
Test Agents: The Next Generation of Test Cases
Eduard Enoiu, Mirgita Frasheri

Email: eduard.enoiu@mdh.se, mirgita.frasheri@mdh.se
Mälardalen University, Västerås, Sweden.

Abstract—Growth of software size, lack of resources to perform
regression testing, and failure to detect bugs faster have seen
increased reliance on continuous integration and test automation.
Even with greater hardware and software resources dedicated
to test automation, software testing is faced with enormous
challenges, resulting in increased dependence on centralized and
complex mechanisms for automated test case selection as part
of continuous integration. These mechanisms are currently using
static entities called test cases that are concretely realized as
executable scripts. Our key vision is to provide test cases with
more reasoning, adaptive behavior and learning capabilities by
using the concepts of software agents. We refer to such test cases
as test agents. The model that underlie a test agent is capable
of flexible and autonomous actions in order to meet overall
testing objectives. Our goal is to increase the decentralization of
regression testing by letting test agents to know for themselves
when they should be executing, how they should update their
purpose, and when they should interact with each other. In
this paper, we envision test agents that display such adaptive
autonomous behavior. Existing and emerging developments and
challenges regarding the use of test agents are explored—in
particular, new research that seeks to use adaptive autonomous
agents in software testing.

I. INTRODUCTION

Even if software testing is widely used in industry for
verification and validation, in many cases due to the increased
use of continuous integration and the sheer amount of test
cases created, automation becomes a bottleneck in software
development and is expensive to perform in a cost-efficient
manner. Several such challenges have been identified in the
automated regression testing of complex software systems
[1], [2]: costly scheduling of test cases, badly prioritized
test suite, and forgotten test cases. Automated testing is the
process of designing, continuously executing and maintaining
the confidence in the system dependability in a cost-effective
and automated manner. In this context, test cases are created
by human testers satisfying different test requirements and
domain needs, are scripted and executed automatically and
repeatedly. These test cases contain some mechanism for test
evaluation that is embedded in a test script. Traditional re-
gression test selection mechanisms are not designed to exhibit
capabilities of responsiveness, flexibility, robustness and re-
reconfigurability, since they are built upon centralized systems
that strive to achieve overall test suite optimization, but have a
weak and rigid response to complexity and changes at runtime.
Such centralized regression testing mechanisms normally lead
to situations where test cases are not adapting, resulting in
inefficient and costly test scheduling mechanisms. In these
circumstances, the current challenge is to develop collaborative

and reconfigurable test cases that support characteristics of
adaptation and autonomy.

In this paper we outline our vision to decentralize the con-
trol over regression testing by developing tests cases that are
capable of autonomous and adaptive actions. Such test cases
are named test agents. We envision the use of a test agent as a
self-contained and self-aware test case capable of interactions
with other test agents. These test agents represent another way
for an engineer to design test cases that will effectively test
software. The use of test agents tackles these test automation
challenges by enabling test engineers to create autonomous
and adaptive test cases which can take decisions about their
action-execution mechanism and scope of interactions at run-
time.

Many possible definitions of agents exist in the literature [3].
Here we explicitly consider that agents are software systems
that operate in an execution environment which they can
perceive and respond to, take initiatives and select own goals,
and interact with others when deemed fit [4]. Over the past
few years, this paradigm has been applied in different appli-
cation domains, with varying levels of product maturity [5].
These solutions are being deployed in the telecommunication,
logistics, e-commerce, and robotics domain. Having learned
from the successes and drawbacks of using agents in other
domains, our vision is to explore the test agent paradigm.
Practically, our vision goals are to: (i) create test cases capable
of adaptive and autonomous actions using test agents with a
specific purpose in terms of test effectiveness and efficiency,
a set of interaction and execution mechanisms, and the ability
to perceive the test evaluation results after each run and (ii)
investigate how test agents and their interactions evolving in
time could be represented.

