On Measuring Combinatorial Coverage of Manually
Created Test Cases for Industrial Software

Miraldi Fifo, Eduard Enoiu, Wasif Afzal
Email: mfo12002 @student.mdh.se, eduard.enoiu@mdh.se, wasif.afzal @mdh.se
Software Testing Laboratory, Milardalen University, Visteras, Sweden.

Abstract—Combinatorial coverage has been proposed as a way
to measure the quality of test cases by using the input interaction
characteristics. This paper describes the results of empirically
measuring combinatorial coverage of manually created test cases
by experienced industrial engineers working with embedded
software development. We found that manual test cases achieve
on average 78% 2-way combinatorial coverage, 57% 3-way cov-
erage, 40% 4-way coverage, 20% 5-way combinatorial coverage
and 13% for 6-way combinatorial coverage. These manual test
cases can be augmented to achieve 100% combinatorial coverage
for 2-way and 3-way interactions by adding eight and 66 missing
test cases on average, respectively. For 4-way interactions, full
combinatorial coverage can achieved by adding 658 missing
test cases. For 5-way and 6-way interactions, full combinatorial
coverage can be achieved by adding 5163 and 6170 missing test
cases on average, respectively. The results of this paper suggest
that manual test cases created by industrial engineers do not
achieve a high combinatorial coverage and can be improved by
adding more test cases to cover t-wise interactions at the expense
of more test cases to execute.

I. INTRODUCTION

In industrial practice, test cases are still created manually
by using specific test design techniques and domain-specific
skill and experience. Although criteria-based creation of test
suites has been the focus of a great deal of research, manual
testing is still widely used [1]], [2] in the software development
industry. In addition, in the industrial control software used in
real time applications (e,g., trains, power plants), testing is
not only rigorous but is also performed according to safety
standards. It is of utmost importance to determine the right
level of effectiveness for such test cases created manually by
engineers. Combinatorial coverage [3]], [4] has been proposed
as a measure of test case quality based on t-way interaction
measurement that can provide a quantitative measure of the
input space combinations that have been tested.

This paper describes an empirical exploration of combi-
natorial coverage measurement of manual test cases created
by industrial engineers working in Bombardier Transportation
Sweden AB. The software programs of the tested systems
are executed on Programmable Logic Controllers (PLCs). The
manual test cases are created by experienced test engineers. In
this paper we use the Combinatorial Coverage Measurement
(ccwm) [SB tool developed by NIST to analyze the thor-
oughness of test cases based only on the interaction coverage
characteristics of a test case.

Uhttps://github.com/usnistgov/combinatorial-testing-tools.git

The objective of this paper is to investigate the following
research questions:

o RQI1: What is the combinatorial coverage achieved by
test cases manually created by experienced engineers in
industry?

o« RQ2: What is the improvement potential in these test
cases with respect to increased t-wise combinatorial cov-
erage?

To answer these questions, we measure the combinatorial
coverage of 33 test suites manually created by experienced
industrial engineers. Each test suite contains a set of test cases.
The measurements are performed with CCM tool and the
results are evaluated in terms of the level of combinatorial
achieved and the number of missing test cases to achieve full
combinatorial coverage. The work introduced in this paper
begins in Section [[l where we describe the experimental
setup used. Section [III} introduces the results on combinatorial
coverage measurement of the manual test cases. We conclude
with a summary of the threats to validity in Section [IV|]and a
brief discussion on the conclusions and implications of these
results in Section

A. Related Work and Background

There exists several literature reviews on the topic of
combinatorial testing and its applications [6]-[10]. Few pre-
vious studies [[11]-[13]] have focused on directly comparing
manual test design techniques with automatic test generation in
terms of test coverage, code coverage, and mutation analysis.
However, these approaches are measuring the quality of the
created test cases in terms of code coverage and fault detection.
As a way to analyze the thoroughness of test cases based only
on the test case characteristics, Kuhn et al. [14] introduced
combinatorial coverage as a technique to measure the test
quality. Combinatorial coverage measurements are based on
the values of the input state space, thus this technique does
not involve execution of the software.

In another study [4], researchers have described different
measures of combinatorial coverage, which can help in the
quality evaluation of a test set. Another study [3] presents
useful combinatorial coverage methods used for estimating the
coverage and quality of a test set in terms of fault detection
for t-way interactions. In another study [[15], combinatorial
coverage is applied together with a new criterion to generate
test suites. Instead of focusing on the interaction of different
variables, in this case, the focus is on the interaction of

https://github.com/usnistgov/combinatorial-testing-tools.git

% create

testers

CCM Tool

o

Measurement
Collection

Test Suites

‘Combinatorial Coverage “7

‘ Missing Test Cases ‘<7

Fig. 1: Overview of the experimental method. For each created
test suites we collect results on the combinatorial coverage
achieved using the CCM tool.

different scenarios. This technique measures the quality of test
cases based on a scenario-based coverage criterion. Recently,
Vilkomir et al. [|16]] performed measurements for combinatorial
coverage, three cryptographic algorithms are the object of
this analysis and the CCM tool is used to measure the
combinatorial coverage of random test cases. Since there is
a lack of empirical studies measuring combinatorial coverage
of manual test cases designed by experienced engineers, we
are motivated to investigate this subject in more detail.

