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Abstract

Implementing data fields in Haskell

Indexed data structures such as arrays are basic building blocks in many
applications. The data field model is a general semantic model which pro-
vides an abstract and homogeneous way of describing such structures and
operations on them. A data field is a generalized indexed structure, and is as
such a function with explicit information about its domain. Data fields can
be seen as partial functions, and this intuition is used to guide the semantics
for the operations on data fields.

This model for indexed data structures is functional in its design, and
is thus natural to include in a functional language. In this thesis, we design
and implement a dialect of the functional language Haskell which has been
extended with data fields. Since the implementation for practical reasons
had to be based on an existing Haskell system, we also evaluate different
Haskell system to see how suited they are for such extensions.





Referat

Implementation av datafält i Haskell

Indexerade data strukturer som till exempel arrayer är viktiga byggstenar
i många programmeringspr̊ak. Datafältsmodellen är en generell semantisk
modell som ger ett abstrakt och homogent sätt att beskriva s̊adana struk-
turer och operationer p̊a dem. Datafältsmodellen generaliserar indexerade
strukturer genom att betrakta dem som funktioner med explicit informa-
tion om domänen. Ett s̊adant datafält kan ses som en partiell funktion, och
denna intuition används för definiera semantiken för de olika operationerna
p̊a datafält.

Datafältsmodellen är i grunden funktionell, och det är därför naturligt
att inkludera den i ett funktionellt spr̊ak. I detta examensarbete beskriver
vi designen och implementationen av en Haskell-dialekt som utvidgats med
datafält. Eftersom implementationen av praktiska skäl måste baseras p̊a ett
existerande Haskell-system, s̊a utvärderar vi ocks̊a olika Haskell-system med
avseende p̊a hur lämpade de är för detta.
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Chapter 1

Introduction

The indexed data structure is a basic building block in many programming
languages. An indexed data structure is a collection of data which can be
indexed (explicitly or implicitly) to retrieve a certain value. The “canonical”
examples of indexed data structures are the array and the linked list, where
the indexing is explicit and implicit, respectively. More complex examples
are hash tables and trees. In most languages computations on indexed
data structures are expressed by explicit iteration or recursion over the data
structure, but some languages, such as APL [9], and many data parallel
languages also provide operations which operate directly on indexed data
structures.

In the data parallel programming paradigm, parallelism is achieved by
carrying out operations in parallel on indexed data structures. This pro-
gramming paradigm is closely associated with SIMD parallel computers,
and some data parallel languages are tied very tightly to a specific SIMD
parallel architecture, typically providing parallel arrays where the elements
are distributed over the processors and indexed by processor number. Since
these arrays are manipulated in parallel, operations which operate on the
entire structure are provided. Examples of languages with this programming
model are *Lisp and C* [47, 46] which are used to program the Connection
Machine [45]. Some data parallel languages are more abstract, however.
Fortran 90 [7], High Performance Fortran (HPF) [21] and Sisal [12] all take
a more high-level view of data parallel arrays.

The data field model is intended to capture the essence of indexed data
structures. It provides an abstract view of indexed data structures by view-
ing them as partial functions.

In this thesis we describe the design and implementation of a dialect
of the functional language Haskell with extensions based on the data field
model. The goal of the design has been to provide more general ways of
operating on such structures, thus relieving the programmer from bothering
about the details of specific data structures. The goal of the implementation
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was that it should be simple and extensible, the performance was less of a
concern. Since we choose to base our implementations on an existing Haskell
system, we look at the different Haskell systems and give our impression of
how suited they are for extending with data fields.

1.1 Operations on indexed data structures

In this section we describe some common classes of operations on indexed
data structures. We will also describe some different notations for the op-
erations. The most basic operation is of course indexing, and we will write
C(i) for the value at index i in the indexed data structure C.

Elementwise applied operations

Elementwise application is the operation of applying a function to the el-
ements of one or more indexed data structures. An example of an ele-
mentwise applied operation is the multiplication of all elements in a vector
v with a scalar a. The result of this is a vector v′ where v′(i) = av(i).
This can be generalized for operations which take more than one argument.
The elementwise addition of A and B result in a structure C where where
C(i) = A(i) + B(i). More generally, for an operation f which takes k argu-
ments and indexed data structures A1, . . . , Ak we can create the collection
C ′ where C ′(i) = f A1(i) . . . Ak(i).

There are several possible notations for elementwise applied operations.
One possibility is to have special elementwise applied versions of each “scalar”
operation. In *Lisp, for example, elementwise applied operations are suffixed
with “!!”. Thus the elementwise sum of A and B is written

(+!! A B).

Of course, this notation does not make it possible to use other than the built
in operations as elementwise applied operations in this convenient way.

Another possibility is to overload the scalar operator, and let + denote
both the scalar operation and the elementwise applied operation. In this
notation, the elementwise addition of A and B is simply written

A + B

Overloaded operators of the kind described above is available in e.g Sisal
and Fortran 90. In Fortran 90 this kind of overloaded operators are called
elemental intrinsics. Usually only a small set of built-in operations are
provided as overloaded functions. It might be possible to provide a more
general form of elemental intrinsic overloading, however [48]. Yet another
possibility is to use some form of “quantification” over the indices. The
usual for-loops in C and Pascal are examples of this notation, but these
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imply sequential execution. An example of a quantifying notation with a
parallel implementation is the for-notation in Sisal:

for i in 1,n returns array of A[i]+B[i]

Another quantifying notation which has a parallel implementation is the
FORALL statement in HPF.

Another notation often used in functional languages is to use higher
order functions. In Haskell (see section 1.3) for example, the elementwise
application of any function f on a list l can be written:

map f l

This can be generalized to more arguments with the zipWith family of
functions. For example, the elementwise addition of two lists a and b can
be written

zipWith (+) a b

Elementwise applied operations with several arguments raises some se-
mantical questions. Suppose we add two arrays A and B where A allows
indices in the range [0, 5] and B allows indices in the range [2, 8]. This is no
problem if we use some quantifying notation (since the indices are explicit),
but for the other notations we have some questions to answer. Should ele-
mentwise application of operation on data structures with different range be
allowed at all? If we allow it, what should the range of the result be? If we as
above sum two lists using zipWith, lists of different length are allowed, and
the result is the same as if the longer list would be truncated to the length
of the shorter list, and then the lists were added. In Sisal 2.0 and Fortran
90, conformance of the arrays is required, i.e one-dimensional arrays must
have the same length, two-dimensional arrays must have the same length in
both dimensions, etc. The arrays are aligned and then added elementwise.
This still leaves open what the index range of the result should be. There
are several alternatives. We could require it to be explicitly given by the
programmer, or we could give the resulting array an index range starting on
1 regardless of the operand (this approach is taken in Sisal). In an impera-
tive language we have another alternative. Since we usually store the result
in some array, the resulting array should have the same index range as this
array. Take the expression

C := A + B

Here the range of the array resulting from the addition of A and B is the
same as the range of C. This approach is taken in Fortran 90.
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Communication operations

Operations which reorder data structures can be viewed as communication
in the data parallel model where indices correspond to processors, since the
reordering corresponds to transfer of elements between processors. The two
main communication primitives are get communication and send commu-
nication. Get communication from a data structure A defines a new data
structure for which the value at index i is A(source(i)), where source is
some function (or data structure). This can be interpreted as a parallel
read, where each processor reads an element from another processor. Get
communication can be be expressed in HPF as

FORALL(I=1:N) B(I) = A(SOURCE(I))

The overloaded syntax is B = A(SOURCE), and is supported by HPF and
Fortran 90.

Send communication is in a sense the inverse of get communication. In
send communication, processor i sends its element of the data structure A

to the processor dest(i), where it is received into the local element of the
data structure B. In the FORALL notation, we can write

FORALL(I=1:N) B(DEST(I)) = A(I)

If dest(i) = dest(j) for some i 6= j, two different values should be stored at
the same address, which is a write conflict. This can be resolved by somehow
combining the elements sent to the same address (e.g adding them or taking
the maximum), and storing the combined value. This is sometimes referred
to as a combining send.

Selection

Selection operations selects part of a data structure. Projection operations
on arrays selects sub-arrays of lower dimension. The simplest example is
indexing of an array, where A(i) selects the element at index i (which has
dimension zero), but we also have projection operations which selects rows
or columns of matrices, such as A(1,:) in Fortran 90 which selects the first
row of the matrix A.

Restriction operations selects some subset of the data structure, but
retains the dimension. An example is the filter function in Haskell, where

filter p l

denotes the list which contains all the elements in l for which the predicate
p is true. Another example is operations which selects some subrange of an
array, e.g

A(I:J)
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Figure 1.1: Computing the sum of all elements in a data structure.

selects the sub-array of A ranging from I to J.

Restrictions can also be seen as more temporary constructions, where the
restriction selects the “active” part of an array where some operation is ap-
plied. An example is the range specification in the HPF FORALL-statement,
as in

FORALL(K=I:J) C(K) = A(K) + B(K)

Where the “active” parts of A, B and C are the sub-arrays ranging from I to
J. In the low-level data parallel model, where data are indexed by processor
number, restriction can be seen as selecting the processors which should be
active for a certain operation with a boolean “mask”.

Replication

Replication operations create larger data structures by replicating smaller
data structures. For example, the creation of an array where each element is
a copy of a given element is a replication operation. This can be done in Sisal
with the operation array_fill. In languages with overloaded elementwise
applied operations, we are often allowed to write

C = A + 42

When A and C are arrays, the result of this statement is to add 42 to each
element of A and store the result in C. This can be seen as if we first promote
42 to an array with the same range as A, filled with the value 42 and then
add this array elementwise to A.

We can also allow replication of higher dimensions, e.g the creation of a
matrix with copies of some vector as columns (or rows).

Reduction

Reduction operations are operations composed by applying some function
(usually a binary operation) repeatedly to the elements of a data structure.
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A typical example is the summation of all elements in an data structure.
Here the repeatedly applied binary operation is addition. Examples of re-
duction operations on lists are the foldr and foldl functions in Haskell.
To sum the elements of a list l, we write

foldr (+) 0 l

If the operation is associative and commutative, the reduction can be per-
formed in any order (e.g the sum of the list [1,2,3] can be computed as
(1+2)+3 or 1+(2+3) or (2+3)+1). But if not, the reduction must be per-
formed according to some ordering of the elements. For one-dimensional
arrays and lists there are natural orderings, but the situation is less clear
for multi-dimensional arrays and other more complex indexed structures.

Reduction with an associative operation can be implemented efficiently
in parallel if we perform the reduction according to a balanced binary tree,
see Figure 1.1.

Related to reduction operations are scan operations, which works like
reductions except that the result of a scan is a data structure of all partially
reduced values. An example is the scanl and scanr functions in Haskell,
where

scanl (+) 0 l

will produce a list sums of all prefixes of l (including the empty list).

1.2 The data field model

In this section, and the rest of this thesis, we take a functional view of in-
dexed data structures. In functional languages, computation is achieved by
evaluating expressions to their values, rather than by executing commands
(languages where the computation is achieved by executing commands are
called imperative). In a (pure) functional language, we have no destruc-
tive updates, or other side effects. Functions are prevalent in functional
languages (thus the name functional), and a computation which would be
performed by a while or for-loop in a imperative program is typically ex-
pressed by a recursive function in the corresponding functional program.
Functional languages usually have some form of λ-abstraction, i.e some syn-
tax for writing function-valued expressions without giving the functions ex-
plicit names. To write the function which adds one to its argument using
λ-abstraction, we write

λx.x + 1

In this section, we will use an informal functional language with function
definitions, λ-abstractions, if expressions and the usual arithmetic opera-
tions.
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In our functional view of data structures, we view indexed data structures
as functions with explicit information of their domain. This is the basic idea
of the data field model. A data field is a pair (f, b) of a function f and a
bound b, which has an interpretation as a predicate [[b]] (the term data field
is borrowed from the language Crystal [53]). Take the following array in C:

int A[5] = {6,7,8,0,1};

The data field view of A is as a pair (f, b)1, where f is a function defined on
the integers {0, . . . , 4}, and the value of f(0) = 6, f(1) = 7, etc, and [[b]] (x)
is true iff x ∈ {0, . . . , 4}

A data field (f, b), can be interpreted as a partial function [[(f, b)]] by
using [[b]] a restriction of the domain of f . Thus [[(f, b)]] is f restricted to
the set for which [[b]] is true. The interpretation of data fields as partial
functions is used to guide the semantics for operations on data fields. The
idea is that one should be able to think as data fields as partial functions
and define them in a functional fashion.

To explain this in more detail we need some concepts. Let the value “⊥”
stand for “non-termination”. To see what this means, let bot be defined as
follows:

bot = bot

The evaluation of bot will never terminate, so we say the value of bot is ⊥.

Now consider the following expression:

(λx.x + 1) bot

The evaluation of this expression will not terminate, since + need to
evaluate both its arguments. Functions such as λx.x + 1 which has the
property f ⊥ = ⊥, are called strict.

A partial function is a function for which f x = ⊥ for some x 6= ⊥. The
domain of f , dom(f), is the set {x | f x 6= ⊥}

Using ⊥ we can define a restriction operation “\” as follows:

f\p = λx.if p x then f x else ⊥

Then, using \, we can define the partial function [[(f, b)]] as follows:

[[(f, b)]] = f\ [[b]]

In the context of partial functions we can express the operations de-
scribed in section 1.1 succinctly using λ-abstraction.

1Of course, in C no information is kept at runtime about the bounds of arrays, but here
we assume such information is kept, and that the bounds are checked before accessing an
array.
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Elementwise applied operations of functions with one argument is simply
function composition. The elementwise application of g on f is :

λx.g (f x)

For functions g which take more than one argument, we write

λx.g (f1 x) . . . (fn x)

for the elementwise application of g on f1, . . . , fn.

