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Simplifying the task of resource management and scheduling for customers, while still delivering complex
Quality-of-Service (QoS), is key to cloud computing. Many autoscaling policies have been proposed in the
past decade to decide on behalf of cloud customers when and how to provision resources to a cloud application
utilizing cloud elasticity features. However, in prior work, when a new policy is proposed, it is seldom compared
to the state-of-the-art, and is often compared only to static provisioning using a predefined QoS target. This
reduces the ability of cloud customers and of cloud operators to choose and deploy an autoscaling policy. In
our work, we conduct an experimental performance evaluation of autoscaling policies, using as application
model workflows, a commonly used formalism for automating resource management for applications with well-
defined yet complex structure. We present a detailed comparative study of general state-of-the-art autoscaling
policies, along with three new workflow-specific policies, one of which supports per-workflow deadlines. To
understand the performance differences between the 8 policies, we conduct various forms of pairwise and group
comparisons. We report both individual and aggregated metrics. Our results highlight the trade-offs between the
suggested policies, and thus enable a better understanding of the current state-of-the-art.
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1 INTRODUCTION
Cloud computing is a model of outsourcing IT services on demand, pay-per-use. To make this
model useful for a variety of customers, cloud operators have to simplify the process of obtaining
and managing a useful supply of services. To this end, cloud operators make available to their
customers various autoscaling policies (autoscalers, AS), which are essentially parametrized cloud-
scheduling algorithms that dynamically regulate the amount of resources allocated to a cloud
application based on the load demand and the Quality-of-Service (QoS) requirements typically
set by the customer. Many autoscalers already exist, both general autoscalers for request-response
applications [5, 9, 16, 34, 43] and autoscalers for more task- and structure-oriented applications
such as workflows [7, 10, 12, 14, 37]. The selection of an appropriate autoscaling policy is crucial,
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as a good choice can lead to significant performance and financial benefits for cloud customers, and
to improved flexibility and ability to meet QoS requirements for cloud operators. Selecting among
the proposed autoscalers is not easy, as no method currently exists to systematically evaluate and
compare autoscalers. To alleviate this problem, in this work we propose and use the first systematic
method to evaluate and compare experimentally the performance of autoscalers for workflow-based
workloads running in cloud settings.

The lack of a method for comparing autoscalers derives in our view from scientific and industry
practice. For the past decade, much academic work has focused on building basic mechanisms and
autoscalers for specific applications, and thus there was little related work to compare to, and the
threshold for publication has been kept low to develop the community. In industry, much attention
has been put on building cloud infrastructures that enable autoscaling as a mechanism, and relatively
less on providing good libraries of autoscalers for customers to choose from. (The authors’ own
prior work reflects this situation [21, 36].) However, for the past two years a collaboration started
within SPEC Research’s Cloud Group that highlighted the need for deeper, systematic work in the
evaluation and comparison of autoscalers, raising questions such as How to evaluate the performance
of individual autoscalers?, and How to compare autoscalers?

Among the many application types, our focus on workflow-based workloads is motivated by two
aspects. First, we are motivated by the increasing popularity [39, 40] of workflows for science and
engineering [1, 25, 27], big data [28], and business applications [41], and by the ability of workflows
to express complex applications whose interconnected tasks can be managed automatically on behalf
of cloud customers [24]. Second, although generic autoscalers focus mainly on QoS aspects, such as
throughput, response-time and cost constraints, state-of-the-art autoscalers can also take into account
application structure [31]. How does the performance of generic and of workflow-specific autoscalers
differ?

We propose new autoscaler with the support of per-workflow deadlines to investigate the effect
of dynamic monitoring of deadline violations on the ability to meet deadlines. The usage of the
deadline-aware autoscaler allows us to see: How the deadline-aware autoscaler affects deadline
violations?, and How the deadline-aware autoscaler affects the cost (expressed in the number of
over-provisioned idle VMs)?

Modern workflows have different structures, sizes, task types, run-time properties, and performance
requirements, and thus raise specific and important challenges in assessing the performance of
autoscalers: How does the performance of generic and of workflow-specific autoscalers depend on
workflow-based workload characteristics?

Towards addressing the aforementioned questions, our contribution is three-fold:
(1) We design a comprehensive method for evaluating and comparing autoscalers (Sections 2–4).

Our method includes a model for elastic cloud platforms (Section 2), identifying a set of
relevant metrics for assessing autoscaler performance (Section 3), and a taxonomy and survey
of exemplary general and workflow-specific autoscalers (Section 4).

(2) Using the method, we comprehensively and experimentally quantify the performance of 7
generic and workflow-specific autoscalers, for more than 10 metrics (Section 5). We show
the differences between various policy types, analyze parametrization effects, evaluate the
influence of workload characteristics on individual performance metrics, and explain the
reasons for the performance variability we observe in practice.

(3) We also compare the autoscalers systematically (Section 6), through 3 main approaches: a pair-
wise comparison specific to round-robin tournaments, a comparison of fractional differences
between each system and an ideal system derived from the experimental results, and a head-to-
head comparison of several aggregated metrics.
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2 A MODEL FOR ELASTIC CLOUD PLATFORMS
The autoscaling problem is an incarnation of the dynamic provisioning problem that has been studied
in the literature for over a decade [8]. While in essence trying to solve the problem of how much
capacity to provision given a certain QoS, most state-of-the-art algorithms published make different
assumptions on the underlying environment, mode of operation, or workload used. It is thus important
to identify the key requirements of all algorithms, and establish a fair cloud system for comparison.

2.1 Requirements
In order to improve the QoS and decrease costs of a running application, an ideal autoscaler
proactively predicts and provisions resources such that: a) there is always enough capacity to
handle the workload with no under-provisioning; b) the cost is kept minimal by reducing the number
of resources not used at any given time, thus reducing over-provisioning; and c) the autoscaler does
not cause consistency and/or stability issues in the running applications.

Since there are no perfect predictors, no ideal autoscaler exists. There is thus a need to have better
understanding of the capabilities of the various available autoscalers in comparison to each other. For
our work, we classify the autoscaling algorithms in two major groups: general and workflow-specific.
Examples of general autoscalers include algorithms for allocating virtual machines (VMs) in data-
centers, or algorithms for spawning web-server instances, etc. They are general because they mostly
take their decisions using only external properties of the controlled system, e.g., workload arrival
rates, or the output from the system, e.g., response time. In contrast, workflow-specific autoscalers
base their decisions on detailed knowledge about the running workflow structure, job dependencies,
and expected runtimes of each task [32]. In most cases, the autoscaler is integrated with the task
scheduler [31].

While many autoscaling algorithms targeting different use case scenarios have been proposed in
the literature, they are rarely compared to previously published work. In addition, they are usually
tested on a limited set of relatively short traces. Most autoscaling-related papers seldom go beyond
meeting some predefined metrics, e.g., with respect to response time or throughput. While the
performance of most autoscalers is very dependent on how they are configured, this configuration is
rarely discussed. Thus, to the best of our knowledge, there are no major comparative studies that
analyse the performance of various autoscalers in realistic environments with complex applications.
Our study aims to fill this gap by evaluating a set of algorithms in realistic setting.

2.2 Architecture Overview
Keeping the diversity of used cloud applications and underlying computing architectures in mind, we
setup an elastic cloud platform architecture (Figure 1) which allows for comparable experiments by
providing relatively equal conditions for different autoscaling algorithms and different workloads.
The equal size of the virtual computing environment, which is agnostic to the used application type,
is the major common property of the system in our model. We believe that the selected architecture
of the proposed unified elastic cloud platform properly reflects the approaches used in modern
commercial solutions.