II. REGRESSION TESTING

Software testing is the primary method used in industrial
practice to evaluate software and can be divided [6] in three
distinct tasks: test design, test execution and test evaluation.
A test engineer designs tests by creating test requirements
which are then written into actual scripts that are ready for
execution. These scripts are executed against the software and
the results are evaluated. Test automation is using software
to control these activities with the aim to reduce the cost
of testing. One integral part of test automation is regression
testing, the process of continuously testing software that has
been modified. A regression test system (shown in Figure 1) is
often incorporated into a continuous integration development
and determines which test cases to include in a regression suite



Regression 
Test System

centralized distributed

Test 
Agent

Test 
Case

Test 
Case

Test 
Case 

Test 
Agent

Test 
Agent

selection, scheduling and 
decision functions

A B C

A

B C

Fig. 1: Centralized and distributed approaches to regression
test automation.

by identifying suitable cases based on different information
sources (i.e., fault history, execution time, test coverage, failing
tests) obtained after the execution of the system. In the current
practice of software testing, test cases are entities composed
of several discrete parts (i.e., test case input values and
expected results needed for evaluation). These components
are concretely realized in a script that can be automatically
executed and knows exactly what values to expect. As a result,
the existing process of software testing is build upon static
test cases, thus entailing the use of a highly-complex and
centralized test scheduling technique for regression testing.
To change this centralized process, we envision a new class
of autonomous and adaptive test cases that we refer to as
test agents. As a result, test agents could enable testing
of goals beyond their original scope and can decide what
interactions are needed with other test agents and adapt when
their test goal or the software updates. The change from the
traditional centralized approach to regression testing to the new
distributed and adaptive approach is illustrated in Figure 1.

III. ADAPTIVE AUTONOMY

The notion of adaptive autonomy refers to the ability of
software agents to change their levels of autonomy based on
their circumstances. Agent autonomy in itself can be described
through two dimensions, self-sufficiency, i.e., ability to fulfill
a task without outside help, and self-directness, i.e., ability
to decide upon one’s own goals [7]. Castelfranchi [8] uses
dependence theory to define autonomy as follows: An agent A
that lacks means for performing a specific task T and depends
on an agent B to acquire such means, is said to be non-
autonomous from B with respect to T. It might happen that A
is able to perform T by itself at a point in time t1, but not at
t2 due to circumstantial changes, e.g. A is low on resource-
consumption levels. Consequently, A (and B as well) needs to
continuously evaluate whether it needs assistance, or whether
it is willing to give assistance to other agents that might ask.
As a result, based on their circumstances, agents decide by
themselves when to adapt their autonomy. Alongside adaptive
autonomy, there are other similar notions such as adjustable
autonomy [9] [7], mixed-initiative interaction [9], collaborative
control [10] and sliding autonomy [11].

IV. AGENTS IN SOFTWARE TESTING

Agents have already been used to automate different aspects
of testing. One such approach is the adaptive test management
system (ATMS) [12], which aims at selecting an appropriate
set of test cases to be executed in every test cycle using test
unit agents and fuzzy logic. Researchers have also used a
multi-agent approach for intra-class testing of object-oriented
software. Dhavachelvan [13], [14] presented three types of
agents: distributor agent, testing technique agent, and clones.
Distributor agents take assignments and map them to the
available testing agents. Other contributions have relied on
the agent-based paradigm to specifically target service-oriented
systems [15]. The Belief Desire Intention (BDI) agent archi-
tecture is used by Rao et al. [16] to distinguish between two
types of agents: coordinators and runners. Coordinators create
testing plans and runners conduct the testing activities and
send their results back to the respective coordinator. Hong Zhu
[17] is using the agent-paradigm in a framework that targets
both software development and management. Zhang et al. [18]
extended the LoadRunner testing platform for web services
using IBM Aglet agents. LoadRunner enables the simulation
of users by executing tests on the remote server hosting
the service by using Aglets agents. A different approach is
presented in the work of Tang et al. [19]. Their study aims
at automating the whole testing life cycle by using four types
of agents: requirement agent, construct agent, execution and
report agent.