Get communication is also function composition. The get of f from g is

λx.f (g x)

General Send communication has no functional meaning due to its impera-
tive nature.

Projection can also be expressed. λx.f (x, k), where k is a constant
represent the k:th row of f .

Restriction can be expressed using the \ operation described above.

Replication is basically λ-abstractions λx.t over a variable x which do
not occur in t. In the simplest case this is just a constant function, e.g λx.2
is the value 2 replicated to all the possible index values of x.

Reduction can be expressed as

red f g i n =

if n = 1 then f (i 0) else g(red f g i (n − 1)) (f (i(n − 1)))

Here f is the partial function being reduced, g is the binary operation, i
is an enumeration function, which maps integers to the index type of f ,
giving the ordering of dom(f), and n is the number of elements used in the
reduction.

We get identities for the explicit restriction operator \, which can be
used to guide the definition of operations on data fields. For elementwise
applied operations we have, if g is strict in all arguments:

λx.g(f1\b1 x) . . . (fn\bn x) =

(λx.g (f1 x) . . . (fn x))\(λy.(b1 y) ∧ . . . ∧ (bn y))

For if-expressions, we have the following identity:

λx.if (f1\b1)x then (f2\b2)x else (f3\b3)x =

(λx.if f1 x thenf2 x else f3 x)\(λy.b1 y ∧ (b2 y ∨ b3 y)

In practice we want to distinguish “out of bounds” from other errors
(and especially from non-termination), so we introduce a value “∗” which is
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the value which data fields assume outside of their domain. Thus we redefine
\ as

f\p = λx.if p x then f x else ∗

∗ should behave as ⊥. We would like ∗ to have the property that for
each strict function f , f∗ = ∗. Things are not quite so simple for functions
which take more than one argument, since we have to answer the question
of what happens when we mix ∗ and ⊥. There are several different ways
of extending functions to handle ∗, but a basic requirement of an extended
function is that if we replace ∗ with ⊥, the result should be as for the original
function. For a more detailed treatment of partial functions, and the proofs
of identities above we refer to [15] or [23].

One possible way of using the data field model as a programming lan-
guage would be to collapse the concepts “function” and “data field” and
view ordinary functions as data fields with infinite bounds. The resulting
language would allow one to define data fields directly by λ-abstraction, as
above. This approach is taken in [13].

However, there are some problems with this approach. For one thing,
a straightforward implementation would represent all functions as pairs,
which would add some unnecessary overhead since ordinary functions, i.e
data fields with infinite bounds, probably would be the most used. For
another, a tabulated data field will be hyperstrict, since the argument must
be fully evaluated to be used as an index in the table, while a non-tabulated
data field might have quite different strictness-properties. A function f is
hyperstrict if the result of applying f on a data structure which contains
⊥ is ⊥. Thus a function f on pairs is hyperstrict if f(x, y) = ⊥ whenever
x = ⊥ or y = ⊥. Ideally one would want a data field to have the same
strictness properties regardless of whether it is tabulated or not. One way
of solving this would be to define all data fields as hyperstrict, but if we
do not distinguish data fields and functions, this would make the whole
language strict.

Here we take an approach based on [25], where data fields and functions
are kept separate.

The basic operations on data fields are application, which is analogous to
function application or array indexing, ϕ-abstraction from which is is a coun-
terpart to λ-abstraction, and data field evaluation which tries to evaluate a
data field with finite bounds in all points in which it is defined.

To explain these operations in more detail, we need to give a more com-
plete description of the structures of data fields and bounds. We will describe
data fields and bounds abstractly as objects which have a set of primitive
operations defined on them. It might be easier to think of bounds as rep-
resentations of sets, rather than as representations of predicates, since the
operations have more direct interpretations as operations on sets. The inter-
pretation of a bound as a predicate can be seen as defining the membership
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test for the set represented by the bound. That is

member b x = [[b]]x

We also need to be more explicit about types. Let the set2 of data fields
from α to β be D(α, β). D(α, β) is defined as the set of pairs [α → β]×B(α),
where [α → β] is the set of functions3, from type α to type β and B(α) is
the set of bounds over the type α. Here we let ∗ represent “out of bounds”,
and thus we distinguish between out bounds and non-termination.

We assume the following about D(α, β) and B(α):

• As mentioned above, every bound b ∈ B(α) has an interpretation as a
predicate [[b]] ∈ [α → bool ].

• Every data field (f, b) ∈ D(α, β) has an interpretation as a hyperstrict
function [[(f, b)]] = f\ [[b]], where g is the hyperstrict version of the
function g. g is hyperstrict in ⊥, but not in ∗. That is, if x 6= ⊥ then
id (x,⊥) = ⊥, but id (x, ∗) = (x, ∗), where id is the identity function.

• There is a data field application operation “!” such that d ! x = [[d]] x

• The bounds are partitioned into two disjoint sets B(α) = Bfin(α) ∪
B∞(α), where the bounds in Bfin(α) are guaranteed to represent finite
sets, while the bounds in B∞(α) might represent infinite set (but need
not). We call the bounds in Bfin(α) finite bounds and the bounds in
B∞(α) infinite bounds.

• There is a bound noneα ∈ Bfin(α), which represents the empty set,
and a bound allα ∈ B∞(α), which represent the set of all elements of
type α.

That is, for all x

[[noneα]]x = false

[[allα]]x = true

• For bounds b ∈ Bfin, there are functions size and enum such that
size b is the size of the set represented by b, and enum b is a function
{1, . . . , size b} → α which can be used to enumerate all x such that
[[b]] x = true. Furthermore, size emptyα = 0.

2Actually, we want the data fields to form a domain, which is a more specialized
structure than a general set. See [52] for basic definitions and [25] for the detailed definition
of data fields.

3More precisely, the set of continuous functions from the domain of elements of type α

to the domain of elements of type β, see [52].
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• There are operations ⊓ and ⊔ which approximate the set operations
intersection and union, respectively. More precisely, we require

[[b1]] x ∧ [[b2]] x ⇒ [[b1 ⊓ b2]] x

[[b1]] x ∨ [[b2]] x ⇒ [[b1 ⊔ b2]] x

• There is an operation × : B(α) → B(β) → B(α × β) such that

[[b1 × b2]] (x1, x2) = ([[b1]] x1) ∧ ([[b2]] x2)

size (b1 × b2) = size b1 · size b2

if b1, b2 finite

enum (b1 × b2) n = (enum b1 (n mod (size b1)), enum b2 (n ÷ (size b1)))

if b1 ,b2 finite.

Here ÷ stands for integer division.

This can be generalized to operations ×k which create higher dimen-
sional products.

ϕ-abstraction makes it possible to define data fields similarly to how
functions are defined by λ-abstraction. Thus ϕx.d!x + d′!x defines a data
field which is the elementwise sum of the data fields d and d′. The function
part of the pair (f, b) defined by ϕx.t is basically λx.t, and the bound b should
be an approximation of {x | (λx.t) x 6= ∗}. The bounds are propagated from
the bounds of sub-expressions in a way corresponding to the identities for
explicit restriction mentioned above. For example,

ϕx.(f1, b1)!x + (f2, b2)!x =

(λx.(f1, b1)!x + (f2, b2)!x, b1 ⊓ b2)

ϕx.if (f1, b1)!x then (f2, b2)!x else (f3, b3)!x =

(λx.if (f1, b1)!x then (f2, b2)!x else (f3, b3)!x, b1 ⊓ (b2 ⊔ b3))

The data field evaluation operation {·} tabulates data fields with finite
bounds, and evaluates all the possibly defined elements. We let x : xs
denote the list which consist of x followed by the list xs, [] denote the empty
list, and [x1, x2, . . . , xn] denote the list of the elements x1, . . . xn. Suppose
lookup is defined as:

lookup x [] = ∗

lookup x (x′, v) : xs = if x′ = x then v else (lookup x xs)

11



Then we can define {d} for d = (f, b) as:

{(f, b)} = (λx.lookup x (list f b), b)

list f b = id [(enum b 1, f(enum b 1)), . . . , ((enum b n), f(enum b n))]

where n = size b

1.3 Haskell

Haskell [29] is a member of what we will loosely call the ML family of
languages. ML stands for Meta Language, and the name comes from the
fact that ML was originally designed to be used to program the Edinburgh
LCF theorem prover (i.e to be used as the Meta Language for the prover).
Some descendants of ML besides Haskell is Standard ML (SML) [26], Hope
and Miranda4 [50] (which is one of the most immediate predecessors to
Haskell). These languages all incorporate features such as pattern matching,
a strong polymorphic type system, user defined data types and higher-order
functions. These features will be described in some detail below, along
with some features of Haskell which are shared with only some or none
of the other languages in the ML-family (non-strict semantics and type
classes respectively). Since we are particularly concerned we indexed data
structures, we also take a look at how arrays are handled in Haskell.

We will assume some acquaintance with languages such as Lisp or Scheme
and describe distinguishing features of the ML-family of languages in gen-
eral, and Haskell is particular. For introductory programming in Scheme, see
[2]. For programming in SML (and functional programming in general) see
[28]. For an introduction to Haskell, see [17]. A good source for information
on functional languages in general is [1].

Pattern matching

Functions can be defined using pattern matching. This means the arguments
of functions are matched against the patterns in the definition. As a simple
example, take the function which calculates the length of a list:

length [] = 0

length (x:xs) = 1 + length xs

Here [] matches the empty list, and (x:xs) matches any list with at least
one element, binding the name x to the first element of the list and the name
xs to the rest of the list.

Pattern matching can also be used in case-expressions. Using case, we
can write length as

4Miranda is a trademark of Research Software Ltd.
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length l =

case l of

[] -> 0

(x:xs) -> 1 + length xs

Patterns can be arbitrarily nested, but there are some other restrictions
on patterns. Patterns must be linear, i.e each variable can only occur once.
Thus (x:x:xs) is an illegal pattern. Furthermore, patterns can only contain
constructors and variables. A constructor is a function which creates values
of some data type. This includes the list constructor : (pronounced “cons”),
but also constants such as 1 or ’c’, which are seen as constructors with no
arguments. Constructors are defined by data type declarations, see below.

Types

Languages in the ML-family are statically typed, i.e each object in the pro-
gram can be given a type a compile time. Types can be the usual integers
(Int), real numbers (Float) or booleans (Bool), but also function types
such as Int -> Int (functions from integers to integers), as well as more
complex types such as [Int] (Lists of integers) or (Int,Bool) (pairs of
integers and booleans). We also have polymorphic types; more about them
later.

The programmer is not forced to give the types of each defined object
explicitly. Instead the compiler can figure out the type of an object from
the contexts the object occur in. For example, take the following function
definition:

impl (a,b) = (not a) || b

Here the compiler will see that both a and b are used by functions which
expects booleans as arguments (not and ||), and will assign the type
(Bool,Bool) -> Bool (i.e a function from pairs of booleans to booleans)
to the function impl.

Polymorphic types are types which are universally quantified. To see
what this means, take the length function again:

length [] = 0

length (x:xs) = 1 + (length xs)

The types of the elements of the list are irrelevant to length, it will
work regardless of whether the list contains integers, real number, or even
functions. length can be given the type [a] -> Int, which means that the
function works for any type a, i.e the type is universally quantified over a

(actually the type derived for length by the compiler will be more general
than above. See section 1.3).
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User defined data types

Language in the ML-family of languages provide user-defined data types. For
example, in Haskell we can define a data type for binary trees of integers
like this:

data Tree = Node Int Tree Tree

| Empty

Here Node and Empty are the constructors of the data type, and can be used
to create trees. For example, the tree which consists of one node containing
the integer 1 can be created as:

Node 1 Empty Empty

Pattern matching can be used to define operations on user defined data
types. For example, the size function on trees can be defined like this:

size Empty = 0

size (Node x l r) = 1 + (size l) + (size r)

User defined data types can be polymorphic. A data type for binary
trees which is polymorphic in the type of object contained in the tree can
be defined like this:

data Tree a = Node a (Tree a) (Tree a)

| Empty

Higher order functions

The ML family treat functions as first class objects. This means they can
be treated as any other type of object, i.e they can be passed as arguments
to functions, returned from functions, stored in lists, etc. Functions can also
be created anonymously, using λ-abstraction. A function which adds 1 to it
argument is created by writing \x -> x + 1. Here “\” stands for λ.

Functions which take functions as parameters and/or return functions,
are usually referred to as higher order functions. A typical example is func-
tion composition:

f . g = \x -> f (g x)

here . takes two functions as parameters and returns their composition.
When we have higher order functions, we can choose between two differ-

ent ways of writing functions with more than one argument. The following
two versions of a function which adds two numbers will help to demonstrate:

add :: (Int,Int) -> Int

add (x,y) = x + y

add’ :: Int -> Int -> Int

add’ x y = x + y
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add is the version which would be used in most programming languages.
add’ is really a higher-order function, which given an integer returns add
function which adds that integer. For example, we can write (add’ 2 3) to
get 5, or write (add’ 2) to get a function which adds 2 to its argument.

The function add’ is said to be on curried5 form, and the function add

is said to be on uncurried form. We can define functions which convert
between the two forms:

curry :: ((a, b) -> c) -> (a -> b -> c)

curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> ((a, b) -> c)

uncurry f (x,y) = f x y

In the Haskell prelude and libraries, the curried form is almost always
used, and the same seems to hold for most programs written in Haskell.

Non-strict languages

The probably most significant difference between Haskell and ML is that
Haskell is non-strict, while ML is strict.