The core of our system is the autoscaling service (Component 1 in Figure 1) that runs independently
as a REST service. The experimental testbed consists of a scheduler (2) and a virtual infrastructure
service (3) which maintains a set of computing resources. A resource manager (4) monitors the
infrastructure and controls the resource provisioning. Users submit their complex jobs directly to the
scheduler which maintains a single job queue (5). The tasks from the queued jobs are mapped on
the computing resources in accordance to the task placement policy (6). The scheduler periodically
calls the autoscaling service providing it with monitoring data from the last time period. We refer
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Fig. 1. Elastic cloud platform.

to this period as the autoscaling interval. In contrast, in event-based autoscaling the autoscaler is
invoked on every change in the demand curve. However, we do not use the event-based autoscaling
approach because it can be derived from the interval-based autoscaling with rather short autoscaling
interval. Additionally, the event-based autoscaling would make the experimental setup more complex
and would require to incorporate extra processing logic into the scheduler.

The autoscaling service implements an autoscaling policy (7) and has a demand analyzer (8) which
uses information about running and queued jobs to compute the momentary demand value. The
supply analyzer (9) computes the momentary supply value by analyzing the status of computing
resources. The autoscaling service responds to the scheduler with the predicted number of resources
which should be allocated or deallocated. Before applying the prediction, the resource manager
filters it trimming the obtained value by the maximal number of available resources. To avoid error
accumulation, the autoscaling interval is usually chosen so that the provisioning actions made during
the autoscaling interval has already taken effect. Thus it is guaranteed that the provisioning time is
always shorter than the autoscaling interval. In case when the provisioning time is longer than the
autoscaling interval, the resource manager should apply the prediction only partially considering the
number of “straggling” resources. In practice, it means that the resource manager should consider
booting VMs as fully provisioned resources.

2.3 Workflows as Main Applications
For our experiments, we use complex workflows as a workload for our system. A workflow is a set of
tasks with precedence constraints among them. Alternatively it can be represented in the form of
a Directed Acyclic Graph (DAG). Each workflow task can start its execution when all of its input
constraints are satisfied (e.g., when the input files are ready). Each task can have multiple inputs and
multiple outputs. The precedence constraints make workflow scheduling non-work-conserving as
there may be idle processors in the system while there are no waiting tasks with all their dependencies
satisfied. This property is one of the reasons we selected workflows for our experiments, since it
puts the considered autoscaling algorithms in more stringent conditions. Additionally, depending
on the DAG structure, workflows can also reflect the behavior of other popular jobs types such as
web-requests, bags-of-tasks or parallel applications. One whole workflow in our setup is considered
as a job. The size of a workflow is defined as the number of tasks it has. We focus on workflows
which only consist of tasks requiring a single processor core.

2.4 Deadlines for Workflows
Scheduling of workflows is often time critical and involves meeting deadlines for the processing
times. For example, workflows for processing satellite data should handle the received information
while the satellite makes a turn around the planet []. Such workflows should finish before a new batch
of information is received. Another example is related to the payment schemes in modern cloud
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Fig. 2. The supply and demand curves illustrating the under- and over-provisioning periods (A and B)
quantified in the number of resources (areas U and O).

services where the user pays per a certain time slot. In such situations, the deadlines are usually
bound to the lengths of time slots [].

In this section, we analyze the influence of autoscaling on the preset fixed workflow deadlines.
Intuitively, we suppose that autoscalers which over-provision more should show less deadline viola-
tions. Considering that autoscalers slowdown the jobs, the deadlines should be selected accordingly.
To calculate deadline violations we use the approach similar to the one we use to calculate the elastic
slowdown. For that we divide a workflow makespan in a system with an autoscaler by a makespan in
a system without an autoscaler. Similarly, to calculate deadline violations, we use the makespan in a
system without an autoscaler as a reference. For every workflow we set a deadline as a makespan of
the workflow in a system without an autoscaler with a positive 10% safety margin.

In order to compare how different autoscalers affect the ability to meet the deadlines, for every
considered autoscaler we calculate the average deadline proximity ratio and report it in Table ??.
Additionally, we conduct a set of experiments with a custom deadline-aware autoscaler. Similarly
to our major set of experiments, for deadline-aware autoscaling we use greedy backfilling as a
workflows scheduling policy. Since in this paper we mostly focus on the provisioning problems, we
do not consider deadline-aware scheduling policies (e.g., those which rank the workflows based on
their proximity to the deadline). (Alexey: Probably, this is a rather weak argument.)

3 PERFORMANCE METRICS FOR ASSESSING AUTOSCALERS
We use both system- and user-oriented evaluation metrics to assess the performance of the autoscalers.
The system-oriented metrics quantify over-provisioning, under-provisioning, and stability of the
provisioning. Notably, some of these metrics have been endorsed by the Research Group of the
Standard Performance Evaluation Corporation (SPEC) [21]. The user-oriented metrics are aimed to
assess the impact of autoscaler usage on the speed of workflow execution.

3.1 Supply and Demand
All the considered system-oriented metrics are based on the analysis of discrete supply and demand
curves. The resource demand induced by a load is understood as the minimal amount of resources
required for fulfilling a given performance-related service level objective (SLO). In the context of
workflows, we define the momentary demand as the number of eligible and running tasks in all the
queued workflows, as in our model a resource can only process one task at a time. Accordingly, the
supply is the monitored number of provisioned resources that are either idle, booting or processing
tasks. Figure 2 shows an example of the two curves. If demand exceeds supply, there is a shortage of
available resources (under-provisioning) denoted by intervals A and areas U in the figure. In contrast,
over-provisioning is denoted by intervals B and areas O .
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Question: Should (x )+ be more visible? It is explained along with the accuracy, but it is
required in timeshare and instability too

3.2 Accuracy
Let the resource demand at a given time t be dt , and the resource supply st . The under-provisioning
accuracy metric aU is defined as the average fraction by which the demand exceeds the supply:

aU :=
1

T × R

T∑
t=1

(dt − st )
+∆t ,

where T is the time horizon of the experiment expressed in time steps, R is the total number of
resources available in the current experimental setup, (x )+ := max(x , 0) is the positive part of x , and
∆t is the time elapsed between two subsequent measurements.
Analogously, we define the over-provisioning accuracy aO as:

aO :=
1

T × R

T∑
t=1

(st − dt )
+∆t .

Figure 2 shows an intuition of the meaning of the provided accuracy metrics. Under-provisioning
accuracy aU is equivalent to summing the areas U where the resource demand exceeds the supply
normalized by the duration of the measurement period T . Similarly, the over-provisioning accuracy
metric aO is based on the sum of areas O where the resource supply exceeds the demand.

It is also possible to normalize the metrics by the actual resource demand, obtaining therefore a
normalized, and more fair indicator.
In particular, the two metrics can be modified as:

aU :=
1
T

T∑
t=1

(dt − st )
+

max(dt , ε )
∆t ,

aO :=
1
T

T∑
t=1

(st − dt )
+

max(dt , ε )
∆t ,

with ε > 0; in our setting we selected ε = 1. The normalized metrics are particularly useful when the
resource demand has a large variance over time, and it can assume both large and small values. In
fact, under-provisioning of 1 resource unit when 2 resource units are requested is much more harmful
than under-provisioning 1 resource unit when 1000 resource units are requested. Therefore, this type
of normalization allows a more fair evaluation of the obtainable performance.

