
A Tool for Automatic Flow Analysis of C-programs for WCET Calculation

Jan Gustafsson, Björn Lisper, Christer Sandberg, and Nerina Bermudo
�

Department of Computer Science and Engineering,
Mälardalen University, Västerås, Sweden.

E-mail: � jan.gustafsson, bjorn.lisper, christer.sandberg � @mdh.se,�
nerina@complang.tuwien.ac.at

Abstract

Bounding the Worst Case Execution Time (WCET) of
programs is essential for real-time systems. To be able to
do WCET calculations, the iteration bounds for loops and
recursion must be known. We describe a newly developed
prototype tool that calculates these bounds automatically,
thereby avoiding the need for manual annotations by the
programmer.

The analysis is based on an intermediate code represen-
tation, which means that compiler optimized code is ana-
lyzed. The choice of intermediate code also allows the ana-
lysis to support a number of programming languages. Right
now, C programs are targeted.

We also show an example of a program analysis using
out method.

Finally we describe future research directions.

1 Introduction

Real-time systems are systems where failures in the time
domain are as harmful as in the functional domain. For so
called hard real-time systems, no deadline violations are al-
lowed, since this is considered as a failure of the system.
Therefore, the Worst Case Execution Time (WCET) of pro-
grams must be known in hard real-time systems. Once the
WCET is known, the software execution can be scheduled.

There are basically two methods to find the WCET of a
program, measurement or calculation based on static anal-
ysis. Measurements are troublesome, since it is (for pro-
grams with some complexity, and where the execution time
is input-dependent) often impossible to safely identify the
worst-case input data, or to run the program with all in-
puts. Sometimes, the WCET is estimated using execution
time measurements for some input data. As has often been
pointed out in the WCET literature, the measured WCET
estimate obtained in this way may not be safe, i.e., not
worst-case at all. Also, a measurement requires a set-up of

the current hardware configuration and the result is limited
to this. After any change, the measurements have to be re-
done. For these reasons, calculation methods are preferred
over measurements.

A calculated WCET estimate must be safe (i.e., no un-
derestimation is allowed) and tight (i.e., the overestimation
must be as small as possible).

1.1. Manual Annotations

A central issue in WCET calculations is to find an upper
limit for iteration bounds for loops and recursion. If there
is no such limit, the execution time (and thus WCET) is not
bounded.

If there are infeasible paths in the program (i.e., paths
that cannot be taken for any input), information about these
may contribute to an even tighter WCET bound.

In most existing WCET calculation methods, these loops
and recursion bounds, and information about infeasible
paths, are expected to be given as manual annotations
by the programmer. However, this work is often time-
consuming, complex and error-prone.

Our newly developed flow analysis prototype tool uses
static analysis to calculate flow information automatically.
In this way, we avoid the need for the programmer to insert
manual annotations for iteration bounds in the program.

1.2. WCET Tools

There is a need for a WCET tool useful in an industrial
setting. A WCET tool would be a part of the real-time pro-
grammer’s tool box, and could be useful not only for WCET
calculations, but also to find bottlenecks, to assess hardware
needs, to evaluate algorithms, and more.

In spite of the usefulness of WCET tools, there are only
a few tools available on the market. As a consequence of
this, measurements are still industrial state-of-the-practice.

A common architecture of a WCET tool is to subdivide
it into flow analysis, low-level analysis and calculation.

� The flow analysis calculates the possible flows in the
program. The analysis is based on the control flow
structure inside the program, and produces information
on iteration bounds and infeasible paths.

� The low-level analysis determines the execution time
for each instruction in the program. The analysis must
take into account effects from hardware features like
pipelines and caches.

� The calculation combines the results from the above
two analyses into a final calculation step, which pro-
duces the WCET of the program.

The flow analysis tool described in this paper is a part of
a planned, complete WCET tool [5] with an architecture as
above.

The rest of the paper is organized as follows. Section
2 presents related work, and Section 3 presents our proto-
type tool. Section 4 contains an example, and Section 5
concludes the paper by discussing ideas for future work.

2. Related Work

Healy et al. are able to calculate the number of iterations
for certain types of loops in [9]. However, their work is
limited to three different types of loops in C.

