Malardalen University Doctoral Dissertation 278

Concurrency Bugs

Characterization, Debugging and Runtime Verification

Sara Abbaspour Asadollah

‘?1

1k
4 }, v«\/; iA}fB il

V A
| ¥ 4

Malardalen University Press Dissertations
No. 278

CONCURRENCY BUGS

CHARACTERIZATION, DEBUGGING AND RUNTIME VERIFICATION

Sara Abbaspour Asadollah

2018

V A)
| V 4

MALARDALEN UNIVERSITY
SWEDEN

School of Innovation, Design and Engineering

Copyright © Sara Abbaspour Asadollah, 2018
ISBN 978-91-7485-412-1

ISSN 1651-4238

Printed by E-Print AB, Stockholm, Sweden

Malardalen University Press Dissertations
No. 278

CONCURRENCY BUGS
CHARACTERIZATION, DEBUGGING AND RUNTIME VERIFICATION

Sara Abbaspour Asadollah

Akademisk avhandling

som for avldggande av teknologie doktorsexamen i datavetenskap vid
Akademin fér innovation, design och teknik kommer att offentligen férsvaras
tisdagen den 4 december 2018, 13.30 i Kappa, Mélardalens hogskola, Vésteras.

Fakultetsopponent: Associate Professor Tao Yue, University of Oslo

v A
| V 4
MALARDALEN UNIVERSITY
SWEDEN

Akademin for innovation, design och teknik

Abstract

Concurrent software has been increasingly adopted in recent years, mainly due to the introduction of
multicore platforms. However, concurrency bugs are still difficult to test and debug due to their complex
interactions involving multiple threads (or tasks). Typically, real world concurrent software has huge
state spaces. Thus, testing techniques and handling of concurrency bugs need to focus on exposing the
bugs in this large space. However, existing solutions typically do not provide debugging information
to developers (and testers) for understanding the bugs.

Our work focuses on improving concurrent software reliability via three contributions: 1) An
investigation of concurrent software challenges with the aim to help developers (and testers) to better
understand concurrency bugs. We propose a classification of concurrency bugs and discuss observable
properties of each type of bug. In addition, we identify a number of gaps in the body of knowledge
on concurrent software bugs and their debugging. 2) Exploring concurrency related bugs in real-world
software with respect to the reproducibility of bugs, severity of their consequence and effort required
to fix them. Our findings here is that concurrency bugs are different from other bugs in terms of their
fixing time and severity, while they are similar in terms of reproducibility. 3) A model for monitoring
concurrency bugs and the implementation and evaluation of a related runtime verification tool to detect
the bugs. In general, runtime verification techniques are used to (a) dynamically verify that the observed
behaviour matches specified properties and (b) explicitly recognize understandable behaviors in the
considered software. Our implemented tool is used to detect concurrency bugs in embedded software
and is in its current form tailored for the FreeRTOS operating system. It helps developers and testers to
automatically identify concurrency bugs and subsequently helps to reduce their finding and fixing
time.

ISBN 978-91-7485-412-1
ISSN 1651-4238

Sammanfattning

Parallellt exekverande mjukvara har blivit allt vanligare under senare ar tack
vare introduktionen av multicore-plattformar. Buggar relaterade till den paral-
lella exekveringen dr emellertid fortfarande svéra att testa och felsoka pa grund
av bl.a. komplexa och svarforutsigbara interaktionsmonster. Tillstandsrymden
for system av parallella program ér typiskt enorm. Saledes dr en central utman-
ing att hitta buggarna i denna stora tillstandsrymd. Existerande 16sningar till-
handahaller emellertid ofta inte tillrécklig felsokningsinformation till utveck-
lare (och testare) for att de ska kunna forsta buggarna och hur de kan éatgérdas.

Vart arbete fokuserar pa att forbattra tillforlitligheten i parallell mjukvara
via i huvudsak tre bidrag: 1) Okad forstielse av buggar relaterade till par-
allell exekvering genom en klassificering av sddana buggar baserad pa deras
observerbara egenskaper. Dessutom har vi identifierat ett antal luckor i kun-
skapsldget om programvarufel och felsokning av buggar relaterade till parallell
exekvering. 2) En undersokning av parallellrelaterade buggar i verklig mjuk-
vara med avseende pa deras reproducerbarhet och hur svart och kostsamt det &r
att atgidrda dem. Vi observerade hir att de parallella buggarna skiljer sig fran
ovriga buggar avseende savil tid att atgarda som hur allvarliga konsekvenser
de kan leda till, samtidigt som de inte skiljer sig ndmnviért vad géller reproduc-
erbarhet. 3) En modell f6r dvervakning av parallella buggar och ett tillhdrande
verktyg som utgdende fran programexekveringar kan uppticka och klassificera
buggarna. Verktyget anvinds for att automatiskt uppticka parallella buggar i
inbyggd programvara och dr skriddarsytt for operativsystemet FreeRTOS. Det
hjélper utvecklare och testare att forsta parallella buggar som kan ha missats
av befintliga verktyg for buggdetektering och mjukvarutestning. Diarmed kan
tiden for identifiering och atgird av dessa buggar kortas.

Abstract

Concurrent software has been increasingly adopted in recent years, mainly due
to the introduction of multicore platforms. However, concurrency bugs are still
difficult to test and debug due to their complex interactions involving multiple
threads (or tasks). Typically, real world concurrent software has huge state
spaces. Thus, testing techniques and handling of concurrency bugs need to
focus on exposing the bugs in this large space. However, existing solutions
typically do not provide debugging information to developers (and testers) for
understanding the bugs.

Our work focuses on improving concurrent software reliability via three
contributions: 1) An investigation of concurrent software challenges with the
aim to help developers (and testers) to better understand concurrency bugs. We
propose a classification of concurrency bugs and discuss observable properties
of each type of bug. In addition, we identify a number of gaps in the body of
knowledge on concurrent software bugs and their debugging. 2) Exploring con-
currency related bugs in real-world software with respect to the reproducibility
of bugs, severity of their consequence and effort required to fix them. Our
findings here is that concurrency bugs are different from other bugs in terms of
their fixing time and severity, while they are similar in terms of reproducibil-
ity. 3) A model for monitoring concurrency bugs and the implementation and
evaluation of a related runtime verification tool to detect the bugs. In gen-
eral, runtime verification techniques are used to (a) dynamically verify that the
observed behaviour matches specified properties and (b) explicitly recognize
understandable behaviors in the considered software. Our implemented tool is
used to detect concurrency bugs in embedded software and is in its current form
tailored for the FreeRTOS operating system. It helps developers and testers to
automatically identify concurrency bugs and subsequently helps to reduce their
finding and fixing time.

iii

To my beloved Family,

My Soulmate
&

Whom it may read

Acknowledgments

My most earnest acknowledgment must go to my supervisor, Prof. Hans Hans-
son, for his extraordinary guidance, caring, and patience. As an excellent su-
pervisor and researcher, he will be a great example throughout my professional
life. This thesis would not exist without the contributions of my co-supervisors
Prof. Daniel Sundmark and Dr. Sigrid Eldh for their continuous effort to sup-
port and encourage me. Their invaluable suggestions and discussions played
an important role in improving this thesis.

I am very grateful to my colleagues and friends, Dr. Rafia Inam, Dr. Eduard
Paul Enoiu, Dr. Adnan Causevi¢ and Docent Wasif Afzal for their supports,
discussions and feedbacks as co-authors in my published papers. Also thanks
to Prof. Elaine Weyuker and Prof. Thomas Ostrand for useful discussions.
Thanks to all my friends and colleagues at Milardalen University providing a
fruitful environment and giving support when I have needed.

From the bottom of my heart, I would like to extend my deepest gratitude
to my parents as well as my brother and sister for their unconditional support,
love, and faith in many phases of my life and a big thanks to my husband for his
unbounded support, tolerance and love for me. Without their support, I would
not have been able to reach here.

Above all, I thank God for helping me and sending people who have been
such strong influence in my life and giving confidence at my hard moments.

This research has been supported by Swedish Foundation for Strategic Re-
search (SSF) via the SYNOPSIS project and the Swedish Research Council
(VR) via the EXACT project.

Sara Abbaspour Asadollah
Visteras, October, 2018

©

vii

List of publications

Papers included in the thesis’

Paper A Towards Classification of Concurrency Bugs Based on Observable
Properties, Sara Abbaspour Asadollah, Hans Hansson, Daniel
Sundmark, Sigrid Eldh. In the Proceedings of the 1* International
Workshop on Complex faults and failures in large software systems
(COUFLESS), ICSE 2015 Workshop, May 2015.

Paper B 70 Years of Research on Debugging Concurrent and Multicore
Software: A Systematic Mapping Study, Sara Abbaspour Asadollah,
Daniel Sundmark, Sigrid Eldh, Hans Hansson and Wasif Afzal.
Software Quality Journal, January 2016.

Paper C Concurrency Bugs in Open Source Software: A Case Study, Sara
Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and Hans
Hansson. Journal of Internet Services and Applications, December
2017.

Paper D A Runtime Verification based Concurrency Bug Detector for
FreeRTOS Embedded Software, Sara Abbaspour Asadollah, Eduard
Paul Enoiu, Adnan Causevié, Daniel Sundmark and Hans Hansson.
Submitted for a journal publication, September 2018.

The included articles have been reformatted to comply with the thesis layout.

ix

Additional papers, not included in the thesis

1. A Runtime Verification Tool for Detecting Concurrency Bugs in
FreeRTOS Embedded Software, Sara Abbaspour Asadollah, Daniel
Sundmark, Sigrid Eldh, and Hans Hansson. In the Proceedings of the
17" IEEE International Symposium on Parallel and Distributed
Computing (ISPDC-2018), August 2018.

2. Management of Service Level Agreements for Cloud Services in loT: A
Systematic Mapping Study, Saad Mubeen, Sara Abbaspour Asadollah,
Alessandro Papadopoulos, Mohammad Ashjaei, Hongyu Pei-Breivold,
and Moris Behnam. Journal of IEEE Access (ACCESS), June 2018.

3. SLAs for Industrial IoT: Mind the Gap, Alessandro Papadopoulos, Sara
Abbaspour Asadollah, Mohammad Ashjaei, Saad Mubeen, Hongyu
Pei-Breivold, and Moris Behnam. In the Proceedings of the 4th
International Symposium on Inter-cloud and IoT (ICI 2017), August
2017.

4. The pedagogical challenges of creating information literate librarians,
Maryam Derakhshan, Mohammad Hassanzadeh, Susan E. Higgins, and
Sara Abbaspour Asadollah. Library Review Journal, Emerald
Publishing, March 2017. Best Paper award.

5. Runtime Verification for Detecting Suspension Bugs in Multicore and
Parallel Software, Sara Abbaspour Asadollah, Daniel Sundmark, and
Hans Hansson. In the Proceedings of the 1*' International Workshop on
Testing Extra-Functional Properties and Quality Characteristics of
Software Systems (ITEQS’17), ICST 2017 Workshop, March 2017.

6. A Model for Systematic Monitoring and Debugging of Starvation Bugs
in Multicore Software, Sara Abbaspour Asadollah, Mehrdad
Saadatmand, Sigrid Eldh, Daniel Sundmark, and Hans Hansson. The 1%
International Workshop on Specification, Comprehension, Testing and
Debugging of Concurrent Programs (SCTDCP2016), ASE 2016,
August 2016.

7. A Study on Concurrency Bugs in an Open Source Software, Sara
Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson,

xi

and Eduard Paul Enoiu. In the Proceedings of the 12 International
Conference on Open Source Systems (OSS’16), June 2016.

8. A Survey on Testing for Cyber Physical System, Sara Abbaspour
Asadollah, Rafia Inam, Hans Hansson. In the Proceedings of the 27
International Conference on Testing Software and Systems (ICTSS),
Lecture Notes in Computer Science series, November 2015.

