of safety-relevant components via
contract-based design is not sufficient without the reuse of the accompanying safety case artefacts, which
include both the safety argument and the supporting evidence.

In this thesis we focus on developing the notion of safety contracts that can be used to make a contract-
based design aware of the needs of safety assurance. The goals of such assurance aware contract-
based design are to promote reuse of the assurance-related artefacts such as arguments and evidence,
as well as to automate creation of parts of the safety assurance case. To address this, we explore the
following research goals in more detail: (1) to facilitate automated contract-driven assurance, (2) to
facilitate reuse of safety-relevant components and their accompanying assurance-relevant artefacts, and
(3) to align such assurance-aware contract-based design with existing failure logic analysis. To meet
the first goal, we identify the additional information needed for contract-based assurance and structure
it in form of argumentation patterns of reusable reasoning. Then, we define a meta-model to connect
the system modelling elements related to the contracts with the safety case elements, such as evidence
and arguments. Based on this meta-model, we define an algorithm for automated instantiation of the
proposed argumentation patterns from system models compliant with the proposed meta-model. To
facilitate reuse of the assurance-related artefacts (goal (2)), we define variability on the contract level
to distinguish between contracts that are relevant for all systems and those that are system-specific.
Furthermore, we align the assurance-aware contract-based design with the ISO 26262 automotive safety
standard and its reuse concepts. Finally, in addressing the third goal, we connect the assurance-aware
contract-based design with an existing failure logic analysis and show how such combination can be
used to automate instantiation of existing argumentation patterns. In a number of real-world examples
we demonstrate and evaluate the feasibility of our contributions.

ISBN 978-91-7485-401-5
ISSN 1651-4238

4

Abstract

Safety-critical systems are those systems whose malfunctioning can result in
harm or loss of human life, or damage to property or the environment. Such
systems usually need to comply with a domain-specific safety standard, which
often require a safety case in form of an explained argument supported by evi-
dence to show that the system is acceptably safe to operate in a given context.
Developing safety-critical systems to comply with safety standards is a time-
consuming and costly process. It can often be the case that the development of
the safety case is more costly than the development of the system itself.

Component-based development is a method that separates the development
of the components of a system from the development of the system itself. The
latter is done by composing reusable components that are developed indepen-
dently of the system. Safety-critical systems require that the safety case of
such components is integrated in the overall safety case of the system. For this
purpose, the reusable components, together with their safety case, can be de-
scribed via specifications called contracts. By checking the contracts of each
component of the system against each other, it is possible to determine if the
components can be composed together and still fulfil the contract specifica-
tions. Contract-based design combined with component-based development
has the potential to reduce the cost and time needed to develop both the sys-
tem and the accompanying safety case. Such contract-based design can then be
used to facilitate reuse of parts of the system as well as verifying that the system
fulfils certain requirements. While contract-based design can be used to verify
that a system meets certain requirements based on its contract-specification,
actually assuring that the system behaves according to the verification results
require additional evidence. Hence, reuse of safety-relevant components via
contract-based design is not sufficient without the reuse of the accompanying
safety case artefacts, which include both the safety argument and the support-
ing evidence.

i

5

ii

In this thesis we focus on developing the notion of safety contracts that can
be used to make a contract-based design aware of the needs of safety assur-
ance. The goals of such assurance aware contract-based design are to promote
reuse of the assurance-related artefacts such as arguments and evidence, as
well as to automate creation of parts of the safety assurance case. To address
this, we explore the following research goals in more detail: (1) to facilitate
automated contract-driven assurance, (2) to facilitate reuse of safety-relevant
components and their accompanying assurance-relevant artefacts, and (3) to
align such assurance-aware contract-based design with existing failure logic
analysis. To meet the first goal, we identify the additional information needed
for contract-based assurance and structure it in form of argumentation patterns
of reusable reasoning. Then, we define a meta-model to connect the system
modelling elements related to the contracts with the safety case elements, such
as evidence and arguments. Based on this meta-model, we define an algorithm
for automated instantiation of the proposed argumentation patterns from sys-
tem models compliant with the proposed meta-model. To facilitate reuse of the
assurance-related artefacts (goal (2)), we define variability on the contract level
to distinguish between contracts that are relevant for all systems and those that
are system-specific. Furthermore, we align the assurance-aware contract-based
design with the ISO 26262 automotive safety standard and its reuse concepts.
Finally, in addressing the third goal, we connect the assurance-aware contract-
based design with an existing failure logic analysis and show how such combi-
nation can be used to automate instantiation of existing argumentation patterns.
In a number of real-world examples we demonstrate and evaluate the feasibility
of our contributions.

6

Sammanfattning

Säkerhetskritiska system är system som kan orsaka skada på egendom, miljö
eller till och med mänskligt liv om de inte fungerar som de ska. Sådana sys-
tem behöver vanligtvis utvecklas enligt en branschspecifik säkerhetsstandard
som ofta innefattar säkerhetsbevisning i form av argument för systemets funk-
tionssäkerhet med tillhörande bevis att systemet säkert kan användas i avsedda
sammanhang. Att utveckla säkerhetskritiska system så att de följer säkerhets-
standarder är en tidsödande och kostsam process. Arbetet med säkerhetsbevis-
ningen är ofta den dominerande kostnaden i utvecklingsarbetet.

Komponentbaserad utveckling är en metod där man separerar utvecklingen
av systemets komponenter från utvecklingen av systemet. Det senare utförs
genom sammansättning av återanvändbara komponenter som utvecklats obero-
ende av det sammansatta systemet. För säkerhetskritiska system behöver dessu-
tom komponenternas säkerhetsbevisning kombineras till en säkerhetsbevisning
för det sammansatta systemet. För detta ändamål kan komponenterna, inklu-
sive säkerhetsbevisningen, beskrivas av specifikationer som kallas kontrakt.
Genom att kontrollera kontrakten för varje komponent i systemet mot varan-
dra är det möjligt att bestämma om komponenterna kan integreras och fort-
farande uppfylla sina kontraktsspecifikationer. Kontraktbaserad design kom-
binerad med komponentbaserad utveckling har potential att minska kostnaden
och tiden som behövs för att utveckla både systemet och den medföljande
säkerhetsbevisningen. Sådan kontraktsbaserad design kan sedan användas för
att återanvända delar av systemet samt att verifiera att systemet uppfyller vissa
krav.

Även om kontraktsbaserad design kan användas för att verifiera att ett sys-
tem uppfyller vissa krav baserat på dess kontraktsspecifikation, behövs det
fortfarande ytterligare bevis för att garantera att systemet uppför sig i enlighet
med de krav på säkerhetsbevisningen som behöver uppfyllas. Därför är åter-
användning av säkerhetsrelaterade komponenter via kontraktsbaserad design

iii

7

iv

inte tillräcklig utan att samtidigt återanvända de medföljande delarna av säker-
hetsbevisningen som innehåller säkerhetsargument och stödjande bevis.

I den hr avhandlingen presenterar vi en form av säkerhetskontrakt som kan
användas för att utöka kontraktbaserad design till att även inkludera säkerhets-
bevisning. Målen med en sådan kontraktsbaserad design är att främja åter-
användning av delar av säkerhetsbevisningen, men också att automatisera ska-
pandet av densamma. I avhandlingen undersöker vi följande i detalj: (1) au-
tomatiserad generering av kontraktbaserad säkerhetsbevisning, (2) återanvänd-
ning av säkerhetsrelevanta komponenter och deras medföljande säkerhetsbevis-
ningselement och (3) anpassning av sådan kontraktbaserad design till befintliga
felanalyser. För att närma oss (1), identifierar vi den ytterligare information
som behövs för kontraktsbaserad argumentation och strukturerar den i form
av argumentationsmönster. Därefter definierar vi en metamodell för att kop-
pla ihop systemmodelleringselementen till kontrakt med säkerhetsbevisnings-
element. Baserat på denna metamodell definierar vi en algoritm för automatis-
erad instansering av de föreslagna argumentationsmönstren från systemmod-
eller som överensstämmer med den föreslagna metamodellen. För att un-
derlätta återanvändning av delar av en säkerhetsbevisning (2 ovan) definierar
vi variabilitet på kontraktsnivån för att skilja mellan kontrakt som är relevanta
för alla system och de som är systemspecifika. Dessutom anpassar vi sådan
kontraktsbaserade design med säkerhetsstandarden ISO 26262 för vägfordon
och dess återanvändningskoncept. Slutligen adresserar vi (3) genom att ansluta
den kontraktsbaserade designen till en befintlig felanalys och visa hur en sådan
kombination kan användas för att automatisera instansiering av befintliga argu-
mentationsmönster. Vi använder genomgående ett verkligt fall för att demon-
strera och utvärdera genomförbarheten av de föreslagna bidragen.

8

In loving memory of my mother

9

10

Acknowledgments

There are many to whom I owe my gratitude for supporting me in taking
this PhD path in the first place, and perhaps more importantly, supporting me
throughout the years on this path. First and foremost, I would like to thank my
family for their endless love, inspiration and support they have given me. In
particular, I would like to thank my parents for being the source of guidance
and inspiration that made this journey manageable. Sadly, my mother did not
live to hold this thesis in her hand, which is as much hers as much it is my
success. I dedicate this thesis to her and my father, for there is a great deal of
them in it as well.

I would like to express my immense gratitude to my supervisory team Hans
Hansson, Jan Carlson and Barbara Gallina without whom this thesis would not
be possible. Thank you for your invaluable guidance and endless patience you
shared with me selflessly throughout these years.

My deepest gratitude goes to my co-authors as well as the members of
SYNOPSIS, SAFECER, SAFECOP, AMASS and FIC research projects for all
the positive influence they had on my research. I am extremely grateful to Hans
Hansson, Barbara Gallina, Jan Carlson, Patrick Graydon, Iain Bate, Sasikumar
Punnekkat, Ibrahim Habli, Bernhard Kaiser and Henrik Thane for all the useful
discussions and the vast knowledge they have shared with me. An enormous
thank you goes to Omar Jaradat with whom I have worked the most throughout
the years. Thank you for all the discussions, for putting up with me during our
conference and meeting trips, and for being not just a colleague, but a friend
and a brother.

During my studies I have taken a number of courses. I wish to express
my appreciation to all the lecturers and professors from whom I have learned
how to be a better researcher. Many thanks to Ivica Crnković, Gordana Dodig-
Crnković, Damir Isović, Jan Gustafsson, Iain Bate, Hans Hansson, Kristina
Lundqvist, Cristina Seceleanu, Moris Behnam, Thomas Nolte, Emma Nehren-

vii

11

viii

heim and Harold Lawson. I would also like to thank the IDT administration
staff for their support with practical issues. Special thanks goes to Carola, for
without her many of the administrative tasks would be a nightmare.

Next, I wish to express my gratitude to all the great people I have met at
our department with whom I have shared many joyful moments during our
coffee, dessert and lunch breaks, sports activities, barbecues, conference and
leisure trips, and all the other fun activities we did throughout the past years. I
will not enumerate each and every one of you, because I am sure I would miss
someone very dear, as I am very grateful to have met you all. However, there
are a few persons that I simply must mention: Aida, Adnan, Svetlana, Elena,
Momo, Sara, Saad and Leo. You have been there for me all the way from the
beginning. I am very grateful to have you as my friends. A special thanks goes
to my office mates throughout the years Omar, Gabriel, Anita, Husni, Filip and
Julieth for without them the light in our office would be rarely on.

The work in this thesis has been supported by the Swedish Foundation
for Strategic Research (SSF) via the projects SYNOPSIS1 and FIC2 as well as
EU and VINNOVA via the Artemis JTI project SafeCer3 and ECSEL Joint
Undertaking projects AMASS4 (No 692474) and SAFECOP5 (No 692529).

Irfan Šljivo
September, 2018

Västerås, Sweden

1http://www.es.mdh.se/SYNOPSIS/
2http://www.es.mdh.se/fic
3https://www.es.mdh.se/projects/294-
4https://www.amass-ecsel.eu/
5http://www.safecop.eu/

12

List of publications (short)6

The following is the list of publications that the thesis is mainly based on:

Paper A Generation of Safety Case Argument-Fragments from Safety Con-
tracts, Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson. In
Proceedings of the 33rd International Conference on Computer Safety,
Reliability, and Security (SafeComp), Springer-Verlag, September 2014.

Paper B Using Safety Contracts to Guide the Integration of Reusable Safety
Elements within ISO 26262, Irfan Šljivo, Barbara Gallina, Jan Carlson,
Hans Hansson. In Proceedings of the 21st IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC), IEEE, Novem-
ber 2015.

Paper C A Method to Generate Reusable Safety Case Fragments from Com-
positional Safety Analysis, Irfan Šljivo, Barbara Gallina, Jan Carlson,
Hans Hansson, Stefano Puri. Journal of Systems and Software: Spe-
cial Issue on Software Reuse 131, C (September 2017), 570-590. DOI:
https://doi.org/10.1016/j.jss.2016.07.034.

Paper D Tool-Supported Safety-Relevant Component Reuse: From Specifica-
tion to Argumentation, Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans
Hansson, Stefano Puri. In Proceedings of the 23rd International Confer-
ence on Reliable Software Technologies (Ada-Europe), June 2018.

Other relevant publications this thesis builds upon (in chronological order):

1. Fostering Reuse within Safety-critical Component-based Systems through
Fine-grained Contracts, Irfan Šljivo, Jan Carlson, Barbara Gallina, Hans

6The full list of papers is presented in Appendix A

ix

13

x

Hansson. International Workshop on Critical Software Component Reus-
ability and Certification across Domains (CSC2013), Jun 2013.

2. Strong and Weak Contract Formalism for Third-Party Component Reuse,
Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson. In Proceed-
ings of the IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), 3rd International Workshop on Software
Certification (WoSoCer 2013), November 2013.

3. Facilitating Certification Artefacts Reuse Using Safety Contracts, Irfan
Šljivo. In Proceedings of the 14th International Conference on Software
Reuse Doctoral Symposium (ICSR DS 2015), January 2015.

4. A Method to Generate Reusable Safety Case Fragments from Composi-
tional Safety Analysis, Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans
Hansson, Stefano Puri. In Proceedings of the 14th International Confer-
ence on Software Reuse (ICSR2015), January 2015.

5. Deriving Safety Contracts to Support Architecture Design of Safety Crit-
ical Systems, Irfan Šljivo, Omar Jaradat, Iain Bate, Patrick Graydon. In
Proceedings of the16th IEEE International Symposium on High Assur-
ance Systems Engineering (HASE 2015), January 2015.

6. Using Safety Contracts to Guide the Integration of Reusable Safety El-
ements within ISO 26262, Irfan Šljivo, Barbara Gallina, Jan Carlson,
Hans Hansson. MRTC Report, Malardalen Real-Time Research Centre
(MRTC 2015), March 2015.

7. Facilitating Reuse of Safety Case Artefacts Using Safety Contracts, Irfan
Šljivo. Licentiate Thesis. Mälardalen University Press. June 2015.

8. Configuration-aware Contracts. Irfan Šljivo, Barbara Gallina, Jan Carl-
son, Hans Hansson. In Proceedings of the 4th International Workshop
on Assurance Cases for Software-intensive Systems (ASSURE2016),
September 2016.

9. Assuring Degradation Cascades of Car Platoons via Contracts, Irfan
Šljivo, Barbara Gallina, Bernhard Kaiser. In Proceedings of the 6th
International Workshop on Next Generation of System Assurance Ap-
proaches for Safety-Critical Systems (SASSUR-2017), September 2017.

14

Contents

1 Introduction 1
1.1 Problem Statement and Research Goals 3
1.2 Contributions . 5
1.3 Research Methodology . 7
1.4 Thesis outline . 10

2 General Background 13
2.1 Safety Assurance . 13

2.1.1 Safety Terminology 13
2.1.2 Assurance Case Representation 15

2.2 Brief Overview of the Relevant Safety Standards 19
2.2.1 Generic Standard: IEC 61508 19
2.2.2 Railways Industry Standards: CENELEC EN 5012x . 19
2.2.3 Automotive Industry Standard: ISO 26262 21
2.2.4 Civil Airspace Standards: DO 178(B/C), ARP 4754(A)

and ARP 4761 . 21
2.3 ISO 26262 Overview . 22

2.3.1 Safety Element out of Context 24
2.4 Reuse Technologies . 24

2.4.1 Component-based Software Engineering 25
2.4.2 Product-line Engineering 26

2.5 Contract-based design . 27
2.5.1 Logic-based Contract Refinement Checking 29
2.5.2 System modelling with contract-based design support . 31

3 Real World Examples 33
3.1 Fuel Level Estimation System 33

xi

15

xii Contents

3.1.1 The FLES Architecture 33
3.1.2 The Criticality of the System 34

3.2 Loading Arm Controller Unit 35
3.2.1 The LACU Architecture 35
3.2.2 The Criticality of the System 36

3.3 Summary . 36

4 Contract-driven Assurance 37
4.1 Structured Assurance Case Meta-model 37

4.1.1 SACM Argumentation meta-model 38
4.1.2 SACM Artifact meta-model 38

4.2 Arguing Contract-driven Assurance 40
4.2.1 Contract-driven assurance case structure 44
4.2.2 Contract-driven assurance supporting evidence 44

4.3 Safety Element Meta-Model 45
4.3.1 SEMM to SACM transformation 47

4.4 Summary . 50

5 Contract-Driven Reuse for Safety-Critical Systems 53
5.1 Examples of reusable safety-relevant components according to

ISO 26262 . 53
5.2 Strong and weak contracts 54

5.2.1 Contract variability in SEMM 57
5.3 Contract-aware SEooC development and reuse 58

5.3.1 Safety Contracts Development Process 58
5.3.2 SEooC Development with Safety Contracts 62

5.4 Summary . 62

6 Contract-driven assurance and reuse based on Compositional FLA
Results 65
6.1 COTS Aware Fault Propagation Analysis and Argumentation . 65

6.1.1 COTS-based Safety-Critical Development 66
6.1.2 CHESS-FLA within the CHESS toolset 66
6.1.3 Absence of Hazardous Software Failure Mode Argu-

mentation Pattern . 69
6.2 FLAR2SAF . 70

6.2.1 Contractual interpretation of the FPTC rules 71
6.2.2 HSFM argumentation pattern instantiation 74

6.3 Summary . 75

16

Contents xiii

7 Tool support 77
7.1 Contract-driven reuse support with CHESS and OCRA 78

7.1.1 Methodological Guidance 79
7.2 Contract-driven assurance support with CHESS and OpenCert 80

7.2.1 Methodological Guidance 81

8 Validation 85
8.1 Case Study Method . 85
8.2 Case Study 1 . 87

8.2.1 Case Study Design 87
8.2.2 The Case . 88
8.2.3 SEooC definition and development 88
8.2.4 SEooC Integration 92
8.2.5 Generated Safety Arguments 94
8.2.6 Discussion . 98
8.2.7 Validity . 98

8.3 Case Study 2 . 99
8.3.1 Case Study Design 99
8.3.2 The Case . 100
8.3.3 LAAP Failure Logic Analysis 101
8.3.4 LACU Failure Logic Analysis 106
8.3.5 The resulting argument-fragment 109
8.3.6 Discussion . 110
8.3.7 Validity . 113

9 Related Work 115
9.1 Contract-based Approaches for Safety-Critical Systems 115
9.2 Safety Case Artefacts Reuse 118

10 Conclusions and future work 123
10.1 Research Goals Revisited . 123
10.2 Future Research Directions 128

10.2.1 Safety contracts language and patterns catalogue . . . 128
10.2.2 Multi-concern assurance 129
10.2.3 Runtime/Dynamic assurance 130
10.2.4 Industry 4.0 . 131

Appendices 133

Appendix A List of publications (full) 134

17

xiv Contents

Bibliography 149

18

Chapter 1

Introduction

Safety-critical systems are those systems whose unintended or malfunctioning
behaviour can result in harm or loss of human life, or damage to property or
the environment [1]. A trend in safety-critical systems is that new function-
alities are added mainly through software, which explains why a modern car
has between 70 and 100 embedded computers on board, with overall software
that scales up to 100 million lines of code1. These safety-critical software-
intensive systems need to meet certain requirements to achieve sufficient levels
of safety. Compliance with a set of domain-specific safety standards is one of
the requirements. In this thesis we refer to the process of achieving compli-
ance with a particular standard as certification process. The cost of achieving
certification is estimated at 25-75% of the development costs [2], with the cost
of producing the verification artefacts for highly critical applications reaching
up to 1000 USD per line of code [3].

In most cases, safety standards require a safety case to assure that any unac-
ceptable residual risks due to the malfunctioning of the system and its elements
have been avoided. A safety case is presented in the form of an explained and
structured argument supported by evidence to clearly communicate that the
system is acceptably safe to operate in a given context [4]. While the safety
case includes the artefacts (e.g., results of failure analyses or verification ev-
idence) produced during the certification process, the safety argument repre-
sents means to connect the safety claims (e.g., that the system is acceptably
safe to operate in a given context) with the safety case artefacts that provide
supporting evidence (Figure 1.1).

1see http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

1

19

2 Chapter 1. Introduction

Claim

Subclaim1 Subclaim2

Evidence

Reference

1

Evidence

Reference

2

Evidence

Reference

3

Sub...Subclaim1 Sub...Subclaim3Sub...Subclaim2

Evidence

Reference

4

Safety Objectives/Requirements

Evidence
(Lifecycle Artefacts)

...

SubSubclaim1 SubSubclaim2 SubSubclaim3

Sa
fe

ty
 A

rg
u

m
en

t
Safety C

ase

Figure 1.1: The role of safety argumentation within a safety case (adapted
from [4])

More and more safety standards are offering support for reuse to reduce the
production costs and time needed to achieve certification. For example, in the
automotive functional safety standard (ISO 26262) [5] reuse is explicitly sup-
ported through the notion of Safety Elements out of Context (SEooC). Whether
reuse is planned (systematic) or “ad hoc” (non-systematic) has significant in-
fluence on the safety of the system [6]. Hence, safety standards typically take
into consideration whether the safety element being reused is developed for
reuse or not. For example, the SEooC concept is used for elements that are
developed for reuse and according to the standard, such as a real-time operat-
ing system or a computer vision system. The planned reuse assumes that the
elements being reused have been developed with reuse in mind, which usually
results in higher development cost for the reusable element, but the return on
this investment is obtained if the element is reused often enough [7]. Non-

20

1.1 Problem Statement and Research Goals 3

systematic reuse usually does not incur additional development costs, but in
return the level of reuse is minimal since reuse is done individually by reusing
information in an “ad hoc” manner.

Different approaches can be used to facilitate systematic software reuse.
For example, Component-based Software Engineering (CBSE) is the most
commonly used approach to achieve reuse within the airborne industry [8]. Ac-
cording to CBSE, software is developed by composing pre-existing or newly
developed components, i.e., independent units of software, with a well-defined
interface capturing communication and dependencies towards the rest of the
system [9]. Besides the support for reuse and independent development, contract-
based design in CBSE enables contract-based compositional verification of
properties on a system model such that its results can be used as evidence
in assuring that the system is acceptably safe. A contract is a pair of asser-
tions, namely assumptions and guarantees, such that the component offers the
guarantees about its own behaviour, given that the environment in which it is
deployed fulfils the assumptions [10].

1.1 Problem Statement and Research Goals
Industries developing safety-critical systems often have problems with high
production costs and the time needed to achieve safety certification for software-
intensive systems. One way of addressing this issue is by automating parts of
the assurance efforts and enabling reuse of not only software components, but
also the accompanying certification-relevant artefacts. To this end, contract-
based design within CBSE has supported reuse of components and composi-
tional verification as a way to partially assure certain properties of the compo-
nents. Using such contract-based design in safety-critical systems to cut down
the cost of certification rises two challenges:

• while compositional verification of a system using contracts establishes
validity of a particular property of the system model, additional assur-
ance is required to build the confidence that the system implementation
actually exhibits that property, and

• contract-based design intrinsically supports reuse of components for en-
vironments defined by the contract assumptions, but lacks support for
accompanying assurance information reuse as well as reusable safety-
relevant components, such as SEooC, which are characterised by differ-
ent behaviours in different environments.

21

4 Chapter 1. Introduction

Contributing to the assurance- and reuse aware contract-based design, aiming
to cut down the cost of certification, drives our research and leads to the overall
goal of this thesis:

Overall Goal: To facilitate automation of assurance and fine-grained reuse
of assurance information by contract-based design.

To move the state-of-the-art towards the overall goal, we decompose it into
three subgoals that we focus on in the thesis:

• Research Goal 1: To facilitate automated contract-driven assurance in
order to reduce the overall assurance efforts.

Since safety assurance is driven by the safety requirements allocated to
the different components of the system, the corresponding contracts of
those components are envisaged to realise the allocated requirements. In
such a scenario, each requirement is realised by a set of contracts and its
validity is supported by contract-based compositional verification. But
since the results of compositional verification are not sufficient for as-
suring that the system fulfils the requirement, the additional information
needed for assuring that a system satisfies the given safety requirement
should be identified and structured according to an established argumen-
tation strategy. If such a strategy is captured in form of argumentation-
patterns, those patterns can be automatically instantiated from the sys-
tem models only when the relevant assurance information is clearly con-
nected with the system modelling artefacts. In order to meet this goal, we
first identify the additional assurance information needed for contract-
driven assurance and capture them in form of argument patterns, we de-
fine how this information should be structured within assurance-aware
system models, and detail how the argument patterns can be automati-
cally instantiated from the enriched system models.

• Research Goal 2: To facilitate reuse of SEooC and their context-specific
assurance artefacts by contract-based design.

Reusable components such as SEooC are characterised by certain param-
eters that tailor their behaviour for different contexts. While the support

22

1.2 Contributions 5

for reuse in contract-based design has been mainly focused on compo-
nents (i.e., implementations of contracts), it has not focused on reusable
components as implementations of a set of contracts for different en-
vironments that may or may not be satisfiable together. This context
variability on the contract level is needed to identify which properties
offered by the reusable component are relevant in the system in which
the component is currently reused. Hence, the assurance information re-
lated to those properties captured in the contracts can also be identified
as relevant for reuse. In order to meet the second research goal, we ex-
plore how to achieve the context variability on the contract level and in
which way it can be adopted in the existing SEooC development and in-
tegration process.

• Research Goal 3: To support reuse of results from existing failure logic
analyses and automation of assurance based on those results through the
assurance- and reuse aware contract-based design.

Just as hazard analysis is the basis for safety engineering at the system
level, derivation of contracts and identification of the corresponding as-
sumptions plays a similar role at the component level [11]. While many
works deal with contract formalisms and what those contracts should be
used for, the lack of clear guidelines and methods for their derivation
hinders their adoption in existing safety processes. In order to meet the
third research goal, we explore if and in which way methods for con-
tract derivation from existing failure logic analyses can be used to reuse
the results of failure logic analyses and automate parts of the assurance
based on those results.

1.2 Contributions
Addressing the three research goals yielded the main contributions of this the-
sis.
In meeting research goal 1, we identify the following contributions:

• The introduction of argumentation patterns to capture the contract-
driven assurance reasoning: We identify the additional assurance in-
formation needed to assure with sufficient confidence that a system be-
haves according to the results of the compositional contract-based veri-

23

6 Chapter 1. Introduction

fication of its model. We structure the information in form of contract-
driven assurance argumentation patterns.

• Connecting the contract-based system modelling and assurance case
modelling on the meta-model level: We structure the system and as-
surance information needed for contract-driven assurance in form of a
Safety Element Meta-Model (SEMM).

• A method for automated instantiation of the contract-driven assur-
ance argumentation patterns from system models compliant with
SEMM: We map the SEMM elements to the assurance elements and
present a set of rules for automated instantiation of contract-driven as-
surance argument patterns.

In meeting research goal 2, we identify the following contributions:

• The introduction of strong and weak contracts to manage context
variability at the contract level: We use strong and weak contracts as
a way to distinguish between the properties that must be met in every
environment in which a component is reused (the strong contracts), and
the properties that are environment specific and do not have to be met in
every environment (the weak contracts).

• An extension of SEMM to support context variability across con-
texts: We introduce the strong and weak contract modelling support in
SEMM to provide greater support for out-of-context modelling, mak-
ing it a Safety Element out-of-Context Meta-Model (SEooCMM). The
extension with strong and weak contracts allows for modelling the vari-
ability of the component properties, and in that way also for modelling
the variability of the associated assurance information.

• Alignment of SEooC development with contract-based design assur-
ance and reuse: We present a safety contract development process and
align it with the safety process recommended by ISO 26262 to concretise
the systematic reuse of SEooC using assurance and reuse-aware contract-
based design. The process as such is however more general, and could
be aligned also with processes of similar concepts in other domains such
as the avionics concept of Reusable Software Components presented in
Advisory Circular 20-148 [12].

In meeting research goal 3, we identify the following contributions:

24

1.3 Research Methodology 7

• A method for contract derivation from compositional failure logic
analysis: We present a method for deriving safety contracts from Fail-
ure Propagation and Transformation Calculus (FPTC) analysis [13] that
allows for calculation of system level behaviour from the behaviour of
the individual components established in isolation.

• An approach for instantiation of FLA-based argumentation patterns
from the derived contracts: We use the fault propagation contracts de-
rived from the FPTC analysis to instantiate the existing argument pattern
regarding the absence of Hazardous Software Failure Modes.

All technical contributions are evaluated through industrial case studies. We
integrate the technical contributions in two groups and evaluate each group in
a separate case study:

• Case study 1: We evaluate the contributions related to the first two re-
search goals in this case study. We apply the contract-aware SEooC
development and reuse to evaluate the feasibility of fine-grained reuse
of a component and its assurance information, including the reuse of
automatically instantiated safety assurance argument patterns.

• Case study 2: The main focus of this case study is to evaluate the
third research goal contributions using the reuse and assurance aware
contract-based design shaped by the contributions to the first two re-
search goals. In particular, we evaluate the feasibility of reuse of results
obtained from Fault Propagation and Transformation Calculus (FPTC)
analysis and safety argumentation that builds upon such results.

1.3 Research Methodology
The goal of the research conducted in this thesis is to construct new methods,
techniques and theoretical foundations based on existing knowledge, in order to
contribute to solving real-world problems. Such research, where solutions are
designed and developed rather than discovered, is referred to as constructive
research [14]. The nature of constructive research is in problem solving of
real-world problems by providing solutions in form of new constructions that
have both theoretical and practical contributions [15]. While the results of such
research have both practical and theoretical relevance, the emphasis is placed
on the theoretical relevance of the newly created construct.

25

8 Chapter 1. Introduction

A.	
 Problem	
 Formula.on	

•  What	
 do	
 we	
 want	
 to	

achieve?	

•  Is	
 the	
 problem	
 relevant	
 both	

prac6cally	
 and	
 theore6cally?	

•  What	
 is	
 the	
 current	
 state	
 of	

prac6ce	
 and	
 state	
 of	
 the	
 art?	

	

	

B.	
 Propose	
 a	
 Solu.on	

•  What	
 exis6ng	
 knowledge	
 can	

we	
 use	
 to	
 solve	
 the	
 problem?	

•  Which	
 is	
 the	
 gap	
 in	
 the	
 current	

knowledge?	

•  How	
 can	
 we	
 bridge	
 the	
 gap?	

•  Which	
 is	
 the	
 theore6cal	

solu6on?	

C.	
 Implement	
 the	
 Solu.on	

•  How	
 can	
 we	
 construct	
 a	

prac6cal	
 solu6on	
 from	
 the	

theore6cal	
 construct?	

	

D.	
 Evalua.on	

•  Does	
 the	
 newly	
 developed	

construct	
 solve	
 the	
 problem?	

•  Is	
 the	
 proposed	
 solu6on	

be?er	
 than	
 other	
 solu6ons	
 (if	

any)?	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

Figure 1.2: The cycle of the research process (adapted from [16])

The generic cycle of research within the majority of engineering sciences
can be described in four high-level steps [16]. Figure 1.2 presents an overview
of our adaptation of these four research steps. We first formulate the problem
based on the current state-of-practice and state-of-the-art. After that we iden-
tify the gap in a current knowledge and propose a theoretical solution to bridge
the gap. Next, we implement a practical solution based on the new theoretical
constructs. Finally, we evaluate the implemented solution against the initially
formulated problem.

Since the constructive research process [15] deals with both theoretical and
practical problems, our research process consists of two nested instances of
the generic research cycle, one cycle for the theoretical and one for the practi-
cal/engineering problem (Figure 1.3). The constructive research process starts
with identifying a practically relevant real-world problem which at the same
time has potential for theoretical contribution. The constructive work does not
start until sufficient understanding of the research problem and the domain is
obtained. The process of construction itself is where the main knowledge pro-

26

1.3 Research Methodology 9

duction usually happens [14]. In the second step the real-world problem is
simplified and transferred into the research domain where we identify means
for collecting data and establishing grounds for the constructive work. The
second step starts the research/theoretical cycle where the research problem is
refined into research goals. The next step includes the constructive work where
a concrete research product is constructed as a solution to the research problem.
In the subsequent steps of the research cycle, the proposed solution is imple-
mented and evaluated against the research problem. Upon completion of the
theoretical work, which is usually performed in several iterations for each of
the research subgoals, the practical cycle of the process continues to integrate
the solutions to the research problem into a practical solution for the real-world
problem. In the next step the practical solution is implemented and finally, the
practical solution is evaluated against the real-world problem.

In our particular case we have relied on cooperation with our industrial
partners to identify those practically relevant real-world problems, which are
at the same time not addressed by the state-of-the-art. Since the initially iden-
tified problem in cooperation with industry (e.g., the cost of certification) is
quite broad and generic, we simplify it to a set of sub-problems that are prac-
tically feasible to evaluate. Then, we define a set of research goals to address
those sub-problems, which should in turn lead us towards the solution of the
generic problem. During the research of each of the goals we use simpler eval-
uation examples, appropriate to quickly iterate the evaluation of the evolving
solution of the research goal. Once we reach a satisfactory solution, we pub-
lish it in a workshop or a conference paper. After answering a set of research
goals, we integrate the solutions and evaluate the integration on a more com-
plex, real-world examples. We aim at journal publications with such integrated
contributions.

Software engineering research often relies on the case study methodol-
ogy for both exploratory and evaluation purposes. Case study is an empir-
ical method for investigating a contemporary phenomenon in its real-world
context [17]. Exploratory case studies are usually conducted prior to the con-
structive work to gain deeper understanding of the research problem and the
domain [14]. Upon development of new constructs, case studies can be used
to evaluate a newly developed method or technique in its real-world setting in
form of an explanatory case study. In some iterations of our research cycle we
use case studies to evaluate the newly proposed methods.

Considering that the problem we are addressing comes from the industrial
needs of our partners, we rely on real-world examples to evaluate our contri-
butions. In our work we use both explanatory and exploratory case studies.

27

10 Chapter 1. Introduction

Real-
world

problem

Research
problem

Propose a
solution

Implement
the

solution

Evaluate
the

solution

Propose an
integrated

solution

Implement
the

integrated
solution

Evaluate
the

integrated
solution

Publish
papers

Practical/
Industrial domain

Theoretical/
Academic domain

Iterated for each research goal

State-of-
practice

State-of-
the-art

Refined
research

goal

Figure 1.3: Overview of our research process

During the iterative process of answering a single research goal, we often start
by performing exploratory case studies on simpler examples, and then move
towards more complex real-world examples for explanatory purposes. In par-
ticular, the two case studies included in this thesis represent the explanatory
case studies of the integrated solutions on complex real-world examples.

1.4 Thesis outline
The thesis is organised as a monograph based on already published research
papers. The different chapters of the thesis are influenced by the different
research papers and all the contributions have already been peer-reviewed as
contributions of the published papers. The short list of the relevant papers is
available at the beginning of the thesis, while the extended paper list together
with their abstracts and remarks is available in Appendix A.

The rest of the thesis is organised as follows: In Chapter 2 we present gen-
eral background information. In particular, we provide an introduction to safety
assurance, safety standards and their reuse support, the most common software
reuse technologies, and contract-based design. In Chapter 3, we present the
real world examples that we use to demonstrate and evaluate the thesis con-
tributions. We present our contract-driven assurance methodology in Chap-
ter 4, while Chapter 5 presents its support for reuse. In Chapter 6 we present
the method for reuse of compositional failure logic analysis results using the
assurance and reuse aware contract-based design. We present the tool imple-
mentation of the proposed extensions to contract-based design in Chapter 7.
In Chapter 8 we present the two industrial case studies we use for evaluation
of the proposed contributions. The case studies are based on the real-world

28

1.4 Thesis outline 11

examples introduced in Chapter 3. We present related work in Chapter 9 and
finally, we bring conclusions and outline future work in Chapter 10.

29

30

Chapter 2

General Background

In this chapter we first present an overview of safety-critical systems, their
development and assurance. We introduce the automotive functional safety
standard ISO 26262 and the concepts from the standard that we use in this
thesis. Furthermore, we present an overview of the most common software
reuse technologies. Finally, we provide an introduction to the notion of con-
tracts and detail the tool supported assumption/guarantee contract framework
that we have built upon when providing the tool-support for contract-driven
assurance and reuse.

2.1 Safety Assurance

In this section we introduce the essential safety terminology and focus on the
assurance of safety-critical systems. In particular, we present the overview of
different techniques for documenting the assurance efforts.

2.1.1 Safety Terminology

Safety is usually defined as “freedom from unacceptable risk” [18], where
risk is a “combination of the probability of occurrence of harm and the sever-
ity of that harm” [18]. Since it is not practically feasible or possible to achieve
absolutely safe or risk-free systems, acceptable levels of risk need to be estab-
lished. Since risk itself is not accurately measurable, risk assessment is used
to estimate levels of risk in order to “avoid paralysis resulting from waiting for

13

31

14 Chapter 2. General Background

definitive data, we assume we have greater knowledge than scientists actually
possess and make decisions based on those assumptions” [19].

When dealing with risk, we distinguish between tolerable and residual
risks. Tolerable risk is defined as “risk which is accepted in a given con-
text based on the current values of society” [18]. While the residual risk is
defined as “risk remaining after protective measures have been taken” [18].
The protective measures are implemented by safety functions used to achieve
or maintain a safe state in case a hazard occurs, i.e., to eliminate the hazards
or to reduce the risk associated with the hazards to tolerable levels. A hazard
is sometimes defined as a “potential source of harm”, but this definition is too
generic, as almost any system state can be a potential source of harm. Instead,
a more concrete definition of a hazard is proposed, which defines a hazard
as “a system state or set of conditions that, together with a set of worst-case
environmental conditions, will lead to an accident” [20].

As can be noted, the definition of a hazard does not relate the hazard di-
rectly with a failure. In contrast to a hazard, a failure is defined as “termination
of the ability of a functional unit to provide a required function” [18]. Hence
there is a clear distinction between hazards and failures, since failures can oc-
cur without causing a hazard. This distinction reflects itself in the potential
consequence of a hazard and a failure. While a hazard leads to harm, an occur-
rence of a failure will not necessarily lead to harm. This is the crucial difference
between safety and reliability [21], while safety deals with hazards, reliability
deals with failures and is defined as “continuity of correct service” [22].