Healy et al. also proposed a second method in [10].
The ideas are further developed in Healy’s thesis [8]. The
method is based on a technique to detect value-dependent
constraints. These constraints can be used to limit the num-
ber of iterations of loops and to find infeasible paths in
loops. The constraints are found without any use of man-
ual annotations. There are, however, cases where these con-
straints cannot be detected and the method fails.

The Bound-T WCET tool [11] from SSF in Finland uses
Presburger Arithmetic to define the properties of simple
loops. The Omega calculator [13], which implements Pres-
burger Arithmetic, is then used to calculate the number of
iterations of the loop.

Syntactical analysis has been mentioned before, but to
our knowledge is has not been used in WCET calculation. A
similar idea, the use of templates, is mentioned by Patterson
on page 11 in [12], where he describes his work on value
range propagation.

The most important difference to these related efforts is
that our method is general, i.e., it works for all constructs in
the supported language.

3. The Flow Analysis Prototype Tool

The input to our analysis is intermediate code, originat-
ing from a C program. The output is a set of “flow facts”

which describe and constrain the possible flows in the pro-
gram. We use the flow fact format as described in [4].
The flow facts are connected to a scope graph of the pro-
gram, which is a description of the structures of the pro-
gram, where our flow facts are valid.

The analysis is based on an intermediate code represen-
tation of the program. The tool is capable of handling code
that is optimized by the compiler, which means that we
identify the possible flows in the real, executed code. This
solves a problem faced by many other WCET methods, by
bridging the gap between the source code level (where high-
level flow analysis often is done), and the low-level code.
These two levels can be quite different if heavy optimiza-
tions have been applied. The choice of intermediate code
also allows the analysis to support other programming lan-
guages, including object-oriented languages.

To cope with the control structures generated from C,
our analysis is capable of handling unstructured code and
recursion.

The analysis is optimized using some speed-up tech-
niques. For example, the tool removes all variable occur-
rences that do not influence control flow directly or indi-
rectly. In this way, the program to analyze will be of re-
duced size.

Also, the tool syntactically identifies certain loop con-
structs that can be analyzed using recurrence equations,
which gives iteration bounds directly as solutions to the
equations. The loops analyzed in this way can be replaced
by simpler constructs, thus reducing program size and com-
plexity of the analysis even further.

For the remaining program, containing the more com-
plex loops, the tool uses abstract interpretation [2] to cal-
culate iteration bounds. Also this step uses a number of
speed-up techniques, for example merging of intermediate
results at strategic points during analysis, to avoid state ex-
plosion.

3.1. Overview of the Tool

Basically, the analysis of a C program is performed using
the steps described in Figure 1.

� Parser1 . The C code is parsed to produce a New In-
termediate Code (NIC) file. The NIC format is an in-
termediate format developed by the WPO (Whole Pro-
gram Optimization) project at Uppsala University [14].

� Optimization2. The NIC code is optimized.

� NIC code parser. The optimized NIC code is parsed to
produce an internal representation. This internal for-
mat is the basis for all subsequent analysis steps.

1This step is developed outside our project.
2This step is developed outside our project.

C program Parser Optimization
Optimized
NIC code

NIC code
parser

Internal
representation

SSA
construction

SSA
form

Syntact.
analysis

Reduced
SSA form

Abstract
interpr.

Remove
non-cond.

Remove
non-cond.

Build
scope graph

Scope
graph

Flow
facts

Figure 1. Basic analysis steps.

� An SSA (Static Single Assignment) is constructed for
the code (Section 3.2).

� Non-conditionals are removed (Section 3.3). All as-
signments to variables that do not affect conditions
(transitively) are identified and removed from the pro-
gram.

� Scope graph construction (Section 3.4). The scope
graph is constructed using the control flow that can be
extracted from the internal representation.

� Syntactical analysis (Section 3.5). The code is
“scanned” for a number of simple, recognizable loop
constructs and the corresponding loop bounds are cal-
culated, if possible. The resulting flow facts are stored
as a result. The analyzed loops are replaced with as-
signments of the final values to the variables updated

in the loop, resulting in a simpler program to analyze
in the next step.