Contents

1 Introduction
1.1 Concurrent Software Challenges
1.2 ResearchMethod
1.3 Motivation and Goal of Thesis
1.4 Research Contribution
1.4.1 Publications Included in the Thesis

2 Background
2.1 Types of Concurrency Bugs
2.2 Debugging Techniques and Process for Concurrent Software .

2.3 Runtime Verification

3 Related Work
3.1 Literature Reviews and Classification Studies on Concurrent

3.2 Tools for Debugging Concurrent Software

3.3 Case Studies of Concurrency Bugs

3.4 Runtime Verification Tools for Concurrency Bugs

Xiii

© 0 00 O B W N

Xiv Contents

4 Research Results 29
4.1 Research Results Related to Subgoal 1 29
4.2 Research Results Related to Subgoal 2 33
4.3 Research Results Related to Subgoal 3 35
4.4 Research Results Related to Subgoal 4 37
4.5 Research Results Related to Subgoal 5 39

5 Discussion, Conclusion and Future Work 41
5.1 Discussion and Threats to Validity 41
52 Conclusions 43
53 FutureWork oo 44

Bibliography 47

II Included Papers 59

6 Paper A:

Towards Classification of Concurrency Bugs Based on Observable
Properties 61
6.1 Introduction 63
6.1.1 Intended Practical Use of the Classification 64
6.1.2 Contributions 64
6.1.3 PaperOutline 66
6.2 Research Approach 66
6.3 Preliminaries 67
6.3.1 SystemModel 67
6.3.2 Bugs, Faults, Errors, and Failures 68
6.4 Concurrent Software Bugs 68
6.5 A Classification for Concurrent Software Bugs 71
6.5.1 System State Properties 72
6.5.2 Symptom Properties 72
6.5.3 Combination of System State and Symptom Properties 73
6.6 Mapping the Classification to the State of the Art 75
6.7 Conclusion and Future Work 77

Bibliography o o 79

Contents XV

7 Paper B:
10 Years of Research on Debugging Concurrent and Multicore Soft-
ware: A Systematic Mapping Study 83
7.1 Introduction 85
7.2 ResearchMethod 86
7.2.1 Definition of Research Questions (Step 1) 86
7.2.2 Identification of Search String and Source Selection
(Step2) . . o oo 88
7.2.3 Study Selection Criteria (Step3) 89
7.2.4 DataMapping (Step4) 91
7.3 Study Classification Schemes 92
7.3.1 Debugging Process Classification 92
7.3.2 Concurrency Bug Classification 94
7.3.3 Type of Research Contribution Classification 96
7.3.4 Classification of Research Types 97
7.4 Concurrent and Multicore Software Debugging:
AMapoftheField 98
7.4.1 Publication Trends Between 2005 and 2014 98
Distribution of Publications 98
Main Publication Venues 100
Academia and Industry Representation 101
Active Research Organizations 102
7.4.2 Focus and Potential Gaps in Existing Work 102
Concurrency Bug Focus 103
Debugging Process Phase Focus 104
Relation Between Research Type, Research Contribu-
tion and Type of Concurrency Bugs 105
Relation Between Research Contribution, Research Type
and Debugging Process 108
Development of Research Relating Bug type and De-
bugging Process 109
7.5 Threats to the Validity of the Results 112
7.6 Discussion 113
7.7 Conclusion and Future Work 114

Bibliography 117

xvi Contents
8 Paper C:
Concurrency Bugs in Open Source Software: A Case Study 137
8.1 Introduction 139
8.2 Methodology 141
8.2.1 Bug-source Software Selection 141
8.2.2 BugReports Selection L. 143
8.2.3 Manual Exclusion of Bug Reports and Sampling of
Non-concurrency Bugs 145
8.2.4 Bug Reports Classification 146
8.3 Study Classification Schemes 147
8.3.1 Concurrency Bug Classification 147
8.3.2 Fixing Time Calculation 149
8.3.3 Bug Report Severity Classification 149
8.4 Results and Quantitative Analysis 149
85 Discussion. 161
8.5.1 Validity Threats 163
86 RelatedWork 164
8.7 Conclusion and Future Work 165
Bibliography 167
9 Paper D:
A Runtime Verification based Concurrency Bug Detector for FreeR-
TOS Embedded Software 173
9.1 Introduction 175
9.1.1 Paper Contributions 176
9.1.2 Paper Organization 177
9.2 Preliminaries 177
9.2.1 FreeRTOS 177
9.2.2 Tracealyzer 178
9.2.3 Timed Automata and the UPPAAL Model Checker . . 178
9.24 Terminology 179
9.3 DeCoB:Detecting Concurrency Bugs 180
9.3.1 DeCoBWorkflow 180
9.3.2 DeCoB Architecture 181
9.3.3 Overview of the Bug Detection Algorithms 184
94 BEvaluationDesign. L. 186

Contents xvii

9.5

9.6

9.7
9.8
9.9

DeCoB Evaluation Using FreeRTOS Examples 188
9.5.1 Deadlock Test Scenario 189
9.5.2 Starvation Test Scenario 191
9.5.3 Suspension Test Scenario 194
DeCoB Evaluation Using the Uppaal Model Checker 196
9.6.1 Evaluation Preparation 196
9.6.2 EvaluationResults 200
Discussion 203
Related Work 206
Conclusion and Future Work 209

Bibliography 211

Chapter 1

Introduction

Concurrent software is getting increasingly popular due to the advancement
of multicore processors. To obtain greater performance from multicore pro-
cessors, developers need to implement parallel code, either by transforming
sequential code or writing the code from scratch. From a software developer
point of view, concurrent and parallel software introduce the possibility of a
new type of software malfunctions, known as concurrency bugs [1]. The bugs
typically appear under very specific (nondeterministic) thread interleavings be-
tween shared memory access. Their effects spread through the software until
they cause the software to hang, crash or produce incorrect output. Unlike bugs
in sequential programs, manifestation of concurrency bugs dependents not only
on the program input but also on the scheduling and timing of different threads
(or tasks). Concurrency bugs are hard to detect because multithreaded code
can demonstrate different behavior based on the scheduling of threads, and the
bugs may only be triggered by a small specific set of schedules. They are thus
typically are considered to be problematic [2, 3, 4].

In real-world software, concurrency bugs in deployed systems have caused
several disasters in the past and are generating increasingly severe problems in
recent times with the growing popularity of multicore hardware. For instance,
in the 1980s, a concurrency bug in the Therac-25 radiation therapy machine,
caused radiation overdoses and killed at least five patients, with additional pa-
tients severely injured [1]. In 2003, ten million people were out of power due to
a race condition in a monitoring software with multi-million lines of code (the

2 Chapter 1. Introduction

often cited 2003 Northeastern U.S. electricity blackout[5]). Facebook’s initial
public offering (IPO) was delayed by more than half an hour, leading to a loss
of 350 million dollars due to a race condition in NASDAQ’s IT systems [6].

It is extremely important for businesses to avoid these catastrophic losses.
In 2007 a survey was conducted by Microsoft researchers to assess the state of
the practice of concurrency in their products. The researchers indicated that in
their company over 60% of respondents had to deal with concurrency issues
while half of the concurrency issues occurred at least monthly [3].

Several formal approaches have been developed oriented to the analysis of
computer software in order to diagnose and detect concurrency bugs during
software development. Abstract interpretation, model checking, symbolic ex-
ecution, and data-flow analysis are some of the most commonly used types of
formal methods [7]. Similar to other formal verification techniques, the use
of static analysis to discover and diagnose concurrency bugs during software
development is costly. The main issues with these techniques is that analyzing
all possible program executions takes a considerable amount of time.

Runtime verification, also referred to as dynamic analysis, can be used for
many purposes [8], such as testing, debugging, validation, fault protection,
profiling, verification, security or safety policy monitoring, and behavior mod-
ification. Runtime verification is concerned with checking a single trace of
the program against properties described in some logic [9]. When a property is
validated or violated, the program or runtime verification tool could take action
in order to deal with the situation. Debugging can also benefit from runtime
verification. Debugging, considered as a separate process and a key activity
in software development, involves several steps i.e., identifying, localizing and
fixing bugs.

Most experimental studies on concurrent and parallel applications provide
information on application cost and efficiency, while there is still lack of knowl-
edge to support the prevention and detection of concurrency bugs. There is a
need for deeper knowledge on detecting and fixing concurrency bugs.

1.1 Concurrent Software Challenges

Concurrent software testing and debugging are, compared to that of sequential
software, faced with a variety of challenges. The main challenges are:

1.2 Research Method 3

e Concurrency bugs typically involve changes in program state due to par-
ticular interleavings of multiple threads (or tasks) of execution, which
can make the bugs difficult to find and understand. Therefore, many
concurrency bugs remain hidden in software until the software runs in a
real environment and even then, it may take a long time before the bug
manifests itself.

e The thread interleavings may vary a lot depending on the platform se-
lected for software execution. As a consequence, the type of run-time
environment which is selected for software execution largely affects the
behavior, leading to the occurrence of different bugs on different plat-
forms.

e Typically, concurrency bugs have a unique and notorious property which
is non-determinism. In practice, every time an application executes, the
background conditions are different. A problem may manifest only once
every 10000 times during the application execution. Thus, repeated ex-
ecution of the same concurrent source code will typically not guarantee
the same result after each execution, even with the same input data. This
non-determinism makes concurrency bugs difficult to identify, detect and
fix, since developers might not be able to systematically reproduce the
bug using traditional debugging methods. Moreover, non-determinism
may introduce many troubles into testing. Thus, many concurrency bugs
may sneak into production runs and manifest at user’s site under special
conditions. In general, reproducing the thread schedule, which led a spe-
cific bug, might be very difficult and the non-deterministic thread scenar-
ios make concurrent software testing and debugging extremely difficult.

1.2 Research Method

This section includes an overview of the research methods used in the research
presented in this thesis. The general research process and the overall validity
of the studies are discussed in this section.

As shown in Figure 1.1, the research process of the research presented in
this thesis consists of the following steps.

1. Formulation of Main Research Goal.

4 Chapter 1. Introduction

1 4 5
Formulate Main Identify .
Research Goal Research Questions Propose Solution
5 1
Validate and
5 @ @ Evaluate Solution
Perform a Divide/Refine Implement the I
Literature Study Research Goal Solution

Figure 1.1: Overview of the research methods applied.

2. A Literature Study to better understand the common terminology and
identify the gaps in the area based on guiding goals.

3. Division/Refinement of the Research Goal into smaller easily manage-
able subgoals and narrowing the scope of the study.

4. Identify Research Questions to approach the research subgoals. Several
research questions are raised accordingly.

5. Propose Solutions to fulfill the main goal (or subgoals).

6. Implement the Solution(s), Implementing the proposed solution was
needed since only finding a solution would not constitute a sufficient
remedy to the problem due to the nature of the goal and problem(s).

7. Validate and Evaluate the Solution to provide proof of concepts and evi-
dence contributing to answering the research questions and fulfilling the
research goal.

1.3 Motivation and Goal of Thesis

This research is carried out in the context of concurrent software debugging
and runtime verification. The main goal of this research is:

To provide effective concurrency bug detection and related concurrent
software runtime verification techniques applicable in real-world scenarios.

1.3 Motivation and Goal of Thesis 5

According to the literature study and research problem(s), we divide the main
research goal into the following subgoals as a guideline for our research.

e Subgoal 1: To provide a common terminology for distinguishing be-
tween different types and classes of concurrency bugs and to identify the
interrelation between separate classes.

e Subgoal 2: To identify the current gaps and less-explored areas in de-
bugging of concurrency bugs.

e Subgoal 3: To identify the current state of concurrency related bugs in
real-world software in terms of frequency, severity, resolving time and
reproducibility.

e Subgoal 4: To propose a model and implement a tool for monitoring and
detecting concurrency bugs.

e Subgoal 5: To evaluate the implemented tool in real-world concurrent
software.

In general, to fulfill the main research goal and the subgoals, we started to
define a theory by presenting a classification of bugs related to concurrent ex-
ecution of application level software threads (or tasks). Then, we performed
a systematic mapping study of the related existing literature by identifying the
type of bug(s) and the addressed phase(s) in the debugging process. Next, we
explored the nature and extent of concurrency bugs in real-world (open source)
software by performing a case study. Finally, we proposed a runtime verifica-
tion model for detecting concurrency bugs and based on the proposed model
we implemented a tool for embedded software on open source real-time oper-
ating system. The tool can detect and diagnose some type of concurrency bugs
such as deadlock, starvation and suspension-based locking. We have verified
our implementation and presented our evaluation performed on software ex-
ecuting on an ARM Cortex-M-based micro-controller by injecting predefined
concurrency bugs in Atmel Studio and detected the bugs by our implemented
tool. Also, we experimentally evaluate the implemented tool using 21726 au-
tomatically generated logs using our own automated generator based on the
UPPAAL model checker [10].