V. DEFINING A TEST AGENT

Our overall vision for the use of test agents is to shift the
bulk of continuous test selection, prioritisation and scheduling
from a centralized regression test automation framework to
a lower level of abstraction where test agents can decide by
themselves how and what to execute. An adaptive autonomous
agent proposed by Frasheri et al. [20] has been modified to fit
the purposes of a testing agent. Such an agent can be described
from two perspectives, its overall internal operation, and the
interaction mechanisms which enable adaptive autonomous
behaviour.

A. A Test Agent Model

The test agent is composed of the following five states
mirrored in Figure 2: Idle, Interact, Execute, Regenerate, and
Out of Order. The test agent is not committed to anything
in the Idle state and will execute its own task when needed.
Once the execution task has been generated, or the test agent
has gotten a task from another test agent, it will go to the
Execute state and decide if it needs assistance from another
test agent before and after its execution. After the execution
is completed, the agent will go back to the Idle state. When
the test agent receives a request from another agent, it will
switch to the Interact state and will decide whether to accept
the request and give assistance or discard it. When the test
agent decides it cannot serve its initial purpose it will switch
to the Out of Order state. Other triggers for switching to Out of
Order could be devised if necessary. In addition, the agent can



switch to the Regenerate state and a test case redesign takes
place with the help of a test engineer. In the end, the test
agent can return to the Idle state. For example, let us assume
a test agent A has not been able to fulfill its original goal (e.g.,
achieving 100% branch coverage for a certain function) due to
a code change. The agent will ask for assistance at runtime in
the Execute state from another test agent. Test agent C receives
the request, but decides to discard the request since its initial
goal was to check the fulfillment of a certain requirement and
its last execution is not affecting the logic that needs to be
covered. Test agent B decides to accept the request since this
new goal serves its initial purpose and goes to the Execute
state and fulfills it.

B. Test Agent Interactions

The adaptive autonomous behavior is determined at those
points in which the test agent decides whether to ask or give
help, and is modeled through its willingness to interact. This
willingness is composed of the disposition to give or to ask
for help. Frasheri et al. [20] considered the different factors
that could influence the willingness of agents to interact, while
Van der Vecht et al. [21] examined the task urgency and agent
dedication to the overall organization as a molder of adaptive
behavior. Further studies are crucial for establishing a suitable
adaptive autonomous behavior based on the application of test
agents in realistic testing contexts.

In this paper, we propose to derive the adaptive behavior of
test agents by adapting the following four levels of interactions
between agents already identified by Frasheri et al. [22] to
distributed regression testing: (i) non-committal interactions in
which a test agent can broadcast information (e.g, its execution
time, fault detection, test coverage) to the other test agents and
no response is expected, (ii) one-to-one dialogue in which a
test agent A asks another test agent B for information (e.g.,
its fault history) and a response is expected, (iii) one-to-one
delegation which is used when a test agent A delegates a task,
or a subtask (e.g., cover certain parts of the code) to a test
agent B and a response is expected together with some execu-
tion evidence and information (e.g., the input parameters used
during execution), and (iv) one-to-many dialogue/delegation
in which two scenarios are considered: chain interactions and
simultaneous interactions (in the former, a test agent A makes
a request to a test agent B, which in turn makes a request
to C; and whereas in the latter, test agent A makes several
requests, one to test agent B, one to C). For example, the
one-to-many interactions can be used to achieve a trade-off
between multiple test agents and their objectives with regard
to some test criteria and cost (e.g., maximize test coverage,
minimize the execution time).

VI. CHALLENGES

Reassessing the concept of a test case using a test agent
representation is not an easy task to accomplish and therefore
realizing our vision requires addressing the following chal-
lenges.

Entry

Regenerate

Execute Interact
Out 

of Order

Idle

Fig. 2: A high-level test agent model [20].