� Abstract interpretation (Section 3.6). The remaining
code (after the previous step) is analysed using abstract
interpretation. The resulting flow facts are appended to
the results file.

� If there are constructs for which the abstract interpreta-
tion fails, the user is asked for manual annotations for
these. The analysis continues with these two last steps
until the complete code is successfully analysed.

3.2. SSA Construction

The purpose of this step is to build information about the
data flow and the control flow in the program that makes it
efficient to analyze and transform the program.

Static Single Assignment (SSA) form [3] is a form of
data flow description that is efficient to compute and store
(linear in the size of the program). The SSA form encodes
the use-def chains (see [1], Section 10.6) which define the
dependencies of variables in the program. This information
is easily updated when program transformations have been
performed.

A program stored in the SSA form has two main proper-
ties:

1. Every use of a variable in the program has exactly one
reaching definition; and

2. At join points in the program, merge functions called
�

-functions are introduced.

The SSA format simplifies the subsequent analysis, for
example to identify variables that do not influence the con-
trol flow, and to identify induction variables in loops.

3.3. Removal of Non-Conditionals

A program contains a number of variables used in, for
example, expressions and conditions. Since we are only in-
terested in the control flow of the program (as expressed in
the flow facts), we would like to skip all definitions (lvalue)
and uses (rvalue) of the variables that do not influence the
control flow. In this way, the subsequent analyses and trans-
formations of the program will be more efficient.

The program fragment in Figure 2 is used to illustrate the
idea.

int i, j, k, n, c, p;
...
for (i = 0; i =< n; i = i+c) {

if (p) then
k = i + 2;

}
j = i + k;
c++;

Figure 2. Program fragment example

In this program fragment, the only variables that influ-
ence the control flow are i, c, n, and p. Therefore, we
can safely remove k, j, and all their assignments, yielding
the reduced program in Figure 3.

Note that it is variable occurrences that are analyzed.
Therefore, also the incrementing of c is removed by our
analysis, since the updated value of c does not influence the
control flow.

int i, n, c, p;
...
for (i = 0; i =< n; i = i+c) {

if (p) then {}
}

Figure 3. Program fragment example (re-
duced)

3.4. Scope Graph Construction

The construction of the scope graph is necessary to be
able to define the flow facts of the program. The scope
graph concept is used here as described in [4].

A scope graph is created from the control flow graph
(CFG) of a program, and extends the CFG to express some
of the dynamic behaviour of the program. The scope graph
format supports unstructured code and recursion and allows
us to store results of various types of flow analysis methods.

Intuitively, a scope corresponds to a certain repeating or
differentiating execution environment in the program, such
as a function or a loop. A scope can take one of the follow-
ing forms:

� A set of recursive functions

� A function

� A part of a function:

– A loop

– A flow graph with unstructured control flow

As an example, the non-recursive program in Figure 4
yields the complete scope graph in Figure 5. As you can
see from the scope graph, the intended analysis is context
sensitive, i.e., we differ between different calls to foo.

3.5. Syntactical Analysis

Syntactical analysis is based on the observation that
many loop constructs have a simple form, for example, they
iterate a fixed number of times and do some simple work
every iteration. The iteration counts for these loops may be
given by recurrence equations. If we have closed-form ex-
pressions for the solutions of these equations, we can get the
iteration counts directly without further analysis of the loop.
Assuming we also can find closed-form expressions for the
variables updated in the loop, these loops can be replaced
by constructs without loops.

The general method that will be used in the tool (abstract
interpretation) can be time-consuming for loops iterating

int main(void) �
int x, y = 0;

for (i = 0, i < 10, i++) �
y = y + y;
x = foo(y);

�
x = foo(x);
return 0;

�

int foo (int i) �
int j, res = 0;

for (j = 0, j < 100, j++)
if (j > 10) �
res++;

�
return(res);

�

Figure 4. Code for scope graph example

many times. Therefore, syntactical analysis and the possi-
ble replacement may speed up the flow analysis consider-
ably. How much is, of course, depending on the analyzed
program.