In a strict language, all functions are strict. In a non-strict language,
functions can be non-strict. Take the following function in Haskell, for
example:

c x = 2

and let bot be defined as:

bot = bot

In Haskell, c bot will have the value 2, but in a strict language such as
ML, c bot will have the value ⊥.

Non-strict semantics is usually implemented by lazy evaluation, which
means arguments to functions are evaluated only when they are needed,
and at most once. The opposite of lazy evaluation is eager evaluation, which
means arguments to a function are evaluated before they are passed to the
function. Eager evaluation implements strict semantics.

Non-strictness makes it possible to use conceptually infinite data struc-
tures. For example, we can define the list of all integers like this:

ints = 1 : (map (1+) ints)

Here map is a function which applies a function to all elements of a lists,
and (1+) is a convenient way of writing the function which adds one to its
argument.

Since the list constructor is non-strict, no part of the list will be evaluated
until actually needed.

5After Haskell Curry.
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Type classes

The kind of polymorphism described in section 1.3, where the type is pa-
rameterized over one or more type-variables is usually called parametric
polymorphism. Another example of parametric polymorphism is templates
in C++. In this kind of polymorphism, one definition works for all types.

Another kind of polymorphism is ad-hoc polymorphism or overloading.
In ad-hoc polymorphism, a function may be defined differently for different
types. A simple example of an overloaded function is the addition operator
“+” which works both for integer and floating point operands in many lan-
guages (e.g C). Some languages (such as C++) allows the programmer to
define his own overloaded functions.

One of the novel features of Haskell is the system of type classes, which
systematizes overloading. Basically, a type is an instance a specific type
class if some specific function(s) is defined on the type. As an example, take
the the following function which tests if a value is in a list:

elem x [] = False

elem x (y:ys) = x == y || elem x ys

elem has the type Eq a => a -> [a] -> Bool, which means elem works
for types which are instances of the Eq class, i.e types on which equality is
defined.

Type classes are defined by class declarations, in which the functions
which must be defined for types in the class are listed (these are called class
operations). The Eq class can be defined like this:

class Eq a where

(==) :: a -> a -> Bool

An instance declaration defines the behavior of the class operations on
a type. For example, here is an instance declaration which defines equality
on integers, using the primitive primEqInt integer equality function:

instance Eq Int where

(==) = primEqInt

The definition of == in the instance declaration is called a class method.
For polymorphic data types, we can give instance declarations which

define the class operations using the class operations on the types parame-
terized over. Thus we get an instance declaration which requires the types
parameterized over to be instances of the class. An instance declaration
which defines equality for lists whose component type is an instance of the
Eq class can be written like this:

instance Eq a => Eq [a] where

[] == [] = True
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[] == _ = False

(x:xs) == (y:ys) = x == y && xs == ys

Some standard classes other than Eq are Ord (which provides comparison
operations), Show (which provides operations which convert an object to a
string), and a plethora of numeric classes, of which the most basic is Num,
which provide operations such as addition and multiplication, as well as
overloaded numerical constants. Thus the type of

length [] = 0

length (x:xs) = 1 + (length xs)

will be inferred by the compiler to be Num b => [a] -> b

Some classes are subclasses of other classes. For example Ord is an
subclass of Eq, which means that an instance of Ord must also be an instance
of Eq.

This means that when writing a type signature for a function such as
ordelem which test membership for ordered lists, which uses both == and <,
we only has to specify Ord a and not (Ord a, Eq a) in the type signature:

ordelem :: Ord a => a -> [a] -> Bool

ordelem x (y:ys) = x == y || (x < y && ordelem x ys)

Since it would be tedious to define equality “by hand” for all user defined
data types, Haskell offers automatic derivation of instances for some of the
standard classes. For example, Eq instances can be automatically derived:

data Tree a = Node a (Tree a) (Tree a) deriving Eq

will automatically define equality on binary trees where the component type
is an instance of the Eq class.

A class for which instances is automatically derived for all types is the
Eval class. This class provides the operations seq and strict which con-
trol evaluation of values. x ‘seq‘ y evaluates x and returns y, which
strict f x evaluates x and then returns f applied to x (i.e strict f is
a strict version of f).

For more information about type classes in Haskell, see [17, 29].

Haskell arrays

Haskell arrays are defined in the Haskell library report [16], and they are
thus not a part of the language per se.

In Haskell, arrays are created from a limiting pair (a pair containing the
lower and upper bound of the array) and a list of associations. Thus

doubles = array (1,5) [(x,2*x) | x <- [1..5]]
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defines an array doubles which can be indexed with integers in {1, . . . , 5}
to retrieve a value which is the index multiplied by two. E.g doubles!2

evaluates to 4. This definition makes use of list-comprehension, which is
a notation for defining operations on lists which is inspired by the set-
comprehensions used in mathematics. Thus [(x,2*x) | x <- [1..5]] is
the list of all pairs (x,2*x) where x is drawn from the list [1..5]. List-
comprehension makes it possible to define arrays succinctly.

The type of the index is not restricted to integers; any type which is an
instance of the Ix class can be used as an array index. Thus the type of the
array creation function is

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b

The Ix class contains the operations range, index and inRange. range
is used to enumerate the subscripts in the range defined by a limiting pair,
index is used to map a limiting pair and an index to an integer, and inRange

is used to test if an index lies in the range defined by a limiting pair.

For more information about Haskell arrays, see [17, 16]

1.4 Implementing non-strict functional languages

In this section, we first give an overview of graph reduction, the usual method
of implementing non-strict functional languages. Then we give a descrip-
tion of the basic structure of a “typical” compiler for a non-strict functional
language. Lastly, we try to give an idea of how type classes can be imple-
mented.

The implementation of non-strict functional languages poses certain chal-
lenges which the implementation of conventional languages (or even strict
functional languages) do not pose. This has to do with laziness (which
is difficult to implement efficiently) and with features such as higher-order
functions and parametric polymorphism.

A good description of the difficulties in compiling lazy functional lan-
guages can be found in [11, section 1.2].

1.4.1 Graph reduction

The execution of a program in a functional language can be defined as
rewriting a given expression to a canonical form [52]. If we simplify slightly,
canonical forms for a non-strict language are

• Constructors applied to zero or more arguments (ordinary constants
such as 1, or ’c’ are considered constructors with zero arguments)

• Expressions such as (λx1 . . . xn.exp) e1 . . . ek, where k < n, i.e lambda
expression which do not have all of their arguments. Since all function
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Figure 1.2: Graph-representation of the circular structure ints. Application nodes
are marked with “@”, cons nodes are marked with “:” and nodes which contain a
variable of constant are marked with the variable or constant.

definitions can be written as definitions of λ-abstractions, this also
covers function applications.

Expressions in these forms are said to be on weak head normal form or
whnf.

How expressions should be evaluated can be defined by an operational
semantics as in [52]. As an example, take the rule for applications:

t1 → λx.t′1 t′1[t2/x] → c

t1 t2 → c

This can be read as “if t1 evaluates to (or reduces to) the canonical form
λx.t′1, and t′1 with t2 substituted for x evaluates to the canonical form c,
then t1 applied to t2 evaluates to c”.

Implementing the above rule directly, i.e representing the program as a
string and performing substitutions literally would be very expensive, both
because substitution is expensive, and because it would mean some expres-
sions would be needlessly evaluated more than once. As an example, take
the expression (λx.x + x) (expensive 4711). Here we would have to eval-
uate (expensive 4711) + (expensive 4711), i.e expensive 4711 would be
evaluated twice.

A better approach is to represent the initial expression as a syntax tree,
and when substituting an expression for a variable, we replace the variable
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Figure 1.3: Graph-reduction of the expression snd (1,2). “(,)” denotes both pair
nodes and the pair constructor function.

with a pointer to the expression instead of a literal copy. This may create
cyclic structures, so we get a directed graph instead of a tree. See Figure 1.2
for a cyclic graph representation of the data structure ints, defined as

ints = 1 : (map (1+) ints)

Since we do not want to evaluate anything more than once, we also over-
write expressions we have evaluated with their value. This is illustrated in
Figure 1.3, where some steps in the reduction of the expression snd (1,2)

is shown. This approach is called graph reduction, and is used (in more so-
phisticated forms) by all implementations of non-strict functional languages
that we know of. For more information about graph reduction see [32, 19].

1.4.2 Compiler structure

The basic structure of a “typical” compiler for a functional language, one
whose implementation closely follows [32] is shown in Figure 1.4. The various
stages in the compilation process are described below.

Lexical and syntactical analysis

The input is first broken into a stream of tokens in the lexical analysis, which
is then analyzed syntactically and turned into an abstract syntax tree (if no
lexical or syntactical errors are found). A full description of lexical and
syntactical analysis can be found in any textbook on compiler construction,
for example in [3].
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Input program Abstract syntax Lambda calculus

Desugaring

Abstract machine code C or Assembler

Code generation

Recursive equations

Lambda lifting

Abstract machine
code generation

Renaming
Type inference

Lexical and syntactical analysis

Figure 1.4: Structure of a “typical” compiler for a lazy functional language.

Renaming

In the renaming phase, each identifier is given an unique name (e.g identi-
fiers with the same name in different scopes are given different names), and
module exports and imports are resolved.

Type inference

Since the programmer does not need to specify the types of objects in a
program, the compiler must be able to check that the program can be typed
consistently, as well infer the actual types of objects from the contexts they
appear in. This process is called type inference or type checking.

Desugaring

When type inference has finished, there are no more errors which can be
detected by the compiler, so the compiler does not need to keep the entire
syntax tree in order to be able to give good error messages. Since it is
easier to do program analysis and transformations on a smaller language,
the abstract syntax tree is translated into an equivalent abstract syntax tree
for a simpler language. This is typically a very simple functional language,
where all function definitions are expressed as the binding of λ-abstractions
to values, and pattern-matching is expressed by “flat” case-expressions.
Flat case-expressions are case-expressions where the scrutinized expression
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is a variable, and the arguments of the constructors in the alternatives are
variables. An example of a “flat” case-expression is:

case v of

C1 x y -> ...

C2 x -> ...

We usually refer to this simplified language as the compiler’s intermediate
code.

The process is called “desugaring” since it removes “syntactic sugar”:
syntactic constructs which are not strictly necessary, but which are included
to sweeten the language.

Lambda lifting

Some abstract machines (for example the G-machine, see below) needs the
program to be lambda lifted before it is translated into code for the abstract
machine. This has to do with how functions are represented and how free
variables are handled. The stack can not be used to store the free variables
as described in [3], since this method assumes that a function defined in some
scope will be activated only in that scope. This is true for e.g Pascal, but
not for a language with higher order functions, since we can write functions
such as

f x = \y -> (x+y)

in which a function which uses local variables is created and then returned.
The returned function can be activated in any scope.

This problem can be solved by either storing the values of the free vari-
ables explicitly in the representation of functions, or by getting rid of the free
variables. Lambda lifting is the process of removing free variables from λ-
abstractions. When all free variables have been removed, the λ-abstraction
is given a name and “lifted” out to the top-level. As an example take the
following definition:

f = \x -> \y -> x+y

Here x is a free variable in the sub-expression \y-> x+y. x is removed by
rewriting the definition to

f = \x -> (\z y -> z+y) x

Now \z y -> z+y does not contain any free variables, so the expression can
be lifted out to the top level:

f = \x -> g x

g = \z y -> z + y

The output from the lambda lifting phase is a set of recursive equations, or
super combinators. Lambda lifting is described in detail in [32].
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Abstract machine code generation

The abstract machine makes graph-reduction concrete. The constructs of
the abstract machine language have direct interpretations as operations on
the graph.

The abstract machine code is generated from the super combinators, or
from the intermediate code if lambda-lifting is not done.

The G-machine [19, 32] (G stands for Graph) is used in the Chalmers
Haskell B Compiler (HBC), and in Nearly a Haskell Compiler (NHC). The
input to the abstract code generation for the G-machine is a set of super
combinators, which are translated into a sequences of G-code instructions.

The spineless tagless G-machine (STG-machine) [33], which is used in
the Glasgow Haskell Compiler, is a bit different. The program is still rep-
resented as a graph, but a program for the machine is not a sequence of
abstract machine instructions. Instead the abstract machine language is a
simple functional programming language, the STG-language, in which each
language construct has a direct operational meaning in terms of the STG-
machine. This means the abstract machine code generation is very simple.
The compiler converts the slightly more complicated core-language (the in-
termediate code of the Glasgow Haskell Compiler) to the STG-language. In
addition, the STG-machine does not need the input to be lambda lifted,
instead handling free variables by storing their values explicitly in the rep-
resentation of functions.

Code generation

Finally, assembler or C code is generated from the abstract machine code.
C, if generated, is usually used as a “portable assembler”; the generated
code is very low-level.

1.4.3 Runtime environments and storage management

The runtime environment contains everything the generated code needs to
run. This includes things such as one or more stacks, which are used to
hold arguments of functions being evaluated, to keep track of which pieces
of the graph are being reduced, and to hold pointer to code sequences where
execution should continue when the expressions have been reduced. There is
also the heap which implements the graph. Each node in the graph occupies
a cell in the heap. The storage manager is used to allocate cells in the heap,
and is also responsible for finding and reclaiming the garbage cells, cells in
the heap which can no longer be reached. The part of the storage manager
which finds and reclaims garbage cells is the garbage collector.

Two basic algorithms for garbage collection are mark and scan and copy-
ing. In mark and scan all accessible cells are first marked (usually by doing
depth first search of the heap with the pointers on the stack as roots), then
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the entire heap is scanned and all unmarked cells are reclaimed. In copying,
the heap is divided into two sections, from-space and to-space. All allocation
of new cells is done in from-space. When from-space fills up, all accessible
cells are copied into to-space, where they are placed contiguously. Then
from-space and to-space are flipped. The point of placing the cells contigu-
ously is to make all the free space contiguous. This makes allocation of new
cells very cheap.