Since under-provisioning results in violating SLOs, a customer might want to use a platform that
minimizes under-provisioning. Thus, the challenge is to ensure that enough resources are provided at
any point in time, but at the same time distinguish themselves from competitors by minimizing the
amount of over-provisioned resources. Considering this, the defined separate accuracy metrics for
over- and under-provisioning allow providers to better communicate their autoscaling capabilities
and customers to select the provider or autoscaling algorithm that best matches their needs.

In the context of workflows, over-provisioning accuracy can also be represented in the number of
idle resources (i.e. the resources which were excessively provisioned and currently are not utilized).
In ideal situation when an autoscaler perfectly follows the demand curve, there should be no idle
resources as the system will always have enough eligible tasks to run. Thus we present an additional
over-provisioning accuracy metricmU which is equal to the average number of idle resources during
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the experiment time:

mU :=
1

T × R

T∑
t=1

ut∆t ,

where ut is the number of idle resources at time t .

3.3 Wrong-Provisioning Timeshare
The timing aspect of elasticity is characterized from the viewpoint of the wrong-provisioning time-
share on the one hand, and from the viewpoint of the induced instability accounting for superfluous
or missed adaptations on the other hand [20].

The accuracy metrics allow no reasoning as to whether the average amount of under-/over-
provisioned resources results from a few big deviations between demand and supply or if it is rather
caused by a constant small deviation. To address this, the following two metrics are designed to
provide insights about the fraction of time in which under- or over-provisioning occurs.

As visualized in Figure 2, the following metrics tU and tO are computed by summing the total
amount of time spent in an under- A or over-provisioned B state normalized by the duration of the
measurement period. Letting sign (x ) be the sign function of x , the overall timeshare spent in under-
or over-provisioned states can be computed as:

tU :=
1
T

T∑
t=1

(sign (dt − st ))
+∆t ,

tO :=
1
T

T∑
t=1

(sign (st − dt ))
+∆t .

3.4 Instability
Although the accuracy and timeshare metrics characterize important aspects of elasticity, plat-
forms can still behave differently while producing the same metric values for accuracy and wrong-
provisioning timeshare. The instability metric k captures this instability and inertia of elasticity
mechanisms. A low stability increases adaptation overheads and costs (e.g., in case of instance-hour-
based pricing), whereas a high level of inertia results in a decreased SLO compliance.

Letting ∆dt := dt − dt−1, and ∆st := st − st−1, the instability metric k which shows the fraction of
time the supply and demand curves move in opposite directions is defined as:

k :=
1

T − 1

T∑
t=2

min((sign (∆st ) − sign (∆dt ))
+, 1)∆t .

Similarly, we define a complementary metric k ′ which captures the moments when the curves move
towards each other:

k ′ :=
1

T − 1

T∑
t=2

min((sign (∆dt ) − sign (∆st ))
+, 1)∆t .

If supply follows demand perfectly then both instability metrics are equal to zero.

3.5 User-Oriented Metrics
To assess the autoscaling policies from the user perspective, we employ the (average) elastic slow-
down, which is defined in steps in the following way.
The wait time Tw of a workflow is the time between its arrival and the start of its first task. The
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Source of Information Timeliness of Information
Long-term Current/Recent

Server (General) Hist, Reg, ConPaaS React, Adapt
Job (WF-specific) Plan, DPlan Token

Table 1. The two-dimensional taxonomy of the considered autoscalers.

execution time Te of a workflow is the sum of the runtimes of all its tasks. The makespan Tm of
a workflow is the time between the start of its first task until the completion of its last task. The
response time Tr of a workflow is the sum of its wait time and its makespan: Tr = Tw + Tm .
The slowdown S of a workflow is its response time (in a busy system, when the workflow runs
simultaneously with other workflows) normalized by its makespan T ′m in an empty system of the
same size (when the workflow has exclusive access to all the resources): S = Tr / T

′
m . The elastic

slowdown Se of a workflow is its response time in a system which uses an autoscaler (where the
workflow runs simultaneously with other workflows) normalized by its response time T ′r in a system
of the same size without an autoscaler (where the workflow runs simultaneously with the same set of
other workflows and where a certain amount of resources is constantly allocated): Se = Tr / T

′
r . In

ideal situation, where jobs do not experience slowdown due to the use of an autoscaler, the optimal
value for Se is 1. When Se is less than 1, then a workflow accelerates from the use of an autoscaler.
We define the average number of resources V the system utilized during the experiment to compute
the gain of using an autoscaler. We also calculate the average task throughput T which is defined as
the number of tasks processed per time unit (e.g., second, minute or hour).

3.6 Deadline Proximity Ratio
For each workflow we define its deadline proximity ratio Dp as Dp := Tr /D, where Tr is the
momentary response time (the time elapsed from the arrival of the workflow) and D is the deadline.
When Dp is less than 1 no action is required. When p is higher than 1 then the prediction correction
is required. The updated prediction rc is simply calculated as: rc := r · p · c, where r is the original
prediction calculated with the Plan method and c is a correction factor (in our case c = 1). Of course,
the correction function can be more precise as c can be adjusted knowing the dependency between
the over-provisioning and the deadline violation. We leave this question open for future research.

4 AUTOSCALING POLICIES
For evaluation, we select five representative general autoscalers and propose three workflow-specific
autoscalers. We classify them using a taxonomy along two dimensions and summarize the survey
of common autoscaling policies across these dimensions in Table 1. The taxonomy allows us to
ensure the proper coverage of the design space. We identify four groups of autoscalers, which differ
in the way they treat the workload information. The first group consists of general autoscalers Hist,
Reg, and ConPaaS which require server-specific information and use historical data to make their
predictions. The second group consists of React and Adapt autoscalers which also require server-
specific information for their operation but they do not use history to make autoscaling decisions.
The last two groups use job-specific information (e.g., structure of a workflow) and also differ in
a way they deal with the historical data: Plan and DPlan need detailed per-task information while
Token needs far less historical data and only requires a runtime estimate for the whole job. Notably,
the DPlan autoscaler supports per-workflow deadlines. Further, we present all the autoscalers in more
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Fig. 3. The Plan autoscaling algorithm.

detail. When introducing each autoscaler we additionally indicate in the title of the section to which
dimensions of the taxonomy it belongs.

4.1 General Autoscaling Policies
As different autoscalers exhibit varying performance, five existing general autoscalers have been
selected. By a general autoscaler, we refer to autoscalers that have been published for more general
workloads including multi-tier applications, but that are not designed particularly for workflow
applications. The five autoscalers can be used on a wide range of scenarios with no human tuning. We
implement four state-of-the-art autoscalers that fall in this criteria. In addition, we acquire the source
codes of one open-source state-of-the-art autoscaler. The selected methods have been published in
the following years 2008 [43] (with an earlier version published in 2005 [42]), 2009 [9], 2011 [23],
2012 [3, 5], and 2014 [16]. This is a representative set of the development of cloud autoscalers design
across the past 10 years.

4.1.1 General Autoscalers for Workflows. All of the chosen general autoscalers have been
designed to control performance metrics that are still less commonly used for workflow applications,
namely, request response time, and throughput. The reason is that historically, workflow applications
were rather big or were submitted in batches [40]. However, emerging workflow types which require
quick system reaction and the usage of workflows in the areas in which they were less popular, e.g.,
for complex web requests, making the use of general autoscalers more promising.