Loops in C can take many forms. As a very simple ex-
ample, regard the loop below.

n = 0;
while (n<10) {

n = n + 2;
}

We can express the semantics of the loop (named L1)
using ��� (the value of n after iteration

�
) as the recurrence

equation system� �����
	������
���������� ������	�� �����
where

�
is the maximum number of iterations (possibly in-

finite). This is an ”open form” since ��� is used in the right
hand side of the equal sign.

The condition � � � 	 is rewritten to � � �!� 	"�����#	$��%� �
. This condition is true within the loop and will be

used to calculate
�

.
There is a closed-form solution to this equation system:

���&��� � �'�(��)� �&���
The condition � � �*� 	+���(�,	�� ����� is true within the loop
and when it turns to false, the loop terminates. Therefore we

-/.�021
3,4

57686�4
3,4

5768689
3,4

Figure 5. Complete scope graph for the pro-
gram in Figure 4

are able to calculate
�

as the smallest
�

satisfying ��:<; � 	
i.e.,
� ��= . This means that we can generate the flow fact

>,?A@CBED�@GF�HCI8J�K7I�L�M�>,?ON �P=
for the loop. The meaning of the flow fact is “for the loop

L1 the total count for the header is 5” or, in other words,
“the iteration bound of loop L1 is 5”. Using this fact, we
can calculate the value for n at loop exit as �,QR�S�<TU=
and replace the loop with n = 10; thus simplifying the
subsequent analysis.

Our analysis will recognize more and more complex loop
constructs as the syntactical analysis is developed. This is
valid both for calculation of loop bounds and of the final
values of index variables (counters) and induction variables.

Loops for which there are no closed solutions, or for
which we haven’t (yet) implemented the solution, will be
passed on to the general abstract interpretation analysis.

3.6. Abstract interpretation

Our aim is to calculate the run-time behavior of a pro-
gram without having to run it on all input data, and while
guaranteeing termination of the analysis.

One such technique for program analysis is abstract in-
terpretation [2], which means to calculate the program be-
havior using value descriptions or abstract values instead
of real values. Abstract interpretation has three important
properties:

1. It yields an approximate and safe description of the
program behavior.

2. It is automatic, i.e., the program does not have to be
annotated.

3. It works for all programs in the selected language.

The analysis is based on the method as described in, e.g.,
[6, 7]. The following steps are performed in our tool:

1. The original program is instrumented with execution
count variables, i.e., variables that keep track of the
number of executions of each selected entity (nodes or
edges). The values of these counters are set to zero ini-
tially and are incremented each time the corresponding
entity is visited within the context.

2. An abstract version of the program is analysed using
an abstract domain. Currently, we use intervals to rep-
resent variable values, but other domains are thinkable.

3. The result is a set of possible values for the execution
count variables when the analysis has terminated. This
result is expressed using flow facts.

As an illustration, we analyze the program fragment with
unstructured control flow shown in Figure 6. It yields the
scope graph shown in Figure 7. The inner scope L1 is an
unstructured loop, with both node 2 and 3 as header nodes.
Our abstract interpretation will give a safe upper bound on
the execution count for these nodes.

Assuming that the possible initial value of a � B ����� � 	 D we
will get the following result of the abstract interpretation,
expressed as flow facts:

1. �����
	���
���� ���������������������
	������
2. �����
	 �!"��
��#�$��%'&)(
3. �����
	 �!"��
��#�$��%'*,+
4. �����
	 �!"��
��#�$�.-/&)(
5. �����
	 �!"��
��#�$�.-/*,+

The meaning of these flow facts is:

if (a < 6) goto l1;

goto l2;
l1: a := a - 1;

if (a < 1) goto l3;

goto l2;

l2: a := (a - 1);

if (a < 1) goto l3;
goto l1;

l3: exit

Figure 6. Example program with unstructured
control flow

0

1 2

3

-/.�0O1

3 4

Figure 7. Scope graph of the program frag-
ment in Figure 6

4 1. The whole code is iterated once, i.e., it is not repeated.

4 2, 3. Each time L1 is entered from main, node 2 is executed
zero to five times.

4 4, 5. Ditto for node 3.