Many implementations of non-strict functional languages seem to use
generational garbage collection [38, 40, 10]. This is a hybrid method, which
builds on the observation that most objects have a very short life time (i.e,
the time between the allocation of the cell for the object and the point in
time when all references to the object is gone). This is taken advantage
of by dividing the heap into two or more generations, which each contain
objects with a particular range of ages. The basic idea is, since most objects
die young, we should collect younger generations more often than older
generations, and move objects which survive one or more collections to an
older generation. Usually an older generation is collected only if all younger
generations have run out of memory. Different algorithms can be used to
collect different generations.

1.4.4 Implementing type classes

The standard way to implement type classes is to transform the program
with overloading into a equivalent program without overloading. The prin-
ciples of the translation are as follows:

Each instance declaration generates a dictionary declaration. A dictio-
nary is a tuple which contains the class methods. As an example, take the
following class declaration of a simplified version of Ord:

class Eq a => Ord a where

(<), (>=) :: a -> a -> Bool

The instance definition

instance Ord Int where

(<) = primLtInt

(>=) = primGeqInt

will generate the dictionary definition

dictOrdInt = (dictEqInt, primLtInt, primGeqInt)

The class declaration for Ord generates definitions of the class operations
as selector functions on dictionaries:

(<) (dictEq, lt, geq) = lt

(>=) (dictEq, lt, geq) = geq
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A function which retrieves the dictionary for Eq from a dictionary for Ord

will also be generated:

getEqFromOrd (dictEq, lt, geq) = dictEq

Overloaded functions are given extra arguments, as a simple example take
the max function:

max :: Ord a -> a -> a -> a

max x y = if x > y then x else y

max will be translated into:

max ordDict x y = if (>) ordDict x y then x else y

Things get more complicated when we have instances for parameterized
data types such as lists, but the basic idea is as described above. For a more
complete and more formal treatment of the transformation, see [14]. For
implementation techniques, see [6] and [31].
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Chapter 2

Data field Haskell

This sections gives an informal description of our Haskell-dialect. A more
formal description can be found in appendix A.

We extend Haskell with data fields, i.e objects which represent general-
ized indexed data structures, and which we should be able to think of as
partial functions. In comparison with Haskell-arrays, this makes it possible
to define indexed data structures without explicitly giving the bounds. This
is achieved by using ϕ-abstraction, the data field analogue to λ-abstraction.
As an example, the data field definitions corresponding to the following array
definitions in Haskell

a = array (1,10) [(i,i) | i <- [1..10]]

b = array (1,10) [(i,i*i) | i <- [1..10]]

sumab = array (1,10) [(i, a!i + b!i) | i <- [1..10]]

can be written as

a = datafield (\i -> i) (1 <:> 10)

b = datafield (\i -> i*i) (1 <:> 10)

sumab = forall i -> a!i + b!i

We write ϕ as forall in Haskell, due to the limited character set.
Data fields can also have more general shape than Haskell arrays. For

example, we allow “sparse” data fields, i.e data fields which are defined on
general finite sets.

To be able to use the data field extensions, the Datafield module must
be imported.

2.1 Data fields

Data fields are represented by the abstract data type Datafield a b, where
a is the type of the index, and b is the type of the indexed elements. Data
fields can be constructed implicitly by using forall- or for-expression (more
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about them below), or explicitly by using the datafield function. The
datafield function takes a function and a bound as parameters, and returns
a data field. Elements of data fields are accessed by using the ! operator.
The following examples shows how datafield and ! are used:

d = datafield (\x -> x) (1 <:> 10)

defines a data field d defined in the interval [1, 10], for which d!x will return
x for x in [1, 10], and ∗ (the value which represent “out of bounds”) for
other x. 1 <:> 10 is an example of a dense bound. They, and other kinds
of bounds, are described below. The bounds of a data field can be retrieved
by the bounds function.

The index type of data fields is not restricted to integers. Any type
which is an instance of the type classes Ix and Pord can be used as an index
type. The Ix class is used to map continuous subranges of values in a type
onto integers [16, Section 5]. The Pord class is used mostly to provide a
pointwise partial ordering lt of tuples (as opposed to the lexicographical
total order <= provided by the Ord class). The Pord class also provides
the glb (greatest lower bound) and lub (least upper bound) operations as
defined by the partial order. These can be thought of (in the case of tuples)
as a pointwise min and max operations, i.e glb (1,3,4) (2,1,2) evaluates
to (1,1,2). These operations are needed since we for instance have to
be able to calculate the intersection of two dense bounds; this amounts to
calculating the lub of the lower bounds and the glb of the upper bounds.

Of course it is possible to define Pord instances for user defined data
types and use them to index data fields.

Thus the types for datafield is

datafield :: (Pord a,Ix a) =>

(a -> b) -> Bounds a -> Datafield a b

the type for bounds is

bounds :: (Pord a,Ix a) :: Datafield a b -> Bounds a

and the type for ! is

(!) :: (Pord a,Ix a,Eval a) => Datafield a b -> a -> b

The Eval a context in the type of ! is needed for technical reasons. Data
field application should be hyperstrict (i.e the index should be evaluated to
its innermost constructor), and the implementation of ! achieves this by
using hseq, which is an operation in our extended Eval-class. See section
A.4.
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Data field evaluators

Data fields with finite bounds can be tabulated by a functions which perform
different degrees of evaluation of the elements.

• tab creates a tabulated version of a data field with finite bounds. The
elements of the data field are evaluated on demand. tab has the type:

tab :: (Pord a, Ix a, Eval a) =>

Datafield a b -> Datafield a b

• strictTab differs from tab in that the elements in the tabulated data
field will be evaluated to whnf (i.e to the outermost constructor).
strictTab has the type:

strictTab :: (Pord a, Ix a, Eval a, Eval b) =>

Datafield a b -> Datafield a b

• hstrictTab works as tab and strictTab except that the elements
in tabulated data field will be totally evaluated (i.e to the innermost
constructor) hstrictTab has the type:

hstrictTab :: (Pord a, Ix a, Eval a, Eval b) =>

Datafield a b -> Datafield a b

Neither strictTab nor hstrictTab are ∗-strict, i.e if any element eval-
uates to ∗, the result of the evaluation will not be ∗, instead the ∗ will be
stored in the table.

Reduction

foldlDf applied to a function f, a starting value z and a data field df with
finite bounds, reduces the data field from left to right (according to the
enumeration of the bounds, see below) using f. The type is:

foldlDf :: (Pord a, Ix a, Eval a) =>

(b -> c -> b) -> b -> (Datafield a c) -> b

Indices i where f r’ (df!i) returns ∗ are skipped in the reduction
(r’ represents the result of reducing to the index preceding i). To
make sure all indices where df!i = ∗ are skipped, one can write
foldlDf (\z -> strict (f z)) z df There are several other folds, such
as foldrDf which reduces from right to left. For details, see Appendix A.
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Restriction

The restriction operator <\> can be used to further restrict the domain of a
data field. For example,

f = (datafield (\x -> x) (1<:>10)) <\> (0<:>5)

creates a data field f which is defined in the interval [1, 5]. The type of <\>
is

(<\>) :: (Pord a, Ix a) =>

Datafield a b -> Bounds a -> Datafield a b

2.1.1 Printing data fields

Data field are instances of the class Show given that the index type and the
element type are instances of the class show. This means they can be con-
verted to strings as usual, using the show function (or printed directly, using
print. Elements which are ∗ are shown as <OUB> as default, but this can
be defined for each user defined type by defining the showsOutoufbounds
method in the instance definition for Show.

2.2 Bounds

In section 1.2, we described bounds abstractly as a set of objects which
has certain operations defined on them. In this section, we will be more
concrete, and define bounds which are either the usual array-type bounds,
sparse bounds (i.e general finite sets), bounds which are general predicates,
and products of these bounds. Our approach is based on [25].

Bounds are represented by the abstract data type Bounds a, where
a is the type of the members of the set (which is the type of
the index of the data field), and the operation inBounds with type
(Pord a,Ix a) =>a -> Bounds a -> Bool, is used to test whether a value
is an element of a bound.

2.2.1 Dense bounds

Dense bounds are isomorphic to contiguous sets of integers. These are the
usual “array-bounds” found in most programming languages. Dense bounds
are created with the <:> operator:

(<:>) :: (Ix a, Pord a) => a -> a -> Bounds a

For example (1,1) <:> (10,20) will create a bound which contains all
elements in the the rectangle with the lower left corner (1, 1) and upper
right corner (10, 20).

29



2.2.2 Sparse bounds

Sparse bounds represent general finite sets. Sparse bounds are created with
sparse which takes a list and returns a sparse bound containing the elements
of the list:

sparse :: (Pord a, Ix a) => [a] -> Bounds a

For example sparse [1,17,42,4711] will create a sparse bound which con-
tains the elements 1, 17, 42, and 4711.

2.2.3 Predicate bounds

A predicate bound represents a set which contains the values for which a
given predicate is true. While dense and sparse bounds represent finite sets,
a predicate bound can represent a infinite set. This means that there are
fewer operations defined on them, and thus predicate bounds are mostly
useful for use with the restriction operator <\> and sparse or dense bounds.
Predicate bounds are created with pred:

predicate :: (Ix a, Pord a) => (a -> Bool) -> Bounds a

An example:

(datafield (\x -> x+1) (0<:>1000)) <\> (predicate even)

creates a data field which is defined only on the even integers in the interval
[0, 1000].

2.2.4 The bounds universe and empty

The special bound universe represents all elements in the index type, and
empty1 represents the empty set. That is x ‘inBounds‘ universe returns
True for all x, and x ‘inBounds‘ empty returns False for all x. The bounds
universe and empty have the types

universe :: (Pord a, Ix a) => Bounds a

empty :: (Pord a, Ix a) => Bounds a

2.2.5 Product bounds

Product bounds represent Cartesian products of bounds. Product bounds
are created with the <*> operator:

(<*>) :: (Pord a, Ix a, Pord b, Ix b) =>

Bounds a -> Bounds b -> Bounds (a,b)

1These are the bounds all and none mentioned in section 1.2, but a function with the
name all is already defined in Haskell. universe and empty were the best names we could
think of which caused no conflicts with existing functions.
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u

Figure 2.1: Greatest lower and least upper bounds for a two dimensional sparse
bound.

The Cartesian product bx<*>by of two bounds bx and by contains all ele-
ments (x, y) such that x is an element of bx and y is an element of by.

Product bounds make it possible to form bounds which are combinations
of sparse and dense bounds, as well as bounds which are combinations of fi-
nite and infinite bounds. For example, (sparse [5,7,11,13])<*>(1<:>10)

will represent the set of all pairs (x, y), where x is taken from the set
{5, 7, 11, 14}, and y is taken from the set [1, 10]. As an example of a product
of a finite and and infinite bound, take universe<*>(1<:>10). This will
represent the set of pairs (x, y) where x can have any value, and y is taken
from [1, 10].

2.2.6 Some operations on bounds

In addition to the functions inBounds, <:>, sparse, pred, universe, empty,
<*> and <\>, which are described above, some of the other operations on
bounds are:

• finite, which returns true for finite bounds. Finite bounds are dense
bounds, sparse bounds, empty, and (inductively) products where the
components are finite bounds. The type of finite is

finite :: (Pord a, Ix a) => Bounds a -> Bool

• enumerate, which returns a sorted list containing the elements of
a finite bound. An example is enumerate (1<:>5) which returns
[1,2,3,4,5]. The type of enumerate is

enumerate :: (Pord a, Ix a) => Bounds a -> [a]

• size, which returns the number of elements in a finite bound. The
type of size is

size :: (Pord a, Ix a) => Bounds a -> Int

• lowerBound, which returns the greatest lower bound of a finite bound
as defined by the glb method in the Pord class. For a dense bound
constructed as l<:>u, lowerBound always returns l. For a sparse
bound, lowerBound is the lower left corner of the smallest (hyper)
rectangle which contains the bound. See Figure 2.1. The type of
lowerBound is
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Figure 2.2: Approximation of the union of the bounds a and b.

.

lowerBound :: (Pord a, Ix a) => Bounds a -> a

• upperBound, which returns the least upper bound of a finite bound
as defined by the lub method in the Pord class. For a dense bound
constructed as l<:>u, upperBound always returns u. For a sparse
bound, upperBound is the upper right corner of the smallest (hyper)
rectangle which contains the bound. See Figure 2.1. The type of
upperBound is

upperBound :: (Pord a, Ix a) => Bounds a -> a

Applying one of the functions which are only defined on finite bounds
(enumerate, size, lowerBound, and upperBound) to an infinite bound re-
sult in an error (i.e ⊥).

For a full description of all operations on bound, see appendix A.

2.3 Syntactic constructs

Data fields can be defined by forall- and for-abstraction. forall-abstraction
is ASCII syntax for the ϕ-abstractions of [25], mentioned in section 1.2, while
for-abstractions is a syntax for defining data fields by cases on the index.

2.3.1 forall-abstraction

The bounds of a data field defined by a forall-abstraction is automatically
inferred from the form of the expression and the bounds of data fields which
the expression depend on. The rules for the inference of bounds are guided
by the view of data fields as partial functions. The basic intuition is that if
the data field d depends on the data fields a and b, then d should be defined
for values where both a and b are defined. A simple example is

d = forall x -> a!x + b!x
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The bound of d will be the intersection of the bounds of a and b. So, if
a has the bound 1<:>10 and b has the bound 5<:>12, then d will have the
bound 5<:>10. If a and b has the sparse bounds sparse [2,3,5,7,11] and
sparse [1,2,4,7,10,11], then d will have the bound sparse [2,7,11].
If d depends on one of the data fields a and b, then d should be defined
wherever one of the data fields a or b is defined. As an example, take

d = forall x -> if x > 5 then a!x else b!x

the bounds of d should be the union of the bounds of a and b. With the
same bounds for a and b as above, we get the bounds 1<:>12 for d.