A system is composed of a set of interacting functional units used to imple-
ment system services. The service delivered by the system is a set of external
states of the system as perceived by its user [22]. A service failure is caused
by an error, which is an external state of the service that deviates from the set
of correct external states of the service [22]. A cause of an error is called a
fault. A fault is an event that manifest itself in form of an error [22]. Presence
of an error in a system does not necessarily mean that the system will exhibit
a failure. For example, a functional unit can be erroneous, but as long as that
error is not part of the external state of the system, the system service will
not exhibit a failure. In fact, there can be many errors in a system without it
causing a failure, e.g., internal error checking can stop errors from propagating
outside of the boundaries of the system. A failure occurs only if an effect of
the error becomes observable outside of the boundaries of the system. An error
that results in a failure can manifest itself in different ways. The way in which
a functional unit could fail is called a failure mode [22].

As mentioned in Chapter 1, a safety case is composed of all the work prod-

32

2.1 Safety Assurance 15

ucts produced during the development of a safety-critical system, which in-
cludes a safety argument that connects the safety requirements and the evidence
supporting and justifying those requirements. While the safety case represents
the true reasoning as to why the system is acceptably safe, the safety argu-
ment is a representation of that reasoning aimed at communicating the actual
reasoning as faithfully and clearly as possible [23]. Assurance case is a more
generic term for cases where an argument is used to connect the requirements
with the supporting evidence. An assurance case is defined as “a collection
of auditable claims, arguments, and evidence created to support the contention
that a defined system/service will satisfy its assurance requirements.” [24]. A
claim is defined as “a proposition being asserted by the author or utterer that
is a true or false statement” [24], while an argument is defined as “a body
of information presented with the intention to establish one or more claims
through the presentation of related supporting claims, evidence, and contex-
tual information” [24].

2.1.2 Assurance Case Representation

The safety assurance case argument can be represented in different ways rang-
ing from free text to more formal notations [25]. The argument captures the
rationale behind the produced artefacts and can take different form in differ-
ent industries. It is referred to as a safety analyses report or safety case docu-
ment/report where the outcomes of the safety process are typically summarised
in natural language, although some use tabular structures to capture the ratio-
nale in a structured form, and others have started using graphical notations.

Free text has been the most typically used way of communicating the safety
arguments within safety cases. While the free text might be more appropriate to
use for simple cases, its limitations when used for more complex cases result in
unclear and poorly structured natural language, which results in an ambiguous
and unclear argument [4]. To overcome some of the limitations of creating
safety arguments in free text, different approaches have been developed based
on techniques such as tabular structures and graphical argumentation notations.

Tabular structures can be used to structure the safety arguments by repre-
senting the claims, argument and the evidence in different columns [1]. While
the claim represents the overall objective of the argument (e.g., implementa-
tion is fault-free), the argument column represents a brief description of the
type of the argument used (e.g., formal proof). The evidence column contains
references to evidence or assumptions in form of assertions (e.g., related to the
correctness of a proof tool) that supports the stated argument description. The

33

16 Chapter 2. General Background

difficulty with tabular approaches is that they do not offer sufficient support for
hierarchical structuring of the arguments, when used for complex arguments
“clarity and the flow of the argument can be lost” [4].

To overcome the limitations of earlier approaches, graphical argumentation
notations have been proposed to facilitate communicating a clear and struc-
tured argument. Two most popular graphical notations for representing the
safety case arguments are: Goal Structuring Notation (GSN) [4]; and Claims,
Arguments and Evidence (CAE) [26]. Both approaches use similar elements
for structuring the argument. In order to contribute to standardisation of the ar-
guing techniques, a Structured Assurance Case Metamodel (SACM) [24] cap-
turing the argument elements is introduced by the Object Management Group
(OMG). The goal of the introduced metamodel is to allow for interchange of
the structured arguments between different projects and tools by providing a
standardised format for encoding safety arguments. We use GSN in our work
to represent the safety arguments. In the reminder of this section we provide
basic information about GSN.

Goal Structuring Notation

The Goal Structuring Notation (GSN) [27] is a graphical argumentation nota-
tion that can be used to record and present the main elements of any argument.
The principal elements of GSN are shown in Figure 2.1. The main purpose of
GSN is to show how goals (claims about the system), are broken down into
subgoals and supported by solutions (the gathered evidence used to back up
the claims). The rationale for decomposing the goals into subgoals is repre-
sented by strategies, while the clarification of the goals (their scope and do-
main) is done in the context elements. Justifications as to why a certain goal
or strategy is considered appropriate or acceptable to use is done in the jus-
tification element. Validity of all the aspects that a certain goal or strategy
depends on is not always argued over in the argument. Those aspects whose
validity is not established in the argument but just assumed, are captured within
the assumption element in form of assumed statements that should be checked
outside of the argument. The argument elements can be connected with one of
the two relationships: supportedBy and inContextOf. The supportedBy rela-
tionship is used to connect goals and strategies with other subgoals, strategies
and solutions, while the inContextOf relationship is used to connect the goals
and strategies with supporting elements such as contexts, justifications and as-
sumptions.

Many arguments are developed using similar rationale for structuring the

34

2.1 Safety Assurance 17

Goal ID
Goal statement (e.g.,

system is acceptably safe)

Solution ID
Solution statement

(e.g., inspection
report)

Context ID
Context statement (e.g., acceptably
safe in this context means no single

points of failure)

Away Goal
Goal statement supported

by the referred module

Module reference

Strategy ID
Strategy statement (e.g., argument

over all identified hazards)

Strategy ID
Strategy statement (e.g., argument

over all identified hazards)

Assumption ID
Assumption statement
(e,g., subsystems are

independent) A

Justification ID
Justification statement (e,g.,
this approach addresses all

failure mechanisms) J

Choice

Undeveloped Element
(Requires further support)

Uninstantiated Element
(Abstract entity that needs
to be instantiated (with
something concrete))

Optionality

Multiplicity

n

Undeveloped and
Uninstantiated Element

inContextOf

supportedBy

Figure 2.1: Overview of the GSN elements

goals and their supporting sub-goals. Reusable argument patterns are created
as a way to capture that rationale by generalising the details of a specific argu-
ment. The main functionality of GSN has been extended to support represen-
tation of patterns of reusable reasoning [28]. To represent such argument pat-
terns, GSN has been extended to support structural and entity abstraction [27].
The bottom row in Figure 2.1 presents some of the GSN extension elements.
For structural abstraction the supportedBy relationship is extended by intro-
ducing multiplicity and optionality relationships. The multiplicity relationship
indicates zero to many relationship between two elements, where n represents
the cardinality of the connection. The optionality relationship indicates a zero
or one cardinality connection between two elements.

To support entity abstraction, basic elements can be combined with unin-
stantiated and/or undeveloped elements. An uninstantiated element repre-
sents an abstract entity that is supposed to be replaced by a concrete element in
the future. An undeveloped entity represents a concrete element that was not
fully developed (e.g., not all subgoals are defined) and requires further devel-
opment. The combination of the two indicates an entity that both needs to be
replaced by a concrete element and needs to be further developed.

As one of the means to support modular extension to GSN, away goals
are introduced to prevent repetition of parts of arguments across the different
modules in which the argument can be partitioned [27]. Instead of further
developing a certain goal, if that goal is already developed in another part of
the argument, an away goal can be used to point to the original element where
the goal has been developed.

35

18 Chapter 2. General Background

G1
Press is acceptably safe to

operate within Whatford Plant

C1
Press specification

C2
Press operation

C3
Whatford Plant

S2
Argument of compliance with
all applicable safety standards

and regulations

S2
Argument of compliance with
all applicable safety standards

and regulations

C5
All applicable safety

standards and regulations

C4
All identified

operating hazards

G2
Hazard of ’Operator Hands
Trapped by Press Plunger’

sufficiently mitigated

G3
Hazard of ’Operator Upper

Body trapped by Press
Plunger’ sufficiently mitigated

G6
Press compliant with UK

enactment of EU
Machinery Directive

G5
Press compliant with UK HSE
Provision and Use of Work

Equipment Regulations

G7
PES element of press design

compliant with IEC1508

Sn1
FTA

analysis

Sn2
Formal

verification

Sn4
Audit report

Sn3
SIL3

certificate

Sn5
Compliance

sheet

A1
All credible hazards
have been identified

A S1
Argument by addressing all
identified operating hazards

S1
Argument by addressing all
identified operating hazards

G4
Hazard of ’Operator Hands

Caught in Press Drive Machniery’
sufficiently mitigated

Figure 2.2: An argument example represented using GSN (adapted from [27])

An example of the application of the core of GSN is shown in Figure 2.2.
The example presents a safety argument via GSN for a hypothetical factory
that contains a metal press. The press has a single operator, who inserts metal
sheets, the machine presses the sheets to make car body parts and then the
operator removes the parts from the press. The top-level goal G1 argues that
the press is acceptably safe to operate in the particular factory. The goal G1
is clarified with three context elements to explain different terms used in the
goal statement. The goal is developed using two distinct strategies S1 and S2.
While the S1 strategy further decomposes the goal to argue over each iden-
tified hazard, the S2 strategy addresses compliance with different applicable
standards. The assumption A1 assumes that all credible hazards have been
identified, which means that this statement will not be addressed in the argu-
ment. The strategies are further decomposed into corresponding subgoals that
are then supported by different evidence in form of solutions. The goal G4 is
left undeveloped.

36

2.2 Brief Overview of the Relevant Safety Standards 19

2.2 Brief Overview of the Relevant Safety Stan-
dards

Although conceptually there exists a common high-level systems safety en-
gineering process, there are still different ways in which this process can be
detailed and executed. The safety standards provide more detailed guidance
for applying such a process in their particular domains. In the reminder of
this section we briefly present some of the standards that have influenced the
research presented in this thesis.

2.2.1 Generic Standard: IEC 61508
IEC 61508 is a generic standard for achieving safety of electrical/electronic/
programmable electronic systems [29]. IEC 61508 is published by the Interna-
tional Electrotechnical Commission (IEC) as a successor of its draft standard
IEC 1508. The standard recognises that safety cannot be addressed retrospec-
tively and that there is no absolute safety. Moreover, the standard does not only
address the technical aspects but it also includes activities such as planning and
documentation as well as the assessment of all activities. This means that the
standard does not only deal with system development but it encompasses the
entire lifecycle of a system, from development, through maintenance, to de-
commissioning. IEC 61508 is composed in such a way that it can either be
applied directly or it can be further tailored for a specific domain. An overall
safety lifecycle as indicated by this standard is shown in Figure 2.3. The pre-
sented lifecycle does not explicitly include verification activities, but they are
required after each phase of the system development.

2.2.2 Railways Industry Standards: CENELEC EN 5012x
This group of standards for the railways industry represent the European Rail-
ways Standards required by law, and is composed of EN 50126 [30], EN
50128 [31] and EN 50129 [32]. These standards have been derived from the
generic IEC 61508 standard. EN 50126 addresses the system issues and fo-
cuses on the specification and demonstration of reliability, availability, main-
tainability and safety (RAMS). EN 50128 provides guidelines and recommen-
dations for which methods need to be used in order to provide software that
meets the safety integrity demands placed upon it. EN 50129 addresses the
approval process for individual systems and provides guidelines for demon-
strating the safety of electronic systems and constructing the safety case for

37

20 Chapter 2. General Background

Concept

Overall Scope Definition

Hazard and Risk Analysis

Overall Safety

Requirements

Overall Safety

Requirements Allocations

E/E/PE System Safety

Requirements Specification

E/E/PE System Design

Requirements Specification

E/E/PE System Design &

Development

E/E/PE System Integration

E/E/PE System Safety

Validation

E/E/PE System

Safety Validation

Planning E/E/PE System Installation,

Commissioning, Operation

& Maintenance Procedures

Overall Installation and

Commissioning

Overall Safety Validation

Overall Operation,

Maintenance and Repair

Decommissioning or

Disposal

Other Risk Reduction

Measures

Specification and

Realisation

E/E/PE System Safety Lifecycle

Overall Modification and

Retrofit

Figure 2.3: A portion of the Overall Safety Lifecycle adapted from [29]

38

2.2 Brief Overview of the Relevant Safety Standards 21

signalling railway applications. EN 50129 explicitly requires a safety case to
be provided and even defines its content.

2.2.3 Automotive Industry Standard: ISO 26262
Electronic and electrical systems (E/E) are increasingly used to implement crit-
ical functions within road vehicles. Many of the participants in traffic are ex-
posed to safety risks due to the possible malfunctioning behaviour of those
systems. The automotive industry safety standard ISO 26262 [33] has been
developed as a guidance for how to provide assurance that any unreasonable
residual risks due to the malfunctioning of the E/E systems have been avoided.
The standard is derived from the generic IEC 61508 standard and is composed
of ten parts where the last part of the standard is dedicated to guidance on ap-
plying the standard. ISO 26262 provides requirements and recommendation on
which activities should be performed as well as which work products should
be provided for each of the activities covered by the standard. Moreover, it
explicitly requires a safety case to be provided by progressively compiling it
from the generated work products. The guidelines provided with the standard
recommend provision of a safety argument within the safety case as a way to
connect the generated work products with the safety claims about the system.

2.2.4 Civil Airspace Standards: DO 178(B/C), ARP 4754(A)
and ARP 4761

The US Radio Technical Commission for Aeronautics (RTCA) and the Eu-
ropean Organisation for Civil Aviation Equipment (EUROCAE) decided to
develop a common set of guidelines for the development and documentation
of software practices that would support the development of software-based
airborne systems and equipment. The joint document was published as ED-
12/DO-178 “Software Considerations in Airborne Systems and Equipment Cer-
tification” in 1982, followed by two revisions, revision A in 1985 and the sec-
ond revision B in 1992 [34]. While RTCA publishes the document as DO-
178(A/B), EUROCAE publishes the document as ED-12(A/B).

DO-178B addressed only the software practices and it requires an associ-
ated document for addressing the system-level activities. ED-79/ARP-4754 [35]
“Certification Considerations for Highly-Integrated or Complex Aircraft Sys-
tem” was published in 1995 by SAE (Society of Automotive Engineers) and
EUROCAE to address the total life cycle of systems that implement the aircraft-
level functions. Since neither of the documents addressed the safety assess-

39

22 Chapter 2. General Background

ment methodologies, EUROCAE/SAE published a document ED-135/ARP-
4761 [36] “Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment” specifically to address the
methodologies for safety assessment processes.

The successor of DO 178B was made available in 2012. The document
was published jointly by RTCA/EUROCAE as ED-12C/DO-178C [37] “Soft-
ware Considerations in Airborne Systems and Equipment Certification” and is
intended to replace the DO 178B standard. The new revision includes technol-
ogy/method specific guidance with respect to model-based development and
verification, object-oriented technologies, and formal methods. The revision A
of the standard ARP 4754 related to the system-level activities was published
in 2010 with updates and extensions to the guidelines for the processes used to
develop civil aircraft systems.

2.3 ISO 26262 Overview

As mentioned in Section 2.2, ISO 26262 requires a safety case in form of a
clear and comprehensible argument to show that the safety requirements allo-
cated to an item are complete and satisfied by the evidence generated during
the system development. An item within ISO 26262 is composed of at least a
sensor, controller and an actuator, which together implement a function at the
vehicle level [38].

Central part of Fig. 2.4 shows the safety process of the ISO 26262 standard.
The process starts with the Concept phase (Part 3 of the standard [39]) that is
initiated with the item definition activity where the main objective is to define
and describe the item by capturing its dependencies on, and interactions with,
its environment. In the subsequent activities of this phase the hazards related to
the item are identified and classified according to Automotive Safety Integrity
Levels (ASILs). ASIL represents one of four safety integrity levels to specify
the necessary requirements for system items imposed by ISO 26262 as well as
safety measures that should be applied to avoid unreasonable risk [38]. Safety
goals as the top-level safety requirements are established for each hazard, and
further refined into Functional Safety Requirements (FSR), which specify
implementation-independent safety behaviour. This requirement decomposi-
tion and their allocation to architectural elements makes the functional safety
concept.

In the first part of the Product development at system level phase [40], the
Technical Safety Requirements (TSR) as implementation-specific require-

40

2.3 ISO 26262 Overview 23

ISO 26262 Item Definition
Hazard Analysis &
 Risk Assessment

Functional Safety
 Concept

Technical Safety
 Requirements

System Design

HW/SW Safety
 Requirements

HW/SW Integration
and Testing

Item Integration
 and Testing

Safety Validation

Functional Safety
 Assessment

Concept Phase

Product development:
System level

HW/SW

level

Production and
 Operation

System Level
Assumptions on:

•  Functional Safety
Requirements

•  Item Design
(Component Context)

SEooC integration:
•  Establishing validity

of assumptions

 SEooC development on HW/SW Level

SEooC –
Safety
Element
out-of-Context 4 4

5&6

7 3

HW/SW Design &
Development

Out-of-context In-context

Safety Contracts Preliminary
Phase

Safety Contracts Production
Phase

Safety Contracts
Utilisation and

Maintenance Phase
Figure 2.4: Safety contracts development and SEooC development and integra-
tion processes combined

ments, are derived from the functional safety concept. The specification and
allocation of the TSR to system elements makes the technical safety concept.
Based on the system design according to the specified technical safety con-
cept, development and testing of both the hardware (HW) and software (SW)
elements is performed. During Product development at HW/SW level (Parts
5 [41] and 6 [42] shown in Fig. 2.4) the corresponding HW/SW safety require-
ments are derived with consideration of environmental/operational constrains
identified during the concept phase. The process continues with integration
and testing of the HW/SW elements, followed by integration of elements that
compose an item to form a complete system, and then the item is integrated
with other systems and tested on the vehicle level. The Product development
at system level [43] is finalised with safety validation and an assurance case is
presented to show that the safety goals are sufficient and that they have been
achieved.

Given above, the information that needs to be gathered during concept and
system design phases includes the following: (1) purpose and functionality of
the item, (2) operating modes and states of the item (including the configuration
parameters), (3) law, regulation and standard requirements, (4) operational and
environmental constraints, (5) interface definition, (6) hazard analysis results,
including the known hazards, their ASILs and the associated safety goals.

41

24 Chapter 2. General Background

To ease the development of ISO 26262 compliant systems, the standard
acknowledges and provides guidelines for the different reuse scenarios [5]:
(1) elements that have been developed for reuse according to ISO 26262 in
form of Safety Element out-of-Context (SEooC), (2) pre-existing elements not
necessarily developed for reuse or according to ISO 26262 that have to be
qualified for integration, and (3) elements that qualify for reuse as proven-in-
use. We further focus on the SEooC reuse notion, as it targets the elements
developed specifically for reuse and according to the standard.

2.3.1 Safety Element out of Context

SEooC can be an element used to compose an item, but it cannot be an item
since an item implements functions at vehicle level, while reusable elements
such as SEooC are not developed in the context of a particular vehicle. The
development of SEooC follows the ISO 26262 safety process (Figure 2.4), but
since SEooC is developed out-of-context, the information related to the system
context (gathered during the concept and system design phases) first needs to
be assumed. The assumptions are made to the functional safety concept as
the main output of the concept phase and the external design (system-level
assumptions; the interactions with, and dependencies on the elements in the
environment are assumed). After assuming the relevant system design, the
development of the SEooC follows the product development at SW/HW level.
The corresponding SW/HW requirements are derived and the component is
developed to implement the requirements, after which the requirements are
verified and the component is tested. To reuse SEooC in a particular system, the
assumptions made during its development need to be validated in the context
of that system.

2.4 Reuse Technologies
Software reuse has been practiced since the first program was written. The
paradigm for basing software development on reusable components dates back
to the 1960s and Mcllroy’s work [44]. Software reuse is defined as “the use of
existing software or software knowledge to construct new software” [45]. Its
main purpose is to improve both the quality of software and the productivity
in creating the software. Artefacts subject to reuse can be either the software
itself or knowledge related to the software. Such artefacts are referred to as
reusable assets. Reusability is defined as “a property of a software asset that

42

2.4 Reuse Technologies 25

indicates its probability of reuse” [45].
As the programs got larger and more complex, means for systematic ap-

proaches to reuse had to be developed. The approaches to reuse are built on the
following assumptions [46]:

• All experience can be reused;

• Reuse typically requires some modifications of objects being reused;

• Analysis is necessary to determine when, and if, reuse is appropriate.

• Reuse must be integrated into the specific software development;

The first assumption relates to the limitation of the traditional code-based
software reuse and emphasises that all knowledge related to the code, includ-
ing documents, processes, and all other software-related experiences should be
subject to reuse together with the code. The second assumption relates to the
fact that reuse “as is” is not likely. The reuse approaches need to consider that
the reusable asset is likely to be modified once reused. The third assumption
deals with identifying when is reuse appropriate and when does it pay off to
reuse an asset. Some experiences indicate that in order to profit from reuse
the software package needs to be reused at least three times [47]. The forth
assumption implies that in order to achieve reuse, the reusable assets should be
developed with reuse in mind, i.e., reuse methods and practices should be inte-
grated in the software development process. We now briefly summarise some
of the major reuse approaches evolved over years based on these assumptions.

2.4.1 Component-based Software Engineering
Building upon the reuse assumptions, the component-based development (CBD)
approach emerged. The main idea of CBD is quick assembly of software sys-
tems from components already developed and prepared for integration. Despite
many advantages [48], there are some limitations to the approach that have af-
fected both customers and suppliers, who expected much more from CBD [49].
To address the limitations, a systematic approach to CBD that focuses on the
component aspect of software development has been established as a new sub
discipline of software engineering in form of Component-based Software En-
gineering (CBSE). The main goals of CBSE are to support the development
of systems as composition of components, the development of reusable com-
ponents, and to ease system maintenance and upgrades by simple component
customisation and replacement [49]. CBSE inherently supports most of the

43

26 Chapter 2. General Background

reuse assumptions, although the assumption related to the analysis is not fully
addressed within component-based technologies but is usually built into the
development process model.

The central notion of CBSE is a component. Although many definitions of
a component exist, the most widely used states that a component is “a unit
of composition with contractually specified interfaces and explicit context de-
pendencies only. A software component can be deployed independently and is
subject to composition by third party” [9]. Comparing the notion of a compo-
nent to modules within modular approaches, where a module is considered as a
set of classes or a package, a module “does not come with persistent immutable
resources, beyond what was hardwired in the code” [50]. The components can
be categorised as composite or atomic. An atomic component is “a module
plus a set of resources” [50], while a composite component, or just a compo-
nent, is a set of simultaneously deployed atomic components [50].

The most important element of a component is its interface. A compo-
nent can implement a set of interfaces, which define the components access
points. Each interface can consist of a set of operations used to provide ser-
vices to other components. In contrast to interfaces, the implementation of the
component must be encapsulated in the component and not reachable from the
environment. For a component to be composable only based on its interface
specification, such interface should be specified in a contractual manner. Be-
sides the provided interfaces of a component, which specify the operations
the component implements, to achieve the contractual nature of interfaces, re-
quired interfaces are defined to capture the operations the component needs
in order to function correctly [50].

2.4.2 Product-line Engineering

Domain engineering also referred to as product line engineering or product
family engineering, is an approach to systematic reuse built upon the reuse
assumptions. It inherently supports all the reuse assumptions. It focuses on
reuse of all domain knowledge, and is built to handle reuse of large adaptable
components that are tailored for different products. Product lines do not appear
accidentally, but they are planned as a consequence of a strategic decision of an
organisation based on pay off analysis. Once an organisation decides to use the
product line approach, their development process must integrate the product
line engineering aspects. A product-line is defined as “a top-down, planed,
proactive approach to achieve reuse of software within a family (or population)
of products” [49]. This type of organised and planned approach to reuse is used

44

2.5 Contract-based design 27

within organisations that have product families that can be defined as“a set of
products with many commonalities and few differences” [49].

A software product line is defined as “a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way” [51]. A feature is “a logical unit of be-
haviour that is specified by a set of functional and quality requirements” [52].
Features can be categorised as mandatory, optional or variable [53]. Manda-
tory features can be defined as “core capabilities embodying the main domain
characteristics at the problem level”. Optional features indicate “secondary
properties of the domain” [53] representing capabilities which are not neces-
sary in some domains. Variant features represent “alternative ways to config-
ure a mandatory or an optional feature” [53].

The basis of the software product line approach lies in the software archi-
tectural design in form of “a common architecture for a set of related prod-
ucts or systems developed by an organisation” [52]. Rather than satisfying
requirements of a single system, a software product line architecture needs to
satisfy requirements of the entire product family. The key process needed for
the systematic design of the architecture is Domain Engineering [7]. Domain
engineering starts with domain analysis which includes a systematic analysis
of commonalities and variabilities across the product family. A commonality
is a common product features across the product family, while a variability
refers to behaviour of a reusable component that can be changed [7]. There
are different variability mechanisms that can accommodate the change, e.g.,
inheritance, parametrisation of the component, and extension. The identifica-
tion of the commonalities and variabilities leads to the definition of variation
points. A variation point identifies one or more locations at which a variation
will occur in a product of the product family. The domain analysis is followed
by an application engineering process for product derivation.

2.5 Contract-based design

Highlighting the contractual nature of interfaces in software engineering gained
popularity with the Design by Contract technique developed for Object-Oriented
Programming (OOP) by Meyer [54]. The notion of classes is fundamental in
OOP where classes are defined as implementations of abstract data types. De-
sign by Contracts presents classes as more than just a set of attributes and rou-
tines by including the semantic properties in form of assertions, to capture the

45

28 Chapter 2. General Background

true nature of the implementation. Assertions are boolean expressions that rep-
resent the semantic properties of classes and represent the basis for establishing
the correctness and robustness of software [55], with correctness of software
defined as “the ability of software products to perform their exact tasks, as
defined by their specification” [55], and robustness defined as “the ability of
software systems to react appropriately to abnormal conditions” [55].

Assertions are used in the fundamental notions of Design by Contracts:
preconditions (requirements under which routines are applicable), postcon-
ditions (properties guaranteed on routine exit) and class invariants (proper-
ties that characterise the class instance over their lifetime). The precondition-
postcondition pair for a routine describes a contract between a class and its
clients (other classes that use the routine of the class). While the precondition
binds the client (the caller of the routine), the postcondition binds the class (the
supplier of a service through the routine).

The basis for Design by Contract are assertions that have been established
within the works on program correctness by Floyd [56] and Hoare [57]. The
Floyd-Hoare logic for proving partial correctness of sequential programs is
represented by a formula in Hoare’s logic P{S}Q, denoting that if assertion P
is true before the initiation of the program S, the assertion Q will be true upon
the termination of the program S. Moreover, the Design by Contracts notion
of class invariants comes from Hoare’s work on data types invariants [58], and
their application to program design by Jones [59]. Furthermore, profound in-
fluence on the Design by Contract technique and the object oriented interface
design was by Parnas and his work on information hiding [60, 61], and Dijkstra
with his work that coined the phrase “separation of concerns” [62].

The pre- and postcondition contracts for sequential programs were ex-
tended to support concurrent programs by using rely/guarantee rules [63]. While
the rely conditions make assumptions about any interference on the shared vari-
ables by the environment (during routine execution), the guarantee rules state
the obligations of the routine regarding the shared variables.

To achieve the benefits of using the contracts in the context of CBSE, com-
ponents should be enriched with the notion of contracts. This should allow
the usage of third-party components in mission-critical systems. Beugnard et
al. [64] propose a contract hierarchy that distinguishes between four levels of
contracts. The first level are the basic contracts that represent the common in-
terface notion, while the second level are the behaviour contracts in terms of
pre- and postconditions in a sequential context. The third level are the synchro-
nisation contracts that address the concurrent program execution aspects. The
fourth level are the quality-of-service contracts that cover the non-functional

46

2.5 Contract-based design 29

aspects of components (also commonly referred to as extra-functional proper-
ties or quality attributes). Non-functional properties are particularly important
in embedded systems such as real-time systems and systems used within the
safety-critical domains, where properties such as timing, end-to-end deadlines,
communication bandwidth or power consumption, play an important role.

The ultimate goal of attaching contracts to components is to support com-
position of systems through contract-based design which should contribute to
system attributes such as correctness, robustness and reusability. While con-
tracts for components can be established for different aspects (both functional
and non-functional), combining contracts for different components and com-
bining contracts for different aspects (viewpoints) attached to the same com-
ponent requires different composition operators. This lead to development of a
multiple viewpoint contract meta-theory [65] that provides mathematical foun-
dations for contract-based model for embedded systems design. The theory is
built upon the notion of the heterogeneous rich components (HRC) that encom-
pass all the viewpoints necessary for electronic/electrical systems design. More
specifically, it assumes a layered design space for electronic components (e.g.,
functional/software layer, ECU/hardware abstraction layer, and hardware-level
layer) [65]. In the reminder of the section we provide the basic notions of the
particular assumption/guarantee contract theory used in this thesis [66].

2.5.1 Logic-based Contract Refinement Checking

OCRA (Othello Contracts Refinement Analysis) [66] is a tool for composi-
tional verification of logic-based contract refinement built upon the Othello
System Specification (OSS) language. The component specification with OSS
includes interface and contracts specification as well as the enumeration of the
subcomponents, their connections and the refinement of the contracts. The
interface is composed of the ports and parameters which make the set of V
variables. While ports represent input/output of the component, the parameters
represent variables with constant values. The contracts are specified over the
set V using the Othello constraint syntax. The subset of the syntax is shown
in Table 2.1 where constant is a constant number and variable is a string. The
syntax includes some temporal logic operators such as always.

The semantics of both components and contracts is built around the notion
of a trace, i.e., the observable part of an execution of a component. Follow-
ing the trace-based semantics, a component S is described with a set VS of
variables that are visible outside of the component, and a set of all traces over
VS is denoted as Tr(VS). Then, an environment of S is a subset of Tr(VS).

47

30 Chapter 2. General Background

Table 2.1: A subset of the Othello constraints syntax
constraint := atom | not constraint | constraint and constraint | constraint or constraint

| constraint implies constraint | always constraint | never constraint;
atom := true | false | term relational op term | term;
term := variable | constant;
relational op := (“=” | “!=” | “<” | “>” | “<=” | “>=”);

Assuming an assertion language, an assertion A can be described by an as-
sociated set of ports VA and a semantics JAK defined as a subset of Tr(VA).
Building on top of the assertion language, a contract C= (A,G) of the compo-
nent S is a pair of assertions namely assumptions (A) and guarantees (G) over
VS . An environment E is said to be a correct environment of C iff E ⊆ JAK.
Contract refinement represents the backbone of checking the component de-
composition [66]. Informally, a set of contracts of the sub-components refines
a contract of the composite component if:

• the assumptions of all sub-component contracts are met by the other sub-
components and the environment defined by the assumptions of the com-
posite component contract; and

• the sub-component contracts deployed in the environment defined by
the composite contract assumptions imply the composite contract guar-
antees.

Consider a component with two input ports input1 and input2 and two out-
put ports output1 and output1Valid, such that the output1Valid indicates the
validity of the output1 signal. The example in Table 2.2 illustrates a contract
for such a component using Othello constraints syntax. The contract assumes
both inputs to be always positive numbers, and that the difference between the
two never exceeds 0.1. In return, if these conditions are met, then the output1
is guaranteed to be always valid, i.e., the output1Valid is always true.

Table 2.2: A contract example using Othello constraints syntax
A: always (input1 > 0 and input2 > 0 and (input1-input2 >= -0.1 and input1-input2
<= 0.1));
G: always output1Valid;

48

2.5 Contract-based design 31

2.5.2 System modelling with contract-based design support
CHESS provides an editor to model all phases of system development: from
requirements definition, architecture modelling to software design and its de-
ployment to hardware. In the CHESS toolset, components can be modelled
as component types or component instances. Component types can be seen
as elements out of context, and component instances as the in-context rep-
resentation of the corresponding component types. Component instances in-
herit the attributes of the corresponding component type. System modelling in
CHESS includes support for contract-based design, which relies on describing
behaviours of components in terms of contracts. CHESS facilitates an interface
with OCRA, such that the CHESS model together with the contracts can be ex-
ported in the Othello System Specification (OSS) format used by OCRA. The
OSS syntax does not explicitly distinguish between component types and com-
ponent instances. The system component is considered a component instance,
while every other component is considered a component type. The compo-
nent types are instantiated as subcomponents, while their variables are instan-
tiated in the connection clause of the parent component. The contract checking
with OCRA is initiated from CHESS and the result is back-propagated to the
CHESS model.

49

50

Chapter 3

Real World Examples

In this chapter, we describe two selected real-world system examples that we
have used to illustrate and evaluate our research. We present the system de-
scriptions here, and use them in the reminder of the thesis as running exam-
ples, as well as for validating the research in specific case studies performed
on these systems.

3.1 Fuel Level Estimation System
Fuel Level Estimation System (FLES) is based on a real estimation system
used in Scania trucks with liquid fuel. The models used do not cover all the
details of the real system. The main functionality of FLES is to estimate the
fuel level in the truck tank and present it to the driver via dashboard. The
system must be able to handle the dynamics of a driving vehicle in various
driving environments, e.g., hills and off-road conditions.

3.1.1 The FLES Architecture
The architecture of FLES is shown in Figure 3.1. The Estimator component es-
timates the volume of fuel in a vehicle’s tank based on the sensor data obtained
from the Fuel Tank and the Engine Management System (EMS). The received
sensor values go through a series of transformations and filtering to handle any
variations in the sensed fuel level value. The estimated value is converted into
percentage, passed to the Presenter and presented to the driver of the vehicle
through the Fuel Gauge mounted on the dashboard. Due to dependencies of

33

51

34 Chapter 3. Real World Examples

Figure 3.1: Fuel Level Estimation System High-Level Architecture

the transformations to the physical properties of sensors and its environment
(e.g., size of the tank), these parameters are made configurable to make the
Estimator usable in different variants of the system (e.g., trucks with different
tank sizes).

3.1.2 The Criticality of the System
Hazard analysis performed on the system reveals that if the fuel level displayed
on the fuel gauge is higher than the actual fuel level in the tank then the vehicle
could run out of fuel without the driver being informed, which would cause an
unexpected engine stop. If this happens while driving on e.g., a highway, the
consequences could be catastrophic. Although there may be other hazards in
the system, we consider only H1: running out of fuel while driving.

The safety analysis, as recommended by the relevant safety standards, starts
by identifying at least one Safety Goal (SG) for each hazard, then for every
safety goal, corresponding Functional Safety Requirements (FSRs) are derived
and finally, Technical Safety Requirements (TSRs) are derived from the FSRs.
We consider the following safety goal and derived functional safety require-
ment:

• SG1: The FLES shall not show higher fuel level on the fuel gauge than
the actual fuel in the vehicle’s tank.

• FSR1: The Estimator component shall not provide value of the estimated
fuel level that deviates more than -5% from the actual fuel-level in the
tank.

• TSR1: The Estimator component shall implement a filter with the Kalman
algorithm that shall use both input from the fuel tank and the EMS to pro-
vide a value of the estimated fuel level that does not deviate more than
-5% from the actual fuel-level in the tank.

Additionally, the engine status signal provided by EMS should not be older
than 0.3 seconds since an older value could result in a too big deviation from

52

3.2 Loading Arm Controller Unit 35

Figure 3.2: Loading Arm Control Unit High-Level Architecture

the actual fuel consumption that may cause deviation in the estimated fuel level
value.

3.2 Loading Arm Controller Unit

Wheel loaders are heavy equipment machines used in construction to move
material or load material into/onto other types of machinery such as trucks.
They are equipped with a lifting arm, which can perform up and down move-
ments that are directly controlled by the operator. Loading Arm Controller Unit
(LACU) is a software controller commonly used in wheel loaders for control-
ling the loading arm of the vehicle. We base LACU on Volvo Construction
Equipment demonstrator [67] developed within the SafeCer project1.

3.2.1 The LACU Architecture

A generic structure of the loading arm item is shown in Fig. 8.1. Based on the
inputs from the connected sensors and actuators, LACU issues commands to
the hydraulics component to perform the arm movements. LACU is composed
of at least three main components, the arm angle sensor monitor, Loading Arm
Automatic Positioning (LAAP) and an arm controller that issues the final com-
mand to hydraulics.

1SafeCer – Safety Certification of Software-Intensive Systems with Reusable Components.
ARTEMIS-JU-269265.

53

36 Chapter 3. Real World Examples

3.2.2 The Criticality of the System
Some of the hazards identified for LACU are:

• (H1) unintended movement of the lifting arm, and

• (H2) high-pressure hydraulic leakage.

We consider the hazards in the following operational situations:

• high speed (the vehicle is moving with varying speeds that can go up to
the maximum available speed)

• short cycle (a combination of load lifting and low speed transportation)

• load and carry (the vehicle is moving with varying ground speed with
the bucket fully loaded)

Hazard H1 can be dangerous during high speed due to e.g., heavy traffic
when driving on a public road, during the short cycle and load and carry phases
it can be dangerous for bystanders present in the area while high precision
movement is required from the machine. On the other hand, the hazard H2
could produce a highly flammable oil/air mixture spray mist that might ignite
in contact with hot surface, hence the leakage should be identified as soon as
possible.

3.3 Summary
In this chapter we have presented two real-world examples that we use in this
thesis for performing both exploratory and explanatory case studies. In partic-
ular, we mainly use FLES to exemplify the thesis contributions presented in
the coming chapters, while we use LACU to evaluate the thesis contributions
in two explanatory case studies presented in Chapter 8.

54

Chapter 4

Contract-driven Assurance

In this chapter, we present the contributions that address the first research goal
of the thesis. To achieve the automated generation of assurance arguments from
system models, we need to connect the system modelling with the assurance
case modelling and evidence management. We first introduce the background
information on the connection between assurance case modelling and evidence
management introduced by the OMG group in form of a standardised language
for modelling. Then, given the background information about safety assurance
in Section 2.1 and contract-based design in Section 2.5, we outline the assur-
ance strategy for contract-driven assurance in form of argument patterns that
conceptually connect the system with assurance and evidence elements. Then,
we present the safety element (component) meta-model that defines the con-
nection between the system, assurance case modelling and evidence manage-
ment domains. Finally, we present how such a meta-model can be the basis for
automated instantiation of the contract-driven assurance argument-patterns.

4.1 Structured Assurance Case Meta-model

Structured Assurance Case Meta-model (SACM) is an Object Management
Group (OMG) standard that specifies a meta-model for representing structured
assurance cases [24]. The purpose of the standardised meta-model is to provide
better portability and exchange of the safety arguments used to represent the
assurance cases. In particular, SACM has brought together the assurance case
modelling and evidence management domains by connecting them in a single

37

55

38 Chapter 4. Contract-driven Assurance

meta-model. SACM 2.0 consists of argumentation and artifact meta-models.
The two meta-models are combined and supported through the common base
elements. In the reminder of the section we provide the essential background
information about the two meta-models, and clarify their relation to GSN.