The autoscalers aimed to control the response time are designed such that they try to infer a
relationship between the response time, request arrival rates, and the average number of requests that
can be served per VM per unit time. Then, based on the number of request arrivals, infer a suitable
amount of resources. This technique is widely used in the literature [18, 29] due to the non-linearity
in the relationship between the response time and allocated resources.

A similarity does exist though between workflows and other cloud workloads. A task in a workflow
job can be considered as a long running request. The number of tasks becoming eligible can
be considered as the request arrival rate for workflows. Therefore, we have adapted the general
autoscalers to perform the scaling based on the number of task arrivals per unit time.

4.1.2 The React Policy (Server, Current). Chieu et al. [9] present a dynamic scaling algorithm
for automated provisioning of VM resources based on the number of concurrent users, the number of
active connections, the number of requests per second, and the average response time per request.
The algorithm first determines the current web application instances with active sessions above or
below a given utilization. If the number of overloaded instances is greater than a predefined threshold,
new web application instances are provisioned, started, and then added to the front-end load-balancer.
If two instances are underutilized with at least one instance having no active session, the idle instance
is removed from the load-balancer and shutdown from the system. In each case the technique Reacts
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to the workload change. For the rest of the paper, we refer to this technique as React. The authors
introduce the scaling algorithm but provide no experiments to show the performance of the proposed
autoscaler. The main reason we are including this algorithm in the analysis is that this algorithm is
the baseline algorithm in our opinion since it is one of the simplest possible workload predictors. We
have implemented this autoscaler for our experiments.

4.1.3 The Adapt Policy (Server, Recent). Ali-Eldin et al. [3, 5] propose an autonomous
elasticity controller that changes the number of VMs allocated to a service based on both monitored
load changes and predictions of future load. We refer to this technique as Adapt. The predictions are
based on the rate of change of the request arrival rate, i.e., the slope of the workload, and aims at
detecting the envelope of the workload. The designed controller Adapts to sudden load changes and
prevents premature release of resources, reducing oscillations in the resource provisioning. Adapt
tries to improve the performance in terms of number of delayed requests, and the average number of
queued requests, at the cost of some resource over-provisioning. The algorithm was tested using a
simulated environment using a non-scaled version of the FIFA 1998 worldcup server traces, traces
from a Google cluster and traces from Wikipedia.

4.1.4 The Hist Policy (Server, Long-term). Urgaonkar et al. [43] propose a provisioning
technique for multi-tier Internet applications. The proposed methodology adopts a queuing model
to determine how many resources to allocate in each tier of the application. A predictive technique
based on building Histograms of historical request arrival rates is used to determine the amount of
resources to provision at an hourly time scale. Reactive provisioning is used to correct errors in the
long-term predictions or to react to unanticipated flash crowds. The authors also propose a novel
datacenter architecture that uses Virtual Machine (VM) monitors to reduce provisioning overheads.
The technique is shown to be able to improve responsiveness of the system, also in the case of a flash
crowd. We refer to this technique as Hist. The authors test their approach using two open source
applications, RUBIS which is an implementation of the core functionality of an auctioning site, and
Rubbos a bulletin-board application modeled after an online news forum. The testing is performed
using 13 VMs running on Xen. Traces from the FIFA 1998 worldcup servers are scaled in time and
intensity and used in the experiments. We have implemented this autoscaler for our experiments.

4.1.5 The Reg Policy (Server, Long-term). Iqbal et al. propose a regression-based autoscaler
(hereafter called Reg) [23]. The autoscaler has a reactive component for scale-up decisions and a
predictive component for scale-down decisions. When the capacity is less than the load, a scale-up
decision is taken and new VMs are added to the service in a way similar to React. For scale-down,
the predictive component uses a second order regression to predict future load. The regression model
is recomputed using the complete history of the workload when a new measurement is available. If
current load is less than the provisioned capacity, a scale-down decision is taken using the regression
model. This autoscaler was performing badly in our experiments due to two factors; first, building
a regression model for the full history of measurements for every new monitoring data point is a
time consuming task. Second, distant past history becomes less relevant as time proceeds. After
contacting the authors, we have modified the algorithm such that the regression model is evaluated
for only the past 60 monitoring data points.

4.1.6 The ConPaaS Policy (Server, Long-term). ConPaaS, proposed by Fernandez et al. [16].
The algorithm scales a web application in response to changes in throughput at fixed intervals of
10 minutes. The predictor forecasts the future service demand using standard time series analysis
techniques, e.g., Linear Regression, Auto Regressive Moving Average (ARMA), etc. The code for
this autoscaler is open source. We downloaded the authors’ implementation.
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4.2 Workflow-Specific Autoscaling Policies
In this section, we present two workflow-specific autoscalers designed by us. Their designs are
inspired by previous work in this field and adapted to our situation. The presented autoscalers differ
in a way they use workflow structural information and task runtime estimates.

4.2.1 The Plan Policy (Job, Long-term). This autoscaler makes predictions by constructing
and analyzing a partial execution Plan of a workflow. Thus it uses the workflow structure and
workflow task runtime estimates. The idea is partially based on static workflow schedulers [2]. On
each call, the policy constructs a partial execution plan considering both workflows with running
tasks and workflows waiting in the queue. The maximal number of processors which are used by this
plan is returned as a prediction. The time duration of the plan is limited by the autoscaling interval.
The plan is two-dimensional, where one dimension is time and another is processors (VMs).

The policy employs the same task placement strategy as the scheduler. In our case, the jobs from
the main job queue are processed in first-come, first-served (FCFS) order and the tasks are prioritized
in ascending order of their identifier (each task of a workflow is supposed to be assigned with a
unique numeric identifier). For already running tasks, the runtimes are calculated as a remaining
time to their completion. The algorithm operates as follows. On each call it initializes an empty plan
with start time 0. Then it sequentially tries to add tasks in the plan in such as their starting times
are minimal. The algorithm adds a task to the plan only if it is eligible or its parents are already in
the plan. The plan construction lasts until there are no tasks which can be added in the plan or until
the minimal possible task start time equals or exceeds the planning threshold (which is equal to the
autoscaling interval), or until the processor limit is reached. If the processor limit is reached then
this is returned as the prediction. Otherwise, the prediction is calculated as the maximal number of
processors ever used by the plan within the planning interval.

Figure 3 shows an example of the operation of the algorithm. In Figure 3a, we show the job queue
at the moment when the autoscaler is called. The queue contains two workflows A and B, where A
is at the head of the queue. Each workflow task is represented by a circle with an identifier within
it and runtime in time units on the right. Tasks A:0 and A:1 are already running, finished tasks are
not shown. The autoscaling interval (a threshold) is equal to 15 time units and is represented by a
vertical red dashed line. Figure 3b shows an example of an unlimited plan where the processor limit
is not reached. In this case the maximal number of processors used within the 15 time units interval
is 5 which equals to the number of green rectangles in the figure (A:0, A:1, B:1, B:2, B:3). Figure 3c
shows a plan where the number of available processors is limited by 4 (the horizontal red dashed
line). In this case, the algorithm stops constructing the plan after placing task B:2 and returns the
prediction, which simply equals to the maximal number of available processors (i.e., 4).