4. Example

The small C program in Figure 8 has been analyzed by
our tool. The result is a scope graph (not shown here) and
the flow facts shown below. The first instance of call of
foo due to the the first call to foo is named foo1 and the
second instance is named foo2.

1. �����
	���
��5� �6�������������������
	����7�
2. �����
	 �!"��
��#�$���������������������
	 �!8�#�:9
3. �����
	 �! ;�<�<�!=��
��#�$�6�������������������>	 �! ;�<�<�!8�?�@�
4. �����
	 ;�<�<�A6��
���� ���������������������
	 ;�<�<�A��?���

int foo (int i) {

int res = 0;
if (i < 3)

res++;

return(res);

}

int main(void) {

int x, j, y = 1;

for (j = 0; j < 3; j++) {

y = y + y;

x = foo(y);

}
x = foo(x);

return 0;

}

Figure 8. Example program

The meaning of these flow facts is:

1. main iterates once.

2. The loop L1 in main iterates four times.

3. The function foo called from loop L1 in main iterates once.

4. The function foo called from main iterates once.

5. Future Work

Future work includes the following items:

� We will implement pointer analysis in the tool.

� Manual annotations are currently only supported in a
very simple form. We will study how to support these
in user-level code.

� The syntactic analysis will be developed further.

� Right now the tool is targeted on loop bound calcula-
tion. In later versions, identification of infeasible paths
will be added. The method to discover some types of
these are described in, e.g., [7].

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986. Generally
known as the “Dragon Book”.

[2] P. Cousot and R. Cousot. Abstract interpretation: A uni-
fied model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the 4th
ACM Symposium on Principles of Programming Languages,
pages 238–252, 1977.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451–490,
October 1991.

[4] J. Engblom and A. Ermedahl. Modeling complex flows
for worst-case execution time analysis. In Proc. 21 �

�
IEEE

Real-Time Systems Symposium (RTSS’00), Nov. 2000.
[5] J. Engblom, A. Ermedahl, M. Sj ödin, J. Gustafsson, and

H. Hansson. Worst-case execution-time analysis for embed-
ded real-time systems. International Journal on Software
Tools for Technology Transfer (STTT), 2001.

[6] A. Ermedahl and J. Gustafsson. Deriving Annotations for
Tight Calculation of Execution Time. In Proc. 3

���
Interna-

tional European Conference on Parallel Processing, (Euro-
Par’97), LNCS 1300, pages 1298–1307, Aug. 1997.

[7] J. Gustafsson. Analyzing Execution-Time of Object-Oriented
Programs Using Abstract Interpretation. PhD thesis, De-
partment of Computer Systems, Information Technology,
Uppsala University, May 2000.

[8] C. Healy. Automatic Utilization of Constraints for Tim-
ing Analysis. PhD thesis, Florida State University, Florida,
USA, August 1999.

[9] C. Healy, M. Sj ödin, V. Rustagi, and D. Whalley. Bound-
ing Loop Iterations for Timing Analysis. In Proc. 4

���

IEEE Real-Time Technology and Applications Symposium
(RTAS’98), June 1998.

[10] C. Healy and D. Whalley. Tighter timing prediction by au-
tomatic detection and exploitation of value-dependent con-
straints. In Proceedings of the Fifth IEEE Real-Time Appli-
cations Symposium (RTAS’99), 1999.

[11] N. Holsti, T. Långbacka, and S. Saarinen. Worst-Case
Execution-Time Analysis for Digital Signal Processors. In
Proceedingsof the EUSIPCO 2000 Conference(X European
Signal Processing Conference), Sept. 2000.

[12] J. R. C. Patterson. Accurate static branch prediction by
value range propagation. In SIGPLAN’95 Conference
on of Programming Language Design and Implementation
(PLDI’95), pages 67–78, 1995.

[13] W. Pugh. Counting solutions to presburger formulas: How
and why. In Proc. ACM SIGPLAN’94 Conference on Pro-
gramming Language Design and Implementation, pages
121–134, Orlando, FL, June 1994. ACM.

[14] WPO-Whole-Program Optimization WWW Homepage.
URL:
http://www.astec.uu.se/etapp3/, Nov. 2001.