However, the union of two dense bounds need not be a dense bound. This
means we either have to convert the dense bound into a sparse bound, or
approximate with the smallest dense bound containing the union, as shown
in Figure 2.2. Since we would like “denseness” to be preserved, the solution
we choose is to approximate.

forall-abstractions can be used to express projections and other similar
operations. Consider

a = datafield (\(x,y) -> x+y) ((1,1)<:>(10,10))

c = forall x -> a!(1,x)

d = forall x -> a!(x,x)

The data field c will consist of the first row of a, and will have the bounds
1<:>10. The data field d will have the same bounds, but will consist of the
diagonal of a, i.e d!x will have the the value x+x for x in bounds a.

We can also use forall-abstractions to translate data fields. Thus we
can write

d = forall (x,y) -> a!(x+1,y+1)

with a as above, this will create a data field d with the bounds
(0,0)<:>(9,9), and d!(x,y) will be (x+1)+(y+1).

For a full description of how the bounds are inferred for a forall-
abstraction, see Figure A.4 in appendix A.

2.3.2 for-abstraction

for-abstractions gives the programmer more explicit control of the bounds
than forall-expressions. They make it possible to define data fields by
cases, i.e data fields can be defined by different expressions for indices which
lie in different bounds. For example, to define a dense data field d with the
bounds 1<:>10 where d!x is 1 for 1 ≤ x ≤ 5 and 2 for 6 ≤ x ≤ 10, we write

d = for x in 1<:>5 -> 1

6<:>10 -> 2

This is somewhat similar to the for-expressions in Sisal [12], but the
most immediate inspiration was the case construct for data fields in [25].
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2.4 Examples

-- Create a datafield containing the first 10000 fibonacci

-- numbers

fib :: Datafield Int Int

fib = for x in 1<:>2 -> 1

3<:>10000 -> (fib ! (x-2)) + (fib ! (x-1))

-- Create a tabulated version of the datafield above, where

-- the elements are computed on demand

fib’ :: Datafield Int Int

fib’ = tab fib

-- create a totally evaluated datafield with the first 1000

-- fibonacci numbers:

fib’’ :: Datafield Int Int

fib’’ = strictTab (fib <\> (1<:>1000))

2.4.1 Matrix multiplication

For a longer example, we look at matrix multiplikation. Let A be an n×m
matrix, B be an m × l matrix, and C = AB be their product. Then

cij =
m
∑

k=1

aikbkj

This can be expressed rather elegantly as a function on data fields:

matrixmult a b =

forall (i,j) -> foldr1Df (+) (forall k -> a!(i,k) * b!(k,j))

Strassen’s algorithm

The above algorithm for multiplying matrices has complexity O(n3). An
algorithm with lower complexity is Strassen’s algorithm for matrix multipli-
cation. The algorithm works when both the matrices to be multiplied are
n×n matrices. The idea is to split the matrices into blocks and then apply
the algorithm recursively, in a clever way. We split the matrices into four
similar blocks (we assume n = 2k):

(

C11 C12

C21 C22

)

=

(

A11 A12

A21 A22

)(

B11 B12

B21 B22

)
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where Cij = Ai1B1j + Ai2B2j . If we perform these computations directly,
the algorithm will use 8 matrix multiplies and 4 matrix adds, which will
give us 8 recursive calls, which will give us no improvement in complexity.
However, it is possible to reformulate the computations such that only 7
multiplies are performed. If we let

m1 = (A12 − A22)(B21 + B22)

m2 = (A11 + A22)(B11 + B22)

m3 = (A11 − A21)(B11 + B12)

m4 = (A11 + A12)B22

m5 = A11(B12 − B22)

m6 = A22(B21 − B11)

m7 = (A21 + A22)B11

then it is easy but tedious to verify that

C11 = m1 + m2 − m4 − m6

C12 = m4 + m5

C21 = m6 + m7

C22 = m2 − m3 + m5 − m7

Thus we can multiply the matrices using 7 recursive calls and 18 matrix
adds.

To express Strassen’s algorithm as a function on data fields we begin
by defining some convenient functions: Since Strassen’s algorithm operates
on square matrices with upper left corner (1, 1), we need a function align,
which translates a matrix such that the upper left corner is (1, 1).

align d = forall (x,y) -> d!(x+lx-1,y+ly-1)

where (lx,ly) = lowerBound (bounds d)

We also need functions c11, c12, c21 and c22 which selects the four different
sub-matrices (and aligns them):

c11 d = align (d <\> (lx,ly) <:> (ux‘div‘2,uy‘div‘2))

where (lx,ly) = lowerBound (bounds d)

(ux,uy) = upperBound (bounds d)

c12 d = align (d <\> (lx,uy‘div‘2 + 1) <:> (ux‘div‘2,uy))

where (lx,ly) = lowerBound (bounds d)

(ux,uy) = upperBound (bounds d)
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c21 d = align (d <\> (ux‘div‘2+1,ly) <:> (ux,uy‘div‘2))

where (lx,ly) = lowerBound (bounds d)

(ux,uy) = upperBound (bounds d)

c22 d = align (d <\> (ux‘div‘2+1,uy‘div‘2+1) <:> (ux,uy))

where (lx,ly) = lowerBound (bounds d)

(ux,uy) = upperBound (bounds d)

We also need to perform the inverse operation, i.e put together four sub-
matrices into a larger matrix. This can be expressed by the functions
concatv and concath, which concatenates two matrices by putting them
beside each other vertically and horizontally, respectively:

concatv d1 d2 = for x in bounds d1 -> d1!x

bounds d2’ -> d2’!x

where (ux,uy) = upperBound (bounds d1)

d2’ = forall (x,y) -> d2!(x-ux,y)

concath d1 d2 = for x in bounds d1 -> d1!x

bounds d2’ -> d2’!x

where (ux,uy) = upperBound (bounds d1)

d2’ = forall (x,y) -> d2!(x,y-uy)

Now we can express Strassen’s algorithm as

strassen a b

| size (bounds a) == 1 = forall x -> (a!x)*(b!x)

| otherwise = concath (concatv d11 d21)

(concatv d12 d22)

where m1 = strassen (forall x -> (c12 a)!x - (c22 a)!x)

(forall x -> (c21 b)!x + (c22 b)!x)

m2 = strassen (forall x -> (c11 a)!x + (c22 a)!x)

(forall x -> (c11 b)!x + (c22 b)!x)

m3 = strassen (forall x -> (c11 a)!x - (c21 a)!x)

(forall x -> (c11 b)!x + (c12 b)!x)

m4 = strassen (forall x -> (c11 a)!x + (c12 a)!x)

(c22 b)

m5 = strassen (c11 a)

(forall x -> (c12 b)!x - (c22 b)!x)

m6 = strassen (c22 a)

(forall x -> (c21 b)!x - (c11 b)!x)

m7 = strassen (forall x -> (c21 a)!x + (c22 a)!x)

(c11 b)

d11 = forall x -> (m1!x) + (m2!x) - (m4!x) + (m6!x)
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d12 = forall x -> (m4!x) + (m5!x)

d21 = forall x -> (m6!x) + (m7!x)

d22 = forall x -> (m2!x) - (m3!x) + (m5!x) - (m7!x)
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Chapter 3

Haskell implementations

Since implementing Haskell is a large undertaking, our implementation of
a Haskell-dialect had to build on an existing implementation of Haskell. In
this section, we first give a brief overview of the different Haskell implemen-
tations. We then give a more detailed evaluation of the two compilers (GHC
and NHC), which we thought were the most promising alternatives.

3.1 Overview of Haskell implementations

The available Haskell implementations were Hugs, GHC, NHC and HBC.
Here we give an overview of their features.

3.1.1 Hugs

Hugs (The Haskell Users Gofer1 System) [20] is a Haskell-interpreter, de-
signed to run on small systems and to be easily portable. It is written in C,
and is very fast in compiling, type checking and reading files. It executes
Haskell-programs slowly, however (being an interpreter). It is very useful
for incremental development and fast prototyping.

3.1.2 GHC

The Glasgow Haskell compiler (GHC) is a compiler for full Haskell 1.4.
GHC is developed at the University of Glasgow. It is written in Haskell,
and runs on many architectures. It generates the fastest code of all the
implementations, and it is designed to be used as a research platform.

GHC is written in Haskell, except for the parser and lexer which are
written in bison and flex. GHC is the largest and most advanced of the
compilers. Many extensions to Haskell are implemented in GHC, and GHC

1Gofer (GOod For Equational Reasoning) is an interpreter for a Haskell-like language.
Hugs is based on the Gofer interpreter.
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has advanced facilities for optimization. Some extensions implemented in
GHC are extensions for writing parallel [49] and concurrent [35] programs,
for mutable arrays and for calling C [37]. The philosophy of GHC is to
express as much as possibly of the compilation process (including optimiza-
tions) as correctness preserving program transformations [34, 41].

GHC generates C-code or assembler.

3.1.3 NHC

NHC (Nearly a Haskell Compiler) [38] is a compiler for almost all of Haskell
1.3 [30]. The original version of NHC was developed by Nicklas Röjemo
when at Chalmers, but updated versions have been released by the functional
programming group at the University of York, who have added facilities for
heap compression and binary I/O [51], facilities for tracing and debugging
Haskell programs [42], and an interface for calling C [37].

NHC is a relatively small compiler, and is written entirely in Haskell.

NHC was designed to be memory efficient. More exactly, NHC was
designed to minimize the memory usage when NHC compiled by NHC com-
piles itself. This was achieved by both writing the compiler in a memory
efficient way, and by making the compiler generate memory efficient code.
To facilitate the development of memory efficient Haskell programs, NHC
has extensive facilities for profiling memory usage [38, 39].

NHC does not generate an assembler sequence for each abstract-machine
instruction. Instead, NHC generates byte code, and links with a byte code
interpreter. This is detrimental to speed, but makes it possible to create a
small binary, which decreases the memory-usage.

3.1.4 HBC

The Haskell B Compiler (HBC) [5] is a combined lazy ML (LML) / Haskell
compiler which was originally a LML compiler [4]. It is written in LML.
The design goal for HBC is to generate as fast code as possible.

HBC generates assembler.

3.2 Comparison of GHC and NHC

The two compilers which we considered as platforms for implementing our
dialect were GHC and NHC. Hugs is an interpreter, and we wanted to use
a compiler. In addition, Hugs is written in C, which of course is a minus.
We did not consider HBC seriously as a platform for implementing our
extensions, since HBC basically has the worst of both worlds in relation to
NHC and GHC. It is large and undocumented, while GHC is documented
but large, and NHC is undocumented but small. Yet another point against
HBC are the sometimes atrociously bad error messages. HBC performs type
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checking after the input has been desugared, which means the the error
messages on type errors shows the intermediate code, and not the original
program. This can lead to extremely confusing error messages.

We evaluated GHC and NHC according to the following criteria:

• Documentation and extensibility. Most importantly, the compiler had
to be to be easily extended enough so that our extensions could be
implemented with a reasonable effort.

We thus looked at how well the compiler source was documented, how
hard it was to get an overview of the compiler, and how hard the code
was to modify.

To make this more concrete, we decided to experiment by adding a
dummy primitive operation to the compilers, in addition to reading
the source code and comments.

We also looked especially at the parts of the compiler we originally
deemed most likely to have to be modified: the parser and the type
checker. We also thought the easiest way to implement the data fields
extensions would be as a program transformation of the compiler’s
intermediate code, and thus we looked especially at this format.

• Compiler quality. Since we would like our compiler to generate good
code, to be fast in compiling, and to give good error messages, we also
looked at those aspects of the compilers.

• Portability to parallel architectures. Parallel extensions implemented
by the compiler were a definite plus, since a long term goal is to have
a parallel implementation, and it would probably be much easier to
adapt parallel extensions already in place than to implement them
from scratch.

3.2.1 Documentation and extensibility

The source code of GHC is well-documented, and technical information
about GHC is readily available [41, 33, 36]. The comments are relevant,
but in spite of this we found it hard to get an overview of the compiler.
We found the sheer size of GHC intimidating, and we thus considered the
probability of encountering unforeseen problems high. The following quote
from [36] gives some justification to our fears:

We consistently underestimated how long it would take us to do
the job, largely because of the scale of the compiler. Apparently-
small changes would cause a chain of effects all of which would
have to be chased through before the compiler could be rebuilt.
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The many extensions implemented in GHC might also be troublesome
to get to work with our own extensions.

The source code of NHC is barely documented at all. However, NHC
basically follows [32], and is thus fairly standard in its structure, and some
parts of NHC where the compiler differs from [32] is at least briefly de-
scribed in [38] (an example is the implementation of the G-machine whose
implementation in NHC differs somewhat from [32]). NHC is also a rather
small compiler, which makes it easier to get a more complete overview of
the compiler.

Since the design goal of NHC was to minimize memory usage we con-
sidered it a risk that some parts of the compiler would be written in a
non-obvious way to minimize memory usage. After examining the code we
indeed found some parts which were difficult to understand, for example the
part of the type-checker responsible for resolving overloaded functions.

We found adding a dummy primitive to NHC and GHC about equally
difficult (we had a little more problems with finding all places where the
code had to be changed in GHC, but not much). From this we conclude
that our chosen modification probably was a bit too trivial to get a good
impression of how the compilers are to work with.