4.2.2 The Deadline-aware DPlan Policy (Job, Long-term). The Deadline-aware Plan au-
toscaler (DPlan) extends the Plan policy by integrating the support of workflow deadlines. On
every invocation DPlan computes a partial plan for all the executing and queued workflows in the
same way as the original Plan autoscaler does. Then it computes for each jth workflow its deadline
proximity ratio pj := sj/dj , where sj is the time in the system (the time elapsed from the arrival of
the workflow) and dj is the deadline. Given the set of proximities to deadlines for all the queued and
running workflows, the autoscaler computes the average proximity to the deadline p. The goal of the
autoscaler is to keep the average proximity to the deadline as lower as possible. When p is less than 1
no action is required. When p is higher than 1 then the prediction correction is required. The updated
prediction rc is simply calculated as: rc := r · p · c, where r is the original prediction calculated with
the Plan method and c is a correction factor (in our case c = 1). Of course, the correction function
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(a) Token propagation steps.
(b) Two real
LoPs.

Fig. 4. The token-based LoP approximation.

can be more precise as c can be adjusted knowing the dependency between the over-provisioning and
the deadline violation. We leave this question open for future research.

4.2.3 The Token Policy (Job, Recent). The Token policy uses structural information of a DAG
and does not directly consider task runtimes to make predictions and instead requires an estimated
execution time of the whole workflow. It uses tokens to estimate the Level of Parallelism (LoP) of a
workflow [22] by simulating an execution “wave” through a DAG. The operation of the algorithm is
illustrated in Figure 4. The algorithm processes the workflows in the queue in the FCFS order. In
the beginning, the algorithm picks a workflow from the queue and places tokens in all of its entry
tasks. Then in successive steps it moves these tokens to all the nodes all of whose parents already
hold a token or were earlier tokenized. After each step, the number of tokenized nodes is recorded.
For each workflow, the number of propagation steps is limited by a certain depth δ , which is defined
as δ = (∆t · N )/L, where ∆t is the autoscaling interval, N is the number of tasks on the critical path
of the workflow, and L is the total duration of the tasks on the critical path of the workflow. Thus, the
intuition is to evaluate the number of “waves” of tasks (future eligible sets) that will finish during the
autoscaling interval. When δ or the final task of a workflow is reached, the largest recorded number
of tokenized nodes is the approximated LoP value. The algorithm stops when the prediction value
exceeds the maximal total number of available processors or when the end of the queue is reached.
The final prediction is the sum of all of the separate approximated LoPs of the considered workflows.

The token-based algorithm does not guarantee the correct estimation of the LoP. The quality of
the estimation depends on the DAG structure. In Figure 4a the estimated LoP of 3 is lower than the
maximal possible LoP of 4 in Figure 4b. However, in our previous work [22], we showed that this
method provides meaningful results for popular workflow structures.

5 EXPERIMENTAL EVALUATION
In this section, we present the workloads and the configuration of the cloud infrastructure we use
for the experimental evaluation of the unified cloud system introduced in Section 2. To design our
workloads, we use a set of representative scientific workflows. We take an experimental approach
to evaluate chosen autoscaling algorithms with an extensive set of experiments in a virtualized
environment deployed on our multi-cluster system.

5.1 Setup of Workflow-based Workloads
We choose three popular scientific workflows from different fields, namely Montage, LIGO, and
SIPHT. The main reason for our choice is the existence of validated models for these workflow types.
Montage [25] is used to build a mosaic image of the sky on the basis of smaller images obtained from
different telescopes. LIGO [1] is used by the Laser Interferometer Gravitational-Wave Observatory
(LIGO) to detect gravitational waves. And SIPHT [27] is a bioinformatics workflow used to discover
bacterial regulatory RNAs.

We generate synthetic workflows using a workflow generator by Bharathi et al. [6, 26]. Each
workflow is represented by a set of task executables and a set of input files. We use two workloads:
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Fig. 5. The distribution of job sizes in the workloads (histogram, left vertical axis) and the dependency
between the job size and its execution time (glyphs, right vertical axis). The right vertical axis is in log
scale.
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Fig. 6. The distribution of task runtimes in the workloads (the horizontal axes have different scales,
and the vertical axes are in log scale).
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Fig. 7. The distribution of job execution times in the workloads (all the axes have different scales).

a primary Workload 1 and a secondary Workload 2 each consisted of 200 workflows of different
sizes in range from 30 to 600. Each workload contains an equal mixture of all of the three considered
workflow types. As with many other workloads in computer systems, in practice, workflows are
usually small, but very large ones may exist too [35]. Therefore, in our experiments we distinguish
small, medium, and large workflows, which constitute fractions of 75%, 20%, and 5% of the workload.
The size of the small, the medium, and the large workflows is uniformly distributed on the intervals
[30, 39], [40, 199], and [200, 600], respectively. The distribution of the job sizes in the workloads is
presented in Figure 5. Figure 6 shows the distribution of task runtimes. Figure 7 shows the distribution
of job execution times Te in the workloads. For Workload 1, we use the original job execution time
distribution from the Bharathi generator. For Workload 2, we keep the same job structures as in
Workload 1 but change the job execution times using a two-stage hyper-Gamma distribution derived
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Property Workload 1 Workload 2
Mean task runtime 33.52 s 33.29 s
Median task runtime 2.15 s 2.65 s
SD of task runtime 65.40 s 87.19 s
Mean job execution time 2,325 s 2,309 s
Median job execution time 1,357 s 1,939 s
SD of job execution time 3,859 s 1,219 s
Total task runtime 465,095 s 461,921 s
Mean workflow size 69 tasks
Median workflow size 35 tasks
SD of workflow size 98 tasks
Total task number 13,876 tasks

Table 2. Statistical characteristics of the workloads. SD stands for standard deviation.

from the model presented in [30]. The shape and scale parameters (α , β) for each Gamma distribution
are set to (5.0, 323.73) and (45.0, 88.291), respectively. Their proportions in the overall distribution
are 0.7 and 0.3. Table 2 summarizes the properties of both workloads.

5.2 Setup of the Private Cloud Deployment
To schedule and execute workflows, we use the experimental setup in Figure 1 (Section 2). The
KOALA scheduler is used for scheduling workflow tasks [15] on the DAS-41 cluster deployed at
TU Delft. Our cluster consists of 32 nodes interconnected through QDR InfiniBand with 8-core
2.4GHz CPU and 24GB of RAM each. As a cloud middleware, OpenNebula is used to manage VM
deployment, and configuration.

The execution environment for a single workflow consists of a single head VM and multiple
worker VMs. The head VM uses a single CPU core and 4GB of RAM, while each worker VM uses a
single core and 1GB of RAM. Tasks are then scheduled on the VMs. The workload generator with the
workflow runners run on a dedicated node. The workflow runner coordinates the workflow execution
by following the task placement commands from the scheduler. The runner is also responsible for
copying files (task executables, input and output files) to and from the VMs in the virtual cluster. For
data storage and transfer, we use a Network File System (NFS). This implies that if the head VM and
worker VM are located on the same physical node, the data transfer time between them is negligible.
In other cases, data transfer delays occur.

Compared to the job execution time, file transfer delays and the scheduling overhead are negligible.
All tasks write their intermediate results directly to the shared storage to reduce data transfer delays
for all workflows. A task can then run as soon as all of its dependencies are satisfied. Additionally, the
runner copies all input files for a workflow to the virtual cluster before starting the execution. Thus,
the impact from the file transfer delay between tasks on the system performance is negligible. Tasks
are scheduled using greedy backfilling as it has been shown to perform well when task execution
times are unknown a priori [22]. During the experiment only the autoscaler has the access to the
information about job execution times and task runtimes.