6 Chapter 1. Introduction

1.4 Research Contribution

To provide a common terminology for distinguishing between different types
and classes of concurrency bugs and to identify the interrelation between sepa-
rate elements and classes (Subgoal 1), we proposed a disjoint classification of
concurrency bugs. We classified the bugs in a common structure considering
their observable properties in Paper A [11].

In order to achieve Subgoal 2, we provided an overview of existing research
on concurrent software debugging [12]. We undertook a systematic mapping
study in order to clarify current research solutions and research gaps in the
field. We highlighted the research gaps in the field based on attributes such
as types of concurrency bugs, types of debugging processes, types of research
and research contributions. The results of our mapping study indicate that the
current body of knowledge concerning debugging concurrent software does
not report studies on many of the types of bugs or on the debugging process.
Thus, there are still quite a number of issues and aspects that have not been
sufficiently covered in the field.

Next, we investigated 11860 fixed bug reports from a widely used open
source storage designed for big-data applications [13]. We started by selecting
a proper open source software for our study. We considered five open source
applications viz., Apache Hadoop project!, Apache ZooKeeper project?,
Apache Oozie project®, Apache Accumulo project* and Apache Spark
project®. The projects coordinate distributed processes with significant number
of releases and an issue management platform for managing, configuring
and testing. We identified the set of concurrency bug reports in the issue
tracking database of the selected projects through a keyword search. We
automatically filtered reports that are not likely to be relevant by performing
a search query on the bug report databases. Then we manually analyzed the
full set of identified bug reports in order to exclude those which were not
concurrency-related. We determined the relevance of the bugs by checking
if they describe a concurrency bug, and if they do, what type of concurrency
bug it is. Two aspects of these reports were examined: fixing time and

Uhttps://issues.apache.org/jira/browse/HADOOP
Zhttps://issues.apache.org/jira/browse/ZOOKEEPER
3https://issues.apache.org/jira/browse/OOZIE
4https://issues.apache.org/jira/browse/ACCUMULO
Shttps://issues.apache.org/jira/browse/SPARK/

1.4 Research Contribution 7

severity. Finally, we collected data for the concurrency bugs, and classified
the bug reports using the classification scheme described in Section 4.1. Each
bug report contains several types of information, which were valuable in
recognizing and filtering the concurrency bugs with other types of bugs to aid
us understand the characteristics of bugs. Finally, we analyzed the result of
the study and discussed the frequencies of concurrency and non-concurrency
bugs. The study is useful to recognize the most common types of concurrency
bugs in terms of severity, fixing time and reproducibility. By this we address
Subgoal 3.

As explained in Section 1.1, due to the complexity of concurrent and par-
allel software, detecting potential concurrency bugs in early stages of the soft-
ware life-cycle might be difficult as they usually arise during system execution.
Thus, software monitoring may address and alleviate this challenge by collect-
ing, processing and measuring significant data at execution time. This led us to
propose a runtime verification model for detecting and identifying three types
of concurrency bugs (Deadlock, Starvation, and Suspension). We have con-
sidered these three bug types based on our prior study, Paper B [12], where
further motivation is provided. The model is proposed for these three types
of bugs and it can be extended for other types of concurrency bugs. We also
implemented a tool to find the concurrency bugs at runtime without debugging
and tracing the source code [14] (Paper D). The models and the tool address
Subgoal 4.

To achieve Subgoal 6, we experimentally evaluated the implemented tool
using realistic FreeRTOS test scenarios. Three types of concurrency bug exam-
ples running on an AVR 32-bit board SAM4S were implemented and injected
to a bug-free embedded software. We used the real log files collected during
system execution as an input to implemented tool in order to detect the injected
bugs and shows a proof-of-concept evaluation using realistic FreeRTOS logs.
Moreover, we evaluated the implemented tool by generating log files using the
UPPAAL model checker. We automatically generated 21726 log files by using
our own trace generator® based on the UPPAAL model checker and used them
as an input to our tool in order to evaluate its bug detecting capability.

STrace Generator is a transformation tool which we implemented for translating the Uppaal
traces into log files supported by the Tracealyzer file template [14] (Paper D).

8 Chapter 1. Introduction

1.4.1 Publications Included in the Thesis
Paper A

Towards Classification of Concurrency Bugs Based on Observable Prop-
erties [11], co-authored by Sara Abbaspour Asadollah, Hans Hansson, Daniel
Sundmark, Sigrid Eldh.

Status: Published in the Proceedings of the 1% International Workshop on
Complex faults and failures in large software systems (COUFLESS), ICSE
2015 Workshop, IEEE, May 2015.

Abstract In software engineering, classification is a way to find an or-
ganized structure of knowledge about objects. Classification serves to
investigate the relationship between the items to be classified, and can be used
to identify the current gaps in the field. In many cases users are able to order
and relate objects by fitting them in a category. This paper presents initial
work on a taxonomy for classification of errors (bugs) related to concurrent
execution of application level software threads. By classifying concurrency
bugs based on their corresponding observable properties, this research aims
to examine and structure the state of the art in this field, as well as to provide
practitioner support for testing and debugging of concurrent software. We also
show how the proposed classification, and the different classes of bugs, relates
to the state of the art in the field by providing a mapping of the classification
to a number of recently published papers in the software engineering field.

Personal contribution: I am the initiator, main driver and author of all
parts in this paper. All other co-authors have contributed with valuable
discussion and reviews, in their role as supervisors.

Paper B

10 Years of Research on Debugging Concurrent and Multicore Software:
A Systematic Mapping Study [12], co-authored by Sara Abbaspour Asadol-
lah, Daniel Sundmark, Sigrid Eldh, Hans Hansson and Wasif Afzal.

Status: Published in the Software Quality Journal, January 2016.

Abstract Debugging — the process of identifying, localizing and fixing

1.4 Research Contribution 9

bugs — is a key activity in software development. Due to issues such as
non-determinism and difficulties of reproducing failures, debugging concur-
rent software is significantly more challenging than debugging sequential
software. A number of methods, models and tools for debugging concurrent
and multicore software have been proposed, but the body of work partially
lacks a common terminology and a more recent view of the problems to solve.
This suggests the need for a classification, and an up-to-date comprehensive
overview of the area.

This paper presents the results of a systematic mapping study in the field
of debugging of concurrent and multicore software in the last decade (2005-
2014). The study is guided by two objectives: (1) to summarize the recent
publication trends and (2) to clarify current research gaps in the field.

Through a multi-stage selection process, we identified 145 relevant papers.
Based on these, we summarize the publication trend in the field by showing dis-
tribution of publications with respect to year, publication venues, representa-
tion of academia and industry, and active research institutes. We also identify
research gaps in the field based on attributes such as types of concurrency bugs,
types of debugging processes, types of research and research contributions.

The main observations from the study are that during the years 2005-2014:
(1) there is no focal conference or venue to publish papers in this area, hence
a large variety of conferences and journal venues (90) are used to publish rele-
vant papers in this area; (2) in terms of publication contribution, academia was
more active in this area than industry; (3) most publications in the field address
the data race bug; (4) bug identification is the most common stage of debug-
ging addressed by articles in the period; (5) there are six types of research ap-
proaches found, with solution proposals being the most common one; and (6)
the published papers essentially focus on four different types of contributions,
with “methods” being the type most common one.

We can further conclude that there is still quite a number of aspects that
are not sufficiently covered in the field, most notably including (1) exploring
correction and fixing bugs in terms of debugging process; (2) order violation,
suspension and starvation in terms of concurrency bugs; (3) validation and
evaluation research in the matter of research type; (4) metric in terms of
research contribution. It is clear that the concurrent, parallel and multicore
software community needs broader studies in debugging. This systematic
mapping study can help direct such efforts.

10 Chapter 1. Introduction

Personal contribution: I am the main driver and author of this paper.
My supervisors contributed in their supervisory capacity. Wasif Afzal has
contributed by valuable discussions and reviewing of the whole paper.

Paper C

Concurrency Bugs in Open Source Software: A Case Study [13], co-
authored by Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and
Hans Hansson.

Status: Published in Journal of Internet Services and Applications (JISA),
April 2017. This paper is the extended version of the paper: A Study on
Concurrency Bugs in an Open Source Software [15] which is one of the
selected papers by the conference committee for submitting to the JISA
journal.

Abstract Concurrent programming puts demands on software debugging and
testing, as concurrent software may exhibit problems not present in sequential
software, e.g., deadlocks and race conditions. In aiming to increase efficiency
and effectiveness of debugging and bug-fixing for concurrent software, a deep
understanding of concurrency bugs, their frequency and fixing-times would
be helpful. Similarly, to design effective tools and techniques for testing
and debugging concurrent software, understanding the differences between
non-concurrency and concurrency bugs in real-word software would be useful.

This paper presents an empirical study focusing on understanding the
differences and similarities between concurrency bugs and other bugs, as well
as the differences among various concurrency bug types in terms of their
severity and their fixing time, and reproducibility. Our basis is a comprehen-
sive analysis of bug reports covering several generations of five open source
software projects. The analysis involves a total of 11860 bug reports from the
last decade, including 351 reports related to concurrency bugs. We found that
concurrency bugs are different from other bugs in terms of their fixing time
and severity while they are similar in terms of reproducibility. Our findings
shed light on concurrency bugs and could thereby influence future design and
development of concurrent software, their debugging and testing, as well as
related tools.

1.4 Research Contribution 11

Personal contribution: I am the main driver and author of all parts in
this paper. My supervisors contributed with valuable discussions, useful ideas
and review of the whole paper.

Paper D

A Runtime Verification based Concurrency Bug Detector for FreeRTOS
Embedded Software [14], co-authored by Sara Abbaspour Asadollah, Eduard
Paul Enoiu, Adnan Caugevi¢, Daniel Sundmark and Hans Hansson.

Status: Is submitted for a journal publication in September 2018. This
paper is the extended version of the paper: A Runtime Verification Tool for
Detecting Concurrency Bugs in FreeRTOS Embedded Software [16].

Abstract When developing embedded software, detecting bugs as early
as possible is important. Concurrency bugs is a particularly problematic class
of bugs. Several methods have been proposed to detect such bugs, but few
of these methods have been implemented in tools and even fewer have been
evaluated systematically using realistic software logs. In this paper we present
a novel method and tool called DeCoB, which uses runtime verification to
detect concurrency bugs in embedded software. DeCoB is tailored for the
open source real-time operating system FreeRTOS, and detects and diagnoses
concurrency bugs, such as deadlock, starvation, and suspension-based-locking,
by analyzing runtime traces provided by the Tracealyzer tool, i.e., without
debugging and tracing the source code.

This paper presents the implementation of the tool in detail, as well as its
functional architecture, together with illustrations of its use in practice. The
DeCoB tool can be used during program testing for identifying concurrency
bugs using information about the software executions. We experimentally
evaluate the DeCoB tool using realistic FreeRTOS test scenarios and 21726
automatically generated logs using our own generator based on the UPPAAL
model checker. Our results suggest that the DeCoB tool is effective at
detecting whether a diverse set of logs contains concurrency bugs.

Personal contribution: I am the main driver and author of all parts in
this paper except the work on the UPPAAL model checker and related

12 Chapter 1. Introduction

sectiones which were joint work with Eduard Paul Enoiu. My co-authors
contributed with valuable discussions, ideas and review of the whole paper.

1.5 Thesis Outline

This thesis is organized in 9 chapters. Chapter 2 introduces the required back-
ground of the thesis. In Chapter 3, we present related work relevant to this the-
sis. Chapter 4 presents the results according to the respective research goals,
introduced in Section 1.3. Finally, in Chapter 5, we present a discussion based
on our results, a list of conclusions from development of this thesis as well as
possible future work, followed by the included papers in Chapter 6 to 9.

Chapter 2

Background

In this chapter, we provide background information needed for understanding
the context of the thesis and the work itself.

2.1 Types of Concurrency Bugs

Concurrent programming puts demands on software development and testing.
Concurrent software may exhibit problems that may not occur in sequential
software. There is a variety of challenges related to faults and errors in con-
current, multicore and multi-threaded applications [17, 18, 19]. A well-known
concurrency bug is Data race. Data race requires that at least two threads ac-
cess the same data and at least one of them write the data [20]. It occurs when
concurrent threads perform conflicting accesses by trying to update the same
memory location or shared variable [17, 21]. Figure 2.1 shows an example of
a Data race.