The parser and lexer of GHC are written using flex and bison, which
interface with the main Haskell program by producing output with a simple
syntax which is then parsed by a simple recursive descent parser written in
Haskell [36]. We have not actually modified the grammar in GHC, so we
do not know how hard it really is to add things to the interface. But it
would seem to be a bit more complex than if the entire parser was written
in Haskell.

NHC has a lexer and parser written entirely in Haskell. The parser is
written using parser-combinators [18, 38], which are higher-order functions
which build complex parsers by combining simpler ones. Since the parser is
written entirely in Haskell, it is probably more easy to make simple mod-
ifications to than the GHC-parser. However, with a parser written using
bison, we get warnings if our new rules cause conflicts, so for complicated
extensions of Haskell syntax it might be easier to use GHC.

The intermediate code of GHC, the core-language, is explicitly typed.
The intermediate code of NHC is not typed. There are some other differ-
ences between the intermediate code of NHC and GHC, for example NHC
uses the constructs fail and [] (described in section 4.4.1) to efficiently
express pattern-matching, while GHC avoids using them by using a pro-
gram transformation which transforms less efficient formulations of pattern
matching into more efficient ones [34].

The explicit types of GHC would make it easier to check the correctness
of our transformation, since GHC has a core-lint which checks the type-
consistency of the core language. It also has an well-defined operational
semantics, which is nice.
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module Typeerr where

f z (x,y) = (x,z)

g = snd (f (1,2))

Figure 3.1: Typeerr.hs

3.2.2 Compiler quality

We have not spent too much effort on measuring the performance of the
compilers, but here are some impressions:

Generated code

GHC generates much faster code than NHC. Not only does GHC have the
ability to do lots of optimizations, while NHC has none, NHC uses inter-
preted byte code instead of machine code, which according to [38] costs
about a factor four in speed. Since NHC is designed for memory-efficiency,
the memory usage of code generated by NHC is probably better than for
code generated by GHC. We have not done any actual measurements of
either time or memory usage, however.

Compiler speed

NHC compiled with HBC is faster than GHC. NHC is about twice as fast
as GHC when compiling a small program (about 250 lines). This is when
using GHC with optimizations turned off. If optimizations are turned on,
NHC is more than three times as fast as GHC. We have not measured NHC
compiled by NHC, but it would probably be even slower than GHC with
optimizations turned on.

Error messages

Both GHC and NHC have better error messages than HBC. Especially the
error messages on type errors are much better, since both GHC and NHC
performs type checking on the original syntax tree, and not on some inter-
mediate code. In fact, the must frustrating errors when programming in
Haskell are usually the type errors. Syntax errors are usually much easier to
spot, and thus require less help from the compiler. So it is important that
a Haskell compiler produce good error messages on type errors.

The error messages from trying to compile the program in Figure 3.1
with GHC and NHC respectively are shown in Figure 3.2 and Figure 3.3.
From the examples, it may seem that the error messages from GHC are more
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Typeerr.hs:5: Couldn’t match the type ‘(,)’ against ‘->’

Expected: ‘(taU9, taU8)’

Inferred: ‘(taUc, taUd) -> (taUc, taUf)’

In the first argument of ‘snd’, namely ‘(f (1, (2)))’

In a pattern binding: ‘g = snd (f (1, (2)))’

Compilation had errors

Figure 3.2: Error message from GHC when compiling Typerr.hs.

====================================

Error after type deriving/checking:

Type error type clash between Prelude.2 and Prelude.->

when trying to apply function at 5:5 to its 1 argument at 5:10.

Figure 3.3: Error message from NHC when compiling Typerr.hs.

useful. In practice, however, we have found that the exact positions (both
column and row) given by NHC more than compensate for the brevity of
the error messages.

3.2.3 Portability to parallel architectures

GHC can run parallel programs on parallel architectures which support
PVM (Parallel Virtual Machine). The parallel extensions are just two new
primitives par and seq [43]. x ‘par‘ y sparks x and returns y. Sparked
expression are put on queue to be evaluated in parallel. x ‘seq‘ y evaluates
x and returns y. seq is used to force sequential evaluation.

It would probably be quite easy to implement simple parallel evaluation
of data fields in GHC (given that the basic data field constructs have been
implemented, of course). To implement good support for parallel evaluation
of data fields would probably be more work, since one probably would like to
take advantage of the more structured parallelism of data field evaluation.

NHC has no parallel extensions, and it would probably be a lot of work
to add parallelism to NHC. It would probably be best to give NHC an entire
new back-end, since the point of parallelism in the first place is speed, and
it is a bit sub-optimal to have a highly parallelized byte code interpreter.

3.2.4 Conclusions

On a point-by-point basis, GHC might seem to be the choice. But the most
important consideration was how likely it seemed to be that the project
would be finished in reasonable time. We made the judgment that the sheer
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size of GHC would increased the likelihood of encountering problems, and
that NHC thus would be easier to get an overview of, despite the lack of
documentation. Another, more trivial point is that a smaller compiler takes
less time to compile. Thus, we figured development speed would be higher
if we used NHC.

A point against NHC would be that NHC only implements Haskell 1.3,
while GHC implements Haskell 1.4. The differences between Haskell 1.3 and
Haskell are minor, however.

In the end we choose to go with NHC2.

2However, if GHC version 4.00 had been available when we made the decision, we
might have chosen differently. In GHC 4.00, the intermediate code, and thus much of the
compiler, has been simplified, and exceptions (which we added when implementing our
extensions) are already available [44, section 1.4].
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Chapter 4

Implementation

In this section, we describe how the extensions described in 2 and Appendix
A were implemented.

The implementation consists of

• Modifications to the front-end which enable the compiler to parse and
type-check forall and for-abstractions.

• Automatic derivation of instances for the new type class Pord, and
automatic derivation of instances for the modified Eval class (see Ap-
pendix A).

• A program transformation which transforms intermediate code with
forall- and for-abstractions into intermediate code without forall
and for-abstractions.

• The abstract data types for Datafield and Bounds implemented in
Haskell.

• Simple exception handling (used to implement ∗), implemented mostly
by modifications to the back-end.

4.1 Parsing and lexing

Modifying the parser and lexer to parse the data field syntax as described
in Appendix A was mostly straightforward. However, the syntax for for-
abstractions caused some trouble with the layout rules. The layout rules
make it possible to group declarations by using indentation, and avoid using
explicit semi-colons, curly-brackets, etc. Layout rules are fully described in
[29, section 1.5].

The problem which appeared was that for-abstractions and let-
expressions use the key-word in in different ways. We want to be able
to use layout when writing for-abstractions:
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dicts for ((a,b),c)

dicts for (a,b)

dicts for a dicts for b

dicts for c

Figure 4.1: Tree of dictionaries for a forall-abstraction of type ((a,b),c).

d = for x in 1 <:> 5 -> 4711

6 <:> 10 -> 42

Which means that in should begin a layout-list, and the declaration above
should be expanded to

d = for x in {1 <:> 5 -> 4711 ; 6 <:> 10 -> 42}

However, if this is implemented straightforwardly by treating in like the
other key-words which begin layout-lists (where, let, do and of), then let-
expressions such as

e = let x = 4711

in x*x

would be expanded into

e = let {x = 4711} in {x*x}

which is incorrect (the correct expansion is e = let {x = 4711} in x*x).
The solution is to keep track of whether the key word for or the key

word let was the last one encountered and treat in accordingly. This makes
the lexer a bit more complicated.

4.2 Type checking

Type checking of forall- and for-abstractions is fairly straightforward.
forall-abstractions are type checked in a manner which is very close to
how lambda-expressions are type checked, the only major difference being
the additional requirement of Ix and Pord contexts for the arguments.

for-abstractions are a bit more difficult, having parallels both with
lambda-expressions and case-expression, but are still rather straightforward
to type check.
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However, there is an additional matter which must be taken care of,
which has to do with type classes and dictionary arguments. The program
transformation from intermediate code with forall- and for-abstractions
to intermediate code without forall- and for-abstractions will need to
use overloaded functions such as datafield and bounds. We can either
make sure the program transformation is performed before the dictionaries
are inserted, or make sure the program transformation has access to the
dictionaries so it is able to insert them where needed.

NHC inserts dictionary arguments during type checking, so if we want to
transform the program before the dictionaries are inserted we can either per-
form the program transformation before type checking, perform the program
transformation during type checking, or move the insertion of dictionaries
out of the type checker.

Performing the program transformation before type checking is not a
good idea, since it would make it much harder to get good reporting of type
errors. Performing the transformation in the type checker would make the
type checker messy, and would probably be difficult to implement correctly.
Moving the insertion of dictionaries out of the type checker would mean
non-trivial changes to the code.

It seems simpler to make sure the program transformation has access to
the needed dictionaries, which we achieve by annotating forall- and for-
abstractions with these. The dictionaries we might need are Pord and Ix

dictionaries for the arguments of the for- or forall-abstraction, as well as
Pord and Ix dictionaries for the components for arguments which are tuples,
and for the components of the components if the components are tuples, etc.

This means we in general will have to annotate forall-abstractions
with a forest of dictionaries, and for-abstractions with a tree of dictio-
naries (since they only have one argument). However, since we later will
need forall-abstraction to have only one argument as well, we rewrite
forall-abstractions forall x1 . . . xn -> exp to equivalent nested abstrac-
tions forall x1 -> . . . -> forall xn -> exp, and annotate the resulting
forall abstractions with trees of dictionaries.

For an expression forall x -> ... with type ((a,b),c), the tree of
dictionaries created is as shown in Figure 4.1.

4.3 Derivation of Pord and Eval instances

The derivation of Pord and Eval instances was straightforward to implement
given the infrastructure already in place for deriving instances. The deriva-
tion of Pord instances follows Figure A.1. The derivation of Eval instances
is a bit different, since the seq class operation can be implemented more
efficiently as a primitive operation (which is implemented by using the EVAL
instruction of the G-machine). Thus seq is not derived at all, instead it is
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provided in the class declaration as a default method. A default method for a
class operation allows instances to omit methods for this operation. Instead
the one provided in the class operation is used. Thus Eval is defined as

class Eval a where

...

seq a b = seq a b -- MAGIC

...

The seq on the right-hand side is “magically” replaced by the corresponding
primitive operation by the compiler. We make use of this more efficient
version of seq when deriving hseq. We also use the more efficient handle

primitive operation instead of isoutofBounds (for a description of handle,
see below). For data types where all of the constructors are nullary (i.e have
no arguments), the derived method for hseq is simply

hseq x y = handle (seq x y) y

for other data types, the scheme described in Figure A.2 is basically followed
(except that handle is used there as well).

4.4 The program transformation

The program transformation and the derivation of bounds basically follows
the translations in Appendix A. However, there are some differences be-
tween the Haskell core and the intermediate code used by NHC, as well as
some implementation issues which has to do with the dictionary problem
mentioned above.

4.4.1 Pattern matching, fail and []

While the Haskell core contains case- expressions on the form

case v of {K x1 ... xn -> exp ; _ -> exp’}

NHC transforms pattern matching in a way similar to the method given in
[32], which results in case-expressions containing fail and [] (alternatively
written fatbar). This means we must be able to handle fail and [] in our
transformations.

fail and [] are defined by

fail [] e′ = e′

e [] e′ = e , e 6= fail

fail may be explicit in the code, but it also represents failed pattern
matching. To get an idea of how [] and fail are used, consider the following
example:
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case v of [x] -> x

_ -> error "foo"

This is transformed by NHC into the intermediate code

fatbar

(case v of (x:v1) ->

fatbar

(case v1 of [] -> x)

fail)

(error "foo")

How should the transformation handle fail and []? fail represents failed
pattern-matching, so the B-scheme (defined in Figure A.4) which defines how
bounds are derived, has to be modified so that fail is defined as should be
handled as caseNoMatch in Figure A.4, rule (PFAIL), i.e we should have a
rule

B(fail,X, Y ) = empty

[] chooses between alternatives, so it should be handled like case-expressions.
We get

B(e1[]e2, ~x, Y ) = B(e1, ~x, Y ) ⊔ B(e2, ~x, Y )

4.4.2 Dictionaries

As mentioned above, we need to insert Pord and Ix dictionaries when we
transform the program, since we use functions such as join, meet and
bounds, as well as the overloaded constants empty and universe. On some
occasions we can steal them from other applications (If we look at the rules
in Figure A.4, we see that bounds, for example, will only be used when we
have an application of the ! operator, and then we can steal the dictionaries
from the application of !). But meet, join and the overloaded constants
will be used in situations where it is not possible to find an application of a
function which uses the dictionaries. Thus the functions which performs the
transformation of a data field expression are given the tree of dictionaries
as an extra argument. If the argument of the forall-abstraction is a tuple,
calls to the function which analyze some sub-expression with respect to some
component of the tuple “step down” into the tree, i.e are given the sub-tree
corresponding to the component as the extra argument. In this way, we can
always find the correct dictionaries in the root of the tree.

4.4.3 Optimizations

When we began the implementation, we decided not to implement any op-
timizations until the rest of the code was written. When debugging the
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program transformation, however, we quickly found that the intermediate
code was very hard to follow due to the fact that large expressions with lots
of universe bounds were generated. Simplifying the intermediate code by
using the identities

universe ⊓ x = x

and
x ⊓ universe = x

was easy to implement and made the intermediate code much easier to
read. When this was implemented, the symmetrical simplification using the
identities

empty ⊔ x = x

and
x ⊔ empty = x

was trivial to implement, so we added it as well.