4.1.1 SACM Argumentation meta-model
Figure 4.1 shows the SACM argumentation meta-model part (elements rep-
resented with solid borders). It defines the basic concepts required to model
structured arguments. The argumentation elements in SACM are grouped into
single meta-classes where the specific nature of their usage is specified in the
attributes of those classes. For example, a generic element Claim represents
all the different kinds of claims in the argument, and whether the claim is a
supporting statement, assumption, justification or context, is specified in the
attribute of the element. This portion of the SACM meta-model does not cover
artifacts, but only citations to artifacts, which are further detailed in the SACM
Artifact meta-model. The artifact citations are captured by the ArtifactRefer-
ence element and cover different kinds of citations such as the ones that can
be used as context statements in an argument, citations of away elements or
entire modules. The links between the different elements are achieved by the
AssertedRelationship element, where different asserted relationships are used
for different types of connections. Also, the isCounter attribute can be used
to state that one element is countering another element, which can be used to
specify for example counter evidence. Modular argumentation is enabled by
capturing arguments in argument packages through the ArgumentPackage el-
ement. Furthermore, linking different packages is also supported, as well as
citation of elements across packages. Since this meta-model captures the ba-
sic argumentation elements and their relationships, it can be used to instantiate
different compliant meta-models for different argumentation notations such as
GSN [27] and Claims-Arguments-Evidence (CAE) [68]. The purpose of such
a common meta-model is to facilitate interchange of the structured argumen-
tation documents produced by different tools that use different argumentation
notations. Figure 4.1 shows the mapping of the basic subset of GSN elements
(represented with dashed borders) to the SACM argumentation meta-model.

4.1.2 SACM Artifact meta-model
The SACM Artifact meta-model specifies artifacts as the main evidentiary of an
assurance case. It allows for the assurance case evidence management, which

56

4.1 Structured Assurance Case Meta-model 39

B
as

e
::

A
rt

if
ac

tE
le

m
e

n
t

A
rg

u
m

e
n

ta
ti

o
n

El
e

m
e

n
t

A
rg

u
m

e
n

tG
ro

u
p

A
rg

u
m

e
n

tP
ac

ka
ge

A
rg

u
m

e
n

tP
ac

ka
ge

In
te

rf
ac

e

A
rg

u
m

e
n

tP
ac

ka
ge

B
in

d
in

g

A
rt

if
ac

tR
e

fe
re

n
ce

A
rg

u
m

e
n

tA
ss

e
t

B
as

e
::

M
u

lt
iL

an
gS

tr
in

g

A
rg

u
m

e
n

tR
e

as
o

n
in

g
A

ss
e

rt
io

n
+a

ss
er

ti
o

n
D

ec
la

ra
ti

o
n

:A
ss

er
ti

o
n

D
ec

la
ra

ti
o

n
[1

]=
as

se
rt

ed

C
la

im

A
ss

e
rt

e
d

R
e

la
ti

o
n

sh
ip

+i
sC

o
u

n
te

r
: b

o
o

le
an

 [
1

]
=

fa
ls

e

A
ss

e
rt

e
d

C
o

n
te

xt
A

ss
e

rt
e

d
Ev

id
e

n
ce

A
ss

e
rt

e
d

In
fe

re
n

ce
A

ss
e

rt
e

d
A

rt
if

ac
tC

o
n

te
xt

A
ss

e
rt

e
d

A
rt

if
ac

tS
u

p
p

o
rt

+a
ss

er
te

d
+n

ee
d

sS
u

p
p

o
rt

+a
ss

u
m

ed
+a

xi
o

m
at

ic
+d

ef
ea

te
d

+a
sC

it
ed

«
en

u
m

er
at

io
n

»
A

ss
e

rt
io

n
D

e
cl

ar
at

io
n

0
..

*

+a
rg

u
m

en
ta

ti
o

n
El

em
en

t

+m
et

aC
la

im

0
..

*

+r
ea

so
n

in
g

0
..

1

+s
o

u
rc

e

+t
ar

ge
t

1
..

*

1
..

*

+p
ar

ti
ci

p
an

tP
ac

ka
ge

+i
m

p
le

m
en

ts

2
..

*

1

+s
tr

u
ct

u
re

0
..

1

+a
rg

u
m

en
ta

ti
o

n
El

em
en

t

0
..

*

+r
ef

er
en

ce
A

rt
if

ac
tE

le
m

en
t

0
..

*

+c
o

n
te

n
t

0
..

1

G
SN

:C
la

im

G
SN

:
St

ra
te

gy

G
SN

:
C

o
n

te
xt

G
SN

:
A

ss
u

m
p

ti
o

n
G

SN
:

Ju
st

if
ic

at
io

n
G

SN
:

In
_c

o
n

te
xt

_o
f

G
SN

:
Su

p
p

o
rt

e
d

_b
y

G
SN

:
A

w
ay

_g
o

al

G
SN

:
A

w
ay

_c
o

n
te

xt

G
SN

:
So

lu
ti

o
n

G
SN

:
A

w
ay

_s
o

lu
ti

o
n

G
SN

:
M

o
d

u
le

G
SN

:
M

o
d

u
le

_r
e

fe
re

n
ce

G
SN

:
C

o
n

te
xt

Fi
gu

re
4.

1:
A

su
bs

et
of

G
SN

el
em

en
ts

(d
as

he
d

bo
rd

er
s)

m
ap

pe
d

to
th

e
SA

C
M

ar
gu

m
en

ta
tio

n
m

et
a-

m
od

el

57

40 Chapter 4. Contract-driven Assurance

includes both evidence description, storage and versioning. As mentioned in
Section 2.1, the evidence is one of the main pillars of safety cases alongside
the requirements that they support and the argument that connects the two. Ev-
idence is information or an objective artefact offered in support of one or more
claims [24]. Anything that supports a claim can be referred to as evidence.
Evidence is usually based on established facts or expert judgement. Generic
examples of evidence in the context of safety cases are test results, system
architecture, and tool/personnel competence.

Evidence can be categorised with respect to different characteristics such as
nature of support and quality of information it offers [24], or based on the char-
acteristics of the document that is the source of the information [69]. We focus
on the categorisation of evidence based on the nature of support it offers [69],
i.e., proximity of the evidence to the product it supports, which categorises ev-
idence as immediate, direct and indirect. The immediate evidence represents
the original artefacts that is being evaluated as evidence such as source code,
system architecture, specifications and requirements. The direct evidence rep-
resents the direct properties of immediate artefacts and is typically sufficient on
its own to support a claim, e.g., test results, hazard and failure logic analyses.
The indirect evidence (also referred to as circumstantial evidence) represents
information related to the direct evidence and is typically not sufficient to sup-
port a claim on its own, but require introduction of additional evidence. Typical
examples of indirect evidence include tool and personnel qualifications as well
as development process.

The SACM Artifact meta-model explicitly groups the evidence on artifacts,
activities, events, participants, techniques and resources. The modelling of the
different kinds of evidence is not only supported when the evidence is avail-
able, but SACM also makes it possible to specify the evidence that is not avail-
able yet, to indicate that this type of evidence with the particular properties is
needed.

4.2 Arguing Contract-driven Assurance

Contracts as pairs of assumption/guarantee assertions about a component are
intended to support compositional verification of a composite system [66]. An
example of such a system is FLES, introduced in Chapter 3. In the context of
FLES, consider the partial requirement decomposition for the hazard H1 (run-
ning out of fuel while driving), presented in 3.1.2: the system safety goal SG1
is allocated to FLES, FSR1 as a functional safety requirement addressing SG1

58

4.2 Arguing Contract-driven Assurance 41

Figure 4.2: An example of a contract specification on different composition
levels for Fuel Level Estimation System

is allocated to the Estimator component, and the derived technical safety re-
quirement TSR1 is allocated to the Filter component, as depicted in Figure 4.2.

To support the design of a composite system such as FLES and enable com-
positional verification, contracts should be defined on each level of composi-
tion as shown on the FLES example in Figure 4.2. Such contracts are specified
by either formalising the requirement allocated to a component or capturing the
component behaviour that implies that the requirement is satisfied. For exam-
ple, a contract for the Estimator component realising FSR1 can be informally
formulated as follows:

A: (fuelLevelSensor within correct range AND fuelLevelSensor does not
deviate more than 10% from the actual fuel level value) OR
(fuelRate within correct range AND fuelRate does not deviate more than
1% from the actual engine consumption value AND Tank size within
[230-1000])

G: totalFuelLevel does not deviate more than -1% from the actual fuel level
value

59

42 Chapter 4. Contract-driven Assurance

To guarantee the behaviour that addresses FSR, the contract assumes that either
the fuel level sensor value located in the fuel tank of a truck, or the fuel rate
value provided by the engine management system uphold certain properties.

While compositional verification of a system using contracts establishes
validity of a particular requirement on the system model in terms of contracts,
the assurance that the system implementation actually behaves according to
the contracts requires some additional reasoning. To capture this reasoning
and argue contract-driven assurance, we present two argumentation patterns:

• “Contract-driven requirement satisfaction assurance” – this argument
pattern deals with the connection of the safety requirements allocated to
components and the component contracts, and how such contracts can
be used to assure that the requirement is achieved by the component,
i.e., that the component successfully implements the requirement with
sufficient confidence.

• “Contract satisfaction assurance” – this argument pattern deals with the
satisfaction of the component contracts in the given context, i.e., whether
the contracts are valid with sufficient confidence.

Figure 4.3 presents the contract-driven requirement satisfaction assurance
argument pattern. To assure with sufficient confidence that a system satisfies a
safety requirement based on the related contracts, we need to provide evidence
that the contracts correctly represent the requirement (often said that the con-
tract guarantees formalise the requirement) and evidence that the contracts are
valid in the given system context. The validity of a contract greatly depends
on its completeness and truthful representation of the actual implementation,
e.g., as there may be a missing property in the contract specification that may
render the contract invalid in the given context. Hence, besides the contract va-
lidity evidence, we also need to assure sufficient confidence in that validity, i.e.,

contracts
The list of {component} contracts

formalizing {requirement}:
{contractList}

reqConf
{requirement} is satisfied with sufficient confidence

reqImplementation
{requirement} is correctly formalized
by the related {component} contracts

contConf
The set of {component} contracts
formalizing {requirement} are satisfied
with sufficient confidence

Figure 4.3: Contract-driven requirement satisfaction assurance argument pat-
tern

60

4.2 Arguing Contract-driven Assurance 43

contractDesc
{informal description of contract}

contractConfidence
{contract} is satisfied with sufficient confidence

contractDecomp
{contract} decomposition
is correct

contractReq
The contract formalizes {requirement}

contractComplete
{contract} is sufficiently complete

contractAssume
{contract} assumptions are satisfied
with sufficient confidence

Away Goal
{contractN} is satisfied with

sufficient confidence
{ComponentN} Module

Contract N of
sub-component N

DC-Str
Argument over all sub-component

contracts refining {contract}

Assume-Str
Argument over all the contracts in the

environment supporting the assumptions

Contract X of
component Y

Away Goal
{contractX} is satisfied with

sufficient confidence
{ComponentY} Module

Comp-Str
Argument over all the evidence supporting

the contract completeness

EvidenceZ
{evidenceZ:title} supports completeness of
the contract with {evidenceZ:confidence}

1....Z

Figure 4.4: Contract satisfaction assurance argument pattern

that the contracts are sufficiently complete. We formulate the sufficient com-
pleteness of a contract as an acceptably low likelihood that there are missing
properties in the contract specification that may render the contract invalid.

Figure 4.4 presents the contract satisfaction assurance argument pattern.
We use satisfaction here to refer to a contract that is validated in a given context,
i.e., its consistent with the other contracts and its assumptions are validated in
the given context. Furthermore, when we deal with hierarchical systems such
as FLES, where contracts are defined on each hierarchical level with well de-
fined decomposition conditions, then to argue that the composite component
behaves according to the contract, we should explicitly argue over the com-
ponent decomposition. To assure satisfaction of a component contract with
sufficient confidence we devise the supporting argument with three goals:

• the contract specification is sufficiently complete (the goal contract-
Complete);

• the environment (made of the other components and the system context)
meets the needed assumptions of the component (the goal contractAs-
sume);

• the internal subcomponents of the component correctly refine the com-
ponent contract, i.e., the composite component decomposition is correct
(the goal contractDecomp);

The confidence in satisfaction of a contract depends on both the internal
components and their contracts, as well as the neighbouring components and

61

44 Chapter 4. Contract-driven Assurance

their contracts. Hence, both the assurance of the component decomposition and
its relation to the environment in which it is deployed are addressed in a similar
way in the contractDecomp and contractAssume argument branches. In both
cases we refer to the argument modules that address the confidence in those
supporting contracts, be it sub-component or external contracts. The evidence
for those two branches is supported by the various contract checks that can
be performed during formal analysis, e.g., contract consistency, validity and
refinement checking as done in the OCRA tool introduced in Section 2.5.1.
Conversely, the evidence for the completeness branch is generally external to
those formal analysis results as that evidence aims at increasing confidence that
the specification itself on which the formal analysis was done is sufficiently
complete.

4.2.1 Contract-driven assurance case structure

As mentioned in Section 2.1, an assurance case can be structured into mod-
ules that encapsulate argument structures focusing on a particular goal. The
contract-driven assurance case structure assumes that an assurance module is
created for each system component where the contract-satisfaction patterns are
instantiated to argue over each contract of the component. A separate module
that depends on those component modules is created for arguing over satisfac-
tion of requirements. The contract-based requirements satisfaction pattern is
used to build that argument module and connect that module to the correspond-
ing component modules. The basic structure of the contract-driven assurance
case is shown in Figure 4.5.

4.2.2 Contract-driven assurance supporting evidence

To drive the system assurance using contracts we associate with each contract a
set of assurance assets. Those assets can be the above mentioned evidence that
increase confidence that the component (i.e., the implementation of the con-
tracts) behaves according to the contract, i.e., that the component deployed in
any environment that satisfies the contract assumptions exhibits the behaviours
specified in the corresponding contract guarantees. We categorise the evidence
that supports the confidence in the contracts in terms of completeness, correct-
ness and consistency, as follows:

1. completeness refers to whether contracts capture all the needed proper-
ties of the component and the environment,

62

4.3 Safety Element Meta-Model 45

Figure 4.5: Contract-driven assurance case structure

2. correctness refers to whether the contracts are correct with respect to
associated requirements, and

3. consistency refers to whether the contracts are not contradicting each
other.

These three evidence categories represent the three pillars for assuring confi-
dence in contract-driven assurance. The correctness evidence is used in the
contract-driven requirement satisfaction argument, while the completeness and
consistency are used for the contract satisfaction arguments. The consistency
evidence represents any formal analysis results that establish the validity of
a particular property of the contract specifications, such as for example re-
finement analysis results. While consistency evidence is used to support the
contract decomposition and assumption satisfaction goals, the completeness
evidence is presented separately.

4.3 Safety Element Meta-Model
To connect the assurance and system modelling domains, we present the Safety
Element Meta-Model (SEMM) in Figure 4.6. A safety element is a component
that besides its implementations, is composed of the safety requirements that
specify the system safety-relevant demands on the component, contracts that
capture those demands and describe their implementation, and evidence that

63

46 Chapter 4. Contract-driven Assurance

Component

-needsFurtherSupport

Safety Contract Safety Requirement

Support EvidenceSupport Statement

satisfiedBy

inContextOf

1..*

0..*

0..*

1..* 1..*

1..*

supportedBy

supportedBy

1..* 0..*

1..*

inContextOf

SACM: Claim SACM: ArtifactReference

-value

Property

A
ss

u
m

p
ti

o
n

 (
A

)

G
u

ar
an

te
e

(G
)

1..* 1..*

Figure 4.6: Safety Element Meta-model and its relation to SACM

supports confidence in the behaviour of the component. Each safety require-
ment is satisfied by at least one contract, and each requirement and a contract
can be supported by evidence. Since the aim of safety assurance is to build
structured arguments that clearly communicate confidence, we include as a part
of such a safety element also the supporting statements that aim to increase the
clarity of the different contracts, requirements and evidence, as well as their
interconnections. The Safety Contract metaclass is furthermore enriched to
include explicit support for specifying that the contract is not fully validated,
i.e., only partial evidence is provided with the contract and additional evidence
should be provided. This is achieved with the needsFurtherSupport attribute.
A contract is composed of two properties, namely assumptions denoted with A
and guarantees denoted with G.

The aim of SEMM is to bridge the system modelling with the assurance
case modelling. In SEMM we do not detail the compositional nature of sys-
tems and composite components or fine-grained assurance support, but focus
on a component as a safety element, and its relations to the essential assurance
assets. We strengthen the connection between the assurance case about a sys-
tem and its SEMM compliant system model by relating both to an Evidence
Container compliant to the SACM Artifact meta-model.

As mentioned in Section 4.1.2, based on the nature of the evidentiary sup-
port we distinguish between immediate, direct and indirect evidence. The ev-
idence that is used to support the safety contracts qualifies as the direct evi-

64

4.3 Safety Element Meta-Model 47

Figure 4.7: Connection between the SEMM and SACM meta-models

dence. Regardless of the type of the evidentiary support, all evidence is man-
aged by the SACM-compliant Evidence Container. SACM allows for detailing
the nature of the support of evidence related to a contract through the artifact
properties, so that we can distinguish between evidence that supports contract
consistency, completeness and correctness, as discussed in Section 4.2. De-
pending on the indicated type of the supporting evidence, the evidence is used
accordingly in the corresponding assurance. For example, the correctness evi-
dence related to a contract with respect to a corresponding requirement is used
to assure that the requirement is correctly formalized/realised by the contract.

The connection to the SACM Argumentation and Artifact meta-models in-
troduced in Section 4.1, is achieved through the supporting statement and ev-
idence elements, which correspond to the SACM Claim and Artifact Refer-
ence elements, respectively. The connection between SEMM and the SACM
Argumentation and Artifact meta-models is shown in Figure 4.7. Since the
same artifacts sources are referred within both the assurance case and the sys-
tem model, automated transition between the assurance and system domains is
possible. We use automated model to model transformations to generate GSN
argumentation from a SEMM compliant specification. In the reminder of the
section we detail the model to model transformation.

4.3.1 SEMM to SACM transformation
Transforming the information captured within a SEMM compliant model to
a GSN argumentation model compliant with the SACM argumentation meta-
model results in a set of contract satisfaction argumentation-fragments. Those
fragments represent particular instantiations of the argumentation pattern pre-
sented in Figure 4.4. These fragments can be organised in different ways,

65

48 Chapter 4. Contract-driven Assurance

Algorithm 1 M2M Transformation from SEMM to SACM
SEMM2SACM(in SEMM, out SACM){

for each SafetyContract sc in SEMM do
sc2claim(in SEMM::SafetyContract, out SACM::Claim);
for each SupportStatement s in context of sc do

s2claim(in SEMM::SupportStatement, out SACM::Claim);
end for
addAssumeGoal(in SEMM::SafetyContract, out SACM::Claim);
for each Assumption Property a in sc do

a2claim(in SEMM::SafetyContract, out SACM::Claim);
a2away (in SEMM::SafetyContract, out SACM::ArtifactReference);

end for
addCompleteGoal(in SEMM::SafetyContract, out SACM::Claim);
for each SupportEvidence se supporting sc do

se2claim(in SEMM::SupportEvidence, out SACM::Claim);
se2Sol(in SEMM::SupportEvidence, out SACM::ArtifactReference);
for each SupportStatement ss in context of se do

ss2claim(in SEMM::SupportStatement, out SACM::Claim);
end for

end for
if decomposition via refinement defined then

addDecompGoal(in SEMM::SafetyContract, out SACM::Claim);
for each refining contract rc of sc do

rc2away(in SEMM::SafetyContract, out SACM::ArtifactReference);
end for

end if
end for

}

for instance to populate the contract-driven requirement satisfaction assurance
pattern, described in Figure 4.3. Regardless of the top-level organisation of
the generated argument-fragments, their population follows a set of common
transformation rules.

The common transformation rules are summarised by means of pseudo-
code in Algorithm 1. The SEMM2SACM model-to-model (M2M) transforma-
tion generates a set of argument-fragments, one for each safety contract. The
algorithm is composed of three main steps and one optional step, which are

66

4.3 Safety Element Meta-Model 49

performed for each of the contracts of a component:

• Step 1 – The contract is transformed to the top claim in sc2claim, which
is clarified via the related support statements in s2claim. The top claim
is then decomposed via addAssumeGoal, addCompleteGoal, and option-
ally if the component decomposition via contract refinement is defined
in the particular system, then addDecompGoal is also performed.

• Step 2 – Populate the subgoal created with addAssumeGoal. For each
of the contract’s satisfied assumptions a goal is created in a2claim to
argue over satisfaction of the assumption. The goal that presents the
satisfaction of the contract satisfying the assumption is associated to the
assumption goal via an away goal in away2a.

• Step 3 – Populate the subgoal created with addCompleteGoal. For each
support evidence associated with a contract create a goal in se2claim,
and then support it with the artifact reference in se2Sol. Finally, attach
the related support statements in ss2claim.

• Step 4– Given that the component decomposition is defined via con-
tract refinements, populate the subgoal created with addDecompGoal.
For each refining contract create an away goal in rc2away to the claim
presenting the confidence in the refining contract.

We summarise the basic transformation rules in more detail:

• sc2claim: creates the top-level goal of the contract satisfaction argument
pattern that the contract is satisfied with sufficient confidence;

• s2claim: creates and associates context statements with the top-level goal
regarding the informal description of the contract and its relation to re-
quirements;

• addAssumeGoal: creates the generic contractAssume goal from the con-
tract satisfaction argument pattern that the contract assumptions are sat-
isfied with sufficient confidence and associates it with the top-level goal;

• a2claim: creates a subgoal of the contractAssume goal claiming that the
particular assumption is satisfied with sufficient confidence;

• away2a: creates an away goal pointing to the contract that guarantees
satisfaction of the above argued assumption and associates it to the cor-
responding assumption goal;

67

50 Chapter 4. Contract-driven Assurance

• addCompleteGoal: creates the generic contractComplete goal from the
contract satisfaction argument pattern that the contract is sufficiently
complete and associates it with the top-level goal;

• se2claim: creates a subgoal of the contractComplete goal to present how
particular evidence artifact supports the contract completeness;

• se2Sol: creates and associates the solution element with the correspond-
ing artifact specific goal;

• ss2claim: creates and associates the supporting context statements with
the artifact specific goal clarifying how the artifact supports the com-
pleteness of the contract;

• addDecompGoal: creates the generic contractDecomp goal from the
contract satisfaction argument pattern that the contract decomposition
is correc and associates it with the top-level goalt;

• rc2away: creates an away goal pointing to the satisfaction argument of
the contract specified in the decomposition and associates it with the
contractDecomp goal;

4.4 Summary
In this chapter we have presented how contract-based design and development
can be the basis for building an assurance case. In particular, we have pre-
sented a couple of argumentation patterns describing how to build confidence
in the system developed and design using contracts. Then, we have presented a
meta-model that allows for capturing the needed assurance information during
system modelling. Finally, we have presented how the safety-assurance aware
system models can be used to automatically instantiate the proposed contract-
driven assurance argumentation patterns.

Assuring that a system is sufficiently safe involves many stakeholders in
the system development. For example, when developing a safety-critical sys-
tem using the contract-based design paradigm then the activities such as con-
tract specification, formal analysis and safety assurance using the results of
such analysis are not necessarily done by the same person. To build a safety
argument and connect the evidence with the safety goals, the safety assurance
engineer relies on understanding the evidence. The idea with connecting con-
tracts with assurance elements such as claims, evidence and context statements

68

4.4 Summary 51

is that the system engineer specifying the contracts can at the same time clar-
ify and support the contracts with some additional statements as well as the
artefacts used to obtain them or verify them. Capturing the additional infor-
mation during the system modelling allows the safety assurance engineer to
instantiate argumentation patterns with pre-prepared information. The gener-
ated argument-fragments represent only a portion of the overall argument and
can be seen as the skeleton that the overall argument can be built upon. Even
after the automated argument-fragment generation, the need for further manual
tailoring of the argument remains. The semi-automated nature of such gener-
ation of an argument preserves the possibility for customised tailoring of the
argument, while enabling benefits of getting a head start by automated genera-
tion of parts of the argument.

Automation in safety argumentation is often said to be dangerous as it re-
duces the critical thinking involved in the process, which in turn may negatively
impact the quality of the resulting argument. In this thesis, we argue that au-
tomated instantiation does not mean that the critical reasoning by the engineer
when building the argument has been lost, but just that part of the effort for
building the confidence in the specification was moved to the system engineer.
What remains for the assurance engineer is to review whether the specification
fits the requirements and whether the system engineer has managed to assure
the confidence in the specification.

69

70

Chapter 5

Contract-Driven Reuse for
Safety-Critical Systems

In this chapter, we first look at some examples of reusable safety-relevant com-
ponents from our real-world examples in Chapter 3. Then, to provide greater
support for reuse of safety-relevant components, we present an extension of the
assurance-aware contract based design in form of strong and weak contracts.
Finally, we align the assurance and reuse aware contract-based design with the
safety process mandated by ISO 26262 and its Safety Element out of Context
concept for reuse.

5.1 Examples of reusable safety-relevant compo-
nents according to ISO 26262

As mentioned earlier, reuse of components in safety-critical systems is not suf-
ficient without reuse of the accompanying assurance assets, i.e., information
needed for assuring adequate levels of safety. Since what is needed for as-
surance is influenced by the domain specific safety standards, we turn to the
standards for initial guidance on reuse. In particular, we turn to the automo-
tive ISO 26262 standard introduced in Section 2.3 and its SEooC notion for
development and reuse of safety-relevant components promoted, described in
Section 2.3.1. Regardless of our focus on the automotive domain, the very con-
cepts for reuse introduced through the SEooC notion as well as the contract-

53

71

54 Chapter 5. Contract-Driven Reuse for Safety-Critical Systems

based design are generic enough to be applicable in other domains as well.
Given the system descriptions in Chapter 3, we highlight two examples of
SEooC candidates in each system:

• Fuel Level Estimation System (FLES): FLES estimates fuel in the tank
of a truck and displays the estimate to the driver. Since FLES represents
an item, it cannot be a SEooC by itself, but the Estimator component
makes a good SEooC example since the estimation process needs to be
tailored for the specific environment. For example, the size and shape
of the tank in a particular truck model influences the choice of the filter-
ing algorithm and its settings. Hence, Estimator should be developed to
work in these different environments. Furthermore, any differences in its
behaviour due to its different execution in different environments should
also be known.

• Loading Arm Controller Unit (LACU): LACU facilitates the driver of
wheel-loader to perform movements of the loader arm, either directly
via control lever or indirectly, via automatic positioning button. Since
the entire LACU cannot be a SEooC, the Loading Arm Automatic Po-
sitioning (LAAP) component is a good example of a SEooC. LAAP
implements the functionality to automatically move the arm to a par-
ticular position. In different wheel-loaders it behaves differently, hence
the component is developed with some configurable parameters such as
the ground speed limit after which the automatic positioning cannot be
used, or whether the position to which the arm is moved automatically
is pre-defined (a default position), or if it can be dynamically set by the
operator.

5.2 Strong and weak contracts
Reuse is intrinsic to contract-based design. It enables checking if a compo-
nent can be reused in a particular system, i.e., whether the system meets its
demands and whether the component meets the demands of the system. The
support for reuse in contract-based design has been mainly focused on com-
ponents (i.e., implementations of contracts) and not reusable components as
implementations of a set of contracts for different environments that may or
may not be satisfiable together. Reusable components such as SEooC are often
characterised with parameters that are used to tailor the behaviour of the com-
ponent in the different settings in which the component is reused. For example,

72

5.2 Strong and weak contracts 55

if we consider the LAAP component for automatic positioning of the loading
arm as a reusable component. It can be deployed in vehicles that have a fixed
position for automatic positioning, or it can be deployed in vehicles that have a
dynamic positions for automatic positioning that user can set. Since unintended
arm movement is one of the hazards for such vehicles, in the first environment
with fixed positioning no special demands need to be made on the accuracy of
the fixed position, as it never changes, which can be checked internally within
the LAAP component. But if the position is dynamic, then LAAP needs to rely
on its environment to provide a position value with sufficient accuracy. This
leads to having two different contracts about the same behaviour of the LAAP
component, but with different assumptions, which means that we can have one
set of correct environments for all the component contracts, but there are envi-
ronments that are correct for some, and not correct for other contracts. Since
contracts capture behaviour of the component, they should also support some
variability in capturing such behaviours. To address such need for variability
at the contract level, we make a distinction between strong and weak contracts.
On the one hand, the strong contracts are those whose assumptions should be
met by every context in which the component is reused, hence its guarantees
are always offered by the component. On the other hand, the weak contract
assumptions do not need to be satisfied by every context in which the com-
ponent is reused, but when they are met, only then the component offers the
corresponding weak guarantees.

We formally describe the strong and week contracts in terms of environ-
ments in the context of the trace-based contract framework [66]: for a com-
ponent S described with a set of strong contracts ξS(S) and a set of weak
contracts ξW (S), we say that an environment E is a correct environment of
S if: ∀(A,G) ∈ ξS(S), E ⊆ JAK, i.e., for an environment of S to be cor-
rect, it must satisfy the assumptions of all the strong contract of S. We denote
with E(S) all the correct environments of S. Such correct environments may
or may not satisfy the assumptions of the weak contracts of S. While this
provides some flexibility in specification of contracts, it may also mean that
some weak contracts may never be validated in any of the correct environ-
ments e.g., if a weak contract is contradicting a strong contract. For S not to
contain such unnecessary weak contracts we require that each weak contract
of S has at least one correct environment that satisfies its assumptions, i.e.,:
∀(A,G) ∈ ξW (S),∃E ∈ E(S), E ⊆ JAK.

The problem with specifying such contracts is that if we try to check refine-
ment by considering all the specified weak contracts, the check will fail since a
single environment might not be able to meet the assumptions of all the weak

73

56 Chapter 5. Contract-Driven Reuse for Safety-Critical Systems

contracts. To overcome this problem without redefining the notion of contract
refinement, we can either

• filter the weak contracts before checking the refinement, such that only
those weak contracts whose assumptions are met by the current environ-
ment are included in the refinement check; or

• transform the weak contracts in a different format such that refinement
can be performed.

Weak Contract Filtering

While a SEooC is described with sets of both strong and weak contracts, when
instantiated to a particular correct environment E then, for the purpose of re-
finement check, it is enough to describe the SEooC instantiation with a subset
of contracts that are applicable in the environment E. Given a SEooC com-
ponent S and its instantiation S′ in a correct environment E ∈ E(S), the set
of contracts of S′ denoted with ξ(S′), which contains the contracts considered
during refinement check, is a union of all the strong contracts from ξS(S) and
only those weak contracts from ξW (S) whose assumptions are satisfied by the
environment E.

Weak Contract Transformation

Instead of filtering only some weak contract to perform the refinement check,
the refinement check could be performed if the weak contracts are transformed
such that they do not impose restrictions on the environment. This can be done
if the weak contract assumptions are relaxed. For a weak contract C = (A,G)
of a component S, a relaxed counterpart of this weak contract would be C ′ =
(true;A =⇒ G), where true represents an assertion satisfied by all envi-
ronments. The relaxed counterpart has relaxed assumptions, hence it differs
from the corresponding weak contract in terms of environments, but they are
the same from the perspective of implementations. Since the assumption of C ′

is satisfied by every correct environment of S, it can be regarded as a strong
contract. Since any contract that is refined by C is also refined by C’, either
form can be used for the sake of checking refinement of a weak contract. If we
have a set of weak contracts and we transform them to their relaxed form and
conjunct them to a single contract by conjunction of their guarantees, then any
contract that is refined by at least one of those weak contracts is also refined
by the conjuncted contract. The SEooC instantiation in a particular context

74

5.2 Strong and weak contracts 57

does not require contract filtering in this case, but the in-context component
can inherit both strong and weak contracts. Since the refinement check by
considering all the strong and weak contracts would fail in case of two weak
contracts that do not share the same correct environments, we transform the
weak contracts to the appropriate format described as follows: given a SEooC
component S and its instantiation S′ in a correct environment E ∈ E(S), the
set of contracts of S′ denoted with ξ(S′), which contains the contracts consid-
ered during refinement check, is a union of all the strong contracts from ξS(S)
and the conjuncted contract of all the weak contracts in their relaxed form from
ξW (S).

Although this approach allows all the contract specifications to be used for
checking the refinement, it does not reveal which weak contracts are relevant
in the environment E, i.e., assumptions of which weak contract are satisfied by
E. Not knowing which weak contract is relevant in the current environment
means that we do not know which weak contract and its assurance assets we
should use in the assurance case. For the sake of reuse we still need to check
which weak contracts are relevant in the environment E.

5.2.1 Contract variability in SEMM

In Section 4.3 we introduced the SEMM metamodel to connect the system
with assurance case modelling. SEMM takes contract-based design one step
ahead in providing greater support for reuse of safety elements, where the reuse
includes not only the components and their contracts, but also the accompany-
ing assurance information. As discussed earlier in this chapter, while this is
sufficient for supporting reuse of components tailored for particular use, it is
not enough to deal with reuse of configurable components that have different
behaviours in different environments, and consequently, different assurance in-
formation relevant in those environments. For such components, SEMM needs
to be extended with the strong and weak contracts such that it is possible to
model the configurable components made for reuse. Furthermore, it should be
possible to capture the relevant contract selection in a given environment.

Figure 5.1 represents the SEMM extension with the strong and weak con-
tracts that allows for modelling of out-of-context configurable components
such as the SEooC examples in Section 5.1. We refer to this extended SEMM
version also as SEooCMM, explicitly expressing its support for SEooC mod-
elling. Since the supporting assurance information, including the different
statements, requirements and evidence, are connected to safety contracts, by
identifying the relevant contracts, we also identify the relevant assurance in-

75

58 Chapter 5. Contract-Driven Reuse for Safety-Critical Systems

Component

-needsFurtherSupport

Safety Contract Safety Requirement

Support EvidenceSupport Statement

satisfiedBy

inContextOf

1..*

0..*

0..*

1..* 1..*

1..*

supportedBy

supportedBy

1..* 0..*

1..*

inContextOf

SACM: Claim SACM: ArtifactReference

Strong Contract Weak Contract

-value

Property

St
ro

n
g

A
ss

u
m

p
ti

o
n

 (
A

)

St
ro

n
g

G
u

ar
an

te
e

(G
)

W
ea

k
A

ss
u

m
p

ti
o

n
 (

B
)

W
ea

k
G

u
ar

an
te

e
(H

)

dependentOn

0..*

1..*

1..* 1..*

1..*

Figure 5.1: Safety Element (out-of-Context) Meta-model with strong and weak
contract extension

formation. Knowing which information that we have reused is relevant in
the given environment allows us to automate generation of context-specific
argument-fragments by instantiating the requirements and contract satisfaction
patterns using only the information identified as relevant.

5.3 Contract-aware SEooC development and reuse
In this section we present the guidelines for using the strong and weak safety
contracts for the development and integration of reusable safety-relevant el-
ements within safety-critical systems. Moreover, we present how the guide-
lines can be used with the ISO 26262 SEooC notion. More specifically, we
bring the guidelines in form of the safety contracts development process and
the contract-specific activities, and detail how and when these activities can be
aligned with the SEooC development.

5.3.1 Safety Contracts Development Process

As mentioned in Chapter 1, the nature of safety being a system property and
the dangers of non-systematic reuse hinder reuse of safety components within
safety-critical systems. To alleviate these issues a clear process and guidelines
on how to perform reuse should be provided to promote systematic reuse of
safety components. To integrate the systematic reuse approach based on strong
and weak safety contracts within a safety process, a safety contracts develop-
ment process needs to be defined. We propose such a process divided into three

76

5.3 Contract-aware SEooC development and reuse 59

SEooC
Development

Safety Contracts Preliminary
Phase

Safety Contracts
Production Phase

Safety Contracts Utilisation and
Maintenance Phase

SEooC Assumptions

 SEooC Integration

Figure 5.2: Safety contracts development and SEooC development and integra-
tion processes combined

phases: (1) Preliminary safety contracts, (2) Safety contracts production, and
(3) Safety Contract utilisation and maintenance. The alignment of the safety
contract and the SEooC development phases is shown in Fig. 5.2. While the
first two safety contract phases support the two out-of-context phases of the
SEooC development (Fig. 2.4), the third safety contract phase supports SEooC
integration in context of a particular system. The first safety contract phase
includes the capturing of SEooC assumptions. The second contract phase is
performed together with the corresponding SEooC development phase, while
the third contract phase includes support for integration of SEooC in a partic-
ular system. In the reminder of this subsection we provide more details about
the corresponding contract-specific activities each phase is constituted of.

Preliminary Safety Contracts Phase

This phase should be performed before the development of the item/component
for which the contracts are being established. The phase constitutes of the
following contract-specific activities:

• Establishing strong and weak contracts: The strong contracts are estab-
lished by considering behaviours such as nominal functional or safety
mitigation behaviours not bound to context-specific configuration pa-
rameters. In contrast, weak contracts are established by considering be-
haviours bound to context-specific configuration parameters (e.g., accu-

77

60 Chapter 5. Contract-Driven Reuse for Safety-Critical Systems

racy of an algorithm may depend on the physical properties of the system
in which it is used).

• Enriching assumptions with environmental/operational constrains: The
different types of properties that should be captured by safety contracts
include nominal functional behaviour, failure logic behaviour, resource
usage behaviour and timing behaviour [70]. Upon establishing the strong
and weak contracts, the contract assumptions need to be enriched to
achieve sufficient level of completeness by including environmental prop-
erties such as platform properties, HW/SW interface and/or dependen-
cies to other elements.

• Preliminary matching of contracts to (assumed) HW/SW safety require-
ments: As mentioned in Section 8.3.4, the safety contracts should cap-
ture information needed to satisfy the safety requirements allocated to
the corresponding safety component. For example, supporting each de-
rived SW safety requirement allocated to a software component with at
least one preliminary contract is the final goal in completing the set of
the preliminary safety contracts. If the contract to satisfy a particular
requirement has not been previously developed, a preliminary contract
should be established with its guarantee reflecting the corresponding re-
quirement.

Safety Contracts Production Phase

This phase should be performed during the component development stage and
the following verification and validation activities on the component level. The
phase constitutes of the following activities:

• Actualisation of the contracts with implementation-specific properties:
Since not all information is fully known during the preliminary safety
contracts phase, certain preliminary contracts (e.g., on resource usage)
can only be captured with speculative targeted behaviour. After the com-
ponent development stage, such contracts need to be finalised once the
actual behaviour of the component (or a more accurate approximation)
can be established. For example, when more accurate information about
the actual accuracy of an algorithm, timing behaviour, or memory foot-
print of the component is available, then we can actualise the contracts
capturing such behaviours with the actual implementation-specific val-
ues.

78

5.3 Contract-aware SEooC development and reuse 61

• Supporting contracts with evidence: The final step in producing the
safety contracts for reuse is to support such contracts with the evidence
supporting the information captured by the contracts. The evidence re-
lated to the contracts consistency is generated by checking whether the
contracts are free of contradictions (e.g., strong and weak contracts of
the component do not make any contradicting assumptions on the same
property). The confidence in completeness of the information captured
within the contracts can be for instance increased through the evidence
from which the contract is derived. For example, in case that informa-
tion captured within a safety contract is based on simulation or testing
results, the corresponding guarantee of the contract should be based on
the results while the assumptions should capture the environmental pa-
rameters under which the simulation/testing has been performed. The
artefacts related to the simulation/testing are then attached to the par-
ticular safety contract with a description in which way they are related.
Since each safety requirement is associated with an ASIL, which in turn
influences the stringency of evidence that needs to be provided to assure
that the particular requirement is satisfied, the achieved ASIL informa-
tion is attached to the evidence rather than to the contracts themselves.
In this way the safety requirements are connected to the achieved ASILs
through the connection of the safety contracts with the associated evi-
dence.