1http://www.cs.vu.nl/das4
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5.3 Experiment Configuration
To configure the general autoscalers we use the average number of tasks a single resource (VM) is
able to process per autoscaling interval (hereafter called service rate). The autoscaling interval, or
the time between two autoscaling actions, is set to 30 seconds for all of our experiments.

We test with three different configurations in our experiments, where we change the value of
the service rate parameter or the VM provisioning latency. The service rate in a request-response
system is usually the average number of requests that can be served per VM. This parameter is either
estimated online, e.g., using an analytical model to relate response time, as the one used in Hist [42],
or offline [13, 18]. For a task-based workload, there are multiple options including using the mean
task service time, the median task service time, or something in between.

In the first configuration, we assume that a VM serves on average 1 task per autoscaling interval,
i.e., 2 tasks per minute. We derive this value by rounding to the nearest integer the service rate
calculated based on the mean task runtime in the workloads (Table 2). This service rate allows us to
perform additional comparison between general and workflow-specific autoscalers as the demand
curves have the same dimension. In the second configuration, we use the median task runtime of
Workload 1 which gives a service rate equal to 14 (also rounding to the nearest integer) tasks per
autoscaling interval, i.e., 28 tasks per minute. The general autoscalers using the second configuration
are marked with a star (⋆) symbol. While in the first two configurations we guarantee that all the
provisioned VMs are booted at the moment when the autoscaler is invoked, in the third configuration
the VM booting time of 45 s exceeds the autoscaling interval of 30 s. This configuration is also used
to test workflow-specific autoscalers. The autoscalers using the third configuration are marked with a
diamond (⋄).

For all the configurations and for both workloads the workload player periodically submits
workflows to KOALA to impose the average load on the system about 40%. The workflows submitted
to the system arrive according to a Poisson process. The mean inter-arrival interval is 117.77 s which
results into arrival rate of 30.57 jobs per hour. Thus, the minimal duration of each experiment is
approximately 6.5 h. If the autoscaler tends to under-provision resources or the provisioning time
in the system is rather large then the experiment can take longer. We choose this relatively low
utilization level on purpose to decrease the number of situations when the demand exceeds the
maximum possible supply ceiling. Additionally, as workflow scheduling is non-work-conserving the
system can saturate even at low utilizations. Thus, low utilization allows us to see better the dynamic
behavior of the autoscalers by minimizing the number of extreme cases.

5.4 Experimental Results
The main findings from our experiments are the following:

(1) Workflow-specific autoscalers perform slightly better than general-autoscalers but require more
detailed job information.

(2) General autoscalers show comparable performance but their parametrization is crucial.
(3) Autoscalers reduce operational costs but slow down the jobs.
(4) Long VM booting times negatively affect the performance.
(5) No autoscaler outperforms all other autoscalers with all configurations and/or metrics.

5.4.1 Analysis of Elasticity Metrics. To better show the trade-offs between the autoscalers, we
use the metrics described in Section 3. While calculating the system-oriented metrics, we excluded
the periods where the demand curve exceeds the maximal available resource limit of 50 VMs. Since
all the system-oriented metrics are normalized by the time of the experiment this approach does not
bias the results.
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Fig. 8. The average number of used VMs during the experiment and the average throughput degrada-
tion (compared with the no autoscaler case). All results are given for Workload 1.

The aggregated metrics for all the experimental configurations are presented in Table 3 and Table 4.
Considering the cases where VMs are booting faster than the autoscaling interval, Table 3 shows that
the autoscalers under-provision between 1% (using Hist) and 8% (using Adapt) less resources from
the demand needs. Hist’s superior under-provisioning with respect to others comes at the cost of on
average provisioning 7 times the actual demand, compared to 27% over-provisioning for Adapt.

The policies with longer booting VMs in Table 3 show slightly different results compared to the
runs with faster booting VMs. Both React⋄ and Plan⋄ tend to under-provision more when the VM
provisioning time is longer. The job slowdowns are also higher. We picked only these two policies
to have one from each group of autoscalers. Thus, we can conclude that longer provisioning times
decrease the number of available resources for the workload. We can also notice that the average
number of idle VMs decreases for React⋄ as the tasks more fully utilize provisioned VMs. mU does
not change for Plan⋄ as it over-provisions less.

For the general policies configured with service rate 1.0 and for workflow-specific policies in
Table 3 and Table 4 job elastic slowdowns show low variability. We can conclude that the resources
either significantly over-provisioned (Hist and ConPaaS) or already provisioned resources are running
at low utilization (React, Adapt, Reg, Plan, and Token). The non-zero values ofmU metric in these
cases confirm our assumption.

5.4.2 The Influence of Different Workloads. The difference is also visible between the
workloads. While Workload 1 has the majority of short jobs, Workload 2 has a more equal distribution
of job execution times and thus less bursty. Elastic job slowdowns in both tables confirm this tendency.
For Workload 2 they slightly increase (the Plan policy in Table 4 is an exception) while going from
small to large job sizes. We do not run Workload 2 with service rate different from 1.0 as we expect
that the trend will be the same as for Workload 1.

The system-oriented metrics do not vary much between the workloads. For example, compare
React in Table 3 with React in Table 4. Only Hist over-provisions less while running with Workload 2
as can be explained by lower burstiness of the workload.

5.4.3 The Dynamics of Autoscaling. Figure 9 shows the system dynamics for each autoscaling
policy while executing Workload 1. Some of the autoscalers have a tendency to over-provision
resources (Hist and ConPaaS). The other policies appear to be following the demand curve more or

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article 1. Publication
date: June 2017.



Evaluation of Autoscaling Policies for Complex Workflows 1:17

0

25

50 React

Demand (VMs)

Supply (idle and busy VMs)

Queue length (jobs)

0

25

50 Adapt

0

25

50 Hist

0

25

50

N
u

m
b

er
of

V
M

s
/

Q
u

eu
ed

jo
b

s

Reg

0

25

50 ConPaaS

0

25

50 Plan

0 1000 2000 3000 4000 5000 6000 7000

Wall clock time (s)

0

25

50 Token

Fig. 9. The experimental dynamics of five general autoscaling policies (Workload 1, service rate 1.0)
and two workflow-specific policies during the cropped period of 7,000 s. The horizontal dashed line
indicates the resource limit of 50 VMs.

less closely. Note, that the demand curve has different shape for each autoscaler as the autoscaling
properties affect the order in which workflow tasks become eligible.

The workflow-specific Plan policy follows the demand curve quite good and shows results similar
to general autoscalers React, Adapt, and Reg running with service rate of 1.0. However, if policy
follows the demand too close that increases job slowdowns. The Token policy, due to its specifics,
needs to guess more while predicting the future demand and thus tends to over-provision a bit more.

5.4.4 The Influence of Service Rate Parameter on the Autoscaling Dynamics. The most
noticeable differences in the results are between general autoscalers running with service rate 1.0
and with service rate 14.0. Figure 10 shows the selection of general autoscalers running with the
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Fig. 10. The experimental dynamics of three selected autoscaling policies (Workload 1, service rate
14.0) during the cropped interval of 7,000 s. The horizontal dashed line indicates the resource limit of
50 VMs.

same workload as in Figure 9. The demand curves in these two figures look very different, as well as
the supply curve does not follow the demand curve so close anymore. We do not show ConPaaS in
Figure 10 as it has similar supply pattern as for service rate 1.0, and Reg looks quite similar to React
and Adapt. The k ′ metric also increases for service rate 14.0 as the autoscalers need to estimate more
while computing the next predicted supply value and thus the curves are not so well synchronized.