4.5 Datafield and Bounds abstract data types

Implementing the abstract data types Datafield and Bounds in Haskell was
a bit troublesome. A simple Datafield type is easy to define, given that we
have already defined the Bounds type:

data Datafield a b = Fun (a -> b) (Bounds a)

| Tab [(a,b)] (Bounds a)

The problem comes when we try to define the Bounds type. The problem
is how to represent product bounds, created with the <*> operator. Prod-
uct bounds make it possible to have some form of bounds which only are
available when the index type (a above) is on the form (b,c). An example
is the bound b1 = universe <*> (1<:>10)

This does not seem to be possible to fulfill if we represent Bounds with
a data type

Bounds a = Dense a a

| Sparse (Set a)

| Universe

| Empty

| Pred (a -> Bool)

-- etc ...

Here we assume we have an abstract data type Set a which represent sets.
The implementation of Set is described below.

We can not represent products with a constructor Prod, since it
would have a type on the form t -> Bounds a, where the only free
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type variable in t is a, and what we want is something with the type
Bounds c -> Bounds b -> Bounds (c,b). Another possibility would be
to give up, represent products where one of the components is universe

with universe, and represent products where all components are finite by
sparse or dense bounds. However, this would give a different semantics from
the one given in Appendix A. There is another solution, which admittedly
is something of a hack: we implement low-level data types which represents
data fields and bounds, but with incorrect types. We then write functions
which coerce from the type of these representations to the type we want,
and use these coercion functions to implement the functions as defined in
section A.1.

Our low-level representations of data fields and bounds are
LowDfield a b c and LowBounds a c, respectively. c is an extra type-
variable which is used to represent products. It will hopefully become clear
how it is used below. LowDfield is easy to define once we have LowBounds,
so we concentrate first on how LowBounds and operations on LowBounds are
defined.

First we define a data type which represents the non-product bounds:

data LowBs a = S (Set a)

| D (a,a)

| Pr (a -> Bool)

| Universe

| Empty

then we define

data LowBounds a c = B (LowBs a)

| P (Bfuns a c) c

where the B constructor is used to represent non-products, and the P con-
structor is used to represent products. The arguments to the P constructor
are a record of functions of type Bfuns a c and something of type c (which
will typically be a tuple of bounds). The type Bfuns is defined as:

data Bfuns a c

= Bfuns { cmeet :: c -> LowBounds a c -> LowBounds a c,

cjoin :: c -> LowBounds a c -> LowBounds a c,

cinb :: c -> a -> Bool,

cenum :: c -> [a],

csize :: c -> Int,

cupper :: c -> a,

clower :: c -> a,

cfin :: c -> Bool}
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Bfuns could simply be a tuple of functions, but using a record makes the
code easier to follow.

The functions in an element of type Bfuns a c is used to define functions
on the LowBounds type when one of the arguments is a product. For example,
if we have defined a function bmeet which is the ⊓ operation for the non-
product bounds in LowBs, then we can define the ⊓ operation for LowBounds
like this:

lowMeet (B b1) (B b2) = B (bmeet b1 b2)

lowMeet (P fs c) b = cmeet fs c b -- here we get the

-- operation from the

-- record

lowMeet b1 b2 = lowMeet b2 b1

The record of functions, fs above, is used similarly to how dictionaries are
used to implement overloading in Haskell.

The record of functions is created by the product function lowProd1.
lowProd has the type

lowProd :: (Pord a, Ix a, Pord b, Ix b) =>

LowBounds a c -> LowBounds b d ->

LowBounds (a,b) (LowBounds a c, LowBounds b d)

and is defined like this:

lowProd bx by

= P (Bfuns cmeet cjoin cinb cenum csize cupper clower cfin)

(bx,by)

where cmeet (bx,by) b@(B (S s))

= lowMeet (lowPred (cinb (bx,by))) b

cmeet (bx,by) b@(B (Pr p))

= lowMeet (lowPred (cinb (bx,by))) b

cmeet (bx,by) (B b)

= lowProd (lowMeet bx (B (bproj2_1 b)))

(lowMeet by (B (bproj2_2 b)))

cmeet (bx,by) (P _ (bx2,by2))

= lowProd (lowMeet bx bx2) (lowMeet by by2)

-- etc

Here we use projection functions bproj2_1 and bproj2_2 which, given a
non-product bound over a two-dimensional index type, computes a bound

1In reality there is a family of functions lowProdn which contain higher dimensional
versions of lowProd.
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which is the restriction (or an approximation of the restriction) of the orig-
inal bound to the first and second dimensions, respectively.

With the functions lowMeet, lowJoin, lowProd, etc defined we
only need some dummy Datafield and Bounds types and coercion
functions lowBounds2Bounds, lowDfield2Dfield, bounds2LowBounds and
dfield2LowDfield to define meet, join, <*>, etc.

The coercion functions are easy to define in NHC. All Haskell compilers
produce an interface file for each compiled module. The interface file con-
tains, among other things (which may differ from compiler to compiler), the
types of all exported objects in that module. We put the coercion functions
in their own module, defined as identity functions. Then we lie about their
type in the interface file (by editing it by hand). Now we can define e.g meet

as

b1 ‘meet‘ b2 = lowBounds2Bounds (lowMeet (bounds2LowBounds b1)

(bounds2LowBounds b2))

Representing tabulated data fields

Tabulated data fields are represented either as contiguous arrays or as sparse
finite maps. A tabulated data field is represented as an contiguous array if
the bounds of the data field are dense, or if the bounds are a product of dense
bounds (or a product of a product of dense bounds, etc). Otherwise the
tabulated data field is represented as a sparse finite map, the implementation
of which is similar to the implementation of sets described below.

4.5.1 Representing sets

When implementing sparse bounds we needed an implementation of sets.
We now state what criteria we would like our implementation to fulfill. The
operations we need to be able perform efficiently are membership test (for
the inBounds function), union (for the join operation), and intersection
(for the meet operation). We would also like to have efficient filtering and
reduction operations (these are set-versions of the Haskell filter and foldl

functions on lists).

Sorted lists

One possibility is to represent sets as sorted lists. Using sorted lists, we
can implement the union and intersection operations with running time
O(n + m), where n and m are the sizes of the sets. This is achieved by
implementing union and intersection as variations on the classic “merge”
function. For example, intersection can be defined like this:

intersect [] _ = []
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intersect _ [] = []

intersect (x:xs) (y:ys) =

case compare x y of

LT -> intersect xs (y:ys)

EQ -> x : intersect xs ys

GT -> intersect ys (x:xs)

Filtering and reduction operations are also easy to implement. The filter

operation is just the standard filter operation on lists, since an ordered
list with some elements removed is still an ordered list. Reduction can be
expressed by the standard fold-operation on lists. However, membership test
would take time O(n). This is not good, since membership test probably
will be a heavily used operation.

Balanced binary trees

Another approach is to use balanced binary trees. Then we would have
O(log n) membership tests. The “obvious” way of implementing intersec-
tion and union takes time O(n log m), but it is possible to convert between
sorted lists and balanced trees in linear time, so we can implement union
and intersection by converting the binary tree to a list, performing the op-
eration as described above, and convert back. If we implement the filter and
reduction operations similarly we do not need any operations which manip-
ulate the tree directly, which means we do not need any explicit balancing
information in the tree (as we need if we use e.g Red-Black trees [8]).

How do we convert between binary trees and sorted lists? We assume
binary trees are represented by the following data type:

data Tree a = Empty

| Node a (Tree a) (Tree a)

Converting from trees to ordered lists is rather easy, we just have to be
careful when using the list concatenation operation ++, since it takes time
linear in its left argument. The following definition will not do:

toList Empty = []

toList (Node x l r) = toList l ++ (x : toList r)

This is not linear, due to the argument (toList l) of ++. Calculating the
exact running time is left as an exercise for the reader.

The following definition avoids using ++ by using an accumulating argu-
ment:

toList t = tl t []

where tl Empty xs = xs

tl (Node x l r) xs = tl l (x : tl r xs)
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Converting a sorted list to a balanced binary tree is a bit harder. We
first give a non-linear version:

fromOrdList [] = Empty

fromOrdList xs = Node x (fromOrdList l) (fromOrdList r)

where (l,(x:r)) = splitAt ((length n) ‘div‘ 2)

This is non-linear, since we have to traverse the entire list in each recursion
when we calculate the length, as well as traverse half the list when using the
splitAt function. The call to length in each iteration can be removed by
calling length at the beginning of the recursion and pass the length of the
sublists as extra arguments to the calls which builds the subtrees. The call
to splitAt is possible to remove if we take a similar approach as for toList
above. The idea is to avoid splitting the list by passing the function which
builds the left subtree the entire list, and having this function return the
unconsumed part of the list. Then the right subtree is built by a similar call,
which is passed the returned list. To make this work, we need an additional
argument, n, which tells the function how much of the list it is allowed to
consume. This is the same as the length of the sublists above. The final
function looks like this:

fromOrdList xs = fst (fl xs (length xs))

where fl xs 0 = (Empty, xs)

fl xs n = (Node x l r, xs’’)

where n’ = n ‘div‘ 2

(l, x:xs’) = fl xs n’

(r, xs’’) = fl xs’ (n - n’ - 1)

Since this way of building trees create a balanced tree where the size
of left subtree always is equal to or one greater than the size of the right
subtree, we can do clever things like implementing a size operation which
runs in time O((log n)2), as described in [27].

4.6 Implementation of ∗

The constant outofBounds is used to represents the error value ∗ in Haskell.
Since some functions which operate on data fields need to be able to test if a
value is ∗, we also have a function isoutofBounds which returns True if the
given value evaluates to outofBounds. The implementation of outofBounds
and isoutofBounds is exception based. isoutofBounds is implemented
using the operation handle, which is defined to follow the following rule:

handle x y = x -- if x does not evaluate to *

handle x y = y -- if x does evaluate to *

Using handle, isoutofBounds can be expressed as:
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isoutofBounds = handle (seq x False) True

handle is implemented by catching exceptions, and outofBounds is imple-
mented by throwing them.

When describing the implementation of handle and outofBounds, we
first give a high-level description using the G-machine as described in [32]
(this is a simplified variant of the G-machine described in [19]), and we
then give a description of how we implemented the primitives on NHC’s
implementation of (a variant of) the G-machine.

4.6.1 The G-machine

Formally, the G-machine is a tuple < S,G,C,D >, where

S is a stack of node names (or node pointers).
G is the graph, i.e a mapping from node names to nodes.
C is the sequence of G-code being executed.
D is the dump, a stack of pairs (C,S) of code sequences and

stacks.

The types of nodes that can exist in the graph are

INT i an integer node
CONS n1 n2 a CONS node (i.e a node representing a list. n1 is the

head of the list and n2 is the tail.
AP n1 n2 an application node
FUN k C a function with arity k and G-code sequence C
HOLE a node which is to be filled in later

Some notation: an empty stack or code-sequence is written [], a stack
or code-sequence where the first element is x and the rest of the stack or
code-sequence is X is written x : X. A graph where node n is an application
of n1 to n2 is written G[n = AP n1 n2].

As mentioned in section 1.4.2, the G-machine expects its input to be a
set of super combinators. Each super combinator is compiled into a sequence
of G-code instructions. The code sequence compiled for a super combinator
assumes the arguments of the super combinator can be found on the stack.

The instructions in the G-code are defined by state-transitions of the ma-
chine. A complete description of all G-code instructions is beyond the scope
of this thesis (see [32] for details), but to get an idea of how the G-machine
works, we describe the two G-machine instructions which are probably the
most important to understand how the G-machine performs evaluation, the
EVAL and UNWIND instructions. The definitions of EVAL and UNWIND in terms
of state transitions of the G-machine are shown in Figure 4.2. We now
explain the definitions:
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< n : S,G[n = INT i], EVAL : C,D >
⇒< n : S,G,C,D >
and similarly for CONS and FUN nodes (with k > 0 arguments).

< v : S,G[v = AP v′ n], EVAL : C,D >
⇒< v : [], G, UNWIND : [], (S,C) : D >

< n : S,G[n = FUN 0 C ′], EVAL : C,D >
⇒< n : [], G,C ′ : [], (S,C) : D >

< n : [], G[n = INT i], UNWIND : [], (S,C) : D >
⇒< n : S,G,C,D >
and similarly for CONS nodes

< v : S,G[v = AP v′ n], UNWIND : [],D >
⇒< v′ : v : S,G, UNWIND : [],D >

< v0 : v1 : . . . : vk : S,G[v0 = FUN k C ; vi = AP vi−1 ni], UNWIND : [],D >
⇒< n1 : n2 : . . . : nk : vk : S,G,C,D >
where i goes from 1 to k

< v0 : v1 : . . . : va : [], G[v0 = FUN k C ′], UNWIND : [], (S,C) : D >
⇒< va : S,G,C,D >, if a < k

Figure 4.2: State transition for EVAL and UNWIND.
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Figure 4.3: The stack before it is rearranged by UNWIND.
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Figure 4.4: The stack after it has been rearranged by UNWIND.

EVAL is used to initiate evaluation of the node at the top of the stack
(actually there is a node name and not a node at the top of the stack. So
when we talk about “the node at the top of the stack”, we actually mean
the node named by the node name at the top of the stack) If the top of
the stack is an integer node, a cons node or a function node with non-zero
arity, the node is already on whnf, and the execution just continues with the
next instruction. If the top of the stack is an application node, the current
stack and code are saved on the dump, a new stack with this node as its
only element is formed, and UNWIND is executed. If the top of the stack is
a function node with zero arguments, the current stack and code are saved,
a new stack is formed with this node as the only element, and the code
associated with the function is executed.