Utilisation and Maintenance Phase

This phase is performed in context of a particular system and the activities
related to contract utilisation and maintenance can be performed at different
stages of the system lifecycle. For instance, the safety contracts can be utilised
for:

• Supporting architectural design of safety-critical systems.

• Selection of components based on the safety-relevant behaviours cap-
tured in the safety contracts.

• Integration of a component in an existing system, as one of the main roles
of contracts is to promote independent development of components and
their easier integration via contract-based verification.

• Contract-based safety assessment activities in form of contract-based
artefacts generation. Contracts can be utilised for generation of different

79

62 Chapter 5. Contract-Driven Reuse for Safety-Critical Systems

safety case artefacts such as safety case argument-fragments.

The supporting activity for the contract development and utilisation is con-
tract maintenance. For example, in case of changes to the existing contracts,
all contracts of the corresponding component should be revisited, while when
updating contracts with additional assumptions, only contracts capturing the
same type of behaviour (e.g., timing) should be reassessed. Modifications of
a component or system design requires that all its contracts are reassessed and
reestablished if required.

5.3.2 SEooC Development with Safety Contracts
SEooC development starts by capturing the system-level assumptions (Fig. 2.4).
Simultaneously, the preliminary safety contracts phase is initiated, as described
in the Section 2.3. All relevant assumed properties should be covered by the es-
tablished preliminary contract assumptions. Once the HW/SW safety require-
ments are derived, each requirement is associated with at least one contract
such that the behaviour achieved by the associated contracts satisfies the re-
quired behaviour by the corresponding requirement. After the safety contracts
are established and associated with the safety requirements, the safety contract
production phase and the corresponding ISO 26262 product development at
HW/SW level are continued to develop the SEooC and its safety contracts. At
this point the development of the SEooC out-of-context is completed.

Once the SEooC is used in a particular system (in-context), the assumed
requirements are compared and matched (e.g., manually) to the actual safety
requirements allocated to the component, and contracts are used to verify that
the assumptions captured during the SEooC development are satisfied (pro-
vided that the contracts are established for the rest of the system). The contract
production phase continues in-context to capture the behaviours of the SEooC
that could not be established out-of-context. In case of assumptions mismatch,
ISO 26262 impact analysis can be assisted by the contract maintenance activ-
ity. Once all the relevant safety contracts are satisfied for the reused SEooC, an
argument for the component is generated to show the satisfaction of the safety
requirements through the satisfaction of the associated safety contracts.

5.4 Summary
Contract-based design inherently supports reuse of components in form of con-
tract implementations. But to fully understand the behaviour of a component

80

5.4 Summary 63

and its safety implications, the context in which that behaviour is exhibited
needs to be known. While component contracts represent a way of capturing
a part of that context, additional context information is typically needed when
dealing with safety-relevant components. In this chapter we have presented
contract-driven support for fine-grained reuse of safety-relevant components
developed specifically for reuse in different systems and independently of a
specific system. In particular, we have used the notion of strong and weak
contracts to manage variability on the specification level. We have included
that contract variability in the Safety Element Meta-Model by interconnecting
strong and weak contracts with assurance information. Through this connec-
tion of system and assurance case modelling information, the variability on the
contract level allowed for variability on the assurance level as well.

Just as any safety-critical system, such components should also follow spe-
cific safety process and fulfil particular requirements mandated by the relevant
safety standards. We worked in the context of the automotive domain that de-
scribed high-level principles for development, reuse and integration of such
components in the form of the Safety Element out-of-Context notion. The idea
with such components is that the implementation comes together with par-
tial safety assurance information, which the integrator can utilise to speed up
the integration and reduce the cost of its safety assurance. In this chapter we
have proposed an extended assurance and reuse -aware contract-based design
as a way to achieve reuse, integration, and assurance of Safety Element out-
of-Context components. In particular, we have proposed the process of the as-
surance and reuse aware contract-based design and development and aligned it
with the mandated Safety Element out-of-Context principles from ISO 26262.

81

82

Chapter 6

Contract-driven assurance
and reuse based on
Compositional FLA Results

In this chapter we present a method called FLAR2SAF that uses Failure Logic
Analysis Results (FLAR) to generate Safety case Argument-Fragments (SAF).
We first present the essential background information FLAR2SAF is based on,
and then we present FLAR2SAF. More specifically, in FLAR2SAF we com-
bine the contract-driven assurance and reuse with an existing failure logic anal-
ysis. Then, we present how such a combination of assurance aware contract-
based design and failure logic analysis can be used to instantiate an existing
argument pattern for addressing failure behaviour of components [71].

6.1 COTS Aware Fault Propagation Analysis and
Argumentation

In this section we present a brief background of the Commercial Off The Shelf
(COTS) driven development as well as CHESS-FLA that supports failure logic
analysis of independently developed components. Then, we recall the argu-
mentation pattern for assuring the Absence of Hazardous Software Failure
Mode of “type” value, which can be analysed using CHESS-FLA.

65

83

66 Chapter 6. Contract-driven assurance and reuse based on
Compositional FLA Results

6.1.1 COTS-based Safety-Critical Development
In the context of safety critical systems, COTS-driven development is becom-
ing more and more appealing. The typical V model that constitutes the ref-
erence model for various safety standards is being combined with the typical
component-based development process. As Figure 6.1 depicts, the top-down
and bottom-up approach meet in the grey zone. Initially a top-down approach is
carried out. The typical safety process starts with hazards identification which
is conducted by analysing failure propagation, based on an initial description
of the system and its possible functional architecture. If a failure at system
level may lead to intolerable hazards, safety requirements are formulated and
decomposed onto the architectural components, as a basis for designing mit-
igation means. Safety requirements are assigned with Safety Integrity Levels
(SILs) as a measure of quantified risk reduction. Iteratively and incrementally
the system architecture is changed until a satisfying result is achieved (i.e. no
intolerable behaviour at system level). While the system safety process derives
the required safety requirements, COTS are developed to meet certain safety
requirements deemed relevant for the systems in which that component may be
used. The grey zone in Figure 6.1 is the meeting point of the two processes, one
carried out for the system and the other for the component development. More
specifically, once the system safety requirements are decomposed onto compo-
nents (hardware/software), COTS (developed via a bottom-up approach) can
be selected to meet those requirements. If the selected components do not fully
meet the requirements, some adaptations can be introduced. Contract-based
design inherently provides support for such COTS selection process. With
its support for independent development of components, contract-based de-
sign enables checking whether the independently developed component, such
as COTS, fulfils the safety requirements imposed by the particular system in
which the component is reused. By checking a requirement against a set of
COTS components enriched with contracts, it is possible to identify which of
the components, if any, meet the particular requirement.

6.1.2 CHESS-FLA within the CHESS toolset
CHESS-FLA [72] is a plugin within the CHESS toolset that includes two Fail-
ure Logic Analysis (FLA) techniques:

• Fault Propagation and Transformation Calculus (FPTC) [13] — a com-
positional technique to qualitatively assess the dependability of com-
ponent-based systems, and

84

6.1 COTS Aware Fault Propagation Analysis and Argumentation 67

Safety Requirements

System Design System Integration

Sw/Hw Safety
Requirements

Sw/Hw Unit
Design Sw/Hw Unit

Implementation

Sw/Hw Unit
Integration and Test

Sw/Hw Safety Req.
Verification

COTS Select Adapt Test

System Test
…

Figure 6.1: Safety-critical system development/COTS-driven development

• A Formalism for Incompletion, Inconsistency, Interference and Imper-
manence Failures’ Analysis (FI4FA) [73] — an FPTC extension that
allows for analysis of mitigation behaviour in the specific context of
transaction-based computations.

In this thesis we limit our attention to the FPTC technique, which allows users
to calculate the behaviour at system-level, based on the specification of the
behaviour of individual components.

The behaviour of the individual components is established by studying the
components in isolation. This behaviour is expressed by a set of logical ex-
pressions (FPTC rules) that relate output failure modes (occurring on output
ports) to combinations of input failure modes (occurring on input ports). These
behaviours can be classified as:

• a source failure (i.e., a component generates a failure due to internal
faults),

• a sink failure (i.e., a component is capable to detect and correct a failure
received on the input),

• propagational failure (i.e., a component propagates a failure it received
on the input to its output), and

• transformational failure (i.e., a component generates a different type of
failure from the input failure).

In FPTC analysis, input failures are assumed to be propagated or transformed
deterministically, i.e., for a combination of failures on the input, there can be
only one combination of failures on the output.

85

68 Chapter 6. Contract-driven assurance and reuse based on
Compositional FLA Results

behaviour = LHS ’→’ RHS
LHS = portname’.’ bL | portname ’.’ bL (’,’ portname ’.’ bL) +
RHS = portname’.’ bR | portname ’.’ bR (’,’ portname ’.’ bR) +
bL = ’wildcard’ | bR
bR = ’noFailure’ | failure
failure = ’early’ | ’late’ | ’commission’ | ’omission’ | ’valueSubtle’ | ’valueCoarse’

Figure 6.2: FPTC syntax supported in CHESS-FLA

The syntax supported in CHESS-FLA to specify the FPTC rules is shown
in Figure 6.2.

The input/output behaviour of a component developed out-of-context can
be captured by FPTC rules. Figure 6.3 shows a running example that we will
use throughout the chapter. The example consists of the Estimator compo-
nent that takes a sensor value and a single parameter as inputs, and provides
the estimated sensor value as output. Such a component can be used when
the sensor values are expected to fluctuate frequently, e.g., a sensor for esti-
mating liquid fuel level in the tank of a vehicle. The Converter component
converts the sensor value based on the input parameter, while the Filter com-
ponent normalises the sensor value and mitigates coarse/great value failures.
The FPTC rule describing the specific Filter failure behaviour can be specified
as: I1.valueCoarse → O1.noFailure. This example demonstrates the sink
behaviour of the Filter component (Figure 6.3) and should be read as follows:
if the component receives on its input port I1 a coarse (i.e. clearly detectable)
value failure (a failure that manifests itself as a failure mode by exceeding the
allowed range), it generates no failure on its output port O1.

Es3mator	

Filter	Converter	

sensorValue	

parameter1	 I2	
I1	 I1	 O1	O1	 es3matedSensorValue	

Figure 6.3: Running example

To use the FPTC rules of an individual component for FPTC analysis in a
specific system, all possible failure modes that have been considered in the par-
ticular system must be considered by the FPTC rules of the component. Since
the list of failure modes is not fixed, it can be customised for different systems.
Moreover, since specifying all the failure combinations for a component with

86

6.1 COTS Aware Fault Propagation Analysis and Argumentation 69

a greater number of input ports is tedious and error-prone, it is not necessary
to specify rules for all the combinations if there is a default interpretation of
such missing rules. One such interpretation is that all missing combinations
will simply behave as propagators, considering that this is the worst-case sce-
nario [13]. For example, if the set of FPTC rules for the Filter component
does not consider late failure mode on the input port I1, according to this in-
terpretation the late failure on I1 would result in late failure on the output port
O1.

Another way to reduce the amount of explicitly specified rules for all the
failure mode combinations is through the wildcard keyword on an input port,
which is used to indicate that the output behaviour is the same regardless of
the failure mode on the corresponding input port. For example, the omission
failure mode on the output of the Converter component (Figure 6.3) occurs if
the I1 input port exhibits omission, regardless of the state of the I2 input port.
Instead of writing a set of FPTC rules combining the omission on I1 with all the
different considered failure modes on the I2 input, a single rule with a wildcard
keyword can be used to cover all the different failure modes on the I2 port, e.g.:
“I1.omission, I2.wildcard→ O1.omission”.

6.1.3 Absence of Hazardous Software Failure Mode Argu-
mentation Pattern

As mentioned in Section 2.1.2, GSN can be used to represent the individual
elements of any safety argument and the relationships between these elements.
Figure 6.4 presents the argument pattern for Absence of Hazardous Software
Failure Mode (HSFM) [71] of the value type. The argument starts with the
goal AbsHSFMValue claiming the absence of the HSFM of type value in the
software at hand. This goal is further clarified with several context statements
defining the software itself, its functionality that contributes to this HSFM, the
definition of the HSFM, causes that lead to it and the safety requirements that
address them. The top goal is further decomposed using the strategy ArgFail-
ureMech that divides the argument based on the failure mechanisms, given that
different failure mechanisms are identified for addressing all the known causes
of HSFM. The failure mechanisms are classified into three categories:

• Primary failures within a Contributory Software Functionality (CSF) that
can cause the failure (the goal ABValPrimary). The goal argues that the
result produced by the CSF is within the safe bounds;

• Secondary failures relating to other components within the system on

87

70 Chapter 6. Contract-driven assurance and reuse based on
Compositional FLA Results

ArgFailureMech
Argument over failure

mechanisms

AllCauses
Identified failure mechanisms describe all
known causes of Value Hazardous Failure

Mode
J

ContextCSF
Within the context of contributory

software functionality (CSF)
A

CauseValHaz
Known causes of Value

Hazardous Failure Mode

ContribSWFunc
Identified Software Functionality which

contributes to hazardous software
failure mode {HSFM}

SafReqCSF
Safety Requirements of contributory

software functionality

HSFM
Hazardous Software Failure Mode

AbsHSFMValue
Hazardous Software Failure Mode
{HSFM} of type Value absent in
contributory software functionality (CSF)

AbsValSecondary
The known causes of secondary
failures of other components are
acceptably handled

AbsValPrimary
The component (CSF)
successfully handles the
primary failures

AbsValControl
CSF is scheduled correctly (the claims addresses
the items with control over CSF)

Figure 6.4: Absence of Hazardous Software Failure Mode argumentation pat-
tern for type value failure [71]

which the CSF is dependent (the goal ABValSecondary). The goal argues
that those failures in the environment of CSF that could lead to CSF
producing a failure mode are acceptably handled; and

• Failures caused by items controlling the CSF e.g., the scheduler (the
goal ABValControl).

6.2 FLAR2SAF
In the heart of FLAR2SAF stands the idea that we can use behaviours obtained
by FPTC analysis to derive safety contracts that can be further supported by
evidence and used to form clear and comprehensive argument-fragments. For
example, if coarse value failures on the output of Estimator are considered
hazardous, then the corresponding argument-fragment should argue that the
valueCoarse failure mode is sufficiently handled in the context of the particular
system and attach supporting evidence for that claim.

FLAR2SAF based on SEooCMM and FPTC analysis can be performed by
the following steps:

1. Model the component architecture in CHESS-FLA;

2. Specify failure behaviour of a component in isolation using FPTC rules;

88

6.2 FLAR2SAF 71

3. Translate the FPTC rules into corresponding safety contracts and at-
tach FPTC analysis results as initial evidence (model compliant with
SEooCMM);

4. Support the contracts with additional V&V evidence and strengthen the
contract assumptions accordingly;

5. Upon component selection and satisfaction of the strong and the relevant
weak safety contracts, depicted in Figure 6.1 in Section 6.1.1:

(a) Perform FPTC analysis on the system level;

(b) Translate the results of FPTC analysis to system-level safety con-
tracts;

(c) Support and enrich the contracts with additional V&V evidence;

6. Use the contract-driven assurance methodology to semi-automatically
instantiate the HSFM argument pattern presented in Section 6.1.3 (SACM
compliant).

The generated argument-fragment is tailored for the specific system so that
only contracts satisfied in the particular system are used to form the argument,
and accordingly only evidence associated to such contracts is reused to support
confidence in the contracts. Particular evidence can only be reused if all the
captured assumptions within the associated contract are met by the system.

6.2.1 Contractual interpretation of the FPTC rules
In this section we focus on the step of translating the FPTC rules to safety
contracts. We use the running example (Figure 6.3) to explain the translation
process and provide a set of steps that can be used to perform the translation. In
Table 6.1 we have FPTC rules specified for the subcomponents of the Estima-
tor component, and the calculated Estimator FPTC rules. When either of the
inputs sensorValue (sV) or parameter1 (p1) exhibit omission failure, the Con-
verter propagates the failure further to the Filter component, which propagates
further omission failure to the estimatedSensorValue (eSV) output of the Es-
timator component. While Converter propagates valueCoarse failures as well,
the Filter component mitigates these failures and acts as a sink by transforming
them to noFailure. The FPTC analysis of the Estimator component indicates
that if omission occurs on any of its input ports, the component propagates the
omission failure to the output, while it mitigates any valueCoarse failures that
may occur on the input ports.

89

72 Chapter 6. Contract-driven assurance and reuse based on
Compositional FLA Results

Table 6.1: FPTC rules of the Estimator, Converter, and Filter components
Component FPTC rules
Converter: I1 .omission, I2 .wildcard → O1 .omission;

I1 .wildcard , I2 .omission → O1 .omission;
I1 .valueCoarse, I2 .noFailure → O1 .valueCoarse;
I1 .noFailure, I2 .valueCoarse → O1 .valueCoarse;
I1 .valueCoarse, I2 .valueCoarse → O1 .valueCoarse;

Filter: I1 .valueCoarse → O1 .noFailure;
I1 .omission → O1 .omission;

Estimator: sV .omission, p1 .wildcard → eSV .omission;
sV .wildcard , p1 .omission → eSV .omission;
sV .valueCoarse, p1 .noFailure → eSV .noFailure;
sV .noFailure, p1 .valueCoarse → eSV .noFailure;
sV .valueCoarse, p1 .valueCoarse → eSV .noFailure;

Three different types of safety contracts for these components can be made
based on the FPTC rules. When translating the rules into contracts we consider
two types of rules with respect to each failure mode: rules that describe when
a failure happens (e.g., the second FPTC rule of the Filter component) and
rules that describe behaviours that mitigate a failure (e.g., the first FPTC rule
of the Filter component). We translate the first type of rules by guaranteeing
with the contract that the failure described by the rule will not happen, under
assumptions that the behaviour that causes the failure does not happen. The
contract 〈B,H〉Estimator−3 shown in Table 6.2, guarantees that eSV will not
exhibit omission if both inputs sV and p1 do not exhibit omission failures. This
type of contracts is specified as weak since, unlike for strong contracts, their
satisfaction in every context should not be mandatory. For example, if we use
the Estimator component for estimating fuel level in the tank of a vehicle, then
omitting to display the value would be safer than displaying the wrong value.

We translate the second type of rules differently as they do not identify
causes of failures, but they specify behaviours that help mitigate failures in
certain cases. Since these contracts specify safety behaviour of components
that should be satisfied in every context, without imposing assumptions on the
environment, they are expressed by strong contracts. The corresponding con-
tracts state in which cases the component guarantees that it will not exhibit a
failure. We do this by guaranteeing the rule that describes this behaviour, as
shown in Table 6.2 for the 〈A,G〉Estimator−2 contract.

The third type of safety contracts that we translate from FPTC rules are

90

6.2 FLAR2SAF 73

Table 6.2: The translated contract examples for the Estimator component
Id Assertions

AEstimator−1: {sV, p1}.failure within {omission, valueCoarse};
GEstimator−1: eSV.failure within{omission} AND not eSV.valueCoarse;

AEstimator−2: -;
GEstimator−2: sV.valueCoarse, p1.valueCoarse→ eSV.noFailure;

BEstimator−3: not sV.omission and not p1.omission;
HEstimator−3: not eSV.omission;

related to the failures that have been mitigated and do not occur on the output
port in any of the specified FPTC rules (e.g., valueCoarse failure for the Esti-
mator component). An example of a such contract is shown in Table 6.2 for the
〈A,G〉Estimator−1 contract where assumptions are made on the failure modes
on the input ports considered by the FPTC rules. The component guarantees
that if no other failures occur on the inputs than the ones considered by the
FPTC rules, then only the omission failure can occur on the specific output,
while the valueCoarse failure will not occur on the output. The guarantee ex-
plicitly specifies which failure will not occur on the specific output based on the
current FPTC analysis to avoid an implicit interpretation that all failures that
do not occur on the output are mitigated by the component. The assumptions
for this contract represent the set of failure modes explicitly considered within
the FPTC rules for each of the input ports. As mentioned in Section 6.1.2, to
use FPTC rules of a component developed in isolation in a particular system,
the set of failure modes considered for the component and the system should
be the same. Since it is not always reasonable to consider all failure modes
for all ports [13], the assumptions of this contract ensure that if a failure mode
not considered by the FPTC rules can occur on the corresponding port of the
component in the particular system, then such FPTC rules cannot be used until
they are updated to take in consideration the missing failure mode.

As shown in the example of translating FPTC rules from Table 6.1 to con-
tracts in Table 6.2, the translation can be performed in the following way for
each failure:

• Consider all the rules and the failure modes used for each port and make
a strong contract:

– Identify the list of all the distinct explicitly specified failure modes

91

74 Chapter 6. Contract-driven assurance and reuse based on
Compositional FLA Results

for each of the input ports and add them as assumptions connected
with AND operator;

– For each of the output ports:

∗ Add a guarantee stating the set of failure modes that can occur
on the specific output connected with AND operator;

∗ Calculate the set difference of the set of considered failure
modes on the inputs with respect to the set of failure modes
that occur on the output and add the negation of those failure
modes for the particular ports as guarantees connected with
AND operator;

• Identify the FPTC rules that are directly related to the failure mode (ei-
ther describing when it happens or describing behaviour that prevents
it);

• For the rules that describe behaviours that prevent the failure mode make
a strong contract:

– Use the rule within the contract guarantee to state that the compo-
nent guarantees the behaviour described by the rule;

• For the rules describing when the failure mode happens make a weak
contract:

– Add the negation of the combination of the input failures to the
contract assumptions. Connect other assumptions with AND oper-
ator;

– Use the absence of the failure mode as the contract guarantee;

The abstract behaviour specified within the FPTC rules can be further re-
fined so that more concrete behaviours of the component are described. For
example, a refined contract related to timing failures would include concrete
timing behaviour of the component in a particular context and additional as-
sumptions related to the timing properties of the concrete system should be
made.

6.2.2 HSFM argumentation pattern instantiation
To build an argument based on the HSFM pattern, we identify the known
causes of primary and secondary failures from the corresponding FPTC rules.

92

6.3 Summary 75

We identify the primary failures from the contracts translated from FPTC rules
that describe behaviours that mitigate a failure mode. The secondary failures
are captured within the contracts translated from FPTC rules that describe
when a failure mode happens. All causes and assumptions not captured by
the corresponding FPTC rules should additionally be added to the safety con-
tracts, e.g., scheduler policy constraints. We construct the argument-fragment
by using the reasoning from the HSFM pattern. The top-most goal, claiming
absence of the failure mode, is decomposed into three sub-goals focusing on
primary, secondary and controlling failures as described in Section 6.1.3. We
adapt the top-level argument to further develop the sub-goals.

Since we can identify the primary and secondary causes from FPTC anal-
ysis and the derived contracts, we use the safety contracts to develop the sup-
porting sub-arguments for the primary and secondary failures and leave the
goal related to controlling failures undeveloped. Supporting sub-arguments
for both primary and secondary failures are composed from the instantiations
of the requirement and contract satisfaction assurance argument patterns (Fig-
ures 4.3 and 4.4) for each relevant safety contract. If a contract addresses a
particular safety requirement, which is related to a particular failure mecha-
nism, then the confidence in satisfaction of such requirement and the contract
is argued under the corresponding failure mechanism argument branch. By
combining the contract-driven assurance argument patterns with the existing
HSFM argument pattern we show how contract-driven assurance can be used
in combination with existing assurance strategies.

6.3 Summary

In this chapter we have presented a method that puts the assurance and reuse
aware contract-based design and development in the context of COTS archi-
tectures where failure logic analysis is usually performed independently of the
system. We have used FPTC analysis as it supports compositional failure logic
analysis of a system, where its specifications describing failure behaviour of a
component can be established in isolation, and not necessarily in the context
of a particular system. Using such analysis to derive safety contracts allows us
to reap the benefits of assurance and reuse aware contract-based design when
moving analysis results established in isolation to a particular system. More
specifically, transforming the FPTC specification to contracts allows us to as-
sociate assurance information directly with the FPTC specification, which is
rather important for establishing confidence in its results. Even more impor-

93

76 Chapter 6. Contract-driven assurance and reuse based on
Compositional FLA Results

tantly, this transformation enables utilising the contract variability to identify
which FPTC specification is relevant to assure in the final argument, depending
on their relation to the corresponding safety requirements.

Since FPTC analysis establishes fault propagation rules between input and
output ports of a component, it can be useful for assuring absence of particular
failure modes in the component. We have built upon an established argument
pattern for assuring absence of hazardous software failure modes and related
it with the contract-driven assurance approach. By connecting the proposed
contract-driven assurance with existing argumentation strategies, we show that
contract-driven assurance can be used as a basis for instantiating other argu-
mentation patterns and that it does not have to be a standalone assurance tech-
nique.

94

Chapter 7

Tool support

In this chapter we present our efforts to provide tool support for the assurance
and reuse aware contract based design. The implementation of the tool support
is done within the AMASS platform1 developed as part of the AMASS [74]
project. The platform encompasses different tools, but here we focus on the
three tools that facilitate system modelling (CHESS), formal verification of as-
sumption guarantee contracts (OCRA), and assurance case modelling (OpenCert).
An overview of the three tools is shown in Fig. 7.1. We build upon the syn-
ergy of the three tools and implement the contract-driven assurance and reuse
methodology by developing new and upgrading the existing plugins within the
tools. We extend CHESS to support SEooCMM by adding the possibility to
capture information about assurance assets and their relation to the correspond-
ing contracts. With OCRA results back-propagated to the CHESS model, we
perform automated weak contract filtering for the component instances. Upon
updating the CHESS model, we then automatically instantiate the contract-
driven assurance argumentation patterns for each component in the CHESS
model. The generated argumentation is stored on a CDO server which can be
accessed by any OpenCert argumentation editor connected to the CDO server.
In the reminder of the section we detail the implementation (available in the
CHESS 2 and OpenCert3 repositories) of refinement checking with strong and
weak contracts as an extension of CHESS and the automatic argument genera-
tion as an OpenCert plugin.

1https://www.polarsys.org/opencert/
2https://git.polarsys.org/c/chess
3https://git.polarsys.org/c/opencert

77

95

78 Chapter 7. Tool support

OCRA

Othello
System

Specification

Contract
checking
results

Argumentation
editor

CDO
Server

CHESS Model

OCRA
verification

engine

Figure 7.1: The overview of the tool information flow

7.1 Contract-driven reuse support with CHESS and
OCRA

As mentioned in Section 5.2, to use a contract checking engine such as OCRA,
which does not distinguish between strong and weak contracts, we can either
support weak contract filtering as a part of reusable component instantiation or
weak contract transformation to an appropriate format. We extend CHESS so
that we can check all the weak contract validity and automatically update the
component instance by indicating which weak contracts are valid in the given
environment.

To fully support the presented methodology, we have also implemented the
second solution that includes all weak contracts in contract refinement check-
ing. The choice of which type of refinement with strong and weak contract to
use is up to the user. This is to allow for different possibilities. When the users
are manually selecting which weak contracts they want in the given context,
then they may have to manually check which of them are relevant for their
system. Conversely, when the user selects to perform refinement check with
all the weak contracts, then if any of the weak contracts meet the system de-
mands, the refinement will be successful and the weak contracts applicable in
the given context will be automatically indicated without the need to manually
select them. Our CHESS extensions to support the contract-driven assurance
and reuse are hosted in the following CHESS plugins:

• org.polarsys.chess.contracts.transformations – contains model to text [75]
transformation for generating the .oss file representing the model;

• org.polarsys.chess.contracts.integration – contains the interface for com-
municating with OCRA.

96

7.1 Contract-driven reuse support with CHESS and OCRA 79

7.1.1 Methodological Guidance

As presented in Chapter 5.2, strong and weak contracts are introduced for out-
of-context reasoning and component reuse across a variety of environments.
While strong contracts must hold in all environments, the weak ones are envi-
ronment specific. Prior to performing the refinement check using strong and
weak contracts, we create contracts and allocate them to the component types
(they represent out-of-context components). At the component type level, we
indicate if a contract is strong or weak. When the component type is instan-
tiated in a particular system to a component instance, all the strong, and a
subset of weak contracts can be identified as relevant in the particular system
in which the component is instantiated. Identifying those relevant weak con-
tracts can be done manually on the component instance level. For example,
Figure 7.2 depicts the selected weak contracts for the Select Switch Impl com-
ponent instance. The Contract Refinement Analysis (OCRA) command trans-
forms the CHESS model into an Othello System Specification (.oss) file read-
able by OCRA, then it runs the OCRA refinement check and outputs the results.
Since the .oss format does not explicitly distinguish between strong and weak
contracts, but treats all contracts as strong, the weak contracts need to be ac-
cordingly transformed to strong contracts for the .oss format. To perform the
refinement check with strong and weak contracts, we first create a Contrac-
tRefinementAnalysisContext in the DependabilityAnalysisView where we can
select the platform that should be analysed. To run the refinement check by
considering all the contracts the attribute checkAllWeakContracts needs to be
set to true (Figure 7.3). If the checkAllWeakContract attribute is set to false,
the refinement check will be performed such that the selected weak contracts
on the component instance level will be treated equally as the strong contracts
in the generated .oss file. In this case we need to either manually ensure that
we do not select contradictory weak contracts, or automatically select the rel-
evant weak contracts by running the Validate Properties (OCRA) command.
The Validate Properties (OCRA) command will check validity of each weak
contract assumption and identify which weak contract assumptions are met in
the given system. Upon running the weak contract assumption validity check,
the contract status is updated accordingly and those contracts are automati-
cally selected in the corresponding component instance. Now it is possible to
run the refinement check with the flag checkAllWeakContracts set to false with-
out it prompting an inconsistency error. It should be noted that a limitation of
the Validate Property command is that it can be executed only with a discrete-
time specification, hence the usage of continuous variables or operators in the

97

80 Chapter 7. Tool support

contracts disables the validity property check.

Figure 7.2: Selecting the relevant weak contract for a component instance

Figure 7.3: Performing the refinement analysis with strong and weak contracts

7.2 Contract-driven assurance support with CHESS
and OpenCert

To facilitate automated instantiation of the contract-driven assurance pattern
from Section 4.2, we implement the ArgumentGenerator plugin4 within OpenCert.
The user is prompted to select both the source CHESS model and the target

4org.eclipse.opencert.chess.argumentGenerator

98

7.2 Contract-driven assurance support with CHESS and OpenCert
81

assurance case in the CDO repository. The plugin generates a set of argument-
fragments from the source CHESS model and stores them in the corresponding
target assurance case in the CDO repository. The ArgumentGenerator assumes
that the CHESS model contains contract specifications and that the contract re-
finement check has been performed such that the status of both strong and weak
contracts is updated to indicate if the contract is validated in the given context
or not. The argument generation creates an argument-fragment for each com-
ponent. The connection between different argument-fragments is done through
away goals. The resulting argument-fragments can be viewed in the target
assurance case by anyone with access to the CDO server from an OpenCert
argumentation editor.

7.2.1 Methodological Guidance
The Argument Generator assumes that the CHESS model is enriched with con-
tracts and that contract refinement has been performed such that the contract
status is updated to indicate if the contract is validated in the given context
or not. Moreover, the Argument Generator assumes that the analyzed model
and the refinement check results are stored in the refinement analysis con-
text. The attached screenshots (Figure 7.4 - Figure 7.8) illustrate the usage
of the Argument Generator plugin. First, the plugin prompts a selection of the
OCRA refinement analysis context (Figure 7.4-Figure 7.5). Then, we need
to indicate to which assurance case on the corresponding CDO server the
argument-fragments should be stored (Figure 7.6). The argument-generation
is performed for each component and for each validated contract (Figure 7.7).
The set of argument-fragments for each component can be viewed in the se-
lected assurance case (Figure 7.8).

99

Figure 7.4: Initiating the argument-fragment generation

Figure 7.5: Selecting the source analysis context

100

Figure 7.6: Selecting the target assurance case folder on the CDO repository

Figure 7.7: Successful generation of argument-fragments for each component

101

Figure 7.8: An example of a generated argument-fragment

102

Chapter 8

Validation

In this chapter we present two case studies performed in the context of the
Loading Arm Controller Unit system described in Chapter 3. We first describe
the case study research method, and then present the two case studies sepa-
rately, each following the same guidelines.

8.1 Case Study Method
Case study is an empirical method for investigating a contemporary phenomenon
in its real-world context [17]. Initially, case studies in software engineering
were used for demonstration purposes, as a way to demonstrate an implemen-
tation of a particular software technology or concept. At the same time, case
studies were already established in social domains as a way to both explore
a phenomenon but also to improve it. In general, case studies just as other
research methodologies can be used for four different research purposes [17]:

• Exploratory – seeking new insights and generating ideas by studying the
phenomenon.

• Descriptive – describing a situation or phenomenon.

• Explanatory – seeking to understand as to why a particular situation or a
problem occurs. This also includes confirmatory case studies, that try to
test existing theories.

• Improving – trying to improve some part of the studied phenomenon.

85

103

86 Chapter 8. Validation

Regardless of the purpose of a case study, its crucial part is the case [76].
The case is the object of study and should be a sufficiently complex compo-
nent investigated in its natural and real-world context. Unlike other research
methodologies, case studies focus on the realism of the studied case. This of-
ten implies relinquishing control for the sake of realism, because the realistic
situation or phenomenon is often more complex due to the difficult to identify
all the variables and their causal relationships. Due to this fact, it is difficult to
base case studies on quantitative data analysed using statistics, but rather, the
case studies tend to be based on qualitative data that are generally richer and
more detailed in description than quantitative data. Hence, the conclusions of
a case study will not have the same statistical significance as those for example
from an experiment. But unlike an experiment, the case study method allows
for studying a more complex phenomenon, where the conclusions of the case
study try to link different kinds of evidence and information in order to support
a particular statement about the studied phenomenon.

Another consequence of the realism is that the design of the case study is
generally flexible. The flexibility of the process of performing the study allows
for changing some of the parameters of the study during its execution. While
this would invalidate some research methodologies such as experiments, it is a
natural occurrence for case studies due to the degree of realism as well as the
lack of control and full awareness of the studied case and its environment.

We present the case studies using the following structure:

• Case study design – contains the objective of the case study and the
research questions we aim to answer. The design section also addresses
the relevance of the case itself.

• The case definition – describes the case under study with all of its tech-
nical details needed for data collection and discussions.

• Data collection – represents a set of techniques applied to the case such
that they generate data sufficient to build the conclusions of the case
study.

• Discussion – presents positive and negative conclusions regarding the
case. It is much like an assurance case argument, which chains different
information and evidence to support statements about the studied case.

• Validity – addresses different validity threats that may undermine the
conclusions from the case study and how these thereafter are mitigated.

104

8.2 Case Study 1 87

8.2 Case Study 1

In this section we first present the case study design in Section 8.2.1, and then
introduce the particular case of study in Section 8.2.2. In Section 8.2.3 we
present the SEooC definition and development, and then in Section 8.2.4, we
describe the LAAP integration within two different products of a wheel-loader
product-line. In Section 8.2.6 we provide a discussion and then examine the
case study validity in Section 8.2.7.

8.2.1 Case Study Design

The objective of this case study is to apply the contract-aware SEooC devel-
opment and reuse, and evaluate the feasibility of fine-grained reuse of a com-
ponent and its accompanying assurance information in two contexts that have
different safety requirements. More specifically, we perform an explanatory
case study to answer the following research question:

• RQ1: Can the contract-aware SEooC development and assurance method
be used to identify which assurance information is relevant for safety as-
surance in a given context based on the contract specifications?

We consider a case where a reusable component is developed out-of-context
as a SEooC, following the contract-aware SEooC development and reuse ap-
proach presented in Section 5.3, and reused in two different products. In partic-
ular, we consider that the Loading Arm Automatic Positioning (LAAP) compo-
nent as a part of the Loading Arm Control Unit (LACU) described in Section 3,
is developed as a SEooC. The two different products in which the LAAP is
reused impose different safety requirements on the LAAP. Hence, the contract-
aware SEooC development should take in account the different safety impli-
cations, and during the integration of the component, it should facilitate filter-
ing of the relevant assurance information and finally result in context-specific
safety assurance arguments in both cases.

We have selected this scenario for our case study based on discussions with
our industrial partners. It is not enough to simply accompany a reusable com-
ponent with all the assurance information relevant for all the different contexts.
There is also a need to identify the relevant subset of that information in a
particular context. We have defined LAAP as the reusable component in this
scenario together with our industrial partners. Starting from the abstract sys-
tem models and different product specifications, we have defined the different

105

88 Chapter 8. Validation

hazards LAAP can contribute to, and safety requirements relevant in the differ-
ent products. Although we did not have access to the actual implementation of
the two different products, we have used the relevant system specifications as
basis for analysing the different safety implications. We have then been able to
use the contract-aware SEooC development and assurance method even with
the given specifications of the studied systems.

8.2.2 The Case
The SEooC we develop is the Lifting Arm Automatic Positioning (LAAP)
component used within loading arm controllers of various wheel-loader types.
LAAP is part of the LACU described in Section 3. Here, we add some addi-
tional information regarding LACU that are specific for this case study.

The two wheel-loaders in which we reuse the developed SEooC belong to
the same product line. The first wheel-loader is a Gigant Wheel-loader (GWL)
used within closed construction sites. Due to its size, both the GWL itself
and its arm move slower than other machines. Time needed to raise the arm
under full load from minimum to maximum position is around 10 seconds. The
second wheel-loader is a Small Wheel-loader (SWL) used for less intensive
tasks and often outside of construction sites. It is more compact than the GWL
and it has two times faster lifting arm raise time, i.e., around 5s.

8.2.3 SEooC definition and development
As discussed in Section 5.3.2, the development of a SEooC starts by making
assumptions on the item in terms of ISO 26262, in which the component is
intended to be used. The assumed structure of the lifting arm unit context for
a wheel-loader is shown in Figure 8.1. The operator controls of interest for the
development of the LAAP consist of a control lever that is used to lift/lower the
arm and an automatic position request button that positions the arm in a pre-
defined position. Once the automatic positioning is started, it can be stopped
by moving the control lever and switching automatically to manual mode. Be-
sides the operator controls, the LAAP uses an arm angle sensor to determine
the current arm position, a recorded position to which the arm should be moved
and a sensor that tracks ground speed of the vehicle. The assumptions include
only information deemed relevant to the SEooC development, hence the full
interface of the arm controller is not assumed at this stage.

Before specifying the assumed software safety requirements that the LAAP
will implement, we need to assume safety implications of the component and

106

8.2 Case Study 1 89

Figure 8.1: The assumed structure of the lifting arm unit context

its relation to possible hazards. We identified contributions of LAAP to two
possible vehicle-level hazards, as described in Section 3.2.2:

• (H1) unintended movement of the lifting arm.

• (H2) high-pressure hydraulic leakage.

LAAP can contribute to hazard H1 by e.g., value failure of the flow com-
mand that can be caused by value failures of the angle sensor and the recorded
position variable. Furthermore, the unintended arm movement can occur in
case of omission of the autoPositionReq signal. Omission or late failure of
the control lever signal can cause LAAP to continue its operation when not
intended.