In the example, the following sequential actions will happen when execut-
ing the indicated code in each thread:

1. Load the value of counter in memory.

2. Add 1 to the value.
3. Save the new value to counter.

13

14 Chapter 2. Background

Thread A Thread B

counter = counter + 1; counter = counter + 1;

Figure 2.1: Data race example.

Consider that this example is a small part of an application which is executing
on a Symmetric Multiprocessing (SMP) architecture. In SMP, all CPU cores
are identical and have two levels of cache. If a programmer writes a code to
run on one core, then the code can run on any of the cores. The memory and
I/O devices are shared equally among all of the processors in the SMP [22].
Each core at least has a private level cache!(L1 cache), while the last level
cache (LLC) is shared among all cores. In this example, suppose that threads
A and B execute in parallel on Corel and Core2 and the value of counter is 100
initially. After execution, the value of counter could be 101 while the expected
(correct) result is 102. Both cores execute the indicated line of code, but due to
the parallel execution the second load is in this scenario performed before the
first save. Hence, the value saved by both threads will be 101. This scenario
shows that the result of parallel execution of the example could be incorrect.
Thus a concurrency bug (Data dace) has occurred.

Atomicity violation is another type of concurrency bug. It refers to the sit-
uation when the execution of two code blocks (sequences of statements) in
one thread is concurrently overlapping with the execution of one or more code
blocks of other threads in such a way that the result is not consistent with any
execution where the blocks of the threads are executed without being over-
lapped with any other code block. Figure 2.2 shows an example of single vari-
able atomicity, and Table 2.1 displays the values of shared and local variables
after each interleaving execution.

Suppose Thread A is executing on Corel and Thread B on Core2. Both
of them use a shared variable counter and each has its local variable (tempA
and tempB). The initial value of counter is 0. Since both threads are using
the lock mechanism to protect from data corruption, only one core at a time
can access the counter. If Corel reaches line 5 before Core2 reaches line 17

ICache is “an area of memory that holds recent used data and instruction” [23].

2.1 Types of Concurrency Bugs 15

Thread A Thread B
5 lock(counter) 17: lock(counter)
6: tempA = counter 18: tempB = counter
7: unlock(counter) 19: unlock(counter)

10: tempA = 100 + tempA || 27: tempB = 200 + tempB

14: lock(counter) 30: lock(counter)

15: counter = tempA 31: counter = tempB
16: unlock(counter) 32: unlock(counter)

Figure 2.2: Atomicity violation example.

L1 cache of L1 cache of

Corel Core2 LLC DRAM
Corel | Core2 Corel | Core2
counter | tempA | counter | tempB | counter tempA | tempB counter tempA | tempB
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 100 0 200 0 100 200 0 100 200
4 100 100 100 100 1000 100 100 1000
5 200 200 200 100 200 200 100 200

Table 2.1: Shared and local variables’ value after interleaving execution.

then the counter will be fetched from DRAM (system memory) to LLC and
L1 Cache of Corel. tempA will be fetched similarly. The value of fempA
will be 0 after executing line 6 and 7. Meanwhile if Core2 reaches line 17
then Thread B will wait in the waiting queue. By releasing the lock by Corel,
Thread B will wait in the ready queue. Since Core?2 is free and no more threads
is waiting in the ready queue then Core2 will continue to execute Thread B
from line 17, 18 and 19. The value of counter will be fetched to L1 Cache
of Core2 and the fempB value of Thread B will be 0. During Core2 execution
Corel is executing Thread A. The tempA value of Thread A will be 100 while

16 Chapter 2. Background

the tempB value of Thread B becomes 200. If we suppose Corel reaches line
14 before Core2 reaches line 30 then 100 will be stored in LLC and DRAM
as counter value, and then Core2 will continue (line 30, 31 and 32) and store
200 in LLC and DRAM. This scenario shows that a concurrency bug (Single
variable atomicity violation) occurred because the updated counter by Corel
is corrupted by Core2.

From the above examples it should be clear that concurrent and parallel
executions of threads may lead to bugs that are only possible when executing
threads concurrently. Investigating, understanding and detecting such bugs is
the main motivation and focus of this thesis.

2.2 Debugging Techniques and Process for Con-
current Software

Debugging is a key activity in the software development life-cycle. Debugging
is a methodical process of identifying, localizing, reducing and fixing bugs in
a computer program. There are a number of tricks (methods) that can be used
in the daily software development activity to facilitate the hunt for software
problems (bugs). Some of these methods are as follows:

e Exploiting compiler features: programmers can obtain static analysis
of the code provided e.g. by the compiler. Static code analysis is the
analysis of software that is performed without actually executing it. Such
analysis helps programmers detect a number of basic semantic problems,
e.g. type mismatch or dead code.

o Abused cout debugging: the cout technique® consists of adding print
statements in the code to track the control flow and data values during
code execution (also known as Print debugging or Echo Debugging).
This technique is the favorite technique of beginners and has been the
most common method for debugging [24].

e Logging: logging is another common technique for debugging. This
technique automatically record information messages or events to mon-
itor the status of the program in order to diagnose problems.

2cout technique’s name is taken from the C++ statement for printing on terminal screen (or any
standard output stream).

2.2 Debugging Techniques and Process for Concurrent Software 17

o Assertions and defensive programming: assertions are expressions,
which should evaluate to true at a specific point in the code. If an
assertion fails, a bug is found. The bug could possibly be in the
assertion, but more likely it will be in the code. In this method after an
assertion fails it makes no sense to re-execute the program.

o Debugger: a debugger works through the code line-by-line in order to
make the execution visible to the developer, thereby helping to find bugs,
the location of bugs and the cause of bugs. It can work interactively by
controlling the execution of the program and stopping it at various times,
inspecting variables, changing code flow whilst running, etc. Trace de-
bugging, Omniscient debugging techniques [24] and Deterministic Re-
play Debugging (DRD) [25] can be considered as subgroups of this tech-
nique.

In addition to traditional debugging techniques, concurrent and parallel pro-
grams have specific debugging techniques to support tracing and debugging of
multithreaded software. These techniques include:

o Event-based debugging: regards the execution of parallel programs as a
series of events and records and analyzes the events when a program is
executing. Instant Replay [26] can be considered as a type of this group.

o Control information analysis: this technique can analyze the control
information in execution and the global data.

o Data-flow-based static analysis: this technique can detect and analyze
the bugs when a program does not execute.

In this section, we present the concepts of the different phases in the debugging
process. We discuss the stages that follow after a software failure has been
observed, when its root cause is determined and corrected.

From an industrial perspective, a simple life cycle of a software problem
is defined by Zeller [27] to include the following phases: (1) A user reports
a problem to the software provider; (2) A developer at the software provider
reproduces the problem; (3) The developer isolates the circumstances of the
problem; (4) The developer fixes the problem locally; (5) The developer deliv-
ers the fix(es) to the user.

18 Chapter 2. Background

The debugging process is handled differently in different types of organi-
zations and teams. In a small team with few developers, it is normally clear
what part of the code is in question when a program executes unsuccessfully
or a test case fails. Here, typically, the developer has to find the bug [28]. In
larger organizations, usually the first sign of any bug is the failure of the soft-
ware or system. The bug fixing process then starts with the submission of an
anomaly report. The following list discusses the stages that follow after a soft-
ware failure has been observed, and its root cause should be determined and
corrected.

e Bug identification is the process of finding the approximate location of
a bug (in terms of source code unit, sub-system or even organizational
unit), such that the remainder of the debugging process can be assigned
to the appropriate stakeholder. It is to be noted that the scope of our
definition of bug identification covers terms such as bug localization and
bug detection. In case the failure was detected during testing, bug iden-
tification is usually performed by the testing team and is followed by a
team review to prioritize fixes [29].

e Type of bug identification is a process to help developers in finding
the real cause of a bug by understanding the type of bug. In [11] we
extended the common debugging process by adding a sub-process that
suggests that before the type of bug is identified, developers could check
the properties of identified bug(s) and compare them with the properties
given for each class of concurrency bugs. Thus, developer(s) can thereby
identify the type of the bug at hand.

e In cause identification, the root cause of a bug is identified. Since the
root cause refers to the most basic reason(s) for the occurrence of a bug,
during this process a bug can reasonably be identified by a developer or
the debugger (e.g., unexpected value of variable A was the root cause of
a bug related to variable B or an erroneous lock was the root cause of
bug number 5).

e The process of exploring corrections can be applicable when we have
more than one possible solution for fixing the bug. Typically, the poten-
tial solutions are compared and the best solution for the current bug is
selected.

2.3 Runtime Verification 19

e Fixing bug is the process for repairing and fixing the current bug. It is
the last stage of the debugging process in order to remove the bug.

e Finally, after debugging is completed the fixed system needs to be
tested to ensure that the fix did not introduce new bugs in the system
(regression testing).

2.3 Runtime Verification

Monitoring the behavior of a software, either on the fly as it executes, or post-
mortem after its execution (analyzing log files) is considered as a runtime ver-
ification component [30]. Runtime verification is concerned with checking a
program trace against properties described in some logic [9]. When a property
is violated, the technique makes it possible to act in order to deal with the sit-
uation. However, since the check is done during the program execution, only
states that are actually reached are considered. Runtime verification is useful
in both testing and monitoring. For instance, if a user comes up with a test case
and wants to check a possible bug, then a runtime verification tool can be con-
sidered to automate the creation of oracles for revealing the bug [31]. Further,
if the user is interested to act in response to the violation of a property, then
she/he can consider runtime verification as a monitor. The monitor can guide
the program reaction to bugs and steer it to the correct behavior [32].

Runtime verification is mainly used to detect unexpected or even expected
behaviors of a software during execution. It helps the underlying program to
observe relevant events and feed them to a decision procedure (a monitor).
Then the monitor states a decision property fulfilment or violation. Runtime
verification is a useful technique in verifying the user-provided specifications
by checking if the software satisfies a given specification or not. There are
some approaches typically proposed for specification-based runtime monitor-
ing. We can classify these approaches in four main categories: rule-based ap-
proaches [30, 33], automaton based approaches [34, 35, 36, 9], temporal logic-
based approaches [37, 38, 39, 40, 41], and regular expression and grammar-
based approaches [42].

Runtime verification is a useful technique for detecting concurrency bugs in
multi-threaded and concurrent software. It can extract the information during
the software execution in order to determine if a concurrency bug is happening
(or happened) on any execution.

Chapter 3

Related Work

This chapter presents a cross-section of related work relevant to this thesis.

3.1 Literature Reviews and Classification Studies
on Concurrent Software

There are some SLR, surveys, and state of art review studies related to concur-
rent software testing and debugging. These reviews provide a list of relevant
studies in the area. A systematic review on concurrent software testing was
published by Brito et al. [43] in 2010. Their main goal was to obtain evidence
of current state-of-the-art related to testing criteria, testing tools and to find bug
taxonomies for concurrent and parallel programs. They further provided a list
of relevant studies as a foundation for new research in the area. The authors
concluded that there is a lack of testing criteria and tools for concurrent pro-
grams. They notice that most experimental studies are providing information
on application cost, efficiency and complementary aspects, while there is lack
of knowledge on bug taxonomy and on evaluating testing criteria. We use a
similar study methodology (Systematic Mapping Study) with focus on current
state of research related to debugging criteria rather than testing. However, our
study is based on different classifications compared to Brito et al.’s study.

A state of the art review on deterministic replay debugging in multithread
programming was performed by Wang et al. [44] in 2012. They categorize

21

22 Chapter 3. Related Work

replay-based debugging techniques for parallel and multithread programs and
divided them into three types: hardware-based, software-based and hybrid
methods. Furthermore, software-based methods are classified into two groups:
virtual machine based methods and pure software-based methods. Further, they
present some classical software-based systems for multithread deterministic
replay debugging. Related to this, we provide a state of the art overview with
focus on the processes that may occur during concurrent software debugging.

Hong and Kim present a survey of race bug detection techniques for multi-
threaded software [45]. They classify 43 race bug and corresponding race bug
detection techniques. In addition, they describe and compare the mechanisms
of race bug detection techniques. Further, the authors present some examples
of race bugs, with the aim to help software developers to avoid race bugs in
their code.

Moreover, related to this thesis there are some other studies that propose
taxonomies covering concurrency bug types. Long et al. [46] present a classifi-
cation of Java concurrency bugs by using a Petri-net model diagram. The tran-
sitions in the model represent changes in the concurrent state of a thread. The
classification is used to justify the construction of concurrency flow graphs for
each method in a concurrent component. The authors believe that the concur-
rency flow graphs can be used in the construction of test sequences for testing
concurrent components to ensure coverage of concurrency primitives.