II. EXPERIMENT SETUP

In this experiment, we perform measurements on 33 manual
test cases, designed by experienced engineers, analyzing the
collected results in terms of combinatorial coverage. We used
the method shown in Figure [T} The test cases are provided by
Bombardier Transportation Sweden AB, a large-scale com-
pany focusing on train and railway development. The system
under test is a Train Control Management System (TCMS), an
embedded system controlling the safety-critical functionality
of a train implemented using Programmable Logic Controllers
(PLCs) to provide control and supervision [17]. The PLC
software running on this system is developed using a domain-
specific programming language. PLC programs in TCMS
are created using the IEC 61131-3 programming languages:
Structure Text (ST), Instruction List (IL), Ladder Diagram
(LD), Function Block Diagram (FBD). We note here that two
of these languages, FBD and LD, are graphical programming
languages. When a PLC program written in these languages is
compiled to machine code, the program is evaluated using the
read-execute-write semantics and executed cyclically using a
predefined cycle time. PLC programs typically contain time-
depended procedures that require input parameters to be trig-
gered and changed at certain times in order to trigger specific
behaviors. Each test case used in this study was created for
testing a PLC program represented as a Program Organization
Unit (POU) [17] containing functions (i.e., procedures), func-
tion blocks (i.e., stateful functions) and a top-level program
that has access to the IO ports (e.g., sensors and actuators).

After performing measurements for 2 to 6 way interactions,
we collect the generated results and use them to generate the
statistics. The tool used in this paper to measure the combina-

TABLE I: Results for each t-way. We report several statistics
relevant to the obtained results: minimum, median, mean,
maximum and standard deviation values.

t-way Median Mean Min Max SD
2-way 83% 78% 32% 100% 0.16
3-way 55% 57% 1% 100% 0.22
4-way 32% 40% 1% 100% 0.25
5-way 18% 20% 1% 50% 0.13
6-way 10% 13% 1% 40% 0.10

torial coverage of manual test cases is named Combinatorial
Coverage Measurement (CCM) tool and it is developed at the
National Institute Standards and Technology (NIST). When it
comes to creating manual test cases, there are at least two
ways [|18] of creating test cases: criteria-based test design and
human-based test design. The criteria-based design consists
in designing test cases in order to satisfy some engineering
requirements such as coverage criteria. On the other hand,
the human-based test design is used for creating test cases
mostly based on the testers knowledge about the software
under test and the specific domain. Test cases used in this
study are produced using both criteria and human-based test
design according to safety-critical standards. In this paper we
will focus on manual test cases created by engineers working
in industry that have years of experience in both coverage-
based and human experience-based test design.

III. RESULTS

In this section we present the results of the performed mea-
surements. We collected the measurements data to answer our
research questions by collecting manual test suites; measuring
their effectiveness in terms of combinatorial coverage. The
collected results are displayed as descriptive statistics (i.e.
median, mean, minimum, maximum and standard deviation)
and the overall results for the combinatorial coverage of each
t-way interaction are displayed in Table

As can be noticed from the results in Table|l} the majority of
combinatorial coverage scores decrease while the t-way inter-
action increases. On average, the manual test suites achieve a
combinatorial coverage of 78.6% for 2-way interactions, 57%
in 3-way interactions, 40.2% in 4-way interactions, 20.2% in
5-way interactions and 13% in 6-way interactions on average
for all test suites. In Figure 2| we depict the combinatorial
coverage scores for each t-way interactions in the form of a
boxplot; boxes span from 1st to 3rd quartile, black middle
lines mark the median and the whiskers extend up to 1.5x the
inter-quartile range and the circle symbols represent outliers.

The scatter plot in Figure 3] represents the distribution of
the number of manual test cases and number of variables for
each test suite. Each circle in the scatter plot represents a test
suite, with the vertical axis showing the number of manual test
cases for the specific test suite and the horizontal axis showing
the number of variables for each particular test suite. We can
observe that only eight out of all the 33 test suites (less than
25%) have more than 20 manual test cases, and only 11 out
of the 33 test suites (33%) have more than 10 variables.

@ 1
g
P o
g o T
— g | i 1
T . .
8 = ° | 2 °
- Q : = ! S
£ —
‘E 7 =] i e :
<] ﬁ
= | | | | |
2 3 4 5 6
t-way

Fig. 2: Combinatorial coverage scores achieved for all t-way
interactions.