5.4.5 The Trade-off Between Operational Cost and Performance. Here we study the
influence of the number of used VMs on the throughput. We evaluate only two user-oriented metrics:
the throughput degradation in tasks per hour compared with the no autoscaler case and the number of
used resources (VMs). The values of these metrics are plotted in Figure 8. For example, for React
the throughput degradation of –24 tasks per hour contributes only to 1.16% of the hourly throughput.
In Figure 8, we can see that T is definitely affected by the V . The variation of T depends on the
properties of the workload such as task durations, the total number of tasks in the workload, and the
number of tasks per job.

From these results we can conclude the following. Hist over-provisions quite a lot and achieves
low throughput degradation. ConPaaS also over-provisions but the throughput is not much affected
because its supply curve is very volatile. ConPaaS⋆ over-provisions less than ConPaaS as it “supposes”
that the system needs less active VMs to process the same workload. Accordingly, the throughput
degradation for ConPaaS⋆ is also bigger. Reg, React, Token, Plan, and Adapt show almost similar
results for service rate 1.0. Plan and Token policies show good balance between the number of used
VMs and the throughput. Parametrization with the service rate of 14.0 (based on the median task
runtime) decreases the performance by allocating less VMs. We can also see that longer booting
VMs (React⋄ and Plan⋄) negatively affect the throughput.
Question: Should we divide Table 3 into two tables? On Table for Elasticity (aU to mU ), User
(Se to V )? Then, the tables are smaller and better to read (my opinion)

5.4.6 The Effect of Deadline Support.
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Type AS aU aO aU aO tU tO k k ′ mU Se Se
(S)

Se
(M)

Se (L) T V

% % % % % % % % % frac. frac. frac. frac. tasks/h VMs

General

React 2 6 5 50 15 84 20 32 7 1.23 1.24 1.20 1.21 2,071 23.89
React⋄ 6 5 13 40 32 64 21 32 6 1.57 1.60 1.52 1.33 2,066 24.01
Adapt 4 4 8 27 23 51 21 34 5 1.28 1.32 1.20 1.15 2,071 22.86
Hist 1 60 1 737 2 97 17 43 60 1.05 1.05 1.04 1.02 2,076 44.81
Reg 3 8 6 51 17 51 20 31 8 1.29 1.32 1.20 1.11 2,071 24.42
ConPaaS 2 33 5 273 11 76 20 40 34 1.18 1.22 1.07 1.06 2,071 34.50
React⋆ 0 19 0 179 2 98 19 64 0 17.32 20.69 8.76 4.06 2,011 20.13
Adapt⋆ 0 16 1 150 4 96 19 63 0 20.06 23.25 12.26 6.08 2,026 20.49
Hist⋆ 0 25 1 463 5 95 20 60 1 12.93 15.30 7.00 3.24 2,016 20.87
Reg⋆ 0 12 1 78 5 94 20 62 0 25.57 30.04 14.38 7.22 1,997 20.11
ConPaaS⋆0 44 1 1092 1 98 21 45 7 2.11 2.12 2.26 1.25 2,061 25.15

WF-specific
Plan 3 4 7 19 20 41 20 31 4 1.30 1.32 1.28 1.18 2,071 22.93
Plan⋄ 8 3 17 16 38 35 21 32 4 1.64 1.72 1.44 1.38 2,066 23.31
Token 3 6 7 35 16 53 20 33 7 1.25 1.28 1.20 1.20 2,071 23.88

None No AS 0 73 0 869 0 100 17 43 73 1.00 1.00 1.00 1.00 2,076 50.00
Table 3. Calculated metrics for the main set of experiments with all the considered autoscalers and
Workload 1. The diamond symbol (⋄) marks the experiments where the VM booting time is longer than
the autoscaling interval and service rate parameter is set to 1.0. The star symbol (⋆) marks general
autoscalers configured with service rate 14.0. All the other general autoscalers are configured with
service rate 1.0. The metric Se as well presented for small (S), medium (M), and large (L) job sizes.
Best values in each column are highlighted in bold, except the No AS case.

Type AS aU aO aU aO tU tO k k ′ mU Se Se
(S)

Se
(M)

Se (L) T V

% % % % % % % % % frac. frac. frac. frac. tasks/h VMs

General React 2 7 4 36 17 81 21 32 7 1.11 1.08 1.19 1.21 1,905 22.83
Hist 1 46 1 338 5 94 19 41 46 1.05 1.03 1.10 1.16 1,905 40.82

WF-specific Plan 3 4 6 11 22 39 21 32 4 1.16 1.13 1.24 1.28 1,905 21.89
None No AS 0 66 0 563 0 100 19 41 66 1.00 1.00 1.00 1.00 1,910 50.00

Table 4. Calculated metrics for the additional set of experiments with selected autoscalers and
Workload 2. The metric Se as well presented for small (S), medium (M), and large (L) job sizes. Best
values in each column are highlighted in bold, except the No AS case.

6 WHICH POLICY IS THE BEST?
At first glance, considering all the computed metrics and all the autoscalers it is hard to distinguish
the winners. Comparing only V and T metrics could be insufficient. Definitely, there is no single best
and the final choice of a policy depends on many factors: application choice, optimization goals,
etc. Thus, it is necessary to establish a procedure to allow the comparison of autoscalers in such a
multilateral evaluation. For all the assessments presented in this section we use the set of experiments
with Workload 1 as the most comprehensive. To include all the computed metrics into consideration
we utilize two raking methods based on pairwise and fractional difference comparisons. Additionally,
we aggregate elasticity and user metrics using an approach from our previous work.

6.1 Pairwise Comparison
In this section, we rank the autoscalers using the pairwise comparison method [11]. In this method,
for each algorithm we pairwise compare the value of each metric with the value of the same metric
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of all the other autoscalers. We consider system metrics (aU , aO ), (tU , tO ), (k, k ′), and user metrics
Se , V , and T . We do not consider aU and aO , as well as mU due to redundancy with the selected
accuracy metrics. For all the metrics except T , smaller value is better. In case when smaller value
is better, for a pair of two autoscalers A and B, autoscaler A accumulates one point if the value of
its certain metric is lower than the value of the same metric of autoscaler B. In case when bigger is
better, autoscaler B gets the point. If both values are equal then both autoscalers get half point each.
The results of the comparison are given in Table 5. The bigger the number of points the better.

6.2 Fractional Difference Comparison
In this section, we rank the autoscalers using the fractional difference method comparing all the
autoscalers with an ideal case. For ideal case we construct an empirical ideal system that achieves
the best performance for all the metrics we consider. Note, this system does not exist in practice.
Thus, the ideal system is a system which compiles all the optimal values from Table 3 including the
No Autoscaler case. For each metric mi we compute its best value bi which is either minimum or
maximum value from the set of metric’s values, depending on the metric (e.g., among our metrics
only for T the biggest value is the best). For each autoscaler the score p for the metric j is computed
as following:

pj :=
M∑
i=1

|mi − bi |

max(bi , ε )
,

where M is the total number of considered metrics, and ε > 0, which is here set to ε = 1. The final
score of an autoscaler is the average of all the individual pj scores. The final score shows the fraction
by which the autoscaler differs from the empirically established ideal system. Thus, the smaller the
final score the better. The results of the comparison are given in Table 5.