Tchamgoue et al. [47] classify event-driven program models into low and
high level based on event types. They categorize concurrency bug patterns
in event-driven programs. In addition to the taxonomy, they survey tools for
detecting concurrency bugs in these programs. In contrast, our classification of
concurrency bugs is based on symptom and system state bug properties.

Helmbold et al. [48] summarize the concepts of race bug detection tech-
niques for parallel software, and present a taxonomy with respect to the char-
acteristics of the target program structure. Their race taxonomy separates races
into categories based on the error types that cause that kind of race (e.g. loop,
synchronization operations).

3.2 Tools for Debugging Concurrent Software

To our knowledge, there are few related studies on debugging concurrent pro-
grams. One of these is done by Lonnberg et al. to investigate how students

3.2 Tools for Debugging Concurrent Software 23

understand concurrency bugs [49]. The authors performed an empirical study
on students, by providing an assignment to students (to write concurrent pro-
grams). They suggested several ways to help students debug their assignments.
For instance, they guided students to use software visualization tools. Further,
the authors interviewed the students and analyzed their responses. The authors
claim that since students usually have different understanding of concurrent
programs from teachers, software visualization tools will help both teachers
and students to get the same view of the programs and bugs. Another study
is done by Sadowski and Yi to show how developers use a new concurrency
notation called cooperability [50]. They posted three concurrency bugs on an
internet-based survey form, divided participants into two groups, where one
group of people have the aid of cooperability and the others do not. In evaluat-
ing the responses, they scored the correctness of the responses with a ranking
scheme and statistically showed that developers can understand concurrency
bugs better with the aid of cooperability.

In order to help developers to debug concurrent software and trace the
thread interactions some visualization tools such as CHESS [51], JPF [52],
TIE [53], JIVE [54, 55], JOVE [54, 55], FALCON [5], UNICORN [56], GRIF-
FIN [57] and Concurrency Explorer [51] are proposed.

Most of these tools are evaluated with toy programs and not with real con-
current software, except the Concurrency Explorer, which is used internally at
Microsoft.

In addition, there are some tools proposed by researchers for detecting con-
currency bugs, including data race detectors, serializability violation detectors,
atomicity violation detectors and other bug detectors. Data race detectors can
typically be of three different types based on the algorithms that are used. The
first type relies on the lockset algorithm [58] to check whether the software
developer protected all accesses to a specific shared variable with a common
lock. The second type relies on the happens-before algorithm [59, 60] and the
third type relies on sampling and the use of breakpoints [61] instead of relying
on any of these algorithms. Typically, race detectors operate at the lower-level
of individual memory accesses. However, Artho et al. [62] investigate data
races on a higher abstraction layer. The authors developed a runtime analysis
algorithm to detect high-level data races. They introduce a concept of view
consistency and utilize it to detect high-level data races. A view is the entire
set of shared variables accessed in a synchronized block. According to the

24 Chapter 3. Related Work

authors, by their algorithms it is possible to detect inconsistent uses of shared
variables, even if no classical race condition occurs.

Xu et al. [63] propose a serializability violation detector to detect erroneous
executions of shared-memory programs without requiring a priori program an-
notations. Their tool can report some dynamic false positives, which makes
it particularly suitable to be used in avoiding erroneous executions caused by
unknown bugs. The authors validate their proposed method by conducting
an empirical case study and claim that the experimental results show that the
method is effective on real server programs.

Lu et al. propose a tool that detects atomicity violation at the level of in-
dividual memory accesses (low-level) [64]. It relies on training and can detect
atomicity violation bugs by learning from a large set of runs of valid memory
access patterns.

A bug detector tool is proposed by Huang et al. [65]. Their tool relies on
detecting whether critical sections are commutative. The authors achieve this
by identifying pairs of critical sections that non-deterministically change the
contents of shared memory due to execution order.

Other researchers have addressed the problem of detecting concurrency
bugs in different types of event-based frameworks [66, 67, 68]. In our study
we present and classify relevant papers that propose concurrency debugging
tool(s).

3.3 Case Studies of Concurrency Bugs

There are some case studies on real-world concurrency bugs such as propa-
gation [69], [70] and even prediction [71], [72], [73] of bugs in source code.
Some of these case studies consider the components or source code files that
are most prone to errors in order to understand the software reliability. This
thesis is focused on a specific class of bugs i.e., concurrency bugs and different
classes of concurrency bugs. In most of the previous work, the authors ana-
lyzed the consequences of bugs and did not distinguish between concurrency
and non-concurrency bugs.

Chandra and Chen [74] investigated the reported bugs from three open
source software database, i.e., MySQL database, Apache web server and
Gnome. They analyzed all bugs with focus on the effectiveness of generic
recovery techniques in tolerating the bugs. They found 12 concurrency bugs in

3.3 Case Studies of Concurrency Bugs 25

their study. The concurrency bug type was one of the possible types of bug in
their study while the scope of our study is more narrow (i.e., on concurrency
bugs only). However, we provide a broader analysis taking into consideration
several characteristics of concurrency bugs.

Real concurrency bugs were investigated in [75]. Lu et al. analyzed 105
concurrency bugs reported in four open-source applications, i.e., MySQL,
Apache, Mozilla and OpenOffice. They studied the causes of concurrency
bugs with focus of determining whether they caused deadlocks or not. We
use a similar study methodology to find relevant bug reports for our analysis
but we provide a complementary angle by studying the effects of recent
concurrency bugs with a more fine-grained classification than mapping bugs
into deadlock and not-deadlock bug classes.

Schimmel et al. [76] present an empirical evaluation of bug detection capa-
bilities of two data race bug detection tools on real-world concurrent software.
The authors tracked 25 data races in bug repositories, created parallel unit tests
and executed 4 different data race detectors. They conclude that with a combi-
nation of all detectors 92% of the contained data races can be found, whereas
the best data race detector only finds about 50%.

More recently, Lin et. al. analyzed reported bugs from the Apache web
server, Mozilla browser and Linux kernel [77]. They found that the Linux ker-
nel has a higher fraction of concurrency bugs i.e., 13.6%. While the Apache
web server has 5.2% and Mozilla browser 1.2% of bugs being of concurrency
type. They also recognized that 10.2% of Linux kernel bugs are associated to
interrupt handling (missing instructions to enable or disable interrupts at the
appropriate locations). The focus of Lin et. al.’s study is mostly on the distri-
bution of concurrency bugs from the three application while we analyzed the
concurrency bugs not only to understand the differences between concurrency
and non-concurrency bugs distribution and to recognize the most common type
of concurrency bugs, but also to recognize the most common type of concur-
rency bugs in terms of fixing time, severity and reproducibility.

The study by Gu et al. [78] look at the change history for thread syn-
chronization. The authors investigate code repositories of open-source multi-
threaded software projects to understand synchronization challenges encoun-
tered by real-world developers. They reviewed over 250,000 revisions of four
representative open source software projects to distinguish how developers
handle synchronizations. Further, the authors conduct case studies to better

26 Chapter 3. Related Work

understand how concurrency bugs are introduced by code changes and how
developers handle synchronization problems. Gu et al. conclude that it is
necessary to have tool support to help developers who tackle synchronization
problems.

3.4 Runtime Verification Tools for Concurrency
Bugs

Although many frameworks have been proposed for runtime monitoring as ex-
plained in Chapter 2, just a few runtime verification tools are available for use
with most of them focusing on Java programs. For instance, Java PathExplorer
(JPAX) is a runtime verification tool proposed by Havelund and Rosu [79, 80]
for monitoring the execution of sequential and concurrent Java programs. The
prototype of Java PathExplorer has been applied to the executive module of
the NASA Ames planetary Rover K9 [79]. The general concept of the tool
concerns extracting events while the program is executing and then analysing
these events with a remote observer process. JPAX instruments Java byte code
to send a set of relevant events to the observation module that performs two
kinds of verifications: 1) logic-based monitoring and 2) error pattern analy-
sis. Logic-based monitoring is a kind of specification based monitoring which
counts upon an underlying logic and the user can express any application de-
pendent, logical requirements. Error pattern analysis implements more or less
standard programming language dependent algorithms, e.g., exploring execu-
tion trace to detect potential concurrency errors, including deadlocks and data
races, even they do not explicitly occur in the trace.

Falcon is another tool for on-line monitoring and steering of large-scale
parallel programs [81]. Falcon’s architecture has a monitoring component
which consists of a high-level view specification and a low level sensor spec-
ification. Programmers define application-specific sensors for capturing the
program behavior and runtime attributes. Falcon has another component that
allow users to implement on-line display system to graphically display data
structures, runtime program behaviors, and performance information. Falcon is
designed for distributed systems and its implementation relies on the C threads
library on several hardware platforms.

Java with Assertions (Jass) is a monitoring approach developed for sequen-

3.4 Runtime Verification Tools for Concurrency Bugs 27

tial and concurrent systems written in Java [82]. Jass translates annotations to
programs written in Java into pure Java code. Compliance with the specified
annotations is dynamically tested during runtime. It checks specification vio-
lations dynamically at runtime by adding assertions which provide the specifi-
cation of the program. Assertions are boolean expressions of Java with certain
keywords and quantifications over finite sets. They are in the form of class in-
variants, loop invariants, method post and pre-conditions and additional checks
which can be inserted into every part of the code. Jass is able to detect possible
interferences in a parallel program by having the thread in Jass classes which
start in the main method. Jass is able to detect when an assertion in one thread
becomes invalid through statements in another thread.

As briefly surveyed in this section, there are a few runtime verification
tools available, but none is a runtime verification tool for embedded software
to detect concurrency bugs. For instance, JPAX is a runtime verification tool
for monitoring and detecting potential concurrency errors in Java programs.
From our understanding, it cannot detect these concurrency bugs for embed-
ded software running under FreeRTOS. In addition, the proposed tool cannot
detect other types of concurrency bugs such as Starvation and Suspension bugs.
Similarly, Jass is a monitoring approach considering Java applications and is
not able to detect if the interferences are protected by synchronization meth-
ods [82]. Our tool does not have this limitation. Moreover, the other tool
(Falcon) is adapted to C and based on static analysis while our tool is based on
dynamic analysis.

Chapter 4

Research Results

This chapter presents the results of our research in relation to the respective
following research goals:

Subgoal 1: To provide a common terminology for distinguishing between dif-
ferent types and classes of concurrency bugs and to identify the interre-
lation between separate classes.

Subgoal 2: To identify the current gaps and less-explored areas in debugging
of concurrency bugs.

Subgoal 3: To identify the current state of concurrency related bugs in real-
world software in terms of frequency, severity, resolving time and repro-
ducibility.

Subgoal 4: To propose a model and implement a tool for monitoring and de-
tecting concurrency bugs.

Subgoal 5: To evaluate the implemented tool in real-world concurrent soft-
ware.

4.1 Research Results Related to Subgoal 1

In order to achieve the first subgoal of this thesis (7o provide a common ter-
minology for distinguishing between different types and classes of concur-

29

30 Chapter 4. Research Results

rency bugs and to identify the interrelation between separate classes.), in Paper
A [11], we propose a classification for concurrency bugs. We classify the bugs
in a common structure in which each bug-type is characterized by a unique set
of observable properties.

We first gathered the common system states and symptoms (observable
properties) of bugs based on a literature review. We divide the observable
properties in properties related to the system state, and properties related to the
symptoms of the concurrent program under test. The resulting classification is
shown in Table 4.1. In the table, when we refer to a thread ¢, we are referring
to threads in the set 7, C T', where among all threads 1", T} is the set of threads
directly involved in the bug. Similarly, when we refer to a shared resource r,
we are referring to a resource in the set R, C R, where among all resources
R, Ry is the set of resources directly involved in the bug. As shown in the
table, the first column illustrates the observable properties while the first row
displays the different types of concurrency bugs. The mapping between bugs
and observable properties should be interpreted as Bug — property. Thus, an
”v"” in the column of bug B and the row of property p would mean that if you
have come across bug B, then property p will invariably hold. Note that the
reverse implication (i.e., property — Bug) does not necessarily hold.

4.1 Research Results Related to Subgoal 1 31

Table 4.1: Concurrent software bugs classes and the properties for each class (from

Paper A).