UNWIND is used to find the next sub-expression to reduce. UNWIND works
like this: If the node on the top of the stack is an integer node or a cons
node, the node is already on canonical form, so the evaluation is complete.
The stack and code are restored from the dump, and the result from the
evaluation is put on top of the restored stack. If the node at the top of
the stack is an APP node, we just push the left argument of the node onto
the top of the stack and execute a new UNWIND instruction. If the top
of the stack is a function node (as shown in Figure 4.3), we either have
enough arguments on the stack for the function to execute or there are too
few arguments on the stack. If there are enough arguments, the stack is
rearranged so that the arguments of the super combinator are on the stack
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< n1 : n2 : S,G, HANDLE : C,D,E >
⇒< n1 : S,G, EVAL : REMOVEHANDLER : C,D, (n2, S, C,D) : E >

< S,G, REMOVEHANDLER : C,D, t : E >
⇒< S,G,C,D,E >

< S,G, FAIL : C,D, (n, S′, C ′,D′) : E >
⇒< n : S′, EVAL : C ′,D′, E >

Figure 4.5: State transitions for HANDLE , REMOVEHANDLER and FAIL.

(as shown in Figure 4.4), and we begin executing the code for the function.
If there are too few arguments, the expression being evaluated is on whnf
(since partial applications are whnfs), so UNWIND restores the stack and code
from the dump and puts the evaluated value on top of the stack.

4.6.2 Exceptions in the G-machine

To handle exceptions, we add a new component E to the G-machine. E
consists of quadruples (n, S,C,D) of a node name, a stack, a code sequence
and a dump. We get a new G-machine which is a 5-tuple < S,G,C,D,E >.
We also need three new instructions: HANDLE, REMOVEHANDLER, and FAIL.
The code generated for outofBounds is simply

FAIL

and the code generated for handle x y is

<code which puts x on the stack>
<code which puts y on the stack>
HANDLE

The idea is to abort the evaluation of x if FAIL is executed, restore the
machine state to what is was before the evaluation of x began, and evaluate
y. To this end, we use the new component E to save the current machine
state (which consist of S, C and D) together with y.

The definitions of the instructions as transitions of the modified G-
machine are shown in Figure 4.5. We now describe the execution of the
instructions:

HANDLE sets up n2 as the expressions to be evaluated on failure by push-
ing n2, the current stack (minus the top two elements), the current code
sequence and the current dump on the exception stack. Then HANDLE makes
sure n1 will evaluated and the post on the exception stack will be removed
by adding EVAL and REMOVEHANDLER to the current code sequence.
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Figure 4.6: The stack in the runtime system for programs compiled with NHC.
The stack grows downwards in memory.

REMOVEHANDLER removes the top post on the exception stack.

FAIL aborts the current execution and continues execution by restoring
the code sequence, stack and dump found on the top of the exception stack,
and then evaluating the node n found on top of the exception stack.

4.6.3 Exceptions in NHC

NHC makes some modifications to the G-machine as described above. For
one thing, there are no binary application (AP) nodes. Instead there are
vector application nodes, VAP C n1 . . . nk, where C is a code-pointer and
n1 . . . nk are the arguments of the application. Applications of unknown
functions are handled by rewriting expressions such as f x where f is un-
known at compile time, to app f x where app is a function which will (at
runtime) evaluate f (the result will be a function node with known code)
and build a new VAP-node.

The implementation of the G-machine in NHC’s run-time system use the
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stack not only to store arguments to functions and values being operated
on (as the G-machine does), but also for the dump (where the state of the
machine is saved when executing EVAL instructions). The basic layout of the
stack is shown in Figure 4.6, as well as how the dump and stack of the G-
machine map to the NHC stack. The frame pointer fp indicates where the
G-machine stack begins (the first element is at fp - 1). The saved ip is a
pointer to the code sequence where execution will continue when the current
evaluation finished (The C of the top post of the dump in the context of
the G-machine). Above this (at fp + 2) a pointer to the VAP-node being
evaluated can be found. This pointer is also cached in vapptr.

With normal compiler terminology, a stack frame is a block of the stack
which is used for storing the arguments, local variables, and the return
address for a function. Thus a stack frame on the NHC stack begins with
the saved fp and ends either with the top of the stack (if it is the last stack
frame) or just before the next saved fp.

When implementing exception handling in NHC we change the instruc-
tion set slightly. Instead of HANDLE, we have an instruction SETUPHANDLER,
and instead of generating the code

<code which puts x on the stack>
<code which puts y on the stack>
HANDLE

for the expression handle x y, we generate the code

<code which puts y on the stack>
SETUPHANDLER

<code which puts x on the stack>
EVAL

REMOVEHANDLER

The reason for this is that we do not want to have to insert instructions in
the G-code sequence at runtime (which we would have to do if we followed
the above description exactly).

To represent the exception stack E we use the NHC stack and a special
pointer failptr which points to the last exception frame on the stack. The
exception frame is a new type of stack frame which, together with parts
of the previous and next stack frame represents a post on E, as shown in
Figure 4.7. The G-machine dump and stack in a post on E is represented by
the stack above the exception frame, and the code sequence C in a post on
E can be found in the next ordinary stack frame (with the difference that
this code sequence includes the REMOVEHANDLER instruction).

Note that we save failptr in the same position as we save the instruction
pointer ip. This make the exception frames look just like ordinary frames
to the garbage collector. The only thing the garbage collector cares about

61



saved fp

saved failptr

failptr

VAP node

VAP node

The node which we
handle failure in the
evaluation of.

saved ip

saved fp

fp

sp

Node to evaluate
on failure

The dump D
The stack S

The code ptr 
C

Exception
frame

The node n

Figure 4.7: Exception frame, next frame, and parts of previous frame just after
EVAL has been executed.

is that the thing saved in the position above the saved fp is not a pointer
into the heap.

We now describe the execution of the new instructions.

SETUPHANDLER

When SETUPHANDLER is executed, the VAP node which should be evaluated
on failure is at the top of the stack. A subtle point is that when the exception
frame has been created, the node to be evaluated on failure must be a VAP
node. This is because a pointer to this node is stored in the same position
in the frame as where the system assumes VAP-nodes to be evaluated are
stored. Thus the SETUPHANDLER has to make sure this node is a VAP node.
This is done by creating an application of the identity function id on the
node, and replacing the node top of the stack with this VAP node. Then
SETUPHANDLER saves failptr and fp on the stack and sets failptr and fp

to point to the position of the stack where failptr is saved. The stack
before the execution of SETUPHANDLER is shown in Figure 4.8, and the stack
after the execution of SETUPHANDLER is shown in Figure 4.9

REMOVEHANDLER

When REMOVEHANDLER is executed, the evaluation did not fail (as we will see
below, the REMOVEHANDLER instruction is skipped on failure). So we have
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an evaluated value at the top of the stack, and the current stack frame will
be an exception frame, as shown in Figure 4.10. REMOVEHANDLER removes
the exception frame (restoring failptr and fp) while making sure the eval-
uated value stays on top of the stack. The stack after the execution of
REMOVEHANDLER is shown in Figure 4.11.

FAIL

FAIL is a bit more complicated than the other instructions. This due to
the convention of black holing VAP-nodes which are being evaluated. When
the evaluation of a VAP-node begins, the node is marked as a black hole.
When the evaluation is finished, the VAP-node is overwritten with the result
(which is not a black hole). So far so good. However, if a VAP-node marked
as a black hole is evaluated, the compiler issues an error-message and halts,
since this means we evaluated a node whose evaluation depends on itself.
This is a way of detecting some forms of non-terminating programs at run-
time. However, black holed nodes leads to a problem. Figure 4.12 shows the
stack and some nodes in the heap before FAIL is executed. Here the nodes N1
... Nk are black holes. Basically, what one would like to do is just throw
away the part of the stack which lie below failptr, and continue evaluation
by evaluating the node in the exception frame (making sure failptr, ip and
fp are restored correctly, of course). But this will not work, since it would
leave black holes in the heap. One solution would be to modify the compiler
to that it does not black hole nodes when they are evaluated. We tried
this, and the compiled programs worked fine, except that instead of an error
message when the space in the heap ran out, we got a segmentation fault.
Instead of trying to find the problem, we found a better solution, which is to
overwrite the nodes N1 .. Nk with indirections to a newly created failure
VAP-node, a node whose evaluation results in the execution of FAIL. The
state of the stack (and part of the heap) after the execution of FAIL is shown
in Figure 4.13.

4.7 Limitations of the implementation

The products and projection functions described above and in Appendix A
are hand written, and thus we have to limit the size of tuples for which they
are provided. In the present implementation, the size is limited to triples.

Currently the data field extensions will not work with profiling turned
on.
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Chapter 5

Conclusions and further

work

We have presented a dialect of Haskell which makes it possible to program
in the data field model. The data field model generalizes the indexed data
structures found in many applications, and is based on the intuition of in-
dexed data structures as partial functions. We also gave an overview of the
existing Haskell implementations. We came to the conclusion that we should
base the implementation of our dialect on either the Glasgow Haskell Com-
piler (GHC) or Nearly a Haskell Compiler (NHC). In order to decide between
them, we compared them more closely, with the result that we decided to
base our implementation on NHC. Finally, we described the implementation
of our extended version of Haskell. The major parts of the implementation
are modifications to the compiler which allows it to parse and type check
our extended language, a program transformation which turns intermediate
code for our extended language into the original intermediate code for NHC,
abstract data types representing the data field and bounds implemented in
Haskell, and simple exception handling, used to handle applications of data
fields to indices which are out of bounds.

The design of the extensions took rather longer than we anticipated. This
might have something to do with the fact that the underlying theoretical
model [25] had a tendency to grow more detailed all the time (which on the
other hand might have had something to do with the fact that trying to
apply the theoretical model raised lots of interesting questions which had to
be answered).

Of course, designing a language is not completely divorced from imple-
menting it, since one is reluctant to add language features which one does
not have at least a vague idea of how to implement. Thus a lot of the time
spent designing the language was really spent thinking of implementation
techniques.

It was hard to decide how thoroughly to evaluate the Haskell imple-
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mentations. We quickly decided to focus on GHC and NHC, but how to
proceed was not obvious. A really thorough comparison would include mak-
ing (or at least trying to make) rather large modifications to the compilers.
Understanding a compiler well enough to make such modifications takes a
lot of time, and we considered it to be beyond the scope of this Master’s
project. On the other hand, just looking at the source code does not give
a good enough impression of how difficult the program is to modify. We
compromised by making a simple modification to the compilers, but the
modification might have been to simple.

The actual amount of code required to implement the extensions was
rather small (perhaps 3000 lines of Haskell, and under 100 lines of C). The
difficult part of writing the code was to make it fit with the existing code
and data structures. Learning enough about NHC to be able to write the
code was thus a substantial exercise. The most trouble was caused by the
implementation of exceptions. The basic principles for how to implement
them were not that hard to figure out, but getting the details right took
some grueling debugging sessions (as of the writing of this report, we still
have some bugs to fix).

Possible improvements of the language

The semantics for our data fields extension became a bit complicated. In
particular, the rules for deriving bounds for forall-abstractions are com-
plicated. The rules are also a bit too “syntactical”. That is, the derived
bounds for an expression such as

forall x -> f a x

will be universe, even if f is defined as

f = (!)

It would be nice if the expression forall x -> f a x and the expression
forall x -> a!x would have the same bounds when f is defined as above.
It is not obvious how to achieve this while keeping the performance of the
implementation reasonable, however. One might try to define a new abstract
machine which performs some of the transformations at runtime (and thus
delay the transformation until we know for sure that f is defined as !), but
this would probably be very inefficient.

Another problem with the derivation of bounds is that the two data
fields

d1 = forall (x,y) -> a!(x,y)

and

d2 = forall x -> a!x
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might get different bounds. For example, if the bound of a is the
sparse bound sparse [(1,2),(2,1)], then d1 will have the bound
(sparse [1,2]) <*> (sparse [1,2]), while d2 will have the same bound
as a. To solve this problem in we need a new kind of sparse bounds, with
different semantics (and representation).

We would also like to extend the type system in Haskell such that we
could implement the abstract data types for data fields and bounds directly
in Haskell. A possible way to represent bounds using type classes has been
proposed [22], but to use this approach we need to allow data declarations
on the following forms:

data T a = T (Class (b a) => b a)

and

data T (a,b) = ...

That is, we basically need to allow the components of data types to be more
polymorphic, and to allow the parameter of a polymorphic data type to be
a non-variable. Whether these extensions are consistent with the existent
type system remains to be determined.

A possible future extension to the language is to incorporate some ele-
mental intrinsic overloading. How to combine this style of overloading with
type inference is a research issue, however [48].

Finally, we would like to allow scaling as well as translations of data
fields. That is, we would like to be able to create a new data field with the
even elements of a:

evens a = forall x -> a!(2*x)

where the bounds of evens are the bounds of a scaled appropriately. In the
current language, a would always have the bound universe. This is due to
lack of time and to a problem with type classes. The problem is that the
type of evens is

evens :: (Pord a, Ix a, Num a) =>

Datafield a b -> Datafield a b

and the scaling operation need to perform integer division, which is not an
operation of the Num class, but of the Integral class. A simple solution is to
require explicit type signatures for the scaling to work, but other and more
elegant solutions might be possible.

Possible improvements of the implementation

There are several possibilities for improvement of our implementation. A
possibility would be to implement a more advanced simplification of the
derived bounds than the one given in section 4.4.3.
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It might also be possible to perform more advanced static analysis of
data fields, and try to calculate the size of data fields at compile time [24].

It would also be nice to have data fields behave as real memoized func-
tions. In the current implementation, the evaluation of a recursively defined
data field will recalculate previously calculated values, instead of using the
value already stored in the table. To avoid recalculating the values would
probably require a more low-level implementation