Test Design

When it comes to creating test cases there are at least two
ways [6], [23]: criteria-based and human-based test design.
The criteria-based test design is used for creating tests that
satisfy some test requirement or coverage criterion. This
process requires the creation of explicit test requirements
and models. On the other hand, human-based test design
is used for creating test cases based on the test engineer’s
domain-specific knowledge. When engineers create tests, they
sometimes attempt to perform positive testing as well as
stressing the software using unusual test cases. One challenge
to this end is to provide precise guidance to test engineers
on how to create a test agent in terms of its purpose, test
case values, execution environment, perception capabilities
and interaction actions with other test agents. The design of
test agents is complicated by the test case heterogeneity given
the large space of possible test scenarios and interactions
with the software. In addition, a challenge is to define a
language for describing the test agent including its perception
capabilities, interaction rules for actions, test purpose and test
agent hierarchy.

Test Automation

We refer to a test being automated if its execution, evalua-
tion and reporting is controlled by software. As an example,
when dealing with test agents, test automation necessarily has
to consider a standardized design for test scripts, and should
include support for a test execution driver. This driver should
be used by each test agent for executing the software, evaluate
the results of its execution and report the results back to the test
agent. A challenge is to establish a test automation framework
that supports (i) the ability to share test data and interaction
information among test agents, (ii) the ability for test agents
to easily organize and run, and (iii) statistical assertions to
evaluate the multi-dimensional information perceived from
logs and reports. Clearly, automated support for maintaining
test agents is crucial for the success of such an approach.

Regression Testing

Software is subject to frequent modifications. Regression
testing is the process of continuously testing modified soft-
ware. Its purpose is to ensure that software is functionally



equivalent to the version before the updates. For example,
regression testing can reveal if mistakes in requirements are
implemented in the software. The use of regression testing
can result in a test suite that is too large to manage and
does not finish to execute in a timely manner. For test agents,
regression testing is associated with the interaction between
agents and their evolution in time. Evolving a test agent is
challenging because of more complex dependencies. The adap-
tive autonomous behavior of test agents is modeled through its
willingness to interact with other test agents. This interaction
should be based on local built-in preferences that are deciding
what to do next and initiate actions during runtime.

VII. OVERALL OBJECTIVES AND CONCLUSION

The goal of this work is to apply the adaptive autonomous
agent paradigm to the software testing domain in order to
reassess the notion of a test case. The vision proposed in this
paper is expected to lead to an operational definition of a test
agent. Such agents need to continuously reason and decide
on their need for help or when to assist other test agents
in different circumstances. In order to validate the proposed
vision, the following steps need to be taken: (i) select a
platform in which to develop the test agent automation system
(i.e., using several agent-based technologies are available such
as JADE, NetLogo, SeSAm [24]), (ii) analyze and simulate
(e.g., using ROS (Robot Operating System) [25]) how test
agent interactions are shaped by a test engineer’s preferences
and define how interactions between different agents are
represented, and (iii) investigate different learning techniques
that can help the test agent refine its decision-making process
and evolution in time. An advanced capability that can be
added to test agents is learning such that they retain useful
information from their interactions as training data and utilize
various machine learning techniques to adapt to new execution
scenarios and improve their performance.

ACKNOWLEDGMENT

This work is partially funded from the Electronic Com-
ponent Systems for European Leadership Joint Undertaking
under grant agreement No. 737494, The Swedish Innovation
Agency, Vinnova (MegaM@Rt2 and XIVT), the DPAC re-
search profile funded by KKS (20150022) as well as the
UNICORN project, VINNOVA FFI.

REFERENCES

[1] P. E. Strandberg, W. Afzal, T. J. Ostrand, E. J. Weyuker, and D. Sund-
mark, “Automated system-level regression test prioritization in a nut-
shell,” IEEE Software, vol. 34, no. 4, pp. 30–37, 2017.

[2] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming google-scale continuous testing,” in Proceedings
of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track. IEEE Press, 2017, pp. 233–242.

[3] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A
taxonomy for autonomous agents,” in International Workshop on Agent
Theories, Architectures, and Languages. Springer, 1996, pp. 21–35.

[4] N. R. Jennings and M. J. Wooldridge, “Applications of intelligent
agents,” in Agent Technology. Springer, 1998.