Property

Deadlock

Livelock

Starvation

Suspension

Data race

Order violation

Atomicity violation

Single variable | Multi variable

Memory inconsistency|

Write-Write race

Order violation 1
Order violation 2
Order violation 3

Single variable-AV 1

2

Single variable-AV 2
Multi variable-AV 1
Multi variable-AV

At least one thread t € Tj, is in the Waiting
state

<

<

<

At least one thread ¢ € T, is the Executing
state

<

<
<
<

At least one thread t € Ty, is in the Ready state

All threads in T}, have read and written to a
spinlock variable

All threads in T}, are waiting for a lock held
by another involved thread

At least one thread ¢ € T, is in the ready
queue for an unacceptably long time

At least one thread ¢ € T}, is in Waiting state
for an unacceptably long time

All threads in 7}, are in Executing state

No thread ¢ € T, is able to proceed and
progress

There are incorrect or unexpected results

The number of threads in 7}, is larger than the
number of free processor cores

Potential request to a resource is larger than
the number of available resources of that type

All threads in 73 hold a lock

At least one of the threads ¢ € T3 holds a lock

Accesses to shared memory were made from
different threads in T},

At least one of the memory accesses was
Write

Accesses to shared memory targeted the same
memory location

The memory accesses were NOT protected by
a synchronization mechanism

Accesses to shared memory targeted just one
memory location

Accesses to shared memory targeted more
than one memory location

There were at least two accesses to the same
shared memory location, a Write and a Read,
where the Read occured too early

There were at least two Write accesses to
shared memory, and they occurred without
any Read in-between

There is at least one correct execution
ordering between the memory accesses which
the program failed to enforce

An atomic execution of statements was
required

32 Chapter 4. Research Results

In order to avoid omission of relevant bugs, we conducted a literature re-
view to identify faults, errors and bugs relevant to parallel, concurrent and
multicore software testing and debugging. The common properties of bugs
presented above are primarily extracted from relevant references identified in
the literature review.

The explanation of each concurrent bug with their observable properties
are listed as follows:

e A Data race occurs when at least two threads access the same data and at
least one of them write the data [20]. It occurs when concurrent threads
perform conflicting accesses by trying to update the same memory loca-
tion or shared variable [17, 21].

— Memory inconsistency is when different threads have inconsistent
views of shared variables [19]. In this case the results of a write
operation by one thread are not guaranteed to be visible to a read
operation by another thread.

— Write-Write race is a data corruption caused by accessing a
shared variable via at least two threads, in which one of them
overwrites the data before any reads.

e Deadlock is “a condition in a system where a process cannot proceed
because it needs to obtain a resource held by another process but is itself
holding a resource that the other process needs” [83]. More generally,
it occurs when two or more threads attempts to access shared resources
held by other threads, and none of the threads can give them up [17, 23].

e Livelock is “a situation where a thread is waiting for a resource that will
never become available. It is similar to deadlock except that the state of
the process involved in the livelock constantly changes with regards to
each other, non-progressing” [84].

e Starvation is “a condition in which a process is indefinitely delayed
because other processes are always given preference” [85]. Starvation
typically occurs when high priority threads are monopolising the CPU
resources.

4.2 Research Results Related to Subgoal 2 33

o A Suspension-based locking or Blocking suspension occurs when a
calling thread waits for an unacceptably long time in a queue to acquire
a lock for accessing a shared resource [86].

e Order violation is defined as the violation of the desired order between
at least two memory accesses [87]. It occurs when the expected order
of interleavings does not appear [5]. If a program fails to enforce the
programmer’s intended order of execution then an order violation bug
could happen [75].

e Atomicity violation refers to the situation when the execution of two
code blocks (sequences of statements) in one thread is concurrently over-
lapping with the execution of one or more code blocks of other threads
in such a way that the result is inconsistent with any execution where the
blocks of the first thread are executed without being overlapping with
any other code block. Atomicity violation can be further subcategorized
into single variable atomicity violation and multi-variable atomicity vi-
olation, where:

— Single variable atomicity violation is when there is a sequence of
concurrent memory access to a single variable, which yields differ-
ent result from the state of sequential memory accesses [88].

— Multi-variable atomicity violation occurs when multiple vari-
ables are involved in an unserializable interleaving pattern [88].

4.2 Research Results Related to Subgoal 2

In order to achieve the the second subgoal of this thesis (7o identify the current
gaps and less-explored areas in debugging of concurrency bugs.), we present in
Paper B [12] the results of a systematic mapping study in the field of concurrent
software debugging in the period 2005-2014.

In terms of publication trends on debugging of concurrent software from
2005 to 2014, we found that the topic has gained increasing interest, with the
highest number of published papers in 2013. Our investigation indicates that
the number of publications in the field increase from 4 in 2005 to 24 in 2013.

34 Chapter 4. Research Results

In order to investigate the current gaps in debugging concurrency bugs we
explored the addressed concurrency bugs, different type of debugging pro-
cesses, types of research and research contributions.

Regarding concurrency bugs, we found that six specific types of concur-
rency bugs (viz., Deadlock, Livelock, Starvation, Data race, Order violation,
and Atomicity violation) were addressed by articles from 2005 to 2014.

Figure 4.1, presents the identified research gaps related to concurrency bugs
and concurrent software debugging. It is evident from the figure that bug iden-
tification is the most widely studied process with 92 papers (63%) across dif-
ferent types of bugs. Among this amount, about 45% of papers focus on data
race while no paper was about suspension and livelock. Moreover, very few
papers focus on starvation and order violation bugs (3%). More details are
presented in Chapter 7.

General

Deadlock

Livelock

Atomicity violation

Order Violation

Data race

Starvation

Suspension

Others

Bug ,_

Others

identification|

Figure 4.1: Identified research gaps related to concurrent software based on types of
concurrency bugs and types of debugging processes

4.3 Research Results Related to Subgoal 3 35

4.3 Research Results Related to Subgoal 3

In order to achieve the third subgoal of this thesis (7o identify the current state
of concurrency related bugs in real-world software in terms of frequency, sever-
ity, resolving time and reproducibility.), we provide a comprehensive study
of 11860 fixed bug reports from five widely used open source storage de-
signed for big-data applications (viz., the Apache Hadoop project, the Apache
ZooKeeper project, the Apache Oozie project, the Apache Accumulo project
and the Apache Spark project) in Paper C [13]. The study covers the reports of
fixed bugs from 2006 to 2015.

Our comparative study of concurrency bugs and non-concurrency bugs re-
vealed that only 4% of the total set of bugs are related to concurrency issues,
while the majority of bugs (i.e., 96%) are of non-concurrency type. The distri-
bution of non-concurrency and concurrency bug types is shown in Figure 4.2.
This Venn chart also illustrates the obtained results of our investigation in terms
of reproducibility! from the all five projects’ repository.

In Figure 4.2, a bug which reported during 2006 to 2015 is categorized as
All, a fixed and closed bug is categorized as Fixed & Closed. If a report is
tagged as “Cannot reproduce” then it is categorized as unreproducible. A bug
with at least one keyword related to concurrency issues is categorized as Con-
currency keywords matched, some of these bugs are fixed and closed and others
are unreproducible. We are not considering the bugs that are under investiga-
tion and the reports related to these are excluded from our study although they
are included in the All category. Finally, if a bug falls into one of the concur-
rency classification types then it is categorized as a Concurrency bug. This
Venn chart illustrates that the fraction of unreproducible bugs from the total set
of bugs is only 4%, while 2% of the total set are unreproducible and related to
concurrency issues.

We also compared the time required to fix concurrency bugs and non-
concurrency bugs. Our results show that concurrency bugs require longer fix-
ing time than non-concurrency bugs, but the difference is not very large. Fig-
ure 4.3 shows the results of comparing the fixing time for concurrency and
non-concurrency bugs in the form of box-plots. Boxes span from 1* to 3™
quartile, black middle lines are marking the median and the whiskers extend

'Bug reproducibility indicates the success in reproduction of software failure(s) caused by
bug(s).

36 Chapter 4. Research Results

Concurrency keywords matched
5%

Concurrency bugs
4%

[All bugs

[Fixed & Closed
__ Unreproducible
B Concurrency keywords matched

[| Concurrency bugs Concurrency keywords matched
2%
Unreproducible

4%

Figure 4.2: Distribution of non-concurrency and concurrency bug types together with
distribution of reproducible and unreproducible concurrency bugs (from Paper C).

up to 1.5 times the inter-quartile range while the circles represent the outliers.

Further, our study on severity of concurrency bugs and non-concurrency
bugs indicates that concurrency bugs are considered to be more severe than
non-concurrency bugs, but the difference is not that large. Figure 4.4 shows
the severity distributions.

4.4 Research Results Related to Subgoal 4 37

1000.0 —

1000 —

100 —

Fixing time (days)

0.1 —

bugs
bugs

Non-C

Figure 4.3: Fixing time comparison for concurrency (C) and non-concurrency (Non-C)
bugs (from Paper C).

180 - 50% 50%
& Non-concurrency
bugs 160 -
140 -
H Concurrency 120
bugs % 30%
£ 100
&
2 80
=
60 13% 14% 13%
40
6% 5%
2" L1
07 ” . ; -
Blocker Critical Major Minor Trivial
¥ Non-concurrency bugs 66 45 177 45 18
¥ Concurrency bugs 104 50 175 22 0

Figure 4.4: Concurrency and non-concurrency bug severity (from Paper C).

4.4 Research Results Related to Subgoal 4

In order to achieve the forth subgoal of this thesis (To propose a model and
implement a tool for monitoring and detecting concurrency bugs.), we present

38 Chapter 4. Research Results

anovel method and a tool called DeCoB (Detecting Concurrency Bugs), which
use runtime verification to detect concurrency bugs in embedded software in
Paper D [14].

The method and tool can cover the less-explored concurrency bugs based
on our obtained result in Paper B [12] and Paper C [13]. The logical ar-
chitecture for detecting concurrency bugs in embedded software is shown in
Figur 4.5. It is decomposed into four layers viz., Logging, Monitoring, Con-
currency Bug Diagnosis, and Mitigation. The detailed description of the archi-
tecture is given in Section 9.3.1.

| Concurrency Bug Diagnosis |

Embedded

Software

Logging

Figure 4.5: Architecture of the runtime verification framework for detecting concur-
rency bugs in embedded software (from Paper D).

Our implemented tool (DeCoB) is tailored for the open source real-time op-
erating system (FreeRTOS), and detects and diagnoses concurrency bugs, such
as deadlock, starvation, and suspension-based-locking, by analysing runtime
traces provided by the Tracealyzer tool?, i.e., without debugging and tracing
the source code. Figure 4.6 shows our proposed architecture of the DeCoB
tool. The proposed architecture is comprised of five separate modules, viz.,
Parser Module, Starvation Bug Diagnosis Module, Deadlock Bug Diagnosis
Module, Suspension Bug Diagnosis Module, and Data Visualization Module.
The detailed description of the architecture is given in Section 9.3.2.

2Tracealyzer is a stand-alone application for visualizing and tracing embedded software execu-
tions and is developed by Percepio AB since 2004 [89].

4.5 Research Results Related to Subgoal 5 39

DeCoB tool

Parser Module

Suspension ElE Starvation
Bug Z[3 Bug

. . E|S . .
Diagnosis S Diagnosis

Module Deadlock Module

Bug
Diagnosis
Module

I

»| Data Visualization Module

Figure 4.6: The architecture of the DeCoB tool (from Paper D).

4.5 Research Results Related to Subgoal 5

The method and tool presented in Paper D [14] is also designed to achieve
the fifth subgoal of this thesis (7o evaluate the implemented tool in real-world
concurrent software.). Thus, an experimental evaluation of the DeCoB tool is
designed and applied in Paper D [14]. Figure 4.7 illustrates an overview of the
experimental evaluation. The evaluation includes two distinct approaches: (1) a
proof-of-concept evaluation using realistic FreeRTOS logs and (2) a systematic
evaluation using automatically generated logs by the UPPAAL model checker
and our Trace generator.