RQ1 asked what is the combinatorial coverage achieved by
manually created test cases. Overall we confirm that manual
test cases created by industrial engineers do not achieve very
high combinatorial coverage.

Answer RQI: Manual test cases cover less
than 79% of input parameter interactions on
average for t-way (where t is between 2 and
6). Manual test cases created by experienced
engineers achieve 78.6% 2-way combinatorial
coverage, 57% for 3-way coverage, 40.2% for
4-way coverage, 20.2% for 5-way coverage
and 13% for 6-way coverage on average.

To answer RQ2, we collected data on the number of test
cases needed for achieving 100% combinatorial coverage. This
can be obtained by adding the missing test cases to the existing
test suite, in order to cover the missing combinations and
achieve full combinatorial coverage. The CCM tool provides
the functionality to generate all missing test cases to achieve
full combinatorial coverage. In Table [ll] we show the results
of the number of additional test cases on average needed for
each t-way interactions to achieve full combinatorial coverage.

For example, for 2-way there are approximately eight miss-
ing test cases on average to be added to the existing test
cases in order to achieve full combinatorial coverage. For 3-
way there are approximately 66 missing test cases on average
to be added to the existing test suites in order to achieve
full combinatorial coverage. We note here that the maximum
number of test cases in a test suite manually created is 4.
On the other hand for 4-way interactions 658 missing test
cases should be added to the existing ones in order to achieve
full combinatorial coverage. For 5-way and 6-way interactions,
we would need to add 5163 and 6170 missing test cases,
respectively, to achieve full combinatorial coverage.

The CCM tool can generate at maximum 10000 missing test
cases. For 2-way, 3-way and 4-way interactions there are no
test suites where this limit is reached. For 5-way and 6-way
interactions, in most of the test suites, this limit is reached.
Therefore, for these cases adding these test cases becomes

=]
o |
b
[+
D o _| o
o O o o
s qk
z R °
o = o o
&l @ g
e 8 %o g o @
o ° o 2
T T T T
5 10 15 20
Nr_Var

Fig. 3: Number of variables and the number of test cases in
each test suite.

prohibitive from a test execution point of view. In Figure [
we show the number of missing test cases for each t-way in
form of a box-plot.

Answer RQ2: Manual test cases can be im-
proved in terms of combinatorial coverage
by generating additional test cases for 2-way
and 3-way: 7.6 and 66.2 more test cases on
average, respectively. For higher strength in-
teractions, the improvement can be prohibitive
due to the large number of missing test cases
to achieve full combinatorial coverage (over
10000 missing test cases in most cases for 6-

way).

IV. VALIDITY THREATS

The results are based on an experiment in one company
in Sweden using a limited number of test suites. Even if
this number can be considered small, we argue that having
access to real qualitative data and the opportunity to collect
information from engineers working in the embedded system
domain can be representative. More case studies are needed
to generalize these results to other systems and domains.

The assumption that the input state space for each test suite
is determined by the values that each variable take in the
manual test cases of the test suite might not reflect the real
context. This is because some variables might take also other
values that are not reflected in the existing test cases of the
specific test suite. In order to avoid this validity threat, ranges
of values should be used for each variable, including those
values that are not represented in the existing test cases of the
test suite.

Manual test cases in real life scenarios have constraints
which define some combinations of variables as forbidden.
These combinations are considered as invalid combinations
and are excluded during the combinatorial testing analysis. In
this paper we used test data without constraints. This aspect
can be a validity threat to the generalization of the results to
scenarios with constraints.

We used the CCM tool developed from NIST for combina-
torial coverage analysis. This tool is based on well know algo-

TABLE II: The average number of needed test cases to achieve
full combinatorial coverage on each t-way interaction for each
existing test suite.

t-way 2-way 3-way 4-way S5-way 6-way
Test Cases 7.6 66.2 658 5163 6170
£ g
g 87
@ ol
2 o
o g | L
= 8
B, ¥ 8
z il e
O o | —— . — — ——
T T \ \ T
2 3 4 5 6

t-way

Fig. 4: Graphical representation of the number of missing test
cases for each t-way interaction.

rithms and to the best of our knowledge is the only available
tool that gives the possibility to generate the missing test cases
to achieve the desired level of combinatorial coverage. We also
assumed that its results are similar to the output produced by
other combinatorial tools.