One way in which LAAP can contribute to this situation is when the LAAP
starts operating but due to a leakage the arm either never reaches the recorded
position or it moves much slower than usual, which contributes to increasing
the leakage. The occurrence of the hazard H2 in either of the operational situa-
tions can be dangerous to the driver, other participants in traffic and bystanders
present in the area. Table 8.1 presents the software safety requirements derived
from the assumed functional safety concept that address the possible hazardous
events related to both hazards.

The strong and weak contracts of the LAAP, initially captured during the
Preliminary Safety Contracts phase to address the SW safety requirements, are
shown in Table 8.2. We specify the contracts using the OCRA compliant Oth-
ello constraints syntax introduced in Section 2.5.1. The strong contract LAAP-
1 requires that the groundSpeedLimit is set below 20km/h and guarantees that
LAAP will be disabled when the ground speed of the vehicle is greater than the
groundSpeedLimit parameter. Disabling of the LAAP is the safe state achieved
by setting the active flag to false and the flow value to 0.

The strong contract LAAP-2 assumes the correct input value range for the
controlLever signal and guarantees that the safe state shall be applied when

107

90 Chapter 8. Validation

Table 8.1: SW Safety Requirements
Id Requirements
SWSR1 Safe state shall be applied during high-speed
SWSR2 The stop position of the arm shall not deviate more than ± 0.04 rad
SWSR3 Safe state shall be applied if erroneous input (ground speed, angle sen-

sor, control lever or recorded position) is detected
SWSR4 Safe state shall be applied if the operational time of the LAAP is taking

more than the maximum raise time of the lifting arm
SWSR5 LAAP shall not start inadvertently
SWSR6 Safe state shall be applied when manual arm movement is in progress

(i.e., when control lever value not 0)

inputs other than controlLever are out of bounds. Moreover, since the LAAP
component can be active only when the control lever is inactive (i.e., when con-
trolLever is 0), the LAAP-2 contract also guarantees that the safe state shall be
applied when controlLever is different from 0.

The strong contract LAAP-3 describes a SW watchdog timer implemented
as a part of the component that disables LAAP if its operation time is longer
than expected. To detect possible hydraulic leakage, the timer is set within the
interval bound by raiseTime parameter (the maximum lifting time of the arm
under full load from lowest to highest position).

The weak contracts LAAP-4 and LAAP-5 capture failure propagation be-
haviour of the LAAP such that they state which conditions should the environ-
ment of the LAAP fulfil to mitigate a potentially hazardous failure propagation.
The LAAP-4 contract specifies that in order to avoid the flow command value
failure, the environment of the LAAP should guarantee that the angle sensor
signal and recorded position value do not exhibit value failure. The LAAP-5
contract contract specifies that in order to mitigate inadvertent commands sent
from the LAAP (in form of commission failures of the flow and active output
ports), the environment should ensure that commission of the autoPositionReq
signal and omission of the controlLever signal do not occur. The weak contract
LAAP-6 relates the guaranteed flow accuracy and the lifting arm stop position
based on the assumptions on the accuracy of the angle sensor, recorded position
and the actuation.

The matching of the established contracts and the SW safety requirements
is presented in Table 8.3. The contract LAAP-4 is not fully addressing the re-
quirement SWSR2, since it only establishes that the accuracy of the flow com-
mand is dependent on the accuracy of the angle sensor and the recorded posi-

108

8.2 Case Study 1 91

Table 8.2: LAAP Safety Contracts
Id Assertions

ALAAP−1 : always (groundSpeedLimit >= 0 and groundSpeedLimit <= 20);
GLAAP−1 : always ((groundSpeed > groundSpeedLimit) implies (not active and

flow = 0));
ALAAP−2 : always (controlLever >= -1 and controlLever <= 1);
GLAAP−2 : always ((groundSpeed < 0 or groundSpeed > 200 or angleSensor <

0 or angleSensor > 3 or controlLever != 0 or recordedPosition < 0
or recordedPosition > 3) implies (not active and flow = 0));

ALAAP−3 : always (watchdogTimerInterval > raiseTime and watchdogTimerIn-
terval < 1.2*raiseTime and raiseTime > 0);

GLAAP−3 : always (((active or flow != 0) implies watchdogTimerActive) and
((LAAP-OperationalTime > watchdogTimerInterval) implies (not
active and flow = 0 and watchdogTimerReset)));

BLAAP−4 : always (not fault angleSensor value and not
fault recordedPosition value);

HLAAP−4 : always (not fault flow value);

BLAAP−5 : always (not fault autoPositionReq comission and not
fault controlLever omission);

HLAAP−5 : always (not fault flow comission and not fault active comission);

BLAAP−6 : always (angleSensorAccuracy = 0.02 and actuationDeviation = 0.01
and not fault recordedPosition value);

HLAAP−6 : always (flowAccuracy = 0.01 implies ((stopPosition - recordedPosi-
tion) >= -0.04 and (stopPosition - recordedPosition) <= 0.04));

tion value. Hence a more concrete contract LAAP-6 is established to fully ad-
dress the requirement SWSR2. During the Safety Contracts Production phase,
the contract LAAP-6 is updated with the actual accuracy of the flow command.

As mentioned in Section 5.3, the SW safety requirements addressed by the
safety contracts are supported with evidence through the connection of the con-
tracts and the supporting evidence. The statements that provide clarifications of
the contracts and the supporting evidence attached during the Safety Contract
Production phase are shown in Table 8.4. The context statements are denoted
with LAAP-x Cy and evidence with LAAP-x Ey., where x is the number of the
related contract and y the number of the evidence/context statement.

All the information related to the safety requirements, contracts, evidence,

109

92 Chapter 8. Validation

Table 8.3: SW Safety Requirements and safety contracts mapping

Requirement Related contracts
SWSR1 LAAP-1
SWSR2 LAAP-4, LAAP-6
SWSR3 LAAP-2
SWSR4 LAAP-3
SWSR5 LAAP-5
SWSR6 LAAP-2, LAAP-5

as well as assurance information are captured in the CHESS model. We present
the information here in the tabular form for the sake of readability. The evi-
dence items are specified in OpenCert and referenced in CHESS in relation to
the contracts. The tool usage is described in Chapter 7.

8.2.4 SEooC Integration

Due to the differences between the two products, what is hazardous in one
product is not necessarily hazardous in the other. Since the GWL is used
in a controlled environment and its tasks do not require high precision, the
value failure of the LAAPs’ flow port is not considered hazardous in that case.
Hence, the requirement SWSR2 is not considered safety-relevant in context of
the GWL, but is regarded as relevant for quality management. Moreover, the
weak contracts LAAP-4 and LAAP-6 are not satisfied in the context of GWL, as
integrity of the sensor data and recorded position are not ensured for the LAAP-
4 contract, and the assumption on actuation accuracy for the LAAP-6 contract
does not hold.

In contrast to the GWL, the SWL is used in less controlled environments
for tasks that usually require precision where LAAP accuracy is much more
critical. Besides a higher quality angle sensor to ensure high confidence in
sufficient accuracy of the angleSensor input to the LAAP, an error-detecting
code is used to ensure that the stored recordedPosition has not been acciden-
tally changed (e.g., due to bit flip). Contracts of the corresponding components
guarantee these properties of the angle sensor and the recordedPosition variable
which satisfies the assumptions of the contract LAAP-6, while the assumption
of the contract LAAP-4 is not satisfied in the SWL system as it would be too
expensive to achieve it.

Since the strong contract LAAP-1 requires groundSpeedLimit to be below

110

8.2 Case Study 1 93

Table 8.4: The context statements and evidence of the LAAP safety contracts
Id Statement
LAAP-1 C1: Assuming the ground speed limit is set below 20km/h, LAAP shall

be disabled when the ground speed of the vehicle exceeds the
ground speed limit.

LAAP-1 E1 name: Unit testing results;
LAAP-2 C1: Assuming that the control lever signal is not faulty, LAAP shall be

disabled when any of the other inputs is out of bounds.
LAAP-2 E1 name: Unit testing results;
LAAP-3 C1: The watchdog timer interval is set relative to the maximum raise

time of the lifting arm such that it resets if the arm does not complete
its movement within the specified time.

LAAP-3 E1 name: Watchdog inspection report
LAAP-3 E2 name: Unit testing results;
LAAP-4 C1: In order to avoid the flow command value failure, the environment

of LAAP should guarantee that the angle sensor and recorded posi-
tion signals do not exhibit value failures;

LAAP-4 E1 name: LAAP FPTC analysis report
supporting argument: FPTC analysis conf;

LAAP-5 C1: In order to mitigate inadvertent commands sent from LAAP, the en-
vironment should ensure that commission of the auto positioning
request and omission of the control lever signals do not occur.

LAAP-5 E1 name: LAAP FPTC analysis report
supporting argument: FPTC analysis conf;

LAAP-6 C1: Given the accuracy of the angle sensor and the actuation, and as-
suming that the recorded position is not faulty, the resulting LAAP
flow command accuracy ensures the accuracy of the stop position
compared to the recorded position.

LAAP-6 E1 name: LAAP FPTC analysis report
supporting argument: FPTC analysis conf;

LAAP-6 E2 name: Unit testing results;

111

94 Chapter 8. Validation

20 km/h in every vehicle, both products must set the appropriate values. In
the GWL the limit is 20 km/h, since the arm moves slower and in a controlled
environment, while the limit is 10 km/h for the SWL.

Once the reused contracts are checked and new contracts established during
the Utilisation and Maintenance phase, we utilise the contracts for the gener-
ation of safety argument-fragments. Based on the satisfied contracts we can
identify safety artefacts related to such contracts (e.g., test cases) that can be
useful in the current context.

8.2.5 Generated Safety Arguments

Figure 8.2 shows the top level goals of the LAAP safety argument for the two
systems. The argument generation process from CHESS to OpenCert gives us
the building blocks in terms of instantiated requirement and contract satisfac-
tion patterns. We use those argument-fragments in building the system specific
arguments. In the top-level argument shown in Figure 8.2, we first present the
strong contracts, as those are the ones we are certain will always have to be
satisfied. Hence, this part of the argument would be the same for this compo-
nent across different systems. For the sake of brevity, the goal related to the
satisfaction of the LAAP-2 contract is left undeveloped.

The argument is further decomposed to argue over satisfaction of each al-
located safety requirement. There we use the instantiations of the requirement
satisfaction pattern. As discussed in Section 8.2.4, some of the contracts are
not satisfied in the GWL and at the same time some of the requirements are
discarded as quality management, hence not included in the LAAP safety ar-
gument in context of GWL. SWSR2 and SWSR4 are not included in the GWL
safety argument (Figure 8.4), while for the SWL, all six requirements are in-
cluded in the corresponding argument (Figure 8.3).

As most of the requirements are addressed by the strong contracts that are
argued in a separate argument branch, the away goals are used to relate to those
arguments, while the weak contracts that are used to support a requirement for
the first time in the argument are further developed (e.g., the contracts LAAP-
5 and LAAP-6 for requirements SWSR2 and SWSR5). We have structured
the LAAP argument by focusing on the strong contracts separately from the
weak contracts to demonstrate the use of the contract variability enabled by the
strong and weak contracts. While the top-level argument-fragment, in particu-
lar the G2 goal, would be the same when we reuse LAAP in different systems,
the requirement satisfaction argument-fragment is specific for each system.

112

8.2 Case Study 1 95

G
2

S
tr

o
n

g
 c

o
n

tr
a

c
ts

 o
f
L

A
A

P
 a

re

s
a

ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-1

L
A

A
P

-1
 c

o
n

tr
a

c
t
is

 s
a

ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-1
_

c
o

n
tr

a
c

tC
o

m
p

le
te

L
A

A
P

-1
 i
s
 s

u
ff
ic

ie
n

tl
y
 c

o
m

p
le

te

L
A

A
P

-1
_

c
o

n
tr

a
c

tA
s

s
u

m
e

L
A

A
P

-1
 a

s
s
u

m
p

ti
o

n
s
 a

re
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-1
_
A

1

C
o

n
tr

a
c
t
g

ro
u

n
d

S
p

e
e

d
L

im
it
V

a
lu

e

s
u

p
p

o
rt

s
 t
h

e
 a

s
s
u

m
p

ti
o

n

“g
ro

u
n

d
S

p
e

e
d

L
im

it
 w

it
h

in
 [

0
,
2

0
]
k
m

/h
”

L
A

A
P

-1
_

c
o

n
tr

a
c

tR
e

q

T
h

e
 c

o
n

tr
a

c
t
fo

rm
a

liz
e

s

S
W

S
R

1

L
A

A
P

-1
_
c

o
n

tr
a

c
tD

e
s

c

A
s
s
u

m
in

g
 t
h

e
 g

ro
u

n
d

 s
p

e
e

d
 l
im

it
 i
s
 s

e
t

b
e

lo
w

 2
0
k
m

/h
,
L

A
A

P
 s

h
a

ll
b

e
 d

is
a

b
le

d

w
h

e
n

 t
h

e
 g

ro
u

n
d

 s
p

e
e

d
 o

f
th

e
 v

e
h

ic
le

e
x
c
e

e
d

s
 t
h

e
 g

ro
u

n
d

 s
p

e
e

d
 l
im

it
.

S
o

l:
L

A
A

P
-

1
_
E

1

[U
n

it
 t
e

s
ti
n

g

re
s
u

lt
s
]

G
o

a
l:

L
A

A
P

-1
_
E

1

”U
n

it
 t
e

s
ti
n

g
 r

e
s
u

lt
s
”

s
u

p
p

o
rt

s

c
o

m
p

le
te

n
e

s
s
 o

f
th

e
 c

o
n

tr
a

c
t

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
g

ro
u

n
d

S
p

e
e

d
L

im
it
V

a
lu

e
 i
s

s
a

ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

g
ro

u
n

d
S

p
e

e
d

L
im

it
V

a
lu

e

L
A

A
P

-3

L
A

A
P

-3
 c

o
n

tr
a

c
t
is

 s
a

ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-3
_
c

o
n

tr
a

c
tC

o
m

p
le

te

L
A

A
P

-3
 i
s
 s

u
ff
ic

ie
n

tl
y
 c

o
m

p
le

te
L

A
A

P
-3

_
c

o
n

tr
a

c
tA

s
s

u
m

e

L
A

A
P

-3

a

s
s
u

m
p

ti
o

n
s
 a

re
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-3
_
A

1

C
o

n
tr

a
c
t
w

a
tc

h
d

o
g

T
im

e
rI

n
te

rv
a

l
s
u

p
p

o
rt

s

th
e

 a
s
s
u

m
p

ti
o

n
 “

w
a

tc
h

d
o

g
T

im
e

rI
n

te
rv

a
l

w
it
h

in
 [
ra

is
e

T
im

e
,
1

.2
*r

a
is

e
T

im
e
]”

L
A

A
P

-3
_

c
o

n
tr

a
c

tD
e

s
c

T
h

e
 w

a
tc

h
d

o
g

 t
im

e
r

in
te

rv
a

l
is

 s
e

t
re

la
ti
v
e

 t
o

 t
h

e

m
a

x
im

u
m

 r
a

is
e

 t
im

e
 o

f
th

e
 l
if
ti
n

g
 a

rm
 s

u
c
h

 t
h

a
t
it

re
s
e

ts
 i
f
th

e
 a

rm
 d

o
e

s
 n

o
t
c
o

m
p

le
te

 i
ts

m
o

v
e

m
e

n
t
w

it
h

in
 t
h

e
 s

p
e

c
if
ie

d
 t
im

e
.

S
o

l:
L

A
A

P
-

3
_
E

1

[W
a

tc
h

d
o

g

In
s
p

e
c
ti
o

n

R
e

p
o

rt
]

G
o

a
l:

L
A

A
P

-3
_
E

1

”W
a

tc
h

d
o

g
 i
n

s
p

e
c
ti
o

n
 r

e
p

o
rt

”
s
u

p
p

o
rt

s

c
o

m
p

le
te

n
e

s
s
 o

f
th

e
 c

o
n

tr
a

c
t

L
A

A
P

-3
_

c
o

n
tr

a
c

tR
e

q

T
h

e
 c

o
n

tr
a

c
t
fo

rm
a

liz
e

s
 S

W
S

R
3

L
A

A
P

-3
_
A

2

C
o

n
tr

a
c
t
a

rm
R

a
is

e
T

im
e

s
u

p
p

o
rt

s
 t
h

e
 a

s
s
u

m
p

ti
o

n

”r
a

is
e

T
im

e
 >

 0
”

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
w

a
tc

h
d

o
g

T
im

e
rI

n
te

rv
a

l
is

s
a

ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

w
a

tc
h

d
o

g
T

im
e

rI
n

te
rv

a
l

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
a

rm
R

a
is

e
T

im
e
 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

a
rm

R
a

is
e

T
im

e

S
o

l:
L

A
A

P
-

3
_
E

2

[U
n

it
 t
e

s
ti
n

g

re
s
u

lt
s
]

G
o

a
l:

L
A

A
P

-3
_
E

2

”U
n

it
 t
e

s
ti
n

g
 r

e
s
u

lt
s
”

s
u

p
p

o
rt

s

c
o

m
p

le
te

n
e

s
s
 o

f
th

e
 c

o
n

tr
a

c
t

G
1

L
A

A
P

 s
a

ti
s
fi
e

s
 t
h

e
 a

llo
c
a

te
d

 s
a

fe
ty

 r
e

q
u

ir
e

m
e

n
ts

G
4

C
o

n
tr

a
c
ts

 o
f
L

A
A

P
 a

re
 c

o
n

s
is

te
n

t

C
o

n
tr

a
c

t

C
o

n
s

is
te

n
c

y

R
e

p
o

rt

G
3

A
llo

c
a

te
d

 s
a

fe
ty

 r
e

q
u

ir
e

m
e

n
ts

 a
re

 m
e

t

b
y
 t
h

e
 r

e
la

te
d

 c
o

n
tr

a
c
ts

 o
f
L

A
A

P

L
A

A
P

-2

L
A

A
P

-2
 c

o
n

tr
a

c
t
is

 s
a

ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-1
_

a
s

s
u

m
e
-S

tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
th

e
 c

o
n

tr
a

c
ts

 i
n

 t
h

e

e
n

v
ir
o

n
m

e
n

t
s
u

p
p

o
rt

in
g

 t
h

e
 a

s
s
u

m
p

ti
o

n
s

L
A

A
P

-1
_

c
o

m
p

-s
tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
th

e
 e

v
id

e
n

c
e

s
u

p
p

o
rt

in
g

 t
h

e
 c

o
n

tr
a

c
t
c
o

m
p

le
te

n
e

s
s

L
A

A
P

-1
_
c

o
n

tr
a

c
tD

e
c

o
m

p

L
A

A
P

-1
 d

e
c
o

m
p

o
s
it
io

n
 i
s
 c

o
rr

e
c
t

L
A

A
P

-3
_

c
o

n
tr

a
c

tD
e

c
o

m
p

L
A

A
P

-3
 d

e
c
o

m
p

o
s
it
io

n
 i
s
 c

o
rr

e
c
t

L
A

A
P

-3
_

a
s

s
u

m
e
-S

tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
th

e
 c

o
n

tr
a

c
ts

 i
n

 t
h

e

e
n

v
ir
o

n
m

e
n

t
s
u

p
p

o
rt

in
g

 t
h

e
 a

s
s
u

m
p

ti
o

n
s

L
A

A
P

-3
_
c

o
m

p
-s

tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
th

e
 e

v
id

e
n

c
e

s
u

p
p

o
rt

in
g

 t
h

e
 c

o
n

tr
a

c
t
c
o

m
p

le
te

n
e

s
s

Fi
gu

re
8.

2:
To

p
go

al
s

of
th

e
L

A
A

P
sa

fe
ty

ar
gu

m
en

tw
ith

th
e

st
ro

ng
co

nt
ra

ct
s

ar
gu

m
en

t-
fr

ag
m

en
td

ev
el

op
ed

(t
he

sa
m

e
fo

rb
ot

h
th

e
G

W
L

an
d

SW
L

)

113

96 Chapter 8. Validation
G

3

A
llo

c
a

te
d

 s
a

fe
ty

 re
q

u
ire

m
e

n
ts

 a
re

 m
e

t b
y
 th

e
 re

la
te

d
 c

o
n

tra
c
ts

 o
f L

A
A

P

S
1

A
rg

u
m

e
n

t b
y
 s

a
tis

fa
c
tio

n
 o

f a
ll a

llo
c
a

te
d

 s
a

fe
ty

 re
q

u
ire

m
e

n
ts

 o
n

 L
A

A
P

S
1

A
rg

u
m

e
n

t b
y
 s

a
tis

fa
c
tio

n
 o

f a
ll a

llo
c
a

te
d

 s
a

fe
ty

 re
q

u
ire

m
e

n
ts

 o
n

 L
A

A
P

L
A

A
P

-6

L
A

A
P

-6
 c

o
n

tra
c
t is

 s
a

tis
fie

d

w
ith

 s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

L
A

A
P

-6
_

A
2

C
o

n
tra

c
t h

y
d

ra
u

lic
A

c
c
 s

u
p

p
o

rts
 th

e
 a

s
s
u

m
p

tio
n

“a
c
tu

a
tio

n
 d

e
v
ia

tio
n

 is
 w

ith
in

 0
.0

1
 ra

d
”

L
A

A
P

-6
_
c

o
n

tra
c

tR
e

q

T
h

e
 c

o
n

tra
c
t fo

rm
a

liz
e

s
 S

W
S

R
2

S
o

l:L
A

A
P

-

6
_
E

1

[F
P

T
C

 a
n

a
ly

s
is

re
p

o
rt]

G
o

a
l:L

A
A

P
-6

_
E

1

”L
A

A
P

 F
P

T
C

 a
n

a
ly

s
is

 re
p

o
rt” s

u
p

p
o

rts

c
o

m
p

le
te

n
e

s
s
 o

f th
e

 c
o

n
tra

c
t

L
A

A
P

-6
_

c
o

n
tra

c
tD

e
s

c

 G
iv

e
n

 th
e

 a
c
c
u

ra
c
y
 o

f th
e

 a
n

g
le

 s
e

n
s
o

r a
n

d
 th

e
 a

c
tu

a
tio

n
, a

n
d

a
s
s
u

m
in

g
 th

a
t th

e
 re

c
o

rd
e

d
 p

o
s
itio

n
 is

 n
o

t fa
u

lty
, th

e
 re

s
u

ltin
g

 L
A

A
P

flo
w

 c
o

m
m

a
n

d
 a

c
c
u

ra
c
y
 e

n
s
u

re
s
 th

e
 a

c
c
u

ra
c
y
 o

f th
e

 s
to

p
 p

o
s
itio

n

c
o

m
p

a
re

d
 to

 th
e

 re
c
o

rd
e

d
 p

o
s
itio

n
.

L
A

A
P

-6
_
A

3

C
o

n
tra

c
t re

c
P

o
s
itio

n
C

o
n

f s
u

p
p

o
rts

 th
e

 a
s
s
u

m
p

tio
n

“re
c
o

rd
e

d
P

o
s
itio

n
 d

o
e

s
 n

o
t in

tro
d

u
c
e

 d
e

v
ia

tio
n

”

L
A

A
P

-6
_
A

1

C
o

n
tra

c
t a

n
g

le
S

e
n

s
o

rA
c
c
 s

u
p

p
o

rts
 th

e

a
s
s
u

m
p

tio
n

 “a
n

g
le

S
e

n
s
o

r a
c
c
u

ra
c
y
 is

 0
.0

2
 ra

d
”

A
w

a
y

 G
o

a
l

C
o

n
tra

c
t h

y
d

ra
u

lic
A

c
c
 is

 s
a

tis
fie

d

w
ith

 s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

h
y
d

ra
u

lic
A

c
c

A
w

a
y

 G
o

a
l

C
o

n
tra

c
t a

n
g

le
S

e
n

s
o

rA
c
c
 is

s
a

tis
fie

d
 w

ith
 s

u
ffic

ie
n

t c
o

n
fid

e
n

c
e

a
n

g
le

S
e

n
s
o

rA
c
c

S
o

l:L
A

A
P

-

6
_

E
2

[U
n

it te
s
tin

g

re
s
u

lts
]

G
o

a
l:L

A
A

P
-6

_
E

2

”U
n

it te
s
tin

g
 re

s
u

lts
” s

u
p

p
o

rts

c
o

m
p

le
te

n
e

s
s
 o

f th
e

 c
o

n
tra

c
t

G
3
.2

S
W

S
R

2
 is

 s
a

tis
fie

d
 w

ith

s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

G
3
.4

S
W

S
R

4
 is

 s
a

tis
fie

d
 w

ith

s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

G
3
.4

.1

T
h

e
 s

e
t o

f L
A

A
P

 c
o

n
tra

c
ts

fo
rm

a
liz

in
g

 S
W

S
R

4
 a

re
 s

a
tis

fie
d

w
ith

 s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

G
3

.4
.2

S
W

S
R

4
 is

 c
o

rre
c
tly

fo
rm

a
liz

e
d

 b
y
 th

e

re
la

te
d

 L
A

A
P

 c
o

n
tra

c
ts

In
s

p
e

c
tio

n

R
e

p
o

rt

A
w

a
y

 G
o

a
l

C
o

n
tra

c
t L

A
A

P
-3

 is
 s

a
tis

fie
d

w
ith

 s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

L
A

A
P

-3

G
3
.2

.1

T
h

e
 s

e
t o

f L
A

A
P

 c
o

n
tra

c
ts

fo
rm

a
liz

in
g

 S
W

S
R

2
 a

re
 s

a
tis

fie
d

w
ith

 s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

G
3
.2

.2

S
W

S
R

2
 is

 c
o

rre
c
tly

fo
rm

a
liz

e
d

 b
y
 th

e
 re

la
te

d

L
A

A
P

 c
o

n
tra

c
ts

In
s

p
e

c
tio

n

R
e

p
o

rt

A
w

a
y

 G
o

a
l

F
P

T
C

 a
n

a
ly

s
is

 re
s
u

lts
 a

re
 s

u
ffic

ie
n

t

to
 s

u
p

p
o

rt c
o

n
tra

c
t c

o
m

p
le

te
n

e
s
s

 F
P

T
C

_
a

n
a

ly
s
is

_
c
o

n
f

G
3

.3

S
W

S
R

3
 is

 s
a

tis
fie

d
 w

ith

s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

G
3

.3
.1

T
h

e
 s

e
t o

f L
A

A
P

 c
o

n
tra

c
ts

fo
rm

a
liz

in
g

 S
W

S
R

3
 a

re
 s

a
tis

fie
d

w
ith

 s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

G
3
.3

.2

S
W

S
R

3
 is

 c
o

rre
c
tly

fo
rm

a
liz

e
d

 b
y
 th

e

re
la

te
d

 L
A

A
P

 c
o

n
tra

c
ts

A
w

a
y

 G
o

a
l

C
o

n
tra

c
t L

A
A

P
-2

 is
 s

a
tis

fie
d

w
ith

 s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

L
A

A
P

-2

In
s

p
e

c
tio

n

R
e

p
o

rt

S
W

S
R

4
-c

o
n

tra
c

ts

T
h

e
 lis

t o
f L

A
A

P

c
o

n
tra

c
ts

 fo
rm

a
liz

in
g

S
W

S
R

4
: L

A
A

P
3

S
W

S
R

3
-c

o
n

tra
c

ts

T
h

e
 lis

t o
f L

A
A

P

c
o

n
tra

c
ts

 fo
rm

a
liz

in
g

S
W

S
R

3
: L

A
A

P
2

S
W

S
R

2
-c

o
n

tra
c

ts

T
h

e
 lis

t o
f L

A
A

P

c
o

n
tra

c
ts

 fo
rm

a
liz

in
g

S
W

S
R

2
: L

A
A

P
6

L
A

A
P

-6
_
c

o
n

tra
c

tC
o

m
p

le
te

L
A

A
P

-6
 is

 s
u

ffic
ie

n
tly

 c
o

m
p

le
te

L
A

A
P

-6
_
c

o
n

tra
c

tA
s

s
u

m
e

L
A

A
P

-6
 a

s
s
u

m
p

tio
n

s
 a

re
 s

a
tis

fie
d

 w
ith

 s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

L
A

A
P

-6
_
a

s
s

u
m

e
-S

tr

A
rg

u
m

e
n

t o
v
e

r a
ll th

e
 c

o
n

tra
c
ts

 in
 th

e

e
n

v
iro

n
m

e
n

t s
u

p
p

o
rtin

g
 th

e
 a

s
s
u

m
p

tio
n

s

L
A

A
P

-6
_
c

o
m

p
-s

tr

A
rg

u
m

e
n

t o
v
e

r a
ll th

e
 e

v
id

e
n

c
e

s
u

p
p

o
rtin

g
 th

e
 c

o
n

tra
c
t c

o
m

p
le

te
n

e
s
s

G
3
.1

S
W

S
R

1
 is

 s
a

tis
fie

d
 w

ith

s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

G
3
.6

S
W

S
R

6
 is

 s
a

tis
fie

d
 w

ith

s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

G
3

.5

S
W

S
R

5
 is

 s
a

tis
fie

d
 w

ith

s
u

ffic
ie

n
t c

o
n

fid
e

n
c
e

A
w

a
y

 G
o

a
l

C
o

n
tra

c
t re

c
P

o
s
itio

n
C

o
n

f is

s
a

tis
fie

d
 w

ith
 s

u
ffic

ie
n

t c
o

n
fid

e
n

c
e

re
c
P

o
s
itio

n
C

o
n

f

L
A

A
P

-6
_
c

o
n

tra
c

tD
e

c
o

m
p

L
A

A
P

-6
 d

e
c
o

m
p

o
s
itio

n
 is

 c
o

rre
c
t

Figure
8.3:Safety

argum
ent-fragm

entforthe
safety

requirem
ents

allocated
on

the
L

A
A

P
in

contextofSW
L

114

8.2 Case Study 1 97
G

3

A
llo

c
a

te
d

 s
a

fe
ty

 r
e

q
u

ir
e

m
e

n
ts

 a
re

 m
e

t
b

y
 t
h

e
 r

e
la

te
d

 c
o

n
tr

a
c
ts

 o
f

L
A

A
P

S
1

A
rg

u
m

e
n

t
b

y
 s

a
ti
s
fa

c
ti
o

n
 o

f
a

ll
a

llo
c
a

te
d

 s
a

fe
ty

 r
e

q
u

ir
e

m
e

n
ts

 o
n

 L
A

A
P

S
1

A
rg

u
m

e
n

t
b

y
 s

a
ti
s
fa

c
ti
o

n
 o

f
a

ll
a

llo
c
a

te
d

 s
a

fe
ty

 r
e

q
u

ir
e

m
e

n
ts

 o
n

 L
A

A
P

G
3
.1

S
W

S
R

1
 i
s
 s

a
ti
s
fi
e

d
 w

it
h

s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

G
3
.5

S
W

S
R

5
 i
s
 s

a
ti
s
fi
e

d
 w

it
h

s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
L

A
A

P
-1

 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-1

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
L

A
A

P
-5

 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-5

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
L

A
A

P
-2

 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-2

L
A

A
P

-5

L
A

A
P

-5
 i
s
 s

a
ti
s
fi
e

d
 w

it
h

s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-5
_

A
1

C
o

n
tr

a
c
t
a

u
to

P
o

s
it
io

n
in

g
1
 s

u
p

p
o

rt
s
 t
h

e

a
s
s
u

m
p

ti
o

n
 “

N
o

t
a

u
to

P
o

s
it
io

n
R

e
q

.c
o

m
is

s
io

n
”

L
A

A
P

-5
_
C

1

In
 o

rd
e

r
to

 m
it
ig

a
te

 i
n

a
d

v
e

rt
e

n
t
c
o

m
m

a
n

d
s
 s

e
n

t

fr
o

m
 L

A
A

P
,
th

e
 e

n
v
ir
o

n
m

e
n

t
s
h

o
u

ld
 e

n
s
u

re
 t
h

a
t

c
o

m
m

is
s
io

n
 o

f
th

e
 a

u
to

 p
o

s
it
io

n
in

g
 r

e
q

u
e

s
t
a

n
d

o
m

is
s
io

n
 o

f
th

e
 c

o
n

tr
o

l
le

v
e

r
s
ig

n
a

ls
 d

o
 n

o
t
o

c
c
u

r.

S
o

l:
L

A
A

P
-

5
_
E

1

[F
P

T
C

 a
n

a
ly

s
is

re
p

o
rt

]

G
o

a
l:

L
A

A
P

-5
_
E

1

”L
A

A
P

 F
P

T
C

 a
n

a
ly

s
is

 r
e

p
o

rt
”

s
u

p
p

o
rt

s

c
o

m
p

le
te

n
e

s
s
 o

f
th

e
 c

o
n

tr
a

c
t

L
A

A
P

-5
_
c

o
n

tr
a

c
tR

e
q

T
h

e
 c

o
n

tr
a

c
t
fo

rm
a

liz
e

s

S
W

S
R

5

L
A

A
P

-5
_

A
2

C
o

n
tr

a
c
t
c
o

n
tr

o
lL

e
v
e

r1
 s

u
p

p
o

rt
s
 t
h

e

a
s
s
u

m
p

ti
o

n
 “

N
o

t
c
o

n
tr

o
lL

e
v
e

r.
o

m
is

s
io

n
”

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
c
o

n
tr

o
lL

e
v
e

r1
 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

c
o

n
tr

o
lL

e
v
e

r1

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
a

u
to

P
o

s
it
io

n
in

g
1

 i
s

s
a

ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

a
u

to
P

o
s
it
io

n
in

g
1

A
w

a
y

 G
o

a
l

F
P

T
C

 a
n

a
ly

s
is

 r
e

s
u

lt
s
 a

re
 s

u
ff
ic

ie
n

t

to
 s

u
p

p
o

rt
 c

o
n

tr
a

c
t
c
o

m
p

le
te

n
e

s
s

 F

P
T

C
_
a

n
a

ly
s
is

_
c
o

n
f

G
3
.3

S
W

S
R

3
 i
s
 s

a
ti
s
fi
e

d
 w

it
h

s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

G
3
.1

.1

T
h

e
 s

e
t
o

f
L

A
A

P
 c

o
n

tr
a

c
ts

fo
rm

a
liz

in
g

 S
W

S
R

1
 a

re

s
a

ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t

c
o

n
fi
d

e
n

c
e

G
3
.1

.2

S
W

S
R

1
 i
s
 c

o
rr

e
c
tl
y

fo
rm

a
liz

e
d

 b
y
 t
h

e
 r

e
la

te
d

L
A

A
P

 c
o

n
tr

a
c
ts In

s
p

e
c

ti
o

n

R
e

p
o

rt

S
W

S
R

1
-c

o
n

tr
a

c
ts

T
h

e
 l
is

t
o

f
L

A
A

P
 c

o
n

tr
a

c
ts

fo
rm

a
liz

in
g

 S
W

S
R

1
:

L
A

A
P

1

G
3
.6

S
W

S
R

6
 i
s
 s

a
ti
s
fi
e

d
 w

it
h

s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

G
3
.6

.1

T
h

e
 s

e
t
o

f
L

A
A

P
 c

o
n

tr
a

c
ts

fo
rm

a
liz

in
g

 S
W

S
R

6
 a

re
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

G
3

.1
.2

S
W

S
R

6
 i
s
 c

o
rr

e
c
tl
y

fo
rm

a
liz

e
d

 b
y
 t
h

e

re
la

te
d

 L
A

A
P

 c
o

n
tr

a
c
ts

In
s

p
e

c
ti

o
n

R
e

p
o

rt

S
W

S
R

6
-c

o
n

tr
a

c
ts

T
h

e
 l
is

t
o

f
L

A
A

P
 c

o
n

tr
a

c
ts

fo
rm

a
liz

in
g

 S
W

S
R

6
:
L

A
A

P
-2

,

L
A

A
P

-5

G
3
.5

.1

T
h

e
 s

e
t
o

f
L

A
A

P
 c

o
n

tr
a

c
ts

fo
rm

a
liz

in
g

 S
W

S
R

5
 a

re
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

G
3

.1
.2

S
W

S
R

5
 i
s
 c

o
rr

e
c
tl
y

fo
rm

a
liz

e
d

 b
y
 t
h

e

re
la

te
d

 L
A

A
P

 c
o

n
tr

a
c
ts

S
W

S
R

5
-c

o
n

tr
a

c
ts

T
h

e
 l
is

t
o

f
L

A
A

P

c
o

n
tr

a
c
ts

 f
o

rm
a

liz
in

g

S
W

S
R

5
:
L

A
A

P
-5

L
A

A
P

-5
_

c
o

n
tr

a
c

tC
o

m
p

le
te

L
A

A
P

-5
 i
s
 s

u
ff
ic

ie
n

tl
y
 c

o
m

p
le

te

L
A

A
P

-5
_
c

o
n

tr
a

c
tA

s
s

u
m

e

L
A

A
P

-5
 a

s
s
u

m
p

ti
o

n
s
 a

re
 s

a
ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-5
_
c

o
n

tr
a

c
tD

e
c

o
m

p

L
A

A
P

-5
 d

e
c
o

m
p

o
s
it
io

n
 i
s
 c

o
rr

e
c
t

L
A

A
P

-5
_
a

s
s

u
m

e
-S

tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
th

e
 c

o
n

tr
a

c
ts

 i
n

 t
h

e
 e

n
v
ir
o

n
m

e
n

t
s
u

p
p

o
rt

in
g

 t
h

e
 a

s
s
u

m
p

ti
o

n
s

L
A

A
P

-5
_
c

o
m

p
-s

tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
th

e
 e

v
id

e
n

c
e

 s
u

p
p

o
rt

in
g

 t
h

e
 c

o
n

tr
a

c
t
c
o

m
p

le
te

n
e

s
s

Fi
gu

re
8.

4:
Sa

fe
ty

ar
gu

m
en

t-
fr

ag
m

en
tf

or
th

e
sa

fe
ty

re
qu

ir
em

en
ts

al
lo

ca
te

d
on

th
e

L
A

A
P

in
co

nt
ex

to
fG

W
L

115

98 Chapter 8. Validation

8.2.6 Discussion

As described in Section 2.3, ISO 26262 requires certain information to be gath-
ered during the concept phase of the development of an item in order to define
the functional safety concept for the item. The standard mandates that the func-
tional safety concept should be considered and refined at the implementation
level of the software and hardware elements of the item. In the case of SEooC,
the information related to the functional safety concept should be assumed out-
of-context and validated in-context. In the case of other reusable elements such
as qualified software elements, this information should be made available and
validated prior to the integration of the element into an ISO 26262 compliant
system. The guidelines provided by the standard do not go into further detail
but stop at the message that this information should be considered, assumed
and validated. In this case study we have used the assurance and reuse aware
contract-based design as a way to assume, consider and validate this informa-
tion together with additional benefits of automated assurance and fine-grained
reuse. When developing SEooC, the required information is assumed within
safety contracts, by associating these contracts with SW safety requirements,
the requirements are related and consider this information. Upon integration of
a reusable component together with its safety contracts, the assumed informa-
tion or information that should be made available is validated by checking that
the safety contracts assumptions are satisfied in the particular system.