[5] J. P. Müller and K. Fischer, “Application impact of multi-agent systems
and technologies: A survey,” in Agent-oriented Software Engineering.
Springer, 2014, pp. 27–53.

[6] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[7] M. Johnson, J. Bradshaw, P. Feltovich, C. Jonker, B. Van Riemsdijk,
and M. Sierhuis, “The fundamental principle of coactive design: In-
terdependence must shape autonomy,” in Coordination, organizations,
institutions, and norms in agent systems VI. Springer, 2011, pp. 172–
191.

[8] C. Castelfranchi, “Founding agent’s ’autonomy’ on dependence theory,”
in Proceedings of the 14th European Conference on Artificial Intelli-
gence. IOS Press, 2000, pp. 353–357.

[9] B. Hardin and M. Goodrich, “On using mixed-initiative control: A
perspective for managing large-scale robotic teams,” in Proceedings of
the 4th International Conference on Human Robot Interaction. ACM,
2009, pp. 165–172.

[10] T. Fong, C. Thorpe, and C. Baur, Collaborative control: A robot-centric
model for vehicle teleoperation. Carnegie Mellon University, The
Robotics Institute, 2001, vol. 1.

[11] J. Brookshire, S. Singh, and R. Simmons, “Preliminary results in sliding
autonomy for assembly by coordinated teams,” in Proceedings of the
International Conference on Intelligent Robots and Systems, vol. 1.
IEEE, 2004, pp. 706–711.

[12] C. Malz and N. Jazdi, “Agent-based test management for software
system test,” in International Conference on Automation Quality and
Testing Robotics (AQTR), vol. 2. IEEE, 2010, pp. 1–6.

[13] P. Dhavachelvan, G. Uma, and V. Venkatachalapathy, “A new approach
in development of distributed framework for automated software testing
using agents,” Knowledge-Based Systems, vol. 19, no. 4, pp. 235–247,
2006.

[14] P. Dhavachelvan and G. Uma, “Multi-agent-based integrated framework
for intra-class testing of object-oriented software,” Applied Soft Com-
puting, vol. 5, no. 2, pp. 205–222, 2005.

[15] X. Bai, B. Chen, B. Ma, and Y. Gong, “Design of intelligent agents for
collaborative testing of service-based systems,” in Proceedings of the
6th International Workshop on Automation of Software Test. ACM,
2011, pp. 22–28.

[16] A. Rao, M. Georgeff et al., “Bdi agents: From theory to practice.” in
International Conference on Manufacturing Systems, vol. 95, 1995, pp.
312–319.

[17] H. Zhu, “Cooperative agent approach to quality assurance and testing
web software,” in Proceedings of the 28th Annual International Com-
puter Software and Applications Conference, vol. 2. IEEE, 2004, pp.
110–113.

[18] J. Zhang and D. Xu, “A mobile agent-supported web services testing
platform,” in International Conference on Embedded and Ubiquitous
Computing, vol. 2. IEEE, 2008, pp. 637–644.

[19] J. Tang, “Towards automation in software test life cycle based on multi-
agent,” in International Conference on Computational Intelligence and
Software Engineering (CiSE). IEEE, 2010, pp. 1–4.

[20] M. Frasheri, B. Çürüklü, and M. Ekström, “Analysis of perceived help-
fulness in adaptive autonomous agent populations,” LNCS Transactions
on Computational Collective Intelligence, 2017.

[21] B. van der Vecht, F. Dignum, and J. C. Meyer, “Autonomy and
coordination: Controlling external influences on decision making,” in
International Joint Conferences on Web Intelligence and Intelligent
Agent Technologies, vol. 2. IEEE, 2009, pp. 92–95.

[22] M. Frasheri, B. Çürüklü, and M. Ekström, “Towards collaborative
adaptive autonomous agents.” in ICAART (1), 2017, pp. 78–87.

[23] S. Eldh, “On test design,” Ph.D. dissertation, Mälardalen University,
2011.

[24] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Journal
of Artificial Societies and Social Simulation, vol. 18, no. 1, p. 11, 2015.

[25] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.