We verified our implementation and performed an evaluation on software
executing on an ARM Cortex-M-based micro-controller according to the ap-
proach to the left in Figure 4.7. We evaluated the tool by injecting three pre-
defined types of concurrency bugs in Atmel Studio and used real log files col-
lected during system execution using the Tracealyzer tool. Then we used the
log file as input to the DeCoB tool in order to detect the injected bugs. The im-

40 Chapter 4. Research Results

:Evaluation using FreeRTOS examples

i(1
i | Embedded software Uppaal model @
(FreeRTOS examples)
Uppaal’s query(s)l
b
@) l Bug traces ®
Tracealyzer
Uppaal trace l
Trace generator
module

N2

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
Event i
handler 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

DeCoB tool

' |

) Detected bugs Detected bugs

5

—

f)

A4

o
¥
¥ #
¥
¥

Human oracle

Figure 4.7: Overview of the experimental evaluation of the DeCoB tool (from Paper D).

plemented tool was able to detect all the injected bugs. In the second approach
to the right in Figure 4.7, we evaluated the implemented tool using 21726 syn-
thetic logs generated using the UPPAAL model checker and our Trace genera-
tor. As a result, we could show that DeCoB was capable of detecting all con-
currency bugs in the 21726 created traces, which shows that DeCoB is effective
at detecting concurrency bugs from a diverse set of logs. Detailed description
of the evaluation and the results are given in Section 9.4, 9.5 and 9.6.

Chapter 5

Discussion, Conclusion and
Future Work

In this chapter, we present a discussion based on our results, a list of conclu-
sions, as well as a set of potential directions for future work.

5.1 Discussion and Threats to Validity

According to our literature review, we found that existing taxonomies for con-
current and multi-threaded software debugging properties are lacking cover-
age of some aspects, specifically the ones related to the debugging process.
The existing knowledge gaps in different types of bugs may be due to the fact
that some specific types of bugs are not well-known yet, or recognizing them
is not easy. Another reason for these gaps could be related to the debugging
processes which are not well defined and not applicable in all software devel-
opment projects, thus they are not easy to apply.

On the other hand, according to our case study results, the distribution of
concurrency bugs reported in the bug repositories is not large in comparison
to non-concurrency bugs. This is not very surprising, since it has long been
believed that concurrency bugs are hard to detect and reproduce. There are
three main possible reasons for this belief: (1) when users are faced with the
bug a single time they may not even be sure that it is a problem with the soft-

41

42 Chapter 5. Discussion, Conclusion and Future Work

ware and might not report it; (2) it might not be possible to reproduce the bug
in the developer’s environment due to small differences in the environments
even when users are able to reproduce the bug on their machines; (3) software
developers might not be able to systematically reproduce the bug using tra-
ditional debugging methods since some debugging tools and methods might
affect the reproducibility of the bug. In our study, we found a much smaller
share of concurrency bugs than the one found by other similar studies. This
could possibly be due to one of the three mentioned reasons or due to a dif-
ferent time span of our study and that of other similar studies. Based on our
investigation, about half of the concurrency bugs are of Data race type. Our
investigation also shows that 48% of the bugs that we observed were reported
in the five-year interval of 2006-2010, and the remaining 52% were reported in
the five-year interval of 2011-2015. Possible reasons could be that either the
current approaches and tools still need progress in detecting and fixing bugs,
or the software developers and testers are not aware of the proposed methods
and the implemented tools.

Due to increasing software system complexity, there is renewed interest in
implementing tools for detecting faults and managing recovery from them at
runtime. Concurrent programming also increases the complexity of different
types of software. Automating concurrency bug detection typically provides an
overview of the concurrency bugs properties which can lead to simplified fix
and reproduction of the concurrency bugs. Improvements we are seeking are
easier, faster and more reliable discovery of concurrency bugs during software
execution. Using our proposed runtime tool (DeCoB) can give an opportunity
for the test managers, testers and developers to detect the concurrency bugs
(even in cases when the bugs do not lead to an observable failure). Our two-
fold evaluation demonstrate that DeCoB is able to successfully detect bugs in
the examined logs. In total, DeCoB is able to correctly detect whether the
21726 automatically generated logs containing concurrency bugs.

In the design and execution of this thesis, there are several issues that need
to be considered as they can potentially limit the validity of the obtained results.

We limited the search for studies and bugs in the systematic study and the
case study within the time span of 2005-2014 and 2006-2015, respectively.
This was done for two reasons: (1) to limit the volume of search results for
practical reasons; (2) to present more recent trends (i.e., in the last decade).
This limitation of years obviously excludes papers published before the year

5.2 Conclusions 43

2005 and excludes bug reported before the year 2006, including highly cited
papers and important bugs. Thus, our systematic mapping study and our case
study are not complete with respect to all research papers and reported bugs on
the topic, but instead presents the more recent development in the field.

Another threat is related to the classification schema for mapping included
papers in our systematic mapping study and included bug reports in our case
study. Since authors and bug reporters cannot be expected to follow any stan-
dard concurrency bug terminology, partially based on our proposed classifica-
tion, we categorized the papers and bug reports. We believe that the process of
classification would have been more reliable if consistent terminologies would
have been used in the primary studies and bug reports. However, some papers
and bug reports were difficult to categorize due to unclear boundaries between
some classification scheme categories.

As stated before, most of the runtime verification tools for concurrency
bugs detection focusing on Java programs. The body of knowledge in run-
time verification tools are for embedded software to detect concurrency bugs is
limited. The implemented DeCoB tool is able to detect the concurrency bugs
for embedded system. We have selected FreeRTOS as the target environment
for DeCoB since it is a widely used open source operating system that offers
support for different hardware architectures in the embedded system domain.

5.2 Conclusions

We propose a taxonomy of different types of concurrency bugs by classifying
the bugs based on their observable properties. The grouping and classification
of concurrency bugs presented is structured based on properties that are com-
monly observable in concurrent systems. The aim of the proposed taxonomy is
to aid software developers during the debugging and testing of their concurrent
applications. The taxonomy also helps users to make appropriate decisions
when they encounter problems.

In addition, we provide an overview of existing research on concurrent and
multi-threaded software debugging. We pinpoint current gaps in the research
area that may represent opportunities for further research on debugging con-
current and multi-threaded software.

In particular, we provide a case study on concurrency bugs. This study
analyzed bugs reported from a widely used open source storage designed for

44 Chapter 5. Discussion, Conclusion and Future Work

big-data applications and classified the bugs into two classes of bugs: non-
concurrency and concurrency bugs. The case study also helped us to recog-
nize the severity, fixing time and reproducibility of the most common types of
concurrency bugs in terms of . The findings from our case study could help
software designers and developers to understand how to address concurrency
bugs, estimate the most time-consuming ones, and prioritize them to speed up
the debugging and bug-fixing processes.

Apart from our theoretical and experimental outcomes, we propose a run-
time verification method and implement a tool (DeCoB) based on the method
in order to automate the concurrency bug detection process. DeCoB can be
utilized as a supportive tool for making decisions on finding, localizing and
fixing concurrency bugs.

In general, despite all the mentioned limitations, this thesis improves our
understanding of the characteristics of the different types of concurrency bugs,
the less-explored areas in debugging concurrency bugs and the current state
of concurrency related bugs in real-world software. Besides, it introduced an
effective concurrency bug detector and a concurrent software runtime verifica-
tion technique applicable on real-world scenarios.

5.3 Future Work

This thesis raises a number of questions, which we strongly believe can form
the basis for future work, as outlined below.

As stated before, the DeCoB tool supports detecting deadlock, starvation
and suspension type of bugs. An interesting agenda for future work would be to
expand the DeCoB tool and the proposed method behind it for detecting other
types of concurrency bugs during runtime (e.g., Data race, Atomicity violation
and Order violation).

Moreover, our classification is focusing on shared memory concurrency.
There are additional types of concurrency bugs that are specific for message
passing systems (e.g., message races). Considering these type of concurrency
bugs could be another direction for future work.

Nevertheless, the case study in Chapter 4 provides basis for many research
directions, one noticeable such direction is to apply other case studies with
other projects (e.g., implemented in other programming languages) in order to
generalize the results to other projects. Besides, we argue that having access to

5.3 Future Work 45

real industrial data is important for the advancement of detecting concurrency
bugs and more industrial case studies targeting concurrency bugs are needed
to generalize the results of this thesis to other systems and to increase the body
of knowledge in general.

Bibliography

(1]

(2]

(31

(4]

(5]

(6]

David A. Weiser. Hybrid Analysis of Multi-threaded Java Programs. Pro-
Quest, 2007.

Jayant Desouza, Bob Kuhn, Bronis R. De Supinski, Victor Samofalov,
Sergey Zheltov, and Stanislav Bratanov. Automated, scalable debugging
of MPI programs with Intel Message Checker. In Proceedings of the
second international workshop on Software engineering for high perfor-
mance computing system applications, pages 78-82. ACM, 2005.

Patrice Godefroid and Nachiappan Nagappan. Concurrency at Microsoft:
An exploratory survey. In CAV Workshop on Exploiting Concurrency
Efficiently and Correctly, 2008.

Michael Siifand Claudia Leopold. Common mistakes in OpenMP and
how to avoid them. In OpenMP Shared Memory Parallel Programming,
pages 312-323. Springer, 2008.

Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon:
fault localization in concurrent programs. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1,
pages 245-254. ACM, 2010.

Joab Jackson. Nasdaq’s Facebook Glitch Came From Race
Conditions, May 2012. preprint (2011), available at http:
//www.pcworld.com/article/255911/nasdags_
facebook_glitch_came_from_race_conditions.html.

47

48

Bibliography

[7]

[12]

[14]

[15]

Jeffrey JP Tsai and Kuang Xu. A comparative study of formal verification
techniques for software architecture specifications. Annals of Software
Engineering, 10(1-4):207-223, 2000.

V Altukhov, V Podymov, V Zakharov, and E Chemeritskiy. Vermont-
a toolset for checking sdn packet forwarding policies on-line. In
Science and Technology Conference (Modern Networking Technolo-
gies)(MoNeTeC), 2014 First International, pages 1-6. IEEE, 2014.

Marcelo d’Amorim and Klaus Havelund. Event-based runtime verifica-
tion of java programs. SIGSOFT Softw. Eng. Notes, 30(4):1-7, May 2005.

Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Inter-
national journal on software tools for technology transfer, 1(1-2):134—
152, 1997.

Sara Abbaspour A, Hans Hansson, Daniel Sundmark, and Sigrid Eldh.
Towards Classification of Concurrency Bugs Based on Observable Prop-
erties. In Workshop on Complex faUlts and Failures in LargE Software
Systems (COUFLESS), 2015.

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hans-
son, and Wasif Afzal. 10 years of research on debugging concurrent and
multicore software: a systematic mapping study. Software Quality Jour-
nal, pages 1-34, 2016.

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and Hans
Hansson. Concurrency bugs in open source software: a case study. Jour-
nal of Internet Services and Applications, 8(1):4, 2017.

Sara Abbaspour Asadollah, Eduard Paul Enoiu, Adnan Cau§evié, Daniel
Sundmark, and Hans Hansson. A runtime verification based concurrency
bug detector for freertos embedded software. Is submitted to a journal,
2018.

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hans-
son, and Eduard Paul Enoiu. A study on concurrency bugs in an open
source software. In IFIP, editor, /2th International Conference on Open
Source Systems, June 2016.

Bibliography 49

[16]

[17]

(18]

[19]

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and Hans
Hansson. A runtime verification tool for detecting concurrency bugs
in freertos embedded software. In 2018 17th International Symposium
on Parallel and Distributed Computing (ISPDC), pages 172—179. 1IEEE,
2018.

K. Henningsson and C. Wohlin. Assuring fault classification agreement
- an empirical evaluation. In 2004 International Symposium on Empiri-
cal Software Engineering, 2004. ISESE *04. Proceedings, pages 95-104,
August 2004.

Chang-Seo Park and Koushik Sen. Randomized active atomicity violation
detection in concurrent programs. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineering,
pages 135-145. ACM, 2008.

Leon Li Wu and Gail E. Kaiser. Constructing subtle concurrency bugs us-
ing synchronization-centric second-order mutation operators. Technical
report, Columbia University, 2011.

Noriaki Yoshiura and Wei Wei. Static data race detection for java pro-
grams with dynamic class loading. In Internet and Distributed Comput-
ing Systems, pages 161-173. Springer, 2014.

Shameen Akhter and Jason Roberts. Multi-core programming, vol-
ume 33. Intel press Hillsboro, 2006.

R.W. Brown. Method and apparatus for processing requests for video
presentations of interactive applications in which vod functionality is pro-
vided during nvod presentations, June 23 1998. US Patent 5,771,435.