V. CONCLUSIONS AND FUTURE WORK

In this paper we used the CCM tool to perform measure-
ments of combinatorial coverage for 33 test suites, contain-
ing manual test cases designed by experienced engineers of
Bombardier Transportation Sweden AB. The results showed
that the level of the combinatorial coverage decreased as the
strength of t-way interactions increased. More specifically,
the achieved combinatorial coverage of manual test cases is
78.6% for 2-way interactions, 57% for 3-way interactions,
40.2% for 4-way interactions, 20.2% for 5-way interactions
and 13% for 6-way interactions. The results imply that manual
test cases written by industrial engineers do not achieve
high combinatorial coverage scores regardless of the t-way
combinations.

Additionally, the CCM tool allowed us to generate missing
test cases to reach full combinatorial coverage for different t-
way interactions. The results showed that manual test cases de-
signed from experienced engineers can be improved by adding
missing test cases to achieve full combinatorial coverage. For
higher strength interactions, the improvement is infeasible to
be useful in practice due to the large number of missing test
cases (over 10000 missing test cases in most of the cases for 5-
way and 6-way) needed to achieve full combinatorial coverage.
Nevertheless, knowing the proportion of missing combinations
could provide useful information for test engineers. The results
of this study suggest that there might be a need to augment
manually created test cases.

These results on measuring the combinatorial coverage of
manual test cases need to be further studied; we need to

consider fault coverage estimation as well as to consider the
cost of using this measurements in practice.

REFERENCES

[1] C. Andersson and P. Runeson, “Verification and validation in industry-a
qualitative survey on the state of practice,” in International Symposium
on Empirical Software Engineering. 1EEE, 2002, pp. 37-47.

[2] A. Beer and R. Ramler, “The role of experience in software testing
practice,” in Euromicro Conference Software Engineering and Advanced
Applications. 1EEE, 2008, pp. 258-265.

[3] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Measuring and specifying
combinatorial coverage of test input configurations,” Innovations in
systems and software engineering, vol. 12, no. 4, pp. 249-261, 2016.

[4] D. R. Kuhn, I. D. Mendoza, R. N. Kacker, and Y. Lei, “Combinatorial
coverage measurement concepts and applications,” in International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 1EEE, 2013, pp. 352-361.

[5] I. D. Mendoza, D. R. Kuhn, R. N. Kacker, and Y. Lei, “Ccm: A
tool for measuring combinatorial coverage of system state space,” in
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. 1EEE, 2013, p. 291.

[6] C.Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput.
Surv., vol. 43, no. 2, pp. 11:1-11:29, 2011.

[7]1 V. V. Kuliamin and A. A. Petukhov, “A survey of methods for construct-
ing covering arrays,” Programming and Computer Software, vol. 37,
no. 3, p. 121, 2011.

[8] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-
based testing for non-functional system properties,” Inf. Softw. Technol.,
vol. 51, no. 6, pp. 957-976, 2009.

[9]1 R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed, “A first

systematic mapping study on combinatorial interaction testing for soft-

ware product lines,” in 2015 IEEE Eighth International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), 2015.

B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained

interaction testing: A systematic literature study,” IEEE Access, vol. 5,

pp. 25706-25730, 2017.

[11] E. Enoiu, D. Sundmark, A. Causevic, and P. Pettersson, “A comparative

study of manual and automated testing for industrial control software,”

in International Conference on Software Testing, Verification and Vali-

dation (ICST). 1EEE, 2017, pp. 412-417.

P. Charbachi, L. Eklund, and E. Enoiu, “Can pairwise testing perform

comparably to manually handcrafted testing carried out by industrial

engineers?” in International Conference on Software Quality, Reliability

and Security Companion (QRS-C). 1EEE, 2017, pp. 92-99.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does

automated white-box test generation really help software testers?” in

Proceedings of the 2013 International Symposium on Software Testing

and Analysis. ACM, 2013, pp. 291-301.

D. R. Kuhn, R. N. Kacker, and Y. Lei, “Combinatorial coverage as an

aspect of test quality,” CrossTalk, vol. 28, no. 2, pp. 19-23, 2015.

V. P. La Manna, I. Segall, and J. Greenyer, “Synthesizing tests for

combinatorial coverage of modal scenario specifications,” in /8th In-

ternational Conference on Model Driven Engineering Languages and

Systems (MODELS). 1EEE, 2015, pp. 126-135.

S. Vilkomir, A. Alluri, D. R. Kuhn, and R. N. Kacker, “Combinatorial

and mc/dc coverage levels of random testing,” in International Confer-

ence on Software Quality, Reliability and Security Companion (QRS-C).

IEEE, 2017, pp. 61-68.

K.-H. John and M. Tiegelkamp, IEC 61131-3: programming industrial

automation systems: concepts and programming languages, require-

ments for programming systems, decision-making aids. Springer

Science & Business Media, 2010.

P. Ammann and J. Offutt, Introduction to software testing. Cambridge

University Press, 2016.

(10]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

	Introduction
	Related Work and Background

	Experiment Setup
	Results
	Validity Threats
	Conclusions and Future Work
	References