6.3 Aggregated Elasticity and User Metrics
In this section, we aggregate both elasticity and user metrics as proposed by Fleming et al. [17]. As
commonly done in the benchmarking domain, we select a baseline as reference to compute speedup
ratios and then average the speedups using an unweighted geometric mean. We choose as baseline
the metric results with no active autoscaler. We group the elasticity metrics based on the covered
aspects into three groups: accuracy (aU , aO ), wrong provisioning timeshare (tU , tO ), and instability
(k, k ′). We do not consider aU and aO , and mU metrics. In addition, we compute a ratio based on
the user metrics V (average number of VMs), the elastic slowdown Se and the average throughput
T to represent a balance between user-experienced performance and resource consumption. An
overall ratio combines the user and elasticity ratios with the geometric mean. The resulting ranking
is presented in Table 5. Using the described metric aggregation approach, the workflow-specific
autoscaler Plan outperforms the generic ones. The Token policy is ranked on the same level as
the generic Adapt and React policies. Hist and ConPaaS perform slightly better than without an
autoscaler in this context. Strong impact on the autoscalers has the service rate parameter, a smaller
impact can be observed for the experiments with longer provisioning time (⋄).

7 THREATS TO VALIDITY
The limitations of the study are mainly expressed in the constrained number of considered job
types and autoscalers. Improvements can be achieved by adding extra workloads with different
characteristics to ideally consider wider spectrum of major job types that benefit from autoscaling.
For example, data analytics workflows, streaming workflow applications, and workflows requiring
quick reaction time [44]. Additionally, it is possible to report the job slowdown per workflow type.
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AS Pairwise Fractional Elasticity User Overall
points frac. frac. frac. frac.

React 73.5 2.23 2.20 1.19 1.62
React⋄ 51.0 4.50 1.99 1.10 1.48
Adapt 66.0 3.17 2.38 1.19 1.69
Hist 70.0 2.83 1.07 1.02 1.04
Reg 69.5 2.53 2.26 1.17 1.62
ConPaaS 62.0 2.84 1.34 1.07 1.20
React⋆ 57.0 2.96 1.41 0.52 0.85
Adapt⋆ 60.0 3.37 1.49 0.49 0.86
Hist⋆ 55.0 3.02 1.30 0.56 0.86
Reg⋆ 56.0 3.94 1.65 0.45 0.87
ConPaaS⋆ 44.5 2.06 1.15 0.98 1.06
Plan 78.5 2.68 2.72 1.19 1.80
Plan⋄ 59.0 5.23 2.18 1.09 1.54
Token 71.0 2.36 2.37 1.19 1.68
No AS 72.0 3.01 1.00 1.00 1.00

Table 5. The pairwise and fractional comparison, the aggregated elasticity and user metrics. The
winners in each category (except No AS) are highlighted in bold.

To make the study more applicable to cloud environments, one can extend the set of workflow-related
autoscalers with algorithms which consider job deadlines and costs [10, 32].

One of the interesting aspects is related to possible meanings of metric values. In fact our metrics
are application-agnostic but their interpretation is not. In this sense, they can be seen as a raw metrics
which, however, in a proper service-level agreement, can be assigned with certain thresholds and
interpretation.

The experimental setup used in this paper could also be improved. Despite the fact that our private
OpenNebula environment is rather representative, the number of concurrent users in Amazon EC2
and Microsoft Azure is much higher than in our case. Thus, it would be beneficial to consider public
clouds to capture possible performance effects which could arise there. In addition, avoiding interval-
based autoscaling in real setups could improve the quality of predictions by reacting to changes in the
demand more quickly. We parametrize general autoscalers (computed service rate parameter) using
the statistical properties of the whole workload as we have an access to this information. However,
in the case when the workload properties are unknown different demand estimation methods can
be used [38]. We do not analyze CPU utilization and RAM usage as for the considered workloads
CPU and RAM information has low value as we primarily assign one task per VM and focus on
performance characteristics from the perspective of job execution times.

8 RELATED WORK
Our work provides the first comprehensive comparative experimental study of autoscaling for
workflows. We are unaware of any similar study in terms of the methodology taken, the number
of policies compared, the number of performance metrics, and the size of experiments run. The
importance of comparing different autoscaling algorithms has been recently discussed in the literature
but mostly from a theoretical point of view [29, 36]. One exception is a tool that tries to utilize the
differences between different autoscaling policies to achieve better QoS for customers by selecting
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a policy based on the workload [4]. That work, nevertheless, does not include any experimental
comparison or deep analysis between the performance of the autoscalers as we do in our work.

The problem of scaling workflows has been studied in the literature with a focus on designing new
autoscaling policies. Malawski et al. [31] discuss the scheduling problem of ensembles of scientific
workflows in clouds while considering cost- and deadline-constraints. Mao et al. [33] optimize the
performance of cloud workflows within budget constraints. They propose two algorithms, namely,
scheduling-first and scaling-first. Cushing et al. [10] deal with prediction-based autoscaling of
scientific data-centric workflows. Buyn et al. [7] try to achieve cost-optimized provisioning of elastic
resources for workflow applications. They use the Balanced Time Scheduling (BTS) algorithm to
calculate the minimal required number of resources which will allow to execute the workflow within
a given deadline. Dörnemann et al. [14] consider scheduling of Business Process Execution Language
(BPEL) workflows in Amazon’s elastic computing cloud. Their main findings include the methods
to automatically schedule workflow tasks to underutilized hosts and to provide additional hosts in
peak situations. The proposed load balancer uses the overall system load to take scaling decisions in
contrast to other systems where the throughput is more important. Heinis et al. [19] propose a design
and evaluate the performance of a workflow execution engine with self-tuning capabilities. The
engine is purely reactive and does not employ workload prediction. It has an autonomic controller to
automatically reconfigure itself to adjust to the changes in the resource demand.

9 CONCLUSION AND ONGOING WORK
The ability to select autoscalers is beneficial for customers and operators of cloud computing,
because it enables simple control over cloud elasticity and thus facilitates an on-demand, pay-per-
view delivery of IT services. In this work, we have proposed a comprehensive method for comparing
autoscalers when running workflow-based workloads in cloud environments. Our method includes
a model for elastic cloud platforms, a set of over 10 relevant metrics for evaluating autoscalers, a
taxonomy and survey of exemplary general and workflow-specific autoscalers, and experimental and
analysis steps to conduct the comparison.

Using our method, we have evaluated 7 generic and workflow-specific autoscalers, and several
autoscaler variants, when used to control the capacity for a workflow-based workload running in a
realistic cloud environment. Our results across the diverse metrics highlight the trade-offs of using
the different autoscalers. At the best of our knowledge, the efficiency of general autoscalers was
previously unknown for workflows. We show that although workflow-specific autoscalers have the
privilege of knowing the workflow structure in advance, it is possible for properly configured general
autoscalers to achieve similar performance. Our results demonstrate that a correct parametrization
of general autoscalers is very important. In our case, the service rate parameter is not the only one
to affect the performance of general autoscalers. In particular, VM booting times and the choice of
the autoscaling interval are also crucial, as many general autoscalers are designed to stably operate
when VM booting times do not exceed a certain threshold. Finding optimal values for parameters
could be even impossible (as they could be implementation-related) and will probably require more
experiments.

Remarkably, our workflow-specific Plan autoscaler wins 4 out of 5 competitions while providing
a good balance between operational costs and performance. The correct choice of an autoscaler is
important but significantly depends on the application type. Thus, no single universal solution exists.
In such a situation, the multilateral ranking methods which we use gain more importance.

For the future, we plan to extend this work to consider other application models, such as request-
response services and media streaming workloads, and to conduct through the SPEC Research Group
vendor-driven experiments.
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