As presented in Section 8.2.4, what is safety relevant in one system can
sometimes be regarded as quality management in another system. This is
the main reason why reusing safety artefacts (such as product-based safety
argument-fragments) first needs a phase of identifying what is relevant. This is
supported by the assurance and reuse aware contract-based design, where con-
tract checking is used to identify the relevant information in a particular con-
text. We have presented the context-specific argument-fragments for the dif-
ferent systems to show that the contract-aware SEooC development and reuse
can assist in identifying the relevant safety assurance information, and in that
way we have addressed the main research question of the case study (RQ1).

8.2.7 Validity

When designing this case study, our main focus was on specifying a realis-
tic reuse scenario between at least two different systems. We have done this
with our industrial partners, based on their experience on working with similar
systems. Once we have identified the reusable component, we needed some

116

8.3 Case Study 2 99

system specifications and context descriptions of the two systems, to be able
to identify the hazards and the corresponding safety requirements for both sys-
tems. We have derived detailed system specifications from system descriptions
and high-level functional specification of the system. Having the system infor-
mation enabled us to check the system assumptions made during the SEooC
reuse, which helped us identify the relevant information for each system us-
ing contract checking. The results depend on the realism of both the defined
reusable component and the system specifications. Although we tried to use
the industrial experience when dealing with both steps to make the case as re-
alistic as possible, in the end the case is always simplified to a degree that may
have influenced the case study conclusions.

Designing a SEooC in a realistic scenario would mean making assump-
tions about the different target systems in which the SEooC may be reused.
In our case, the realism here was influenced by the fact that we were also at
the same time defining the two target systems, which influenced our process of
making the system assumptions while designing the SEooC. In reality, the as-
sumptions would not necessarily match with the in-context requirements [77],
which could require some additional work in aligning the SEooC assumptions
and system specification.

8.3 Case Study 2
In this section we document the second case study by following the same struc-
ture presented in Section 8.1. We first present the case study design in Sec-
tion 8.3.1, and then introduce the particular case of study in Section 8.3.2. In
Section 8.3.3 we apply CHESS-FLA/FPTC analysis on a reusable component
and use the translation steps from Section 6.2.1 to translate the FPTC analy-
sis results to the contracts. Next, we finalise the CHESS-FLA/FPTC analysis
in context of a specific system and present the system level contracts in Sec-
tion 8.3.4. We present the generated argument-fragment in Section 8.3.5. In
Section 8.3.6 we provide a discussion and then examine the case study validity
in Section 8.3.7.

8.3.1 Case Study Design

The objective of our case study is to apply FLAR2SAF on a real-world case
commonly found in industry and evaluate the feasibility of reuse and genera-
tion of safety artefacts related to FPTC analysis. More specifically, we conduct

117

100 Chapter 8. Validation

an explanatory case study to answer the following research questions:

• RQ2.1: Can FPTC analysis be performed if inputs of all components
under analysis do not consider the same set of failures?

• RQ2.2: Is safe reuse of FPTC-related safety artefacts possible when the
set of failures considered in the FPTC analysis of the reusable compo-
nent does not match the set of failures from the FPTC analysis of the
system in which the component is reused?

We consider a case where a component is developed independently of a sin-
gle system and then reused in a system that is part of a family of products. More
specifically, a functionality of a Loading Arm Control Unit (LACU) is reused
within a wheel-loader product-line. The functionality being reused is an inde-
pendently developed Loading Arm Automatic Positioning (LAAP) component
that supports FLAR2SAF.

We have selected this particular case based on industrial needs. Compa-
nies that develop ranges of products with similar functionalities often face a
similar scenario: they reuse components in different products, but not the ac-
companying safety artefacts. In cooperation with our industrial partners, we
have defined the case scenario and developed it further based on an abstracted
model of the system. Although we did not have access to the actual imple-
mentation of the system, we have been able to apply FLAR2SAF since we had
sufficient knowledge of the failure behaviour of the system.

8.3.2 The Case
In this case study we focus on a particular case of the LACU system described
in Section 3. The aim is on reuse of LAAP within a Small Wheel-loader
(SWL), which is often used for tasks that require high precision of the arm
movement. Moreover, SWL is not used only in construction sites, but also for
public service in areas with pedestrians.

The software architecture of LACU modelled in CHESS is shown in Fig-
ure 8.5. The hazard analysis of the loading arm has identified a vehicle level
hazard H1: unintended movement of the lifting arm, which can be dangerous
in different operational situations in which SWL is used. Angle sensor value
failure is identified as a contributor to the hazard H1. As one of the safety
measures implemented to mitigate this hazard, the angle sensor is duplicated
and monitored in software to protect against value failures. The values of both
angle sensors are compared by the monitor component both to each other, and

118

8.3 Case Study 2 101

Figure 8.5: LACU model in CHESS

to earlier sensor data to detect value anomalies. While the two sensors can
have different accuracy and the sensed values can slightly differ, we do not
consider such minor deviations as failures within our FPTC analysis. Further-
more, an error-detecting code is used to detect any accidental changes to the
stored variables, such as the predefined position to which the arm should be
moved.

Unlike the Monitor component, LAAP is developed out-of-context, with
FPTC analysis performed and the resulting failure behaviour captured in safety
contracts. The LAAP component enriched with contracts and the accompany-
ing evidence is reused in the context of SWL. In the next section we will focus
on the FPTC analysis of LAAP and present its contracts and the accompanying
evidence.

8.3.3 LAAP Failure Logic Analysis

The LAAP component is highlighted in the LACU architecture in Figure 8.5.
LAAP is activated with the LAAPRequest signal issued by the operator. Pro-
vided that the angleSensor, groundSpeed, and operatorControlLever are within
the specified boundaries, LAAPActive is set to true, and the calculated arm
movement command is provided through the LAAPFlow output. In the re-
minder of this section we focus on the FPTC analysis part of the LAAP out-of-

119

102 Chapter 8. Validation

Figure 8.6: A subset of LAAP FPTC rules

context development covered in Section 8.2, and detail the translated contracts.

The FPTC rules representing the LAAP failure behaviour are shown in Fig-
ure 8.6. The first set of rules describes that the component does not return a
failure in case it detects that any of the input values is omitted. Moreover, the
component is not a source of failures, hence if there are no failures on the in-
puts, there will be no failures on the outputs of the component. The second
and the third set of rules indicate that valueCoarse/valueSubtle failures of the
LAAPFlow command can occur when either angleSensor, LAAPSetpoint, or
both exhibit the corresponding valueCoarse/valueSubtle failure. Finally, the
last set of FPTC rules describes when the component exhibits commission fail-
ures on both of its output ports. Since whenever LAAPActive exhibits com-

120

8.3 Case Study 2 103

Table 8.5: A subset of the translated LAAP strong contracts with the associated
evidence

Id Assertions and support statements
ALAAP−S1: always (fault groundSpeed in {omission, valueSubtle, value-

Coarse} and fault operatorControlLever in {omission, valueSub-
tle, valueCoarse} and fault angleSensor in {omission, valueSubtle,
valueCoarse} and fault LAAPSetpoint in {omission, valueSubtle,
valueCoarse} and fault LAAPRequest in {omission, commission});

GLAAP−S1: always (fault LAAPFlow in {valueSubtle, valueCoarse, com-
mission} and fault LAAPActive in {commission} and not
fault LAAPFlow omission and not fault LAAPActive omission;

CLAAP−S1: For LAAP not to exhibit omission and the FPTC analysis to be
reusable with other FPTC specifications, only the specified failure
modes can occur on the corresponding input ports.

ELAAP−S1: name: LAAP FPTC analysis report
supporting argument: FPTC rules conf;

ALAAP−S2: -;
GLAAP−S2: always (fault groundSpeed omission implies

(fault LAAPFlow noFailure and fault LAAPActive noFailure));
CLAAP−S2: If ground speed signal is unavailable, the LAAP is disabled to pre-

vent value or commission failures from propagating.

ELAAP−S2:

name: LAAP FPTC analysis report
supporting argument: FPTC rules conf;
name: Unit testing results
supporting argument: Unit test conf;

121

104 Chapter 8. Validation

mission, the command LAAPFlow is calculated and also provided when not
supposed to, hence the commission of both of the ports is handled jointly. The
commission of the two outputs occurs when either the groundSpeed sensor or
operatorControlLever exhibit value failures, or when the LAAPRequest com-
mand is issued inadvertently. For example, the LAAP component has a built
in mechanism to deactivate itself if the operator control lever is active. In this
case, an incorrect control lever value can postpone deactivation of the loading
arm which results in both signals LAAPActive and LAAPFlow being issued
when not supposed to.

From the LAAP FPTC rules we translate the three types of contracts de-
tailed in Section 6.2.1. We specify the contracts using the OCRA compliant
Othello constraints syntax introduced in Section 2.5.1. The translated strong
contracts are shown in Table 8.5. Since the FPTC rules do not consider all
possible failures on its inputs – only those deemed feasible or relevant – the
strong contract is used to ensure that the component can be used even though
it does not consider all possible failures on its inputs. To achieve this, the
strong contract LAAP-S1 imposes restrictions on the environment of the com-
ponent by making assumptions that the component can receive on its input
ports only those failures considered within the FPTC analysis for this compo-
nent. More specifically, the component considers omission and commission
on LAAPRequest, and omission, valueSubtle and valueCoarse on other input
ports. LAAP-S1 then indicates that the component guarantees that it will not
exhibit omission failures, while it can exhibit value and commission failures.
If these strong assumptions are not satisfied, then the LAAP FPTC analysis
and the translated contracts should be revisited. The second strong contract
LAAP-S2 is an example of a contract where the FPTC rule is guaranteed and
its validity is supported by different types of evidence.

The FPTC rules that indicate when valueCoarse, valueSubtle, and commis-
sion failures occur are translated to the weak contracts shown in Table 8.6. The
FPTC rules about the valueCoarse failure of the LAAPFlow port combined are
translated to the contract LAAP-W1. The contract states that for the LAAP
component not to exhibit valueCoarse failure on the LAAPFlow port, the en-
vironment in which the component is used should ensure that the angleSensor
and the LAAPSetpoint values do not exhibit coarse value failures. Similarly,
the contract LAAP-W2 states that for the LAAP component not to exhibit val-
ueSubtle failure, the environment should ensure that the angleSensor and the
LAAPSetpoint values do not exhibit subtle value failures. Finally, the third
contract LAAP-W3 indicates that to prevent commission of both of the outputs,
there should be no value failures on groundSpeed and operatorControlLever

122

8.3 Case Study 2 105

Table 8.6: The translated LAAP weak contracts with the associated evidence
Id Assertions and support statements
BLAAP−W1: always (not fault angleSensor valueCoarse and not

fault LAAPSetpoint valueCoarse);
HLAAP−W1: always (not fault LAAPFlow valueCoarse);
CLAAP−W1: For LAAPFlow not to exhibit great value failure, neither angleSen-

sor nor LAAPSetpoint should fail with valueCoarse failure mode.
ELAAP−W1: name: LAAP FPTC analysis report

supporting argument: FPTC rules conf;
BLAAP−W2: always (not fault angleSensor valueSubtle and not

fault LAAPSetpoint valueSubtle);
HLAAP−W2: always (not fault LAAPFlow valueSubtle);
CLAAP−W2: For LAAPFlow not to exhibit subtle value failure, neither an-

gleSensor nor LAAPSetpoint should fail with valueSubtle failure
mode.;

ELAAP−W2: name: LAAP FPTC analysis report
supporting argument: FPTC rules conf;

BLAAP−W3: always (not fault groundSpeed valueSubtle and
not fault groundSpeed valueCoarse and not
fault operatorControlLever valueSubtle and not
fault operatorControlLever valueCoarse and not
fault LAAPRequest commission);

HLAAP−W3: always (not fault LAAPFlow commission and not
fault LAAPActive commission);

CLAAP−W3: For LAAP not to move the arm inadvertently, the groundSpeed and
operatorControlLever signals should not exhibit value failures and
the LAAPRequest should not be issued when not supposed to.

ELAAP−W3: name: LAAP FPTC analysis report
supporting argument: FPTC rules conf;

123

106 Chapter 8. Validation

ports, as well as no commission failure on the LAAPRequest port. All three
contracts are supported by the FPTC analysis report from which the contracts
are derived. Moreover, an additional argument is attached to support the confi-
dence in the specified FPTC rules.

8.3.4 LACU Failure Logic Analysis

As mentioned in Section 8.3.2, the LACU hazard analysis indicates that the
value failures of the angle sensor can lead to the hazard H1. Hence, when
selecting the subcomponents for this system, their failure behaviour related
to the value failures needs to be investigated to ensure that value failures are
contained. The contracts derived from the FPTC rules show which conditions
need to be satisfied for a particular component not to exhibit such failures, e.g.,
valueCoarse failure. To be able to reuse the LAAP component in the context
of LACU and perform FPTC analysis, the strong contract of LAAP needs to
be satisfied, i.e., there should be no failures occurring on the inputs of LAAP
other than those specified in the assumptions of the LAAP-S1 contract. Al-
though LAAP does not consider all possible failures on its input, the FPTC
analysis can still be performed and its results are valid in the systems that sat-
isfy such strong contract assumption. For example, the LAAP FPTC rules do
not consider value failures of the LAAPRequest port. As long as the system
provides guarantees that the received failures on LAAPRequest can only be
omission or commission, the analysis can be performed. If the component is
reused in a system that allows LAAPRequest to exhibit value failures, then
the corresponding FPTC rules of LAAP need to be updated to examine the
consequences on the output ports.

Since the strong assumptions are satisfied, we then examine the value fail-
ure behaviour of LAAP. We can identify from the contracts LAAP-W1 and
LAAP-W2 that LACU should ensure that angleSensor and LAAPSetpoint val-
ues should not be erroneous for the LAAP component not to exhibit the value-
Coarse and valueSubtle failures. As mentioned in Section 8.3.2, the software
monitor and the error-detecting code have been implemented to ensure that the
contracts LAAP-W1 and LAAP-W2 are satisfied.

The Monitor FPTC rules are shown in Figure 8.7. If either value or occur-
rence error is detected on both inputs, the output is omitted. For a value to be
provided to the other components at least one of the inputs should not exhibit a
failure. The Monitor output is provided to both the LAAP and ArmController
components. Unlike Monitor, the components LAAP and ArmController sim-
ply propagate value failures received on their inputs, while they guarantee that

124

8.3 Case Study 2 107

Figure 8.7: The set of Monitor FPTC rules

Figure 8.8: A subset of the ArmController FPTC rules

they are not sources of such failures. A subset of the ArmController FPTC
rules related to the valueCoarse failure of the armFlow command is shown in
Figure 8.8.

To perform the FPTC analysis on the LACU modelled in the CHESS-
toolset, FPTC specifications on the input ports of LACU need to be speci-
fied. These specifications indicate which failures can occur on the input ports.
As can be seen in Figure 8.5, noFailure is specified for most of the inputs to
indicate that failures on those ports are handled outside of LACU itself. Con-
versely, value and occurrence failures are examined for the angle sensor and
ground speed ports as they are handled by the LACU component.

Based on the FPTC rules for the subcomponents and the FPTC specifi-
cations on the input ports, the FPTC analysis of LACU indicates that on the
PWMflow output value and occurrence failures do not occur. While omission
is handled within the component, absence of commission depends on the com-
ponent environment. For commission not to occur, the environment needs to
fulfil certain assumptions (Table 8.8), such as locking switch should not ex-

125

108 Chapter 8. Validation

Table 8.7: A subset of the translated LACU strong contracts with the associated
evidence

Id Assertions and support statements
ALACU−S1: always (fault lockingSwitch noFailure and fault driveDirection

in {omission, commission, valueSubtle, valueCoarse} and
fault groundSpeed in {omission, commission, valueSubtle, value-
Coarse} and fault armPositionAngle1 in {omission, valueSubtle,
valueCoarse} and fault armPositionAngle2 in {omission, value-
Subtle, valueCoarse} and fault LAAPSetpoint in {omission, value-
Subtle, valueCoarse} and fault operatorControlLever in {omission,
valueSubtle, valueCoarse} and fault LAAPRequest in {omission,
commission});

GLACU−S1: always (fault PWMFlow in {commission}
fault lockingSwitchPosition in {commission} and not
fault PWMFlow valueCoarse and not fault PWMFlow valueSubtle
and not fault PWMFlow omission and not
fault lockingSwitchPosition omission);

CLACU−S1: For LACU not to exhibit value and omission failure modes, only the
specified failure modes can occur on the corresponding input ports.

ELACU−S1: name: LACU FPTC analysis report
supporting argument: FPTC rules conf;

ALACU−S2: -;
GLACU−S2: always ((fault lockingSwitch noFailure

and fault driveDirection noFailure and
fault armPositionAngle1 valueCoarse and
fault armPositionAngle2 noFailure and
fault LAAPSetpoint noFailure and fault LAAPRequest noFailure
and fault groundSpeed noFailure and
fault operatorControlLever noFailure) im-
plies (fault lockingSwitchPosition noFailure and
fault PWMFlow noFailure))

CLAAP−S2: The system can handle a standalone value failure of the first arm
position sensor without failing itself.

ELAAP−S2: name: Unit testing results
supporting argument: Unit test conf;

126

8.3 Case Study 2 109

Table 8.8: A translated LACU weak contract with the associated evidence
Id Assertions and support statements
BLACU−W1: always (not fault lockingSwitch commission

and not fault groundSpeed valueSubtle and
not fault groundSpeed valueCoarse and not
fault operatorControlLever valueSubtle and not
fault operatorControlLever valueCoarse and not
fault LAAPRequest commission);

HLACU−W1: always (not fault PWMFlow commission and not
fault lockingSwitchPosition commission);

CLACU−W1: For LACU not to issue any of the commands inadvertently, lock-
ingSwitch and LAAPRequest should not be triggered inadver-
tently, and groundSpeed and operatorControlLever should not ex-
hibit value failures.

ELACU−W1: name: LACU FPTC analysis report
supporting argument: FPTC rules conf;

hibit failures, which is indicated by the FPTC specifications. Similarly as for
the LAAP component, a strong contract for LACU is translated from the FPTC
analysis to indicate which failures are mitigated by the component and which
can still occur (Table 8.7), while a weak contract is translated to indicate which
conditions need to be met for the occurring failures (in this case commission)
to be mitigated (Table 8.8).

8.3.5 The resulting argument-fragment
Based on the LACU contract specification compliant to SEooCMM we have
instantiated the requirement and contract satisfaction argument patterns and
used them to build the argument-fragment that argues absence of the value
failure mode in LACU. A part of the resulting argument-fragment is shown in
Figure 8.9.

The AbsValPrimary goal is supported by the contracts that are related to
mitigation of value failures by the LACU, while the AbsValSecondary goal ad-
dresses the contracts that require the environment of LACU to handle those
failure modes that may cause LACU to exhibit a value failure. We identify the
strong contract LACU-S2 as contributing to mitigation of the primary causes of
the value failures of LACU, hence its satisfaction is argued under the ArgAb-
sValPrimary goal. Conversely, we use the contract LACU-S1 to support the
ArgAbsValSecondary goal, since LACU-S1 relies on the environment to han-

127

110 Chapter 8. Validation

dle certain failure modes in order for LACU not to exhibit value failures. We
use the contract satisfaction pattern introduced in Section 4.2 to develop the
contract-specific argument-fragments. Since the LACU-S2 contract does not
have assumptions, its contractAssume goal is empty. For the other contract
LACU-S1, we leave the LACU-S1 contractAssume goal undeveloped as it re-
quires support from the environment of LACU. The refining sub-component
contracts of LACU-S1 and LACU-S1 include the contracts from LACU sub-
components such as Monitor and LAAP. When developing the LAAP part of
the arguments, the artefacts reused with LAAP are used to build that part of the
argument.

Since the mitigation of value failures of LACU are handled by both the
LACU component and its environment, both the AbsValPrimary and AbsValSec-
ondary goals are developed. Similarly, when generating an argument based
on the HSFM pattern to argue the absence of the commission failures, the Ab-
sValSecondary goal would contain the argument over satisfaction of the LACU-
W1 contract. This contract indicates that LACU relies on its environment to
contain certain causes of the commission failure in order to mitigate it.

8.3.6 Discussion

A characteristics of FPTC analysis that supports reuse and the reason why we
have selected FPTC for failure logic analysis is the possibility to specify FPTC
rules for a component in isolation. The support for reuse is based on the as-
sumption that the FPTC rules of the reusable component consider the same
set of failure modes as the FPTC rules in the target system. Since the amount
of FPTC rules grows exponentially with the increase of input ports of a com-
ponent, skipping some failure modes on the input ports of such components
becomes inevitable [13]. For example, this difficulty was hard to notice on a
smaller application example of FLAR2SAF, but when moving to the more re-
alistic LACU case, achieving a sufficiently complete set of FPTC rules became
challenging. This is one of the common problems when dealing with similar
inductive safety analysis techniques [78].

Not specifying FPTC rules for certain failure modes threatens the support
for reuse of the FPTC analysis. Although it is reasonable to skip rules for
certain failure modes that might not be possible in certain systems, the fact is
that if the component is reused in a system where such failure mode is possible,
we cannot afford to assume the failure behaviour of the reused component.
Instead of assuming interpretations of the omitted FPTC rules [13], it would
be useful to identify if the set of FPTC rules of the reusable component is

128

8.3 Case Study 2 111

A
b

s
V

a
lP

ri
m

a
ry

T
h

e
 c

o
m

p
o

n
e

n
t
(C

S
F

)
s
u

c
c
e

s
fu

lly

h
a

n
d

le
s
 t
h

e
 p

ri
m

a
ry

 f
a

ilu
re

s

A
b

s
H

S
F

M
V

a
lu

e

H
a

z
a

rd
o

u
s
 S

o
ft
w

a
re

 F
a

ilu
re

 M
o

d
e

 {
H

S
F

M
}

o
f
ty

p
e

 V
a

lu
e

a
b

s
e

n
t
in

 c
o

n
tr

ib
u

to
ry

 s
o

ft
w

a
re

 f
u

n
c
ti
o

n
a

lit
y
 (

C
S

F
)

C
a

u
s

e
V

a
lH

a
z

K
n

o
w

n
 c

a
u

s
e

s
 o

f
V

a
lu

e

H
a

z
a

rd
o

u
s
 F

a
ilu

re
 M

o
d

e

L
A

C
U

-S
1

_
E

1

”L
A

C
U

 F
P

T
C

 a
n

a
ly

s
is

 r
e

p
o

rt
”

s
u

p
p

o
rt

s
 c

o
m

p
le

te
n

e
s
s
 o

f
th

e

c
o

n
tr

a
c
t

S
o

l:
 L

A
C

U
-

S
1
_

1

[F
P

T
C

 a
n

a
ly

s
is

re
p

o
rt

]

A
b

s
V

a
lS

e
c

o
n

d
a

ry

T
h

e
 k

n
o

w
n

 c
a

u
s
e

s
 o

f
s
e

c
o

n
d

a
ry

 f
a

ilu
re

s
 o

f

o
th

e
r

c
o

m
p

o
n

e
n

ts
 a

re
 a

c
c
e

p
ta

b
ly

 h
a

n
d

le
d

A
b

s
V

a
lC

o
n

tr
o

l

C
S

F
 i
s
 s

c
h

e
d

u
le

d
 c

o
rr

e
c
tl
y
 (

th
e

 c
la

im
s

a
d

d
re

s
s
e

s
 t
h

e
 i
te

m
s
 w

it
h

 c
o

n
tr

o
l
o

v
e

r
C

S
F

)

L
A

C
U

-S
1
_

c
o

n
tr

a
c

tC
o

m
p

le
te

L
A

C
U

-S
1

 i
s
 s

u
ff
ic

ie
n

tl
y
 c

o
m

p
le

te

L
A

C
U

-S
1
_

c
o

n
tr

a
c

tD
e

c
o

m
p

L
A

C
U

-S
1

 d
e

c
o

m
p

o
s
it
io

n
 i
s

c
o

rr
e

c
t

L
A

C
U

-S
2
_
c

o
n

tr
a

c
tC

o
m

p
le

te

L
A

C
U

-S
2

 i
s
 s

u
ff
ic

ie
n

tl
y

c
o

m
p

le
te

L
A

C
U

-S
2
_

c
o

n
tr

a
c

tA
s

s
u

m
e

L
A

C
U

-S
2

 a
s
s
u

m
p

ti
o

n
s
 a

re

s
a

ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t

c
o

n
fi
d

e
n

c
e

L
A

C
U

-S
2
_

c
o

n
tr

a
c

tD
e

c
o

m
p

L
A

C
U

-S
2

 d
e

c
o

m
p

o
s
it
io

n
 i
s

c
o

rr
e

c
t

L
A

C
U

-S
1
_

D
C

-S
tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
s
u

b
-c

o
m

p
o

n
e

n
t

c
o

n
tr

a
c
ts

 r
e

fi
n

in
g

 L
A

C
U

-S
1

L
A

C
U

-S
2

_
D

C
-S

tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
s
u

b
-c

o
m

p
o

n
e

n
t

c
o

n
tr

a
c
ts

 r
e

fi
n

in
g

 L
A

C
U

-S
2

L
A

C
U

-S
2

_
c

o
m

p
-s

tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
th

e
 e

v
id

e
n

c
e

s
u

p
p

o
rt

in
g

 t
h

e
 c

o
n

tr
a

c
t
c
o

m
p

le
te

n
e

s
s

L
A

C
U

-S
1
_

c
o

m
p

-s
tr

A
rg

u
m

e
n

t
o

v
e

r
a

ll
th

e
 e

v
id

e
n

c
e

s
u

p
p

o
rt

in
g

 t
h

e
 c

o
n

tr
a

c
t
c
o

m
p

le
te

n
e

s
s

A
rg

F
a

il
u

re
M

e
c

h

A
rg

u
m

e
n

t
o

v
e

r
fa

ilu
re

 m
e

c
h

a
n

is
m

s

A
ll
C

a
u

s
e

s

Id
e

n
ti
fi
e

d
 f
a

ilu
re

 m
e

c
h

a
n

is
m

s

d
e

s
c
ri
b

e
 a

ll
k
n

o
w

n
 c

a
u

s
e

s
 o

f

V
a

lu
e

 H
a

z
a

rd
o

u
s
 F

a
ilu

re
 M

o
d

e
J

L
A

C
U

-S
2

L
A

C
U

-S
2

 i
s
 s

a
ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t

c
o

n
fi
d

e
n

c
e

L
A

C
U

-S
1

L
A

C
U

-S
1

 i
s
 s

a
ti
s
fi
e

d
 w

it
h

s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

A
rg

A
b

s
V

a
lP

ri
m

a
ry

A
rg

u
m

e
n

t
o

v
e

r
e

a
c
h

 i
d

e
n

ti
fi
e

d

c
o

n
tr

a
c
t
re

la
te

d
 t
o

 p
ri
m

a
ry

 f
a

ilu
re

s

L
A

C
U

-S
2
_

C
1

T
h

e
 s

y
s
te

m
 c

a
n

 h
a

n
d

le
 a

 s
ta

n
d

a
lo

n
e

 v
a

lu
e

 f
a

ilu
re

 o
f

th
e

 f
ir
s
t
a

rm
 p

o
s
it
io

n
 s

e
n

s
o

r
w

it
h

o
u

t
fa

ili
n

g
 i
ts

e
lf
.

L
A

C
U

-S
1

_
C

1

F
o

r
L

A
C

U
 n

o
t
to

 e
x
h

ib
it
 v

a
lu

e
 a

n
d

 o
m

is
s
io

n
 f
a

ilu
re

m
o

d
e

s
,
o

n
ly

 t
h

e
 s

p
e

c
if
ie

d
 f
a

ilu
re

 m
o

d
e

s
 c

a
n

 o
c
c
u

r

o
n

 t
h

e
 c

o
rr

e
s
p

o
n

d
in

g
 i
n

p
u

t
p

o
rt

s
.

L
A

C
U

-S
2

_
E

1

”U
n

it
 t
e

s
ti
n

g
 r

e
s
u

lt
s
”

s
u

p
p

o
rt

s

c
o

m
p

le
te

n
e

s
s
 o

f
th

e
 c

o
n

tr
a

c
t

S
o

l:
 L

A
C

U
-

S
2

_
1

[U
n

it
 t
e

s
ti
n

g

re
s
u

lt
s
]

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
L

A
A

P
-S

2
 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-S
2

A
w

a
y

 G
o

a
l

F
P

T
C

 a
n

a
ly

s
is

 r
e

s
u

lt
s

a
re

 s
u

ff
ic

ie
n

t
to

 s
u

p
p

o
rt

c
o

n
tr

a
c
t
c
o

m
p

le
te

n
e

s
s

 F

P
T

C
_

a
n

a
ly

s
is

_
c
o

n
f

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
L

A
A

P
-W

2
 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-W
2

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
L

A
A

P
-W

1
 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-W
1

A
w

a
y

 G
o

a
l

C
o

n
tr

a
c
t
L

A
A

P
-S

1
 i
s
 s

a
ti
s
fi
e

d

w
it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

L
A

A
P

-S
1

L
A

C
U

-S
1
_

c
o

n
tr

a
c

tA
s

s
u

m
e

L
A

C
U

-S
1

 a
s
s
u

m
p

ti
o

n
s
 a

re

s
a

ti
s
fi
e

d
 w

it
h

 s
u

ff
ic

ie
n

t
c
o

n
fi
d

e
n

c
e

A
rg

A
b

s
V

a
lS

e
c

o
n

d
a

ry

A
rg

u
m

e
n

t
o

v
e

r
e

a
c
h

 i
d

e
n

ti
fi
e

d
 c

o
n

tr
a

c
t

re
la

te
d

 t
o

 s
e

c
o

n
d

a
ry

 f
a

ilu
re

s

A
w

a
y

 G
o

a
l

U
n

it
 t
e

s
ti
n

g
 r

e
s
u

lt
s
 a

re

s
u

ff
ic

ie
n

t
to

 s
u

p
p

o
rt

c
o

n
tr

a
c
t
c
o

m
p

le
te

n
e

s
s

U

n
it
_

te
s
t_

c
o

n
f

Fi
gu

re
8.

9:
A

rg
um

en
t-

fr
ag

m
en

tb
as

ed
on

th
e

H
SF

M
pa

tte
rn

us
in

g
th

e
co

nt
ra

ct
sa

tis
fa

ct
io

n
ar

gu
m

en
t-

fr
ag

m
en

ts

129

112 Chapter 8. Validation

sufficient to perform the FPTC analysis in the particular system. This can be
done by checking if only the failure modes considered by the FPTC rules of the
reused component occur on its input ports in the particular system. If no other
failure modes than those considered by the FPTC rules occur on the input ports
of the component, then the failure behaviour established by the FPTC rules
of that component can be used in the particular system. The strong and weak
contracts can be used to achieve this check. As demonstrated in the case study,
capturing the set of considered failure modes in the strong contracts allows
us to establish whether the FPTC analysis results achieved in isolation can be
reused in the particular system or not. The strong contract on failure modes
alleviates the need for assuming the interpretation of the skipped failure modes
by the FPTC rules of a reusable component. One way to handle the situation,
where a skipped failure mode occurs on the input of a reused component, would
be to design a wrapper or a component similar to the Monitor component of
the LACU such that it mitigates or transforms the failure mode not considered.
This answers the first research question RQ2.1 stated in Section 8.1 that FPTC
analysis can be performed even though not all failures are considered on inputs
of all components, as long as the strong contract assumptions translated with
FLAR2SAF are satisfied.

Associating evidence with contracts enables reasoning about reuse of such
evidence together with the contracts and utilising such evidence for argument-
fragment generation. SEooCMM enables supporting the contracts, and the
failure behaviour they capture, with evidence that provide confidence that the
captured failure behaviour is sufficiently correct and complete. Associating
the supporting elements (statements and evidence) to the contracts provides the
basis for generating the corresponding argument-fragments. Moreover, since
the contracts allow us to distinguish between the primary and secondary fail-
ures of the component, we have demonstrated in the case study that it is pos-
sible to generate argument-fragments based on the HSFM argument pattern
from such safety contracts. This answers the second research question RQ2.2
stated in Section 8.1 that reuse of FPTC-related artefacts is achievable by using
FLAR2SAF and SEooCMM.

The generated argument-fragments represent only a portion of the over-
all argument and can be seen as the skeleton that the overall argument can be
built upon. Even after the automated argument-fragment generation, the need
for further manual tailoring of the argument remains. The semi-automated na-
ture of such generation of an argument preserves the possibility for customised
tailoring of the argument, while enabling benefits of getting a head start by au-
tomated generation of parts of the argument. On the scale between full automa-

130

8.3 Case Study 2 113

tion and manual creation of an assurance case argument, FLAR2SAF stands in
the middle ground, offering some automation and requiring some manual ef-
forts. The critics of a fully automated argument generation usually point out
the issue of validity and veracity of the automatically generated safety argu-
ments from formal models [79], because the arguments are said to be inher-
ently informal. On the other hand, the critics of the manual development of an
argument argue that it is a painstaking process of documenting the safety case
and it would be better if that effort could be invested in further safety analysis
rather than its documentation process [80]. With FLAR2SAF we have opted
to take the middle road and automatise portions of the argument and still allow
the safety engineer to tailor the informal aspects of the safety argument.

One of the remaining open issues lies in the failure logic analysis itself.
The translated contracts and the resulting argument-fragments are as correct
and solid as the FLA itself. Establishing the failure behaviour is mainly a
manual process that becomes more tedious and error-prone as the size of the
component increases, especially if done out-of-context. Relating the expert
statements about the failure behaviour of a component directly to the evidence
that backs up the expert judgement is a way to increase confidence in the spec-
ified failure behaviour. Another issue not covered by the contract translation is
the additional assumptions that might have to be made for the evidence used to
support the translated contracts. For example, if we have supported a contract
with a simulation or a test result, such contract should be enriched to include
the assumptions that imply validity of the simulation and the test result.

8.3.7 Validity

Our main focus in this case study was on getting a realistic and sufficiently
complex case at a level often found in industry. In cooperation with our in-
dustrial partners we have managed this up to a certain point. Although we did
not have code behind the system models, we have been able to establish the
failure behaviour of the components based on the system description. Since
FPTC analysis is useful even before the implementation [13], we have been
able to build upon such failure behaviour established without having access to
the actual implementation. The downside is that we were unable to fully es-
tablish the correctness and completeness of the FPTC rules, which in turn also
influenced the completeness and correctness of the contracts.

In our research [81] we applied FLAR2SAF on a simpler system where
we assumed that the FPTC rules of the system and the reusable component
consider the same set of failure modes. It was apparent that this assumption

131

114 Chapter 8. Validation

is difficult to fulfil when applying FLAR2SAF on a realistic case, as discussed
in Section 8.3.6. To weaken this assumption and still make sure that FPTC
analysis can be performed, we have introduced an additional type of strong
contracts to handle the variable set of the considered failure modes.

In this case study we have been examining feasibility of reuse of FPTC-
related safety artefacts. We have not shown the complete set of contracts for
the reusable component that is required to check feasibility of reuse of the
component itself. For example, to check whether a component is possible to
reuse in a particular system there should be a contract to establish whether the
value and type of the component ports match with the corresponding ports in
its environment. Instead, we have focused on capturing the properties related
to reusability of FPTC-related safety artefacts and utilising these artefacts for
generation of argument-fragments.

The implications of the results of the case study cannot be generalised
to all different reuse scenarios. The feasibility of applying FLAR2SAF to
a particular case depends on the case complexity and whether we can estab-
lish the failure behaviour of the components in isolation as well as in-context.
Still, the case provides evidence for the applicability and usefulness of our ap-
proach. Further investigations are needed to allow more general conclusion to
be drawn. This includes establishing the level of abstraction at which it is most
useful to apply FLAR2SAF. In this particular case we have limited FLAR2SAF
application to a portion of a software controller.

132

Chapter 9

Related Work

In this chapter, we relate the thesis contributions to similar relevant approaches.
We provide a brief overview of, and comparison to, other contract-based ap-
proaches for safety-critical systems and approaches that aim at facilitating
reuse of safety case artefacts.

9.1 Contract-based Approaches for Safety-Critical
Systems

A range of formal contract-based approaches that focus on developing con-
tract theories for assumption/guarantee contracts can be found in recent related
work. The fundamental notions of the theory we build upon are presented in
Section 2.5. Several approaches have been developed on top of the contract the-
ories with focus on facilitating verification of the contracts for safety-critical
systems. Damm et al. [82] demonstrate how contract-based component specifi-
cation for different aspects of a component can be expressed using the pattern-
based Requirement Specification Language (RSL), where the patterns consist
of static text elements and attributes. Furthermore, the authors present how vir-
tual integration testing of a composite component can be performed based on
the contract-based specification of its sub-components. The approach proposed
by Damm et al. categorises contract assumptions as either strong or weak to
emphasise the methodological difference in the usage of different assumptions.
In contrast, we focus on developing the notion of contracts for reusable compo-
nents by categorising contracts as either strong or weak to clearly distinguish

115

133

116 Chapter 9. Related Work

between assertions that must be satisfied whenever the component is used and
those that can be satisfied only in certain contexts.

In the approach by Gomez-Martinez et al. [83], the safety contracts are
transformed in a series of steps into a formal model in terms of Generalised
Stochastic Petri Nets to verify that the safety contacts have been satisfied.
While in the work by Dragomir et al. [84], an extension to UML/SysML is
proposed by providing language elements needed to model the contracts and
their relations, with the purpose to facilitate compositional verification by us-
ing assume/guarantee contracts. These works build upon the traditional as-
sumption/guarantee contracts and focus on compositional verification without
considering out-of-context component development. In contrast, we aim at fa-
cilitating reuse of safety-relevant components and the accompanying artefacts
by using strong and weak safety contracts.

Building upon the theoretical approaches, Söderberg and Johansson [85]
propose an approach that uses safety contracts as safety requirements. The
assumptions and guarantees of the proposed safety contracts are composed of
safety constraints such that each constraint is associated with a safety integrity
level, just as a safety requirement. Another work by Westman et al. [86] fo-
cuses on structuring safety requirements by using assumption/guarantee con-
tracts. This work relaxes the constraints of the underlying contract theory
in order to capture the safety requirements allocated to a component in the
guarantees of the corresponding component safety contracts. The assump-
tions of such a contract represent requirements on the environments of the
component. Westman et al. in another work [87] generalise the established
contract theory [10] to environment-centric contracts to provide support for
practical engineering and expressing of safety requirements using contracts.
The environment-centric contracts relax the constrains on the scope of the
assumptions and guarantees beyond the interface of the corresponding com-
ponent. While environment-centric contracts theory does not distinguish ex-
plicitly between the rigid variables such as configuration parameters and other
operational variables, Cimatti et al. [66] present a tool-supported contracts-
refinement proof system that distinguishes between the two types of variables.
Although they can be separately specified, they are treated equally within the
contract assumptions, and hence the explicit distinction does not alleviate the
challenge contracts have with the different context. In contrast to these works,
we emphasise that the distinction to strong and weak contracts is important for
addressing the challenge of reuse of a component in different context. Fur-
thermore, in such case, we deem that there should be a difference between the
safety requirements and the content of the safety contracts if we want to use

134

9.1 Contract-based Approaches for Safety-Critical Systems 117

contracts to facilitate reuse. While a safety requirement describes behaviours
a system requires from a component, the corresponding component contract-
guarantee that addresses the requirement should capture the actual behaviour
of the component to which the safety requirement is allocated.