Darryl Gove. Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

Juan Gonzalez, David Insa, and Josep Silva. A new hybrid debugging
architecture for eclipse. In Proceedings of the 23rd International Sympo-
sium on Logic-Based Program Synthesis and Transformation(LOPSTR),
pages 183-201. Springer International Publishing, 2014.

50

Bibliography

[25]

[26]

(32]

(33]

Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continu-
ously recording program execution for deterministic replay debugging. In
Proceedings of the 32Nd Annual International Symposium on Computer
Architecture, ISCA 05, pages 284-295. IEEE Computer Society, 2005.

T. J. Leblanc and J. M. Mellor-Crummey. Debugging parallel programs
with instant replay. IEEE Transactions on Computers, C-36(4):471-482,
April 1987.

Andreas Zeller. Why programs fail: a guide to systematic debugging.
Elsevier, 2009.

Wenwen Wang, Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew,
Xipeng Shen, Xiang Yuan, Jianjun Li, Xiaobing Feng, and Yong Guan.
Localization of concurrency bugs using shared memory access pairs. In
Proceedings of the 29th ACM/IEEE international conference on Auto-
mated software engineering, pages 611-622. ACM, 2014.

Ghazia Zaineb and Irfan Anjum Manarvi. Identification And Analysis
Of Causes For Software Bug Rejection With Their Impact Over Testing
Efficiency. International Journal of Software Engineering & Applications
(IJSEA), 2(4), 2011.

Klaus Havelund. Rule-based runtime verification revisited. International
Journal on Software Tools for Technology Transfer, 17(2):143-170, 2015.

Cyrille Artho, Doron Drusinksy, Allen Goldberg, Klaus Havelund, Mike
Lowry, Corina Pasareanu, Grigore Rosu, and Willem Visser. Experiments
with test case generation and runtime analysis. pages 87—-108. Springer
Berlin Heidelberg, 2003.

Feng Chen and Grigore Rosu. Towards monitoring-oriented program-
ming: A paradigm combining specification and implementation. Elec-
tronic Notes in Theoretical Computer Science, 89(2):108-127, 2003.

Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen.
Rule-based runtime verification. In International Workshop on Ver-
ification, Model Checking, and Abstract Interpretation, pages 44-57.
Springer, 2004.

Bibliography 51

[34]

—
W
3

—

(38]

—
W
O

—

[40]

[42]

D. Drusinsky. Modeling and Verification Using UML Statecharts: A
Working Guide to Reactive System Design, Runtime Monitoring and
Execution-based Model Checking. Elsevier Science, 2011.

Klaus Havelund. Havelund verification of ¢ programs. pages 7-22.
Springer Berlin Heidelberg, 2008.

Christian Colombo, Gordon J Pace, and Gerardo Schneider. Dynamic
event-based runtime monitoring of real-time and contextual properties.
In International Workshop on Formal Methods for Industrial Critical Sys-
tems, pages 135-149. Springer, 2008.

Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh
Viswanathan. Runtime assurance based on formal specifications. Depart-
mental Papers (CIS), page 294, 1999.

David Basin, Felix Klaedtke, and Samuel Miiller. Policy monitoring
in first-order temporal logic. In International Conference on Computer
Aided Verification, pages 1-18. Springer, 2010.

Andreas Bauer, Jan-Christoph Kiister, and Gil Vegliach. From proposi-
tional to first-order monitoring. In International Conference on Runtime
Verification, pages 59-75. Springer, 2013.

Volker Stolz and Frank Huch. Runtime verification of concurrent haskell
programs. Electronic Notes in Theoretical Computer Science, 113:201—
216, 2005.

S. Halle and R. Villemaire. Runtime enforcement of web service mes-
sage contracts with data. IEEE Transactions on Services Computing,
5(2):192-206, April 2012.

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Ondfej Lhotak, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace matching with free vari-
ables to aspectj. In Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and Ap-
plications, pages 345-364. ACM, 2005.

52

Bibliography

[43]

Maria Brito, Katia R. Felizardo, Paulo Souza, and Simone Souza. Con-
current Software Testing: A Systematic Review? on Testing Software
and Systems: Short Papers, page 79, 2010.

Peng Wang, Xiaofang Qi, Xiaoyu Zhou, and Xiang Zhang. Multithread
Deterministic Replay Debugging: The State of The Art. International
Journal of Advancements in Computing Technology, 4(23), 2012.

Shin Hong and Moonzoo Kim. A survey of race bug detection techniques
for multithreaded programmes. Software Testing, Verification and Relia-
bility, 25(3):191-217, 2015.

B. Long and P. Strooper. A classification of concurrency failures in java
components. In Proceedings of the 13th International Conference on
Parallel and Distributed Processing Symposium, pages 8—pp. IEEE, April
2003.

G.M. Tchamgoue, O.-K. Ha, K.-H. Kim, and Y.-K. Jun. A taxonomy
of concurrency bugs in event-driven programs. In Communications in
Computer and Information Science, volume 257 CCIS, pages 437450,
2011.

D.P. Helmbold and C.E. McDowell. A taxonomy of race conditions. J.
Parallel Distrib. Comput., 33(2):159-164, March 1996.

Jan Lonnberg, Lauri Malmi, and Anders Berglund. Helping Students
Debug Concurrent Programs. In Proceedings of the Sth International
Conference on Computing Education Research, Koli *08, pages 7679,
New York, NY, USA, 2008. ACM.

Caitlin Sadowski and Jaeheon Yi. User Evaluation of Correctness Con-
ditions: A Case Study of Cooperability. In Evaluation and Usability of
Programming Languages and Tools, PLATEAU ’ 10, pages 2:1-2:6, New
York, NY, USA, 2010. ACM.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Madanlal Musuvathi,
Shaz Qadeer, and Thomas Ball. Chess: A systematic testing tool for
concurrent software. Microsoft Research, 38:39, 2007.

Bibliography 53

[52]

[54]

[55]

(58]

[59]

Klaus Havelund and Thomas Pressburger. Model checking java programs
using java pathfinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4):366-381, 2000.

Gowritharan Maheswara, Jeremy S. Bradbury, and Christopher Collins.
Tie: An interactive visualization of thread interleavings. In Proceedings
of the 5th international symposium on Software visualization, pages 215—
216. ACM, 2010.

Steven P. Reiss and Manos Renieris. Demonstration of JIVE and JOVE:
Java as it happens. In Software Engineering, 2005. ICSE 2005. Proceed-
ings. 27th International Conference on, pages 662—-663. IEEE, 2005.

Steven P. Reiss and Suman Karumuri. Visualizing threads, transactions
and tasks. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering, pages 9—
16. ACM, 2010.

Sangmin Park, Richard Vuduc, and Mary Jean Harrold. UNICORN: a
unified approach for localizing non-deadlock concurrency bugs. Software
Testing, Verification and Reliability, 25(3):167-190, 2015.

Sangmin Park, Mary Jean Harrold, and Richard Vuduc. Griffin: group-
ing suspicious memory-access patterns to improve understanding of con-
currency bugs. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pages 134—144. ACM, 2013.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Trans. Comput. Syst., 15(4):391-411, Novem-
ber 1997.

Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise
dynamic race detection. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
’09, pages 121-133, New York, NY, USA, 2009. ACM.

Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace:
Effective sampling for lightweight data-race detection. In Proceedings of

54

Bibliography

[63]

[64]

[65

—_—

[66]

[67]

the 30th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI *09, pages 134-143, New York, NY, USA,
2009. ACM.

John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective data-race detection for the kernel. In OSDI, volume 10,
pages 1-16, 2010.

Armin Biere Cyrille Artho, Klaus Havelund. High-level data races. In
Journal on software testing, verification and reliability (STVR), pages 1—
12, 2003.

Min Xu, Rastislav Bodik, and Mark D. Hill. A serializability violation
detector for shared-memory server programs. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI *05, pages 1-14, 2005.

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: Detect-
ing atomicity violations via access interleaving invariants. In Proceed-
ings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XII, pages
37-48. ACM, 2006.

Ruirui Huang, Erik Halberg, and G. Edward Suh. Non-race concurrency
bug detection through order-sensitive critical sections. In Proceedings
of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, pages 655-666, New York, NY, USA, 2013. ACM.

Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-
tiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn. Race
detection for event-driven mobile applications. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’ 14, pages 326-336. ACM, 2014.

Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race
detection for web applications. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI *12, pages 251-262. ACM, 2012.

Bibliography 55

[68]

[70]

[73]

[74]

[75]

Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race
detection for event-driven programs. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages; Applications, OOPSLA 13, pages 151-166, New
York, NY, USA, 2013. ACM.

Lucian Voinea and Alexandru Telea. How do changes in buggy mozilla
files propagate? In Proceedings of the 2006 ACM symposium on Software
visualization, pages 147-148. ACM, 2006.

FPanW, MaYT LiB, et al. Measuring structural quality of object-oriented
softwares via bug propagation analysis on weighted software networks.
JournalofComputerScience andTechnology, 25(6):1202—-1213, 2010.

Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas
Zeller. Predicting vulnerable software components. In Proceedings of the

14th ACM conference on Computer and communications security, pages
529-540. ACM, 2007.

Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou,
and E James Whitehead Jr. Does bug prediction support human develop-
ers? findings from a google case study. In Proceedings of the 2013 In-
ternational Conference on Software Engineering, pages 372-381. IEEE
Press, 2013.

Foyzur Rahman, Sameer Khatri, Earl T Barr, and Premkumar Devanbu.
Comparing static bug finders and statistical prediction. In Proceedings of
the 36th International Conference on Software Engineering, pages 424—
434. ACM, 2014.

Subhachandra Chandra and Peter M Chen. Whither generic recovery
from application faults? a fault study using open-source software. In
Proceedings International Conference on Dependable Systems and Net-
works, pages 97-106. IEEE, 2000.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from
mistakes: a comprehensive study on real world concurrency bug char-
acteristics. In ACM Sigplan Notices, volume 43, pages 329-339. ACM,
2008.

56

Bibliography

[76]

(771

(78]

J. Schimmel, K. Molitorisz, and W.F. Tichy. An evaluation of data race
detectors using bug repositories. In Computer Science and Information
Systems (FedCSIS), 2013 Federated Conference on, pages 1361-1364,
Sept 2013.

Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and
Chengxiang Zhai. Bug characteristics in open source software. Empirical
Software Engineering, 19(6):1665-1705, 2014.

Rui Gu, Guoliang Jin, Linhai Song, Linjie Zhu, and Shan Lu. What
change history tells us about thread synchronization. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 426-438. ACM, 2015.

Klaus Havelund and Grigore Rosu. Java pathexplorer-a runtime verifica-
tion tool. 2001.

Klaus Havelund and Grigore Rosu. Monitoring java programs with
java pathexplorer. Electronic Notes in Theoretical Computer Science,
55(2):200-217, 2001.

Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John
Stasko, Jeffrey Vetter, and Nirupama Mallavarupu. Falcon: On-line mon-
itoring and steering of large-scale parallel programs. In Frontiers of
Massively Parallel Computation, 1995. Proceedings. Frontiers’ 95., Fifth
Symposium on the, pages 422-429. IEEE, 1995.

Detlef Bartetzko, Clemens Fischer, Michael Moller, and Heike
Wehrheim. Jass: Java with assertions. Electronic Notes in Theoretical
Computer Science, 55(2):103-117, 2001.

Yogesh Bhatia and Sanjeev Verma. Deadlocks in distributed systems.
International Journal of Research, 1(9):1249-1252, 2014.

Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP:
portable shared memory parallel programming, volume 10. MIT press,
2008.

William Stallings. Operating Systems- internals and design principles,
volume 7th. Prentice Hall Englewood Cliffs, 2012.

[86]

[89]

Shiyao Lin, Andy Wellings, and Alan Burns. Supporting lock-based
multiprocessor resource sharing protocols in real-time programming lan-
guages. Concurrency and Computation: Practice and Experience,
25(16):2227-2251, 2013.

Deepal Jayasinghe and Pengcheng Xiong. CORE: Visualization tool for
fault localization in concurrent programs. 2010.

Sangmin Park, Richard Vuduc, and Mary Jean Harrold. A unified ap-
proach for localizing non-deadlock concurrency bugs. In Software Test-
ing, Verification and Validation (ICST), 2012 IEEE Fifth International
Conference on, pages 51-60. IEEE, 2012.

Tracealyzer for freertos. https://percepio.com/tz/
freertostrace/. Accessed: 2018-09-18.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 514.20 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262

 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 514.2047
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