Battram et al. [88] present a method for modular safety assurance based
on assumption/guarantee contracts. This work makes the distinction between
interface and component contracts such that interface contracts are established
between a component and its neighbouring components, while the component
contracts are made between a component and its operating context. The work
aims at easing the design of cyber-physical systems by using contracts to cap-
ture the requirements allocated to the component. The interface contracts can
be useful for capturing the relationship between guarantees and assumptions of
the neighbouring components in context of a particular system, but such con-
tracts could not be captured out-of-context. In contrast to this work, we focus
on supporting the out-of-context reasoning and reuse of components together
with their contracts and accompanying assurance information across contexts.

Schneider et al. [89] introduce the Digital Dependability Identities (DDIs)
as a way to assure dependability of cyber-physical systems. DDIs represent
modular, composable and possibly executable specification. Due to many pos-
sible configurations of CPS that are not always possible to consider during sys-
tem design, one of the main goals of DDIs is to provide the basis for run-time
certification for the dynamically reconfigurable systems. Conditional Safety
Certification (ConSert) represent an initial implementation of DDIs that oper-
ate on the level of safety requirements. The conditions in ConSerts are captured
between the potentially guaranteed safety requirements (guarantees), and the
corresponding demanded safety requirements (demands). While in this thesis
we do not focus on runtime assurance, we have explored building upon the as-
surance aware contract-based design to facilitate runtime assurance similar to
ConSerts. Although DDIs main focus is on the run-time certification, the vari-
ability offered by the DDIs can be used to achieve reuse. Unlike with DDIs, we
aim to generate safety argument-fragments from the system models enriched
with contracts, and in that process identify what is relevant in a particular con-
text and include only that information in the resulting argument-fragment.

Adapting the classical contracts as defined by Meyer in the context of
Object-Oriented (OO) programming to fit component oriented programming
requires lifting the contracts from the method level to the level of a compo-
nent. Reussner and Schmidt [90] propose to align preconditions with the re-
quired interfaces and postconditions with provided interfaces. Moreover, since
such contracts are not sufficient to represent quality attributes of components

135

118 Chapter 9. Related Work

(such as reliability or performance), parametrised contracts are introduced as
generalisations of the classical contracts by Reussner [91]. In our work we
further extend the classical notion of contracts to provide fine-grained speci-
fication of safety-relevant properties for components developed out-of-context
based on the trace-based contract theory.

Using the OO contracts for safety analysis can be done by defining a special
type of safety contracts for OO systems to capture derived safety requirements
(DSRs), as proposed by Hawkins [92]. Such contracts do not any more specify
the expected behaviour as the classical OO contracts, but only the behaviour
which is required to ensure that the corresponding object does not contribute
to a particular hazardous software failure mode. Hawkins proposes to incor-
porate the behaviours specified by the DSRs into the design through the safety
contracts to ensure that the software will not exhibit the identified unsafe be-
haviour once the design is implemented. In contrast, since we focus on compo-
nents developed out-of-context we define safety contracts as those that capture
behaviours deemed relevant from the perspective of hazard analysis. More-
over, to facilitate reuse we capture the actual behaviour of the components in
the safety contracts, rather than the behaviour specified by the DSRs.

Except for partial support in work by Damm et al. [82] through introduction
of strong and weak assumptions, the above mentioned works do not focus on
reuse and capturing of safety-relevant information for reusable components.
Unlike in our work, none of these works focuses on how the contracts should be
specified and used to support systematic reuse of software components together
with the accompanying safety case artefacts. To the best of our knowledge the
contribution of our work is in this respect novel and unique.

9.2 Safety Case Artefacts Reuse

There has been many works on modularising representations of safety cases
in form of safety arguments and automating generation of the corresponding
safety case artefacts in order to reduce the cost and time needed to compile
a safety case. Fenn et al. [93] present an approach to incremental certifica-
tion that uses “informal” contracts for generation of modular safety case argu-
ments. The approach uses Dependency-Guarantee Relationships (DGRs) that
correspond to assumption/guarantee contracts. An argument for a module is
derived by using all the DGRs of the module and their dependencies to other
modules. In contrast, we base our work on a contract theory that does not limit
the properties that can be captured within assumptions and guarantees to only

136

9.2 Safety Case Artefacts Reuse 119

two modules addressed by the DGRs.
One of the ways to reduce the cost and time needed to compile a safety

case is by automatising generation of the safety case arguments, some of which
are tool-supported. The works by Armengaud [94] and Basir et al. [95] focus
on automating the compilation of the safety case arguments from pre-existing
work products. Denney and Pai [96] focus on automating the assembly of
safety cases based on the application of formal reasoning to software. The
assembly combines manually created higher-level argument-fragments with
automatically generated lower-level argument-fragments derived from formal
verification of the implementation against a mathematical specification. The
work uses the AutoCert tool for formal verification where the provided specifi-
cation represent formalised software requirements. Ratiu presents the Safety.Lab
tool [97] that focuses on model-based safety analysis and generates an argu-
ment structure from rich models of various safety-relevant artefacts. Gacek
describes the Eclipse-based Resolute tool [98] that facilitates generating assur-
ance arguments from architectural models. Nair presents the Evidence Confi-
dence Assessor (EviCA) diagramming tool [99] that supports automated gener-
ation of confidence arguments related to manually created arguments. Denney
and Pai present the AdvoCATE [100] toolset includes a variety of automated
features for assurance case creation and analysis. AdvoCATE automates in-
stantiation of pre-developed argumentation pattern from a hazard and safety
requirement analysis. In contrast to these works, while we also automatically
instantiate a pre-developed pattern, we do so from architectural models en-
riched with assumption/guarantee contracts coupled with safety-relevant arte-
facts. This allows us to filter the relevant artefacts and provide additional sup-
port for reuse and tailoring of context-specific automated argument generation.
One of the benefits of implementing our solutions in the AMASS platform
is the environment that covers a significant portion of the development cycle.
Hence, in such environment we could better connect the system modelling
with assurance case modelling, by also allowing traceability between elements
in both modelling environments.

A work by Prokhorova [101] relies on formal modelling techniques sup-
ported by the Event-B formal framework. The work proposes a methodology
for formalising the system safety requirements in Event-B and deriving a cor-
responding safety case argument from the Event-B specification. The work
classifies safety requirements by the way they can be represented in Event-B
and proposes a set of classification-based argument patterns to be used for gen-
erating specific arguments for each of the requirements classes. In contrast,
we build upon contract-based specification that allows for capturing additional

137

120 Chapter 9. Related Work

information besides the formalised requirements, which allows us to support
generation of context-specific argument-fragments for reusable components.

Hawkins et al. [102] propose a model-based approach, model weaving, for
standardising the representation of the assurance cases by generating it from
automatically extracted information from the system design, analysis and de-
velopment models. The proposed approach aims at ensuring the consistency
in generation of the assurance case from the variety of sources from which the
assurance case information needs to be extracted. In contrast, we use safety
contracts and the related constructs to capture the assurance case information
and its dependencies to the artefacts from which this information is extracted,
which provides the basis for reusing information gathered during the develop-
ment of safety components ouf-of-context.

Wardziński and Jones [103] propose an approach similar to model weav-
ing. The proposed approach presents model interfaces that describe system
models in a unified way, and a reference table describing argument relations
to system models. The goal of the proposed approach is to support intercon-
nection between the assurance case and system modelling by maintaining the
consistency of the assurance case and its references to the system model ele-
ments with the system models. This approach is more generic than the work
presented in this thesis, and proposes a set of high level steps for facilitating
integration of system models and assurance case. Conversely, in this thesis we
focus on a particular system design technique where we define the relations be-
tween assurance case and system models. Thus, we make a concrete proposal
for integrating contract-aware system models and assurance case.

The safety standards general lack of detailed guidelines for systematic reuse
has triggered researchers to align different reuse engineering methods such as
Product-line Engineering (PLE) with the different safety standards. Gallina
proposes that PLE can be aligned with the ISO 26262 to facilitate reuse of
artefacts [104]. The proposed approach provides means to specify, manage
and trace commonalities and variabilities at different parts of the ISO 26262
safety process. Reusing safety artefacts requires that variability within them is
managed. Schulze in another PLE-based approach shows how variability can
be integrated into the functional safety models by combining functional safety
and variability modelling tools [105]. Hutchesson in his approach focuses on
Trusted Product Lines by forming a framework for demonstrating that the de-
rived products are fit for purpose in high-integrity civil airspace systems [106].
This work aligns PLE with civil airspace safety standard recommendations
on development and integration of reusable elements. Habli [107] proposes
a model-based assurance approach for facilitating reuse of safety assets within

138

9.2 Safety Case Artefacts Reuse 121

a product-line. Just as the product-line reference architecture is the base for de-
riving product architectures, the product-line safety case can play the same role
for deriving an argument as to why the particular product is acceptably safe to
operate in the particular environment. The proposed approach for the product-
line safety case development extends the argumentation notation to include
product-line elements to handle variabilities within the argument. By captur-
ing the variabilities and the underlying context assumptions, the approach can
be used to reuse safety assets together with the used product-line assets. In
contrast, instead of focusing on product-line engineering to achieve reuse of
safety assets, we use contract-based specification to capture variability at the
functional level, but also at the assurance level, which helps us promote reuse
of safety assets also outside of a family of products.

Certain safety-critical industries develop families of products that share
certain product features, where the products must be developed according to
different processes mandated by different safety standards, which in turn result
in a family of safety cases to address each product of the family and the corre-
sponding process. Gallina proposes to use a 3D product line for such scenarios
to achieve reuse of all three aspects; the product, the process and the safety
case [108]. The proposed approach combines a safety-critical product line – to
promote reuse of the product features, a safety-oriented process line – which
enables reuse of the process parts common between different processes man-
dated by different safety standards, and a safety case line – to promote reuse
of the safety case artefacts generated from the corresponding process activi-
ties. In contrast, we do not focus on facilitating reuse only within a family of
products, but aim at supporting reuse of out-of-context components that are not
necessarily developed with a particular system in mind.

Each of the above approaches offers a way to speed up the creation of the
system safety case argument, or its parts, and reuse some of the safety case
artefacts in the process. We do not aim at covering the generation of the entire
safety argument, nor reuse of all possible artefacts. On the contrary, we focus
on assurance when developing systems using contract-based design and how to
enhance the reuse capability of contract-based design when using components
developed out-of-context. In particular, we do not aim at generating entire ar-
guments, but only fragments that can be used as building blocks for the overall
system argument. While some of the works do take in account a kind of con-
tracts for achieving reuse and argument generation, the main focus is generally
not on contract-based design and the synergy between system and assurance
case modelling. To the best of our knowledge the contribution of our work is
in this respect novel and unique.

139

140

Chapter 10

Conclusions and future work

In this chapter we first summarise and provide concluding remarks related to
the research goals and thesis contributions, and then we present a number of
future research directions.

10.1 Research Goals Revisited
The goal of our research is to facilitate automation of assurance and fine-
grained reuse of safety-relevant software components and their accompanying
safety case artefacts. As means for achieving our goal we focused on contract-
based design that supports independent development of components and com-
positional verification. We specified three research goals (presented in detail in
Section 1.1):

• Research goal 1: “To facilitate automated contract-driven assurance in
order to reduce the overall assurance efforts.”

• Research goal 2: “To facilitate reuse of SEooC and their context-specific
assurance artefacts by contract-based design.”

• Research goal 3: “To support reuse of results from existing failure logic
analyses and automation of assurance based on those results through the
assurance- and reuse aware contract-based design.”

To achieve our research goals, we have presented a set of research contri-
butions (briefly summarised and mapped to the research goals in Chapter 1.2):

123

141

124 Chapter 10. Conclusions and future work

• Thesis contribution 1: “The introduction of argumentation patterns to
capture the contract-driven assurance reasoning”

• Thesis contribution 2: “Connecting the contract-based system mod-
elling and assurance case modelling on the meta-model level”

• Thesis contribution 3: “A method for automated instantiation of the
contract-driven assurance argumentation patterns from system models
compliant with SEMM”

• Thesis contribution 4: “The introduction of strong and weak contracts
to manage context variability at the contract level”

• Thesis contribution 5: “An extension of SEMM to support context vari-
ability across contexts”

• Thesis contribution 6: “Alignment of SEooC development with contract-
based design assurance and reuse”

• Thesis contribution 7: “A method for contract derivation from compo-
sitional failure logic analysis”

• Thesis contribution 8: “An approach for instantiation of FLA-based
argumentation patterns from the derived contracts”

We have performed several industrial case studies on different industrial
systems to explore and evaluate the contributions throughout our research. In
this thesis, we have detailed two different case studies on the same industrial
system where we have grouped the contributions in two integrated solutions,
which we have then evaluated in realistic industrial scenarios. In the reminder
of the section we describe how we have achieved the thesis research goals
through the integration of the different thesis contributions.

Research Goal 1
“To facilitate automated contract-driven assurance in order to reduce the over-
all assurance efforts.”

Component contracts closely relate to system requirements, which are cru-
cial for construction of the system assurance case. When such contracts are
specified using a formal or semi-formal notations they can be used to design

142

10.1 Research Goals Revisited 125

the system to meet the specified requirements. We have presented argumenta-
tion patterns detailing a strategy to assure the requirements satisfaction using
such contracts. To automatically instantiate such argumentation patterns and
in that way automatically generate the parts of safety argumentation, a tool
supported contract-based design is needed. Furthermore, such a tool needs
to support modelling of the specific assurance information together with the
contracts and other system modelling elements in order to support automatic
instantiation of the proposed requirements and contract assurance argumenta-
tion patterns. We propose a Safety Element Meta-Model (SEMM) to connect
the system modelling elements, such as components and contracts, with the
assurance case modelling elements such as claims and evidence. Having a tool
compliant with such enriched meta-model connecting the system and assur-
ance case modelling, we can automatically instantiate the argument patterns
for requirements and contract satisfaction assurance.

The problem of automation of safety analyses and safety reasoning within
the safety cases is a sensitive issue, especially since safety is a system property
and needs to be reasoned about for the particular system. As discussed in [80],
the goal of automation is not to replace human reasoning, but to focus it on ar-
eas where it is best used. Similarly, in addressing this research goal we are not
aiming at eliminating human reasoning from the process of safety reasoning
and argumentation. Rather, we aim to support the human reasoning by provid-
ing automation of more clerical tasks. In particular, we aim at automating the
creation of the skeleton and building blocks of the assurance case, which can
be of use to a safety engineer to get a head start in building the overall system
assurance case. Furthermore, the goal of assurance aware contract-based de-
sign is to enhance information flow from the system engineering and modelling
domain to the safety assurance case modelling engineers.

Research Goal 2

“To facilitate reuse of SEooC and their context-specific assurance artefacts by
contract-based design.”

Contract-based design intrinsically supports reuse and independent develop-
ment of components. But that support has been mainly focused on components
and their implementations, and not that much on the different environments in
which those components may be reused, which often imply different safety
requirements. The contracts need to be specified such that they provide bet-
ter support for capturing the variable safety-relevant behaviour across different

143

126 Chapter 10. Conclusions and future work

environments as well as identifying which of the contract specifications are
safety-relevant in a particular environment. To handle the functional variabil-
ity, these reusable components are often developed with various configurable
parameters. These parameters are not only used to tailor the functionality of
the components in a particular system, but also to consider safety implications
of those functionalities defined by the specific parameters. For example, a
particular component configuration may be considered acceptably safe in one
environment, but unsafe in another. While contract specifications are primarily
focused on resolving the functional variability, by binding the contracts with
safety assurance related information, the contracts can assist in identifying the
safety assurance information relevant in the specific context.

To support capturing the configurable behaviour exhibited by reusable com-
ponents, we present strong and weak contracts that allow for capturing compo-
nent behaviours that are required to hold in all systems in which the component
can be used (strong contracts), and behaviours exhibited only in a subset of the
systems in which the component can be used (weak contracts). By categorising
contracts as strong or weak, we complement the original assumption/guarantee
contract formalism by extending it to support development of reusable compo-
nents developed out-of-context, where very little or no information is known
about the contexts of the component.

We extend the SEMM meta-model with the strong and weak contracts such
that the variability management offered by the strong and weak contracts can be
utilised not only for the contract specifications, but also indirectly for the safety
assurance information related to those contracts. We refer to the extended
meta-model as Safety Element out-of-Context Meta-Model (SEooCMM), as
it supports capturing the variability on the system and assurance level, which
is essential for development of reusable safety-relevant components such as
SEooC. The reuse methodology that we build on top of SEooCMM provides
support for fine-grained reuse of components together with their safety assur-
ance information.

To use the safety contracts for reuse of safety case artefacts, clear guide-
lines are needed to indicate how the contracts should be used within a typical
safety process. We define a set of contract-specific activities in form of a safety
contract development process to provide such guidelines. We align the pro-
posed process with the automotive ISO 26262 safety standard to show how
the safety contract development process can be used to complement an exist-
ing safety process. We propose that the safety contract development process
is divided into three phases: the preliminary phase where initial strong and
weak contracts are captured and matched with safety requirements (done be-

144

10.1 Research Goals Revisited 127

fore the development of the product, hence such contracts may contain specu-
lative/targeted behaviour); the production phase where contracts are actualised
with implementation specific-behaviours and supported by evidence (done dur-
ing/after the development of the product); and the utilisation and maintenance
phase where the components are integrated with assistance of the contract veri-
fication, and then used for the generation of the corresponding safety argument-
fragments (this phase is done in the context of a particular system). By provid-
ing such a process we were able to use it to demonstrate the usage of the safety
contracts and the proposed methods on a real-world case example of a safety
element out-of-context.

Research Goal 3

“To support reuse of results from existing failure logic analyses and automation
of assurance based on those results through the assurance- and reuse aware
contract-based design.”

Just as hazard analysis is the basis for safety engineering at the system level,
derivation of contracts and identification of related assumptions plays a similar
role at component level [11]. We present a method for deriving safety contracts
from Failure Propagation and Transformation Calculus (FPTC) analysis [13]
that allows for calculation of system level behaviour from the behaviour of the
individual components established in isolation. The input/output behaviour of
a component in isolation can be specified in FPTC rules. Once the component
is instantiated in a context of a specific system, the system-level behaviour can
be calculated. As this behaviour describes when it is safe to combine differ-
ent components in the same system with respect to specific failure modes, it is
worth capturing this behaviour in safety contracts. Such safety contracts de-
scribe two types of behaviours: (1) mitigation behaviour (e.g., if a component
is designed to mitigate certain failures then the corresponding safety contracts
should guarantee such mitigation behaviour), and (2) behaviours that lead to
certain failures (e.g., if a component is not designed to mitigate certain failures
then the corresponding safety contract capturing such behaviours establishes
under which assumptions such a failure could be avoided). Besides the two
types of behaviours captured in the contracts, we also capture in the strong
contracts the conditions under which the FPTC analysis in isolation has been
performed. For example, if we have analysed the component in isolation by
only considering coarse and late failure modes on the input ports, when we
reuse the component in a system that may propagate other failure modes to

145

128 Chapter 10. Conclusions and future work

the component, we cannot build upon the previous analysis. In that case, the
strong contracts indicate that the analysis on the component level needs to be
enriched to consider the new failures modes.

The tool supported assurance and reuse aware contract-based design facil-
itates generating a set of argument-fragments for each contract and require-
ment in the system. We show how those argument-fragments can be used
to instantiate existing higher-level argumentation patterns to build the over-
all confidence in the system. In particular, the Handling of Software Failure
Modes (HSFM) [71] argument pattern for a component C requires information
about known causes of a failure mode and failure mechanisms that address
those causes. The failure mechanisms can be classified as: (1) Primary failures
within the component C that can cause the failure; (2) secondary failures re-
lating to other components in the system on which the component C depends;
and (3) failures caused by the components controlling the component C (e.g.,
the scheduler).

We use the contracts translated from the FPTC analysis to identify which
failure mechanism category the contracts belong to, according to the HSFM
pattern. We identify the primary failures from the contracts translated from
FPTC rules that describe behaviours that mitigate a failure mode. The sec-
ondary failures are captured within the contracts translated from FPTC rules
that describe when a failure mode happens. Once we know which contracts be-
long to which HSFM pattern branch, we use the generated argument-fragments
related to those contract to develop the HSFM pattern further.

10.2 Future Research Directions
We have identified several research directions we would like to explore in more
depth in the future: safety contracts language and patterns catalogue; multi-
concern assurance; runtime assurance; and Industry 4.0. In the reminder of
this section we briefly summarise each of the future work directions.

10.2.1 Safety contracts language and patterns catalogue

Just as there are templates for specifying requirements, patterns for designing
components and argumentation strategies, there are also patterns in specify-
ing contracts to achieve reuse. Using contracts in a specific manner to support
reuse naturally leads to identifying those patterns that can speed up the con-
tract specification process. For example, when deriving and specifying the

146

10.2 Future Research Directions 129

safety contracts, there are patterns emerging for what the contracts contain,
which assumptions are needed in certain cases and which guarantees should be
combined with certain assumptions. This research direction focuses on either
extending an existing (e.g., Othello Specification Language [109]) or provid-
ing a new contract pattern-based specification language to provide a catalogue
of such assumption/guarantee contract patterns dedicated to capturing safety-
relevant behaviour for reusable components. Furthermore, methods for auto-
matic identification of the assumptions (e.g., by [110]) need to be extended to
support identification of the distinct strong and weak assumptions.

10.2.2 Multi-concern assurance

In our current research we have started exploring how assurance and reuse
aware contract-based design can provide support in designing systems that
need to achieve simultaneously multiple interconnected concerns such as safety
and security [111]. The SEooCMM component meta-model that connects sys-
tem and assurance case modelling domains is limited to a single viewpoint
and one type of contracts. To consider multiple viewpoints, we generalise and
extend SEooCMM to provide the basis for a generic Multiple-Viewpoint (*)
Safety Element out-of-Context Meta-Model (*SEooCMM). Since the assurance
case is requirements oriented, we define assurance viewpoints in *SEooCMM
as sets of requirements. An assurance viewpoint is a generic term that can
include different concerns. For example, we can have a safety assurance view-
point, a security assurance viewpoint etc. Since each requirement can be sat-
isfied by one or more contracts, and each of the contracts can be supported
by different evidence, we can automatically build the assurance cases for the
different viewpoints through these connections captured in *SEooCMM.

The initial results are promising and show that contracts can be used to cap-
ture requirements related to different concerns and facilitate resolving concern
variability. In particular, we can generate concern-aware assurance cases by en-
riching the meta-model that connects the system and assurance case modelling
domains so that it includes concern variability. For example, a single assurance
case can be generated considering all the different concerns the system is ad-
dressing if we define all concerns as part of the same viewpoint. Conversely, if
a viewpoint corresponds to a concern, it is also possible to generate concern-
specific assurance cases such as a safety case or a security case, which can
be useful for the assessors checking compliance to particular concern-specific
standards. The work is being performed in the context of the AMASS [74]
project and the support for generating concern-specific arguments is being im-

147

130 Chapter 10. Conclusions and future work

plemented as part of the AMASS platform.

10.2.3 Runtime/Dynamic assurance

While the role of the contracts is clear during design time, its potential use
during runtime is yet to be clearly identified. While contracts during run-
time can support runtime verification, the assurance aware contracts can also
support runtime assurance where we gather operational evidence in our con-
fidence in the contracts. We have started looking into how assurance aware
contract-based design can be extended to provide assurance support not only
during the pre-operation phase, but also during system runtime. In particular,
we currently work on developing a safety assurance concept for Cooperating
Cyber-Physical Systems using Wireless Communication [112, 113]. Besides
performing standalone functionalities, such systems also join to perform coop-
erative functionalities such as car platooning. Due to the dynamic nature of the
cooperating environment, such cooperative functionalities are not possible to
fully assure before deployment. Building upon the assurance and reuse aware
contract-based design, we plan to use the contracts to build the confidence for
assuring such cooperative functionalities during runtime. To achieve that, we
are tagging those contracts that cannot be fully validated during design time,
but might need runtime support to assure their confidence continuously. The
main component that facilitates such contract-based runtime assurance is the
runtime manager component envisaged to perform contract checking during
runtime as well as gathering the runtime evidence for such contracts. Having
such division on contracts that can be validated fully during design time, and
those that cannot, propagates to the assurance case such that we refer to the
part of the assurance case that covers the contracts that need runtime assurance
as a dynamic/runtime assurance case, while we refer to the part covering the
design-time contracts as a static assurance case. The initial results are promis-
ing, and we are further iterating this concept and evaluating it in more complex
case studies to achieve the desired maturity.

We are also investigating the runtime mechanisms that can facilitate gather-
ing of runtime evidence and means to use such evidence in the assurance case
that needs to be continuously assessed in such open systems. In particular, we
are looking at the runtime manager component in more detail and what its role
could and what it should be in such runtime assurance. We are trying to use
such contracts and the runtime manager in assuring smart vehicle functions that
need to adapt to the different environments autonomously [114, 115]. In par-
ticular, we have started looking into assurance of degradation cascades [114]

148

10.2 Future Research Directions 131

using such contracts where we have used the runtime manager as a state man-
ager. As the contracts are describing each degradation mode, checking and
resolving the contracts during runtime can be used to indicate if a state change
is needed. Also, we are working on generalising the concept of assurance
of the degradation cascades to support design and assurance of safety-critical
adaptive functions in general [115]. We have used the runtime manager con-
cept as both a state manager and a runtime evidence generator. In a set of
wirelessly connected cooperating systems, we use the runtime manager as a
smart endpoint node at each vehicle such that the synchronisation of the run-
time managers across the set of cooperating systems also manages the state
of the overall cooperating system, and not only the local system in which the
runtime manager is stored. Further research in this direction is underway, and
the evaluation of the concepts is planned on smart vehicle industrial use cases
within both the SafeCOP [116] and AMASS [74] projects.

10.2.4 Industry 4.0
One of the characteristics of Industry 4.0 is highly flexible manufacturing where
customisation of products for mass production is performed on the fly. Since
safety assurance relies on a very strict process of identifying all the conditions
that may lead to harm, the flexibility of such manufacturing raises certain chal-
lenges in performing safety assurance for such systems. Industry 4.0 is charac-
terised by constant cooperation of various stakeholders/companies/businesses
to achieve the desired flexibility. Hence, safety assurance not only needs to
be dynamic, but it also needs to be cooperative in the sense that an assurance
case cannot be built by a single stakeholder, but they have to constantly work
together in assuring the safety of the system. Due to the on the fly customisa-
tion, the assurance also needs to be continuous, i.e., at all times we need to be
able to assure safety of the system. Furthermore, since we do not have a single
delivery of an assurance case, but rather continuous delivery, we need to be
able to provide the assurance case on-demand, i.e., an updated assurance case
has to be available at any time during the operational life of the system. We
have started exploring these challenges [117] and, including identifying how
assurance and reuse aware contract-based design can be used as the basis to
address these challenges. The research in this direction is underway as part of
the Future factories in the Cloud (FiC) [118] project.

149

150

Appendices

133

151

Chapter A. List of publications (full)

Appendix A

List of publications (full)

Published material that forms the basis of the thesis
1. Fostering Reuse within Safety-critical Component-based Systems through

Fine-grained Contracts, Irfan Šljivo, Jan Carlson, Barbara Gallina, Hans
Hansson. In: International Workshop on Critical Software Component
Reusability and Certification across Domains (CSC2013), Jun 2013.
Abstract.Our aim is to develop a notion of safety contracts and related
reasoning that supports the reuse of software components in and across
safety-critical systems, including support for certification related activ-
ities such as using the contract reasoning in safety argumentation. In
this paper we introduce a formalism for specifying assumption/guarantee
contracts for components developed out of context. We are utilising the
concepts of weak and strong assumptions and guarantees to customise
fine-grained contracts for addressing a broader component context and
specification of properties for specific alternative contexts. These out of
context contracts can be conveniently instantiated to a specific context,
thereby providing support for component reuse.
Remark: I was the driver of the work under strong supervision of my
supervisors listed as co-authors. My contributions include a formal-
ism for specifying assumption/guarantee contracts for components de-
veloped out of context. We are utilising the concepts of weak and strong
assumptions and guarantees to customise fine-grained contracts for ad-
dressing a broader component context and specification of properties for
specific alternative contexts. These out of context contracts can be con-

134

152

135

veniently instantiated to a specific context, thereby providing support for
component reuse.

2. Strong and Weak Contract Formalism for Third-Party Component Reuse,
Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson. In Proceed-
ings of the 3rd International Workshop on Software Certification, Novem-
ber 2013.
Abstract. Our aim is to contribute to bridging the gap between the justi-
fied need from industry to reuse third-party components and skepticism
of the safety community in integrating and reusing components devel-
oped without real knowledge of the system context. We have developed
a notion of safety contract that will help to capture safety-related infor-
mation for supporting the reuse of software components in and across
safety-critical systems.In this paper we present our extension of the con-
tract formalism for specifying strong and weak assumption/guarantee
contracts for out-of-context reusable components. We elaborate on a no-
tion of satisfaction, including refinement, dominance and composition
check. To show the usage and the expressiveness of our extended for-
malism, we specify strong and weak safety contracts related to a wheel
braking system.
Remark: I was the main contributor of the work under the supervision
of my supervisors listed as coauthors. The main contribution of the paper
is the extension of the contract formalism for specifying strong and weak
assumption/guarantee contracts for out-of-context reusable components.
We elaborate on notion of satisfaction, including refinement, dominance
and composition check. To show the usage and the expressiveness of our
extended formalism, we specify strong and weak safety contracts related
to a wheel braking system.

3. Generation of Safety Case Argument-Fragments from Safety Contracts,
Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson. In Proceed-
ings of the 33rd International Conference on Computer Safety, Reliabil-
ity, and Security (SafeComp), Springer-Verlag, September 2014.
Abstract.Composable safety certification envisions reuse of safety case
argument-fragments together with safety-relevant components in order
to reduce the cost and time needed to achieve certification. The argument-
fragments could cover safety aspects relevant for different contexts in
which the component can be used. Creating argument-fragments for the
out-of-context components is time-consuming and currently no satisfy-
ing approach exists to facilitate their automatic generation. In this pa-

153

136 Chapter A. List of publications (full)

per we propose an approach based on (semi-)automatic generation of
argument-fragments from assumption/guarantee safety contracts. We
use the contracts to capture the safety claims related to the component,
including supporting evidence. We provide an overview of the argument-
fragment architecture and rules for automatic generation, including their
application in an illustrative example. The proposed approach enables
safety engineers to focus on increasing the confidence in the knowledge
about the system, rather than documenting a safety case.
Remark: I was the main contributor of the work under supervision of
the coauthors. My contributions include extension of the component and
safety contract meta-model, an architecture of the argument-fragment
to be generated, rules for generation of the argument-fragments and an
application of the proposed method on a fuel-level estimation system.

4. Facilitating Certification Artefacts Reuse Using Safety Contracts, Irfan
Šljivo. In Proceedings of the 14th International Conference on Software
Reuse Doctoral Symposium (ICSR DS 2015), January 2015.
Abstract. Safety-critical systems usually need to be certified according
a domain-specific safety standard. To reduce the cost and time needed
to achieve the safety certification, reuse of certification artefacts together
with the corresponding safety-relevant software components is needed.
The certification artefacts include safety claims/goals and the support-
ing evidence that are documented in a safety case. The safety case is
required by some safety standards to show that the system is acceptably
safe to operate in a given context. Assumption/guarantee contracts can
be used to capture the dependencies between a component, including its
certification artefacts, and a particular operating context. In this paper
we present a research proposal on how safety contracts can be used to
facilitate structured reuse of certification-relevant artefacts. More specif-
ically, we explore in which way should such contracts be specified, how
can they be derived, and in which way can they be utilised for reuse
of safety case argument-fragments and the artefacts those arguments in-
clude.
Remark: I was the only contributor of this work. It summarises my li-
centiate research proposal on how safety contracts can be used to facili-
tate structured reuse of certification-relevant artefacts. More specifically,
we explore in which way should such contracts be specified, how can
they be derived, and in which way can they be utilised for reuse of safety
case argument-fragments and the artefacts those arguments include.

154

137

5. A Method to Generate Reusable Safety Case Fragments from Composi-
tional Safety Analysis, Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans
Hansson, Stefano Puri. In Proceedings of the 14th International Confer-
ence on Software Reuse (ICSR2015), January 2015.
Abstract. Safety-critical systems usually need to be accompanied by
an explained and well-founded body of evidence to show that the sys-
tem is acceptably safe. While reuse within such systems covers mainly
code, reusing accompanying safety artefacts is limited due to a wide
range of context dependencies that need to be satisfied for safety evi-
dence to be valid in a different context. Currently the most commonly
used approaches that facilitate reuse lack support for reuse of safety arte-
facts. To facilitate reuse of safety artefacts we provide a method to gener-
ate reusable safety case argument-fragments that include supporting evi-
dence related to safety analysis. The generation is performed from safety
contracts that capture safety-relevant behaviour of components within
assumption/guarantee pairs backed up by the supporting evidence. We
illustrate our approach by applying it to an airplane wheel braking sys-
tem example.
Remark: I was the main contributor of the work under supervision of
my supervisors also listed as authors of the paper. My contributions in-
clude derivation/translation of safety contracts from the results of the
FPTC failure logic analysis, an extension of the method for generation
of argument-fragments to provide better support for reuse of evidence
and an application of the approach on an airplane wheel-braking sys-
tem example. The contributions of Stefano Puri include support for both
modelling of the software architecture of the example and performing
FPTC analysis in the CHESS-toolset.

6. Deriving Safety Contracts to Support Architecture Design of Safety Crit-
ical Systems, Irfan Šljivo, Omar Jaradat, Iain Bate, Patrick Graydon. In
Proceedings of the16th IEEE International Symposium on High Assur-
ance Systems Engineering (HASE 2015), January 2015.
Abstract. The use of contracts to enhance the maintainability of safety-
critical systems has received a significant amount of research effort in
recent years. However some key issues have been identified: the diffi-
culty in dealing with the wide range of properties of systems and deriving
contracts to capture those properties; and the challenge of dealing with
the inevitable incompleteness of the contracts. In this paper, we explore
how the derivation of contracts can be performed based on the results of

155

138 Chapter A. List of publications (full)

failure analysis. We use the concept of safety kernels to alleviate the is-
sues. Firstly the safety kernel means that the properties of the system that
we may wish to manage can be dealt with at a more abstract level, re-
ducing the challenges of representation and completeness of the “safety”
contracts. Secondly the set of safety contracts is reduced so it is possible
to reason about their satisfaction in a more rigorous manner.
Remark: The first three authors were the main drivers of the work. My
contributions include a method for derivation of safety contracts from
Fault Tree Analysis and a method for completeness check of the con-
tracts with respect to the fault trees. The contributions of Omar Jaradat
include building of the safety case argument before and after introduc-
ing a change to the system, as well as capturing the connection between
the derived safety contracts and goals in the safety case arguments to
facilitate traceability mechanism between the system and its safety case.

7. Using Safety Contracts to Guide the Integration of Reusable Safety El-
ements within ISO 26262, Irfan Šljivo, Barbara Gallina, Jan Carlson,
Hans Hansson. MRTC Report, ISSN 1404-3041, ISRN MDH-MRTC-
300/2015-1-SE, Malardalen Real-Time Research Centre, March 2015.
Abstract.Safety-critical systems usually need to be compliant with a
domain-specific safety standard, which in turn requires an explained and
well-founded body of evidence to show that the system is acceptably
safe. To reduce the cost and time needed to achieve the standard compli-
ance, reuse of safety elements is not sufficient without the reuse of the
accompanying evidence. The difficulties with reuse of safety elements
within safety-critical systems lie mainly in the nature of safety being a
system property and the lack of support for systematic reuse of safety
elements and their accompanying artefacts. While safety standards pro-
vide requirements and recommendations on what should be subject to
reuse, guidelines on how to perform reuse are typically lacking. We have
developed a concept of strong and weak safety contracts that can be used
to facilitate systematic reuse of safety elements and their accompanying
artefacts. In this report we define a safety contracts development process
and provide guidelines to bridge the gap between reuse and integration
of reusable safety elements in the ISO 26262 safety standard. We use
a real-world case for demonstration of the process, in which a safety
element is developed out-of-context and reused together with its accom-
panying safety artefacts within two products of a construction equipment
product-line.

156

139

Remark: I was the main contributor of the work under supervision of
the coauthors. My contributions include the safety contracts develop-
ment process and its application on a real-world case.

8. Facilitating Reuse of Safety Case Artefacts Using Safety Contracts, Irfan
Šljivo. Licentiate Thesis. Mälardalen University Press. June 2015.
Abstract.Safety-critical systems usually need to comply with a domain-
specific safety standard, which often require a safety case in form of an
explained argument supported by evidence to show that the system is ac-
ceptably safe to operate in a given context. Developing such systems to
comply with a safety standard is a time-consuming and costly process.
Reuse within development of such systems has a potential to reduce the
cost and time needed to develop both the system and the accompanying
safety case. Efficient reuse of safety-relevant components that constitute
the system requires the reuse of the accompanying safety case artefacts,
including the safety argument and the supporting evidence. The diffi-
culties with reuse of the such artefacts within safety-critical systems lie
mainly in the nature of safety being a system property, together with the
lack of support for systematic reuse of such artefacts. In this thesis we
focus on developing a notion of safety contracts that can be used to fa-
cilitate systematic reuse of safety-relevant components and their accom-
panying artefacts. More specifically, we explore the following issues: in
which way such contracts should be specified, how they can be derived,
and in which way they can be utilised for reuse of safety artefacts. First,
we characterise the contracts as either “strong” or “weak” to facilitate
capturing different behaviours reusable components can exhibit in dif-
ferent contexts. Then, we present methods for deriving safety contracts
from failure analyses. As the basis of the safety-critical systems devel-
opment lies in the failure analyses and identifying which malfunctions
could lead to accidents, the basis for specifying the safety contracts lies
in capturing information identified by such failure analyses. Finally, we
provide methods for generating safety case artefacts from safety con-
tracts. Moreover, we define a safety contracts development process as
guidance for systematic reuse based on the safety contracts. We use a
real-world case to demonstrate the proposed process and methods.
Remark: I was the main contributor of the work. The thesis combined
the research done up to that point into a single publication.

9. Using Safety Contracts to Guide the Integration of Reusable Safety El-
ements within ISO 26262, Irfan Šljivo, Barbara Gallina, Jan Carlson,

157

140 Chapter A. List of publications (full)

Hans Hansson. In Proceedings of the 21st IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC), IEEE, Novem-
ber 2015.
Abstract. Safety-critical systems usually need to comply with a domain-
specific safety standard. To reduce the cost and time needed to achieve
the standard compliance, reuse of safety-relevant components is not suf-
ficient without the reuse of the accompanying artefacts. Developing
reusable safety components out-of-context of a particular system is chal-
lenging, as safety is a system property, hence support is needed to capture
and validate the context assumptions before integration of the reusable
component and its artefacts in-context of the particular system.We have
previously developed a concept of strong and weak safety contracts to
facilitate systematic reuse of safety-relevant components and their ac-
companying artefacts. In this work we define a safety contracts devel-
opment process and provide guidelines to bridge the gap between reuse
of safety elements developed out-of-context of a particular system and
their integration in the ISO 26262 safety standard. We use a real-world
case for demonstration of the process.
Remark: I was the main contributor of the work under supervision of
the coauthors. My contributions include the safety contracts develop-
ment process and its application on a real-world case.

10. Configuration-aware Contracts. Irfan Šljivo, Barbara Gallina, Jan Carl-
son, Hans Hansson. In Proceedings of the 4th International Workshop
on Assurance Cases for Software-intensive Systems (ASSURE2016),
September 2016.
Abstract. Assumption/guarantee contracts represent the basis for inde-
pendent development of reusable components and their safety assurance
within contract-based design. In the context of safety-critical systems,
their use for reuse of safety assurance efforts has encountered some chal-
lenges: the need for evidence supporting the confidence in the contracts;
and the challenge of context, where contracts need to impose different
requirements on different systems.In this paper we propose the notion
of configuration-aware contracts to address the challenge contract-based
design faces with multiple contexts. Since reusable components are of-
ten developed with a set of configuration parameters that need to be
configured in each context, we extend the notion of contract to dis-
tinguish between the configuration parameters and the other variables.
Moreover, we define a multi-context reusable component based on the

158

141

configuration-aware contracts. Finally, we demonstrate the usefulness
of the multi-context components on a motivating case.
Remark: I was the main contributor of the work under supervision of the
coauthors. In this paper we propose the notion of configuration-aware
contracts to address the challenge contract-based design faces with mul-
tiple contexts. Since reusable components are often developed with a set
of configuration parameters that need to be configured in each context,
we extend the notion of contract to distinguish between the configuration
parameters and the other variables. Moreover, we define a multi-context
reusable component based on the configuration-aware contracts. Finally,
we demonstrate the usefulness of the multi-context components on a mo-
tivating case.

11. A Method to Generate Reusable Safety Case Fragments from Composi-
tional Safety Analysis, Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans
Hansson, Stefano Puri. Journal of Systems and Software: Special Issue
on Software Reuse 131, C (September 2017), 570-590.
Abstract. Safety-critical systems usually need to be accompanied by an
explained and well-founded body of evidence to show that the system is
acceptably safe. While reuse within such systems covers mainly code,
reusing accompanying safety artefacts is limited due to a wide range
of context dependencies that need to be satisfied for safety evidence to
be valid in a different context. Currently, the most commonly used ap-
proaches that facilitate reuse lack support for systematic reuse of safety
artefacts.To facilitate systematic reuse of safety artefacts we provide a
method to generate reusable safety case argument-fragments that include
supporting evidence related to compositional safety analysis. The gen-
eration is performed from safety contracts that capture safety-relevant
behaviour of components in assumption/guarantee pairs backed up by
the supporting evidence. We evaluate the feasibility of our approach in
a real-world case study where a safety related component developed in
isolation is reused within a wheel-loader.
Remark: I was the main contributor of the work under supervision
of my supervisors included in the co-authors list. My contributions
include extension of the Safety Element out-of-Context Meta-model,
derivation/translation of safety contracts from the results of the FPTC
failure logic analysis, an extension of the method for generation of argu-
ment fragments to provide better support for reuse of evidence and val-
idation of the feasibility of the proposed approach in a real-world case

159

142 Chapter A. List of publications (full)

study. Stefano Puri provided valuable comments about the proposed ap-
proach. Moreover, he provided support for using the CHESS-toolset for
running FPTC analysis and modelling the system that was used in the
case study. Furthermore, he was involved in implementing some of the
results in the CHESS-toolset.

12. Tool-Supported Safety-Relevant Component Reuse: From Specification
to Argumentation, Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hans-
son, Stefano Puri. In Proceedings of the 23rd International Conference
on Reliable Software Technologies (Ada-Europe), June 2018.
Abstract. Contracts are envisaged to support compositional verification
of a system as well as reuse and independent development of their im-
plementations. But reuse of safety-relevant components in safety-critical
systems needs to cover more than just the implementations. As many
safety-relevant artefacts related to the component as possible should be
reused together with the implementation to assist the integrator in assur-
ing that the system they are developing is acceptably safe. Furthermore,
the reused assurance information related to the contracts should be struc-
tured clearly to communicate the confidence in the component. In this
work we present a tool-supported methodology for contract-driven as-
surance and reuse. We define the variability on the contract level in the
scope of a trace-based approach to contract-based design. With aware-
ness of the hierarchical nature of systems subject to compositional ver-
ification, we propose assurance patterns for arguing confidence in sat-
isfaction of requirements and contracts. We present an implementation
extending the AMASS platform to support automated instantiation of the
proposed patterns, and evaluate its adequacy for assurance and reuse in
a real-world case study.
Remark: I was the main contributor of the work under supervision of
my supervisors included in the co-authors list. My contributions include
the development of the theoretical concepts as well as the implementa-
tion of the automated transformations between OCRA and CHESS on
the one hand, and CHESS and OpenCert on the other hand. Stefano Puri
contributed with CHESS-specific implementations as well as discussions
on the theoretical concepts related to system modelling and combination
with assurance case modelling.

160

143

Published material that forms the initial research of
the future directions

1. Building Multiple-Viewpoint Assurance Cases Using Assumption/Guaran-
tee Contracts. Irfan Sljivo, Barbara Gallina. In: 1st International work-
shop on Interplay of Security, Safety and System/Software Architecture
(ISSA-2016), November 2016.
Abstract. Assurance cases in form of structured arguments are often re-
quired by standards to show that a system is acceptable for its intended
purpose with respect to a particular assurance viewpoint such as safety
or security. The goal of such a case is to present an argument that con-
nects the requirements of a particular viewpoint with the supporting evi-
dence. Building a set of assurance cases for the different viewpoints can
be time-consuming and costly. Means are needed to automate and reuse
the assurance case artefacts between the assurance cases for the different
viewpoints.In this paper we present how assumption/guarantee contracts
can be used to facilitate reuse of assurance case artefacts by building
multiple-viewpoint assurance cases from the contracts. More specifi-
cally, we build upon the previous work on argument-fragment generation
from such contracts to allow for generating viewpoint specific argument-
fragments. We illustrate the approach on a motivating case.
Remark: In this paper we present how assumption/guarantee contracts
can be used to facilitate reuse of assurance case artefacts by building
multiple-viewpoint assurance cases from the contracts. More specifi-
cally, we build upon the previous work on argument-fragment generation
from such contracts to allow for generating viewpoint specific argument-
fragments. We illustrate the approach on a motivating case.

2. Cooperative Safety Critical CPS Platooning in SafeCOP. Samer Medawar,
Detlef Scholle, Irfan Sljivo. In: 5th EUROMICRO/IEEE Workshop on
Embedded and Cyber-Physical Systems (ECYPS-2017), June 2017.
Abstract. This paper presents the platooning research within the Safe
Cooperating Cyber-Physical Systems using Wireless Communication (Safe-
COP) project. Cooperating Cyber-Physical Systems (CO-CPS) using
wireless communication and having multiple stakeholders, dynamic sys-
tem definitions (openness), and unpredictable operating environments,
are the main application of SafeCOP. In addition to safety assurance
methods and tools, SafeCOP devises a runtime manager architecture that
detects irregular operation, hence, prompting a safe degraded mode in

161

144 Chapter A. List of publications (full)

case of need.SafeCOP lays a safety and security umbrella over the us-
age of current wireless technologies, contributes to new standards and
regulations by providing scientifically validated solutions to establish
standards which also addresses cooperation and system-of-systems is-
sues. SafeCOP addresses several use cases that solve customer related
problems. However, in this paper we will present a use case that ex-
tract generic principles from the combination of the previous use cases
to stimulate the European collaboration around the project objectives,
and to collect general requirements for the SafeCOP solution, applica-
ble across all the areas considered. We consider a CO-CPS composed
of two or more systems moving in a platoon while cooperating in a safe
function.
Remark: In this paper we elaborate the role of the runtime manager and
its relation to contracts in the SafeCOP architecture. We demonstrate on
a platooning use case how such runtime manager can be used for contin-
uous assurance of cooperative cyber-physical systems.

3. Safe Cooperating Cyber-Physical Systems using Wireless Communica-
tion. Paul Pop, Detlef Scholle , Irfan Sljivo, Hans Hansson, Gunnar
Widforss, Malin Rosqvist. In: Elsevier journal of Microprocessors and
Microsystems (MICPRO), July 2017.
Abstract. This paper presents an overview of the ECSEL project en-
titled “Safe Cooperating Cyber-Physical Systems using Wireless Com-
munication” (SafeCOP), which runs during the period 2016?2019. Safe-
COP targets safety-related Cooperating Cyber-Physical Systems (CO-
CPS) characterised by use of wireless communication, multiple stake-
holders, dynamic system definitions (openness), and unpredictable op-
erating environments. SafeCOP will provide an approach to the safety
assurance of CO-CPS, enabling thus their certification and development.
The project will define a runtime manager architecture for runtime detec-
tion of abnormal behaviour, triggering if needed a safe degraded mode.
SafeCOP will also develop methods and tools, which will be used to
produce safety assurance evidence needed to certify cooperative func-
tions. SafeCOP will extend current wireless technologies to ensure safe
and secure cooperation, and also contribute to new standards and regula-
tions, by providing certification authorities and standardization commit-
tees with the scientifically validated solutions needed to craft effective
standards extended to also address cooperation and system-of-systems
issues. The project has 28 partners from 6 European countries, and a

162

145

budget of about 11 million Euros corresponding to about 1,300 person-
months.
Remark: In this paper we have presented the SafeCop Cooperative
Safety Assurance Concept that includes the usage of the assumption and
guarantee contracts for achieving dynamic/runtime assurance. We pro-
pose the concept of a runtime manager that has the aim to evaluate the
contracts during runtime and gather runtime evidence that should be used
to evaluate confidence in the contracts during the system operation.

4. Assuring Degradation Cascades of Car Platoons via Contracts, Irfan
Šljivo, Barbara Gallina, Bernhard Kaiser. In Proceedings of the 6th
International Workshop on Next Generation of System Assurance Ap-
proaches for Safety-Critical Systems (SASSUR-2017), September 2017.
Abstract. Automated cooperation is arriving in practice, for instance in
vehicular automation like platoon driving. The development and safety
assurance of those systems poses new challenges, as the participating
nodes are not known at design time; they engage in communication at
runtime and the system behaviour can be distorted at any time by fail-
ures in some participant or in the communication itself. When running
on a highway, simply switching off the function is not an option, as this
would also result in hazardous situations. Graceful degradation offer a
systematic approach to define a partial-order of less and less acceptable
operation modes, of which the best achievable is selected in presence of
failures.In this work we propose an approach for assurance of the degra-
dation cascades based on mode-specific assertions, captured by assump-
tion/guarantee contracts. More specifically, we share our experiences
and methodology for specifying the contracts for both the nominal safe
behaviour as well as the less safe but acceptable behaviour in presence
of failures. Furthermore, we present an argument pattern for adequacy
of the degradation cascades for meeting the global safety goals based on
the contracts. We illustrate our approach by a car platooning case study.
Remark: In this paper we have proposed how to use the assumption
and guarantee contracts and the assurance aware contract-based design
to assure degradation cascades of car platoons.

5. Challenges of Safety Assurance for Industry 4.0. Omar Jaradat, Irfan
Sljivo, Ibrahim Habli , Richard Hawkins. In Proceedings of the 13th
European Dependable Computing Conference (EDCC’17), September
2017.
Abstract. The Internet-of-Things (IoT) has enabled Industry 4.0 as a

163

146 Chapter A. List of publications (full)

new manufacturing paradigm. The envisioned future of Industry 4.0 and
Smart Factories is to be highly configurable and composed mainly of the
’things’ that are expected to come with some, often partial, assurance
guarantees. However, many factories are categorised as safety-critical,
e.g. due to the use of heavy machinery or hazardous substances. As
such, some of the guarantees provided by the ’things’, e.g. related to
performance and availability, are deemed as necessary in order to ensure
the safety of the manufacturing processes and the resulting products. In
this paper, we explore key safety challenges posed by Industry 4.0 and
identify the characteristics that its safety assurance should exhibit. We
propose a set of safety assurance responsibilities, e.g. system integrators,
cloud service providers and ‘things’ suppliers. Finally, we reflect on the
desirable modularity of such a safety assurance approach as a basis for
cooperative, on-demand and continuous reasoning for Industry 4.0 ar-
chitectures and services.
Remark: In this paper we explore the challenges of assurance for Indus-
try 4.0 where the open and dynamically reconfigurable systems require
continuous and on-demand assurance. We explore how contract-based
design can assist in addressing some of those challenges.

6. Contract-Based Assurance for Wireless Cooperative Functions of Vehic-
ular Systems. Svetlana Girs, Irfan Sljivo, Omar Jaradat. In Proceedings
of the 43rd Annual Conference of the IEEE Industrial Electronics Soci-
ety (IECON 2017). October 2017.
Abstract. Cooperation of vehicular systems is the stepping stone to-
wards both road and indoor smart transportation systems. It aims at in-
creasing transportation efficiency and safety compared to the stand-alone
vehicular systems. The usage of wireless communication as the founda-
tion of such safety-critical cooperation needs to be embraced with all its
benefits and flaws compared to the wired communication. The coopera-
tive functions need to be designed to adapt to the varying reliability of the
wireless communication channels such that both the stand-alone vehicles
as well as the smart transportation system formed by their cooperation
are deemed sufficiently safe. In this paper we build upon a contract-
based runtime monitoring architecture and propose a methodology for
assuring adaptive behaviour of transportation with respect to the wire-
less communication channel failures. More specifically, we elaborate
how safety analysis of the interaction of the wirelessly connected vehi-
cles can be used as the basis for derivation of the adaptive modes and the

164

147

corresponding contracts. Furthermore, we discuss how such contracts
can be used as the basis for assurance of the adaptive wireless coopera-
tion. We illustrate the proposed methodology on a smart transportation
system of a factory.
Remark: In this paper we try to generalise the work on assurance of
degradation cascades using contracts to support assurance of different
mode-switching applications, especially of the safety-critical wireless
cooperative functions of vehicular systems.

Additional publications
1. Towards a Safety-oriented Process Line for Enabling Reuse in Safety

Critical Systems Development and Certification. Barbara Gallina, Irfan
Sljivo, Omar Jaradat. In Proceedings of the 35th Annual Software En-
gineering Workshop (ISOLA workshop) (SEW 2012), IEEE, October
2012. Remark: In this paper, we adopt process line approach in the
framework of safety processes. This means that we treat a family of pro-
cesses as a product line, and we identify commonalities and variabilities
between them. The resulting information guides developers in reusing
parts of the process, the system and safety case, e.g. which parts to make
more generic, isolating changes in others to avoid ripple effects etc.

2. Towards Cloud-Based Enactment of Safety-Related Processes. Sami
Alajrami, Barbara Gallina, Irfan Sljivo, Alexander Romanovsky, Pet-
ter Isberg. In Proceedings of the 35th International Conference on Com-
puter Safety, Reliability and Security (SafeComp2016), September 2016.
Remark: This work adapts previous work on cloud-based software en-
gineering by enriching the architecture with an automatic support for
generation of both, product-based safety arguments from failure logic
analysis results and process-based arguments from the process model
and the enactment data. The approach is demonstrated using a fragment
of a process adapted from the aerospace domain.

3. Agent-centred Approach for Assuring Ethics in Dependable Service Sys-
tems. Irfan Sljivo, Elena Lisova, Sara Afshar. In Proceedings of the 13th
IEEE World Congress on Services (SERVICES-2017), June 2017. Re-
mark: In this work we propose an agent-centred approach for assuring
ethics in dependable technological service systems. We build upon as-
surance of safety and security and propose the notion of ethics assurance

165

148 Chapter A. List of publications (full)

case as a way to assure that individual users have been made aware of all
the ethically challenging decisions that might be performed or enabled
by the service provider. We propose a framework for identifying and
categorising ethically challenging decisions, and documenting the ethics
assurance case. We apply the framework on an illustrative example.

166

Bibliography

[1] UK Ministry of Defence (MoD). Defence Standard 00-56 (Part 1)/4,
Safety Management Requirements for Defence Systems. Issue 4, UK
Ministry of Defence, 2007.

[2] N. R. Storey. Safety Critical Computer Systems. Addison-Wesley,
Boston, MA, USA, 1996.

[3] NATO RTO Task Group IST-027/RTG-009. Validation, Verification and
Certification of Embedded Systems. ISRN RTO-TR-IST-027. Technical
report, NATO, 2005.

[4] T. Kelly. Arguing Safety — A Systematic Approach to Managing Safety
Cases. PhD thesis, University of York, York, UK, 1998.

[5] ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline
on ISO 26262. International Organization for Standardization, 2011.

[6] B. Meyer. The Next Software Breakthrough. IEEE Computer,
30(7):113–114, 1997.

[7] I. Jacobson, M. L. Griss, and P. Jonsson. Software Reuse. Architecture,
Process and Organization for Business Success. Addison Wesley Long-
man, 1997.

[8] J. Varnell-Sarjeant, A. A. Andrews, and A. Stefik. Comparing Reuse
Strategies: An Empirical Evaluation of Developer Views. In 8th Inter-
national Workshop on Quality Oriented Reuse of Software. IEEE Com-
puter Society, 2014.

[9] C. A. Szyperski. Component Software - Beyond Object-oriented Pro-
gramming. Addison-Wesley, 1998.

149

167

150 Bibliography

[10] Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone,
Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-
Vincentelli, Werner Damm, Thomas Henzinger, and Kim G. Larsen.
Contracts for System Design. Research Report RR-8147, Inria, Novem-
ber 2012.

[11] J. Rushby. Composing safe systems. In 8th International Symposium on
Formal Aspects of Component Software. Springer, September 2012.

[12] AC 20-148. Reusable Software Components. Federal Aviation Admin-
istration (FAA), 2004.

[13] M. Wallace. Modular Architectural Representation and Analysis of
Fault Propagation and Transformation. In International Workshop on
Formal Foundations of Embedded Software and Component-based Soft-
ware Architectures. Elsevier, 2005.

[14] G. Dodig-Crnkovic. Constructive Research and Info-Computational
Knowledge Generation. In Model-Based Reasoning In Science And
Technology – Abduction, Logic, and Computational Discovery (Stud-
ies in Computational Intelligence), pages 359–380. Springer, November
2010.

[15] K. Lukka. The Constructive Research Approach. In Case Study Re-
search in Logistics, volume 1, pages 83–101. Turku School of Eco-
nomics and Business Administration, 2003.

[16] H. J. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, and
C. Reed. Research Methods in Computing: What are they, and how
should we teach them? ACM Special Interest Group on Computer Sci-
ence Education (SIGCSE) Bulletin, 38(4):96–114, 2006.

[17] P. Runeson and M. Höst. Guidelines for Conducting and Reporting Case
Study Research in Software Engineering. Empirical Software Engineer-
ing, 14(2):131–164, 2009.

[18] CENELEC. IEC 61508: Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-Related Systems.
Part 4: Definitions and abbreviations. UK Ministry of Defence, 2007.

[19] W. D. Ruckelshaus. Risk, Science and Democracy. Issues in Science
and Technology, 1(3):19–38, 1985.

168

Bibliography 151

[20] N. G. Leveson. Engineering a Safer World: Systems Thinking Applied
to Safety. MIT Press, 2011.

[21] C. O. Miller. A Comparison of Military and Civil Aviation System
Safety. In Air Line Pilots Association Symposium, December 1983.

[22] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transac-
tions on Dependable and Secure Computing, 1(1):11–33, 2004.

[23] I. Habli and T. Kelly. Safety Case Depictions vs. Safety Cases — Would
the Real Safety Case Please Stand Up? In 2nd Institution of Engineering
and Technology International Conference on System Safety, pages 245–
248. IET, 2007.

[24] Object Management Group (OMG). SACM: Structured Assur-
ance Case Metamodel. Technical report, Version 2.0, OMG, 2018.
http://www.omg.org/spec/SACM.

[25] C Michael Holloway. Safety case notations: Alternatives for the non-
graphically inclined? In System Safety, 2008 3rd IET International Con-
ference on, pages 1–6. IET, 2008.

[26] ASCAD: The Adelard Safety Case De-
velopment Manual. Adelard, 1998.
http://www.adelard.com/services/SafetyCaseStructuring/index.html.

[27] GSN Community Standard Version 2. Technical report, Assurance Case
Working Group of The Safety-Critical Systems Club, January 2018.

[28] T. Kelly and J. McDermid. Safety Case Construction and Reuse Using
Patterns. In 16th International Conference on Computer Safety, Relia-
bility, and Security, pages 55–69. Springer, 1997.

[29] CENELEC. IEC 61508: Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-Related Systems.
Parts 1-7. International Electrotechnical Comission, 2010.

[30] CENELEC. EN 50126: Railway Applications The specification and
Demonstration of Reliability, Availability, Maintainability and Safety
(RAMS). European Committee for Electrotechnical Standardisation,
Rue de Stassart 35, B - 1050 Brussels, 2007.

169

152 Bibliography

[31] CENELEC. EN 50128: Railway Applications Communications, Sig-
nalling and Processing Systems Software for Railway Control and Pro-
tection Systems. European Committee for Electrotechnical Standardisa-
tion, Rue de Stassart 35, B - 1050 Brussels, 2001.

[32] CENELEC. EN 50129: Railway applications Communications, Sig-
nalling and Processing Systems Safety Related Electronic Systems for
Signalling. European Committee for Electrotechnical Standardisation,
Rue de Stassart 35, B - 1050 Brussels, 2001.

[33] International Organization for Standardization (ISO). ISO 26262: Road
vehicles — Functional safety. ISO, 2011.

[34] European Organisation for Civil Aviation Equipment (EUROCAE) and
Radio Technical Commission for Aeronautics (RTCA). ED-12/DO-
178B: Software Considerations in Airborne Systems and Equipment
Certification. EUROCAE ED-12B and RTCA DO-178B, 1992.

[35] Society of Automotive Engineers (SAE) and European Organisation for
Civil Aviation Equipment (EUROCAE). ED79/ARP-4754: Certifica-
tion Considerations for Highly-integrated or Complex Aircraft Systems.
Society of Automotive Engineers, 1996.

[36] Society of Automotive Engineers (SAE) and European Organisation for
Civil Aviation Equipment (EUROCAE). ED-135/ARP-4761: Guide-
lines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment. Society of Automotive Engi-
neers, 1996.

[37] European Organisation for Civil Aviation Equipment (EUROCAE) and
Radio Technical Commission for Aeronautics (RTCA). ED-12C/DO-
178C: Software Considerations in Airborne Systems and Equipment
Certification. EUROCAE ED-12C and RTCA DO-178C, 2011.

[38] ISO 26262-1:2011. Road vehicles — Functional safety — Part 1: Vo-
cabulary. International Organization for Standardization, 2011.

[39] ISO 26262-3:2011. Road vehicles — Functional safety — Part 3: Con-
cept phase. International Organization for Standardization, 2011.

[40] ISO 26262-4:2011. Road vehicles — Functional safety — Part 4: Prod-
uct development at the system level. International Organization for Stan-
dardization, 2011.

170

Bibliography 153

[41] ISO 26262-5:2011. Road vehicles — Functional safety — Part 5: Prod-
uct development at the hardware level. International Organization for
Standardization, 2011.

[42] ISO 26262-6:2011. Road vehicles — Functional safety — Part 6: Prod-
uct development at the software level. International Organization for
Standardization, 2011.

[43] ISO 26262-7:2011. Road vehicles — Functional safety — Part 7: Pro-
duction and operation. International Organization for Standardization,
2011.

[44] M. D. Mcllroy. Mass Produced Software Components. In 1st Interna-
tional Conference on Software Engineering, pages 88–98. NATO Sci-
ence Committee, 1968.

[45] W. B. Frakes and K. Kang. Software Reuse Research: Status and Future.
IEEE Transactions on Software Engineering, 31(7):529–536, 2005.

[46] V. R. Basili and H. D. Rombach. Support for Comprehensive Reuse.
IET Software Engineering Journal, 6(5):303–316, September 1991.

[47] G. Caldiera and V. R. Basili. Identifying and Qualifying Reusable Com-
ponents”. IEEE Computer, 24(2):61–70, February 1991.

[48] A. W. Brown. Large-scale, component-based development, volume 1.
Prentice Hall PTR Englewood Cliffs, 2000.

[49] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[50] C. A. Szyperski. Component Software and the Way Ahead. Foundations
of Component-Based Systems, pages 1–20, 2000.

[51] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[52] J. Bosch. Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach. Pearson Education, 2000.

[53] M. L. Griss, J. Favaro, and M. d’Alessandro. Integrating Feature Model-
ing with the RSEB. In 5th International Conference on Software Reuse,
pages 76–85. IEEE, 1998.

171

154 Bibliography

[54] B. Meyer. Applying ‘Design by Contract’. IEEE Computer, 25(10):40–
51, October 1992.

[55] B. Meyer. Object-Oriented Software Construction, Second Edition. The
Object-Oriented Series. Prentice Hall, Englewood Cliffs (NJ), USA,
1997.

[56] R. W. Floyd. Assigning Meanings to Programs. In American Math-
ematical Society Symposia in Applied Mathematics, volume 19, pages
19–31, 1967.

[57] C.A.R. Hoare. An Axiomatic Basis for Computer Programming.
CACM: Communications of the ACM, 12(10):576–580, October 1969.

[58] C.A.R. Hoare. Proof of Correctness of Data Representations. Acta In-
formatica, 1:271–281, 1972.

[59] C. B. Jones. Software Development: A Rigorous Approach. Prentice
Hall International,, Hemel Hempstead (U.K.), 1980.

[60] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into
Modules. CACM: Communications of the ACM, 5(12):1053–1058, De-
cember 1972.

[61] D. L. Parnas. A Technique for Software Module Specification with
Examples. CACM: Communications of the ACM, 15(5):330–336, May
1972.

[62] E. W. Dijkstra. A Discipline of Programming, volume 1. Prentice Hall
International, Englewood Cliffs, N.J., USA, 1976.

[63] C. B. Jones. Specification and Design of (Parallel) Programs. In IFIP
Congress, pages 321–332, 1983.

[64] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making
Components Contract Aware. IEEE Computer, 32(7):38–45, 1999.

[65] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple Viewpoint Contract-Based Specification and De-
sign. In Formal Methods for Components and Objects, volume 5382 of
Lecture Notes in Computer Science, pages 200–225. Springer, 2007.

172

Bibliography 155

[66] A. Cimatti and S. Tonetta. Contracts-refinement proof system for
component-based embedded systems. Science of Computer Program-
ming, 97(3):333–348, 2014.

[67] H. Martin et al. ”Demonstration report of the automotive and construc-
tion equipment use cases , Version 1.0” SafeCer, Deliverable D503.1,
November 2015.

[68] Bishop, P. and Bloomfield, R. A Methodology for Safety Case Develop-
ment. In Redmill, F. and Anderson, T., editor, Industrial Perspectives of
Safety-critical Systems: 6th Safety-critical Systems Symposium, pages
194–203. Springer, 1998.

[69] Marc Bender, Tom Maibaum, Mark Lawford, and Alan Wassyng. Po-
sitioning Verification in the Context of Software/System Certification.
Electronic Communications of the EASST, 46, 2011.

[70] P. Graydon and I. Bate. The Nature and Content of Safety Contracts:
Challenges and Suggestions for a Way Forward. In 20th Pacific Rim
International Symposium on Dependable Computing. IEEE, November
2014.

[71] R. Weaver, J. McDermid, and T. Kelly. Absence of Value Hazardous
Failure Mode, http://www.goalstructuringnotation.info/archives/220,
2004.

[72] B. Gallina, M. A. Javed, F. U. Muram, and S. Punnekkat. Model-driven
Dependability Analysis Method for Component-based Architectures. In
38th Euromicro Conference on Software Engineering and Advanced Ap-
plications. IEEE, 2012.

[73] B. Gallina and S. Punnekkat. FI4FA: A Formalism for Incompletion,
Inconsistency, Interference and Impermanence Failures Analysis. In 2nd
International Workshop on Distributed Architecture modeling for Novel
Component based Embedded systems. IEEE, 2011.

[74] ECSEL-JU-692474. AMASS – Architecture-driven, Multi-concern
and Seamless Assurance and Certification of Cyber-Physical Systems.
http://www.amass-ecsel.eu/.

[75] Object Management Group (OMG). MOFM2T: MOF Model to
Text Transformation Language. Technical report, V1.0, OMG.
http://www.omg.org/spec/MOFM2T/1.0/, 2008.

173

156 Bibliography

[76] R. Stake. Case Studies. In N. K. Denzin and Y. S. Lincoln, editors,
Handbook of Qualitative Research, chapter 14, pages 236–247. Sage
Publications, Oxford, 1994.

[77] O. Kath, R. Schreiner, and J. Favaro. Safety, Security, and Software
Reuse: A Model-Based Approach. In 4th International Workshop on
Software Reuse and Safety, Washington, D.C., US, September 2009.

[78] David Parker, Martin Walker, and Yiannis Papadopoulos. Model-based
functional safety analysis and architecture optimisation. Embedded
Computing Systems: Applications, Optimization, and Advanced Design:
Applications, Optimization, and Advanced Design, pages 79–92, 2013.

[79] Ibrahim Habli and Tim Kelly. Balancing the Formal and Informal in
Safety Sase Arguments. In VeriSure: Verification and Assurance Work-
shop, colocated with Computer-Aided Verification (CAV), July 2014.

[80] J. Rushby. Logic and Epistemology in Safety Cases. In 32nd Inter-
national Conference on Computer Safety, Reliability, and Security, vol-
ume 8153 of Lecture Notes in Computer Science, pages 1–7. Springer,
September 2013.

[81] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, and S. Puri. A Method to
Generate Reusable Safety Case Fragments from Compositional Safety
Analysis. In 14th International Conference on Software Reuse. Springer,
January 2015.

[82] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
Contract-based Component Specifications for Virtual Integration Test-
ing and Architecture Design. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6. IEEE, 2011.

[83] E. Gómez-Martınez, R. J. Rodrıguez, L. E. Elorza, M. I. Rezabal, and
C. B. Earle. Model-based Verification of Safety Contracts. In 1st In-
ternational Workshop on Safety and Formal Methods, volume 8938 of
Lecture Notes in Computer Science, pages 101–115. Springer, 2014.

[84] I. Dragomir, I. Ober, and C. Percebois. Integrating Verifiable As-
sume/Guarantee Contracts in UML/SysML. In 6th International Work-
shop on Model Based Architecting and Construction of Embedded Sys-
tems, volume 1084 of CEUR Workshop Proceedings. CEUR-WS.org,
2013.

174

Bibliography 157

[85] A. Söderberg and R. Johansson. Safety Contract Based Design of Soft-
ware Components. In 3rd International Workshop on Software Certi-
fication, International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE Computer Society, November 2013.

[86] J. Westman, M. Nyberg, and M. Törngren. Structuring Safety Require-
ments in ISO 26262 Using Contract Theory. In 32nd International Con-
ference on Computer Safety, Reliability, and Security, volume 8153 of
Lecture Notes in Computer Science, pages 166–177. Springer, Septem-
ber 2013.

[87] J. Westman and M. Nyberg. Environment-Centric Contracts for Design
of Cyber-Physical Systems. In Model-Driven Engineering Languages
and Systems - 17th International Conference, MODELS 2014, volume
8767 of Lecture Notes in Computer Science, pages 218–234. Springer,
2014.

[88] P. Battram, B. Kaiser, and R. Weber. A Modular Safety Assurance
Method considering Multi-Aspect Contracts during Cyber Physical Sys-
tem Design. In 1st International Workshop on Requirements Engineer-
ing for Self-Adaptive and Cyber-Physical Systems, 2015.

[89] D. Schneider, M. Trapp, Y. Papadopoulos, E. Armengaud, M. Zeller, and
K. Höfig. WAP: Digital dependability identities. In 26th International
Symposium on Software Reliability Engineering, pages 324–329. IEEE,
2015.

[90] R. H. Reussner and H. W. Schmidt. Using Parameterised Contracts
to Predict Properties of Component Based Software Architectures. In
Workshop On Component-Based Software Engineering (in association
with 9th IEEE Conference and Workshops on Engineering of Computer-
Based Systems), Lund, Sweden, 2002, 2002.

[91] R. H. Reussner. The Use of Parameterised Contracts for Architecting
Systems with Software Components. In 6th International Workshop on
Component-Oriented Programming (WCOP’01), June 2001.

[92] R. Hawkins. Using Safety Contracts in the Development of Safety Criti-
cal Object-Oriented Systems. PhD thesis, University of York, York, UK,
2006.

175

158 Bibliography

[93] J. L. Fenn, R. Hawkins, P. J. Williams, T. Kelly, M. G. Banner, and
Y. Oakshott. The Who, Where, How, Why and When of Modular and
Incremental Certification. In 2nd Institution of Engineering and Tech-
nology International Conference on System Safety, pages 135–140. IET,
2007.

[94] E. Armengaud. Automated Safety Case Compilation for Product-based
Argumentation. In Embedded Real Time Software and Systems, Febru-
ary 2014.

[95] N. Basir, E. Denney, and B. Fischer. Building Heterogeneous Safety
Cases for Automatically Generated Code. In Infotech@ Aerospace
Conference. The American Institute of Aeronautics and Astronautics
(AIAA), 2011.

[96] E. Denney and G. J. Pai. Automating the Assembly of Aviation Safety
Cases. IEEE Transactions on Reliability, 63(4), 2014.

[97] Daniel Ratiu, Marc Zeller, and Lennart Killian. Safety.lab: Model-based
domain specific tooling for safety argumentation. In International Con-
ference on Computer Safety, Reliability, and Security, volume 9338 of
LNCS, pages 72–82. Springer, 2015.

[98] Andrew Gacek, John Backes, Darren Cofer, Konrad Slind, and Mike
Whalen. Resolute: an assurance case language for architecture models.
ACM SIGADA Ada Letters, 34(3):19–28, December 2014.

[99] Sunil Nair, Neil Walkinshaw, Tim Kelly, and Jose Luis de la Vara. An
evidential reasoning approach for assessing confidence in safety evi-
dence. In 26th International Symposium on Software Reliability En-
gineering, pages 541–552. IEEE, 2015.

[100] Ewen Denney and Ganesh Pai. Tool support for assurance case devel-
opment. Automated Software Engineering, Dec 2017.

[101] Y. Prokhorova, L. Laibinis, and E. Troubitsyna. Facilitating Construc-
tion of Safety Cases from Formal Models in Event-B. Information &
Software Technology, 60, 2015.

[102] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. P. Kelly. Weaving
an Assurance Case from Design: A Model-Based Approach. In 16th In-
ternational Symposium on High Assurance Systems Engineering, pages
110–117. IEEE, January 2015.

176

Bibliography 159

[103] Andrzej Wardziński and Paul Jones. Uniform model interface for assur-
ance case integration with system models. In International Conference
on Computer Safety, Reliability, and Security, pages 39–51. Springer,
2017.

[104] B. Gallina, A. Gallucci, K. Lundqvist, and M. Nyberg. VROOM & cC: a
Method to Build Safety Cases for ISO 26262-compliant Product Lines.
In 2nd Workshop on Next Generation of System Assurance Approaches
for Safety-Critical Systems. Hyper Articles en Ligne (HAL), September
2013.

[105] M. Schulze, J. Mauersberger, and D. Beuche. Functional Safety and
Variability: Can It Be Brought Together? In 17th International Software
Product Line Conference, pages 236–243. ACM, 2013.

[106] S. Hutchesson and J. McDermid. Trusted Product Lines. Information &
Software Technology, 55(3):525–540, 2013.

[107] I. Habli. Model-Based Assurance of Safety-Critical Product Lines. PhD
thesis, University of York, York, UK, September 2009.

[108] B. Gallina. Towards Enabling Reuse in the Context of Safety-critical
Product Lines. In 5th International Workshop on Product LinE Ap-
proaches in Software Engineering. IEEE, May 2015.

[109] A. Cimatti, M. Dorigatti, and S. Tonetta. OCRA: A Tool for Checking
the Refinement of Temporal Contracts. In 28th International Confer-
ence on Automated Software Engineering (ASE), pages 702–705. IEEE,
November 2013.

[110] M. G. Bobaru, C. S. Pasareanu, and D. Giannakopoulou. Automated
Assume-Guarantee Reasoning by Abstraction Refinement. In 20th In-
ternational Conference, Computer Aided Verification (CAV), volume
5123 of Lecture Notes in Computer Science, pages 135–148. Springer,
July 2008.

[111] Irfan Sljivo and Barbara Gallina. Building multiple-viewpoint assurance
cases using assumption/guarantee contracts. In 1st International work-
shop on Interplay of Security, Safety and System/Software Architecture,
November 2016.

177

[112] Paul Pop, Detlef Scholle, Irfan Sljivo, Hans Hansson, Gunnar Widforss,
and Malin Rosqvist. Safe cooperating cyber-physical systems using
wireless communication. Elsevier journal of Microprocessors and Mi-
crosystems, 53:42–50, July 2017.

[113] Samer Medawar, Irfan Sljivo, and Detlef Scholle. Cooperative safety
critical cps platooning in safecop. In 5th EUROMICRO/IEEE Workshop
on Embedded and Cyber-Physical Systems, June 2017.

[114] Irfan Sljivo, Barbara Gallina, and Bernhard Kaiser. Assuring degra-
dation cascades of car platoons via contracts. In Friedemann Bitsch
Stefano Tonetta, Erwin Schoitsch, editor, 6th International Workshop
on Next Generation of System Assurance Approaches for Safety-Critical
Systems, volume 10489, pages 317–329. Springer, September 2017.

[115] Svetlana Girs, Irfan Sljivo, and Omar Jaradat. Contract-based assurance
for wireless cooperative functions of vehicular systems. In 43rd Annual
Conference of the IEEE Industrial Electronics Society, October 2017.

[116] ECSEL-JU-692529. SafeCOP – Safe Cooperating Cyber-Physical Sys-
tems using Wireless Communication. http://www.safecop.eu/.

[117] Omar Jaradat, Irfan Sljivo, Ibrahim Habli, and Richard Hawkins. Chal-
lenges of safety assurance for industry 4.0. In European Dependable
Computing Conference. IEEE Computer Society, September 2017.

[118] Swedish Fondation for Strategic Research (SSF). FiC – Future factories
in the Cloud. http://www.es.mdh.se/fic/.

178

179

180

Irfa
n

 Sljivo
 A

SSU
R

A
N

C
E A

W
A

R
E C

O
N

TR
A

C
T-BA

SED
 D

ESIG
N

 FO
R SA

FETY-C
R

ITIC
A

L SYSTEM
S	

2018

ISBN 978-91-7485-401-5
ISSN 1651-4238

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Mälardalen University Doctoral Dissertation 268

Assurance Aware Contract-based Design

for Safety-Critical Systems

Irfan Sljivo

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 532.91 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262

 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 532.9134
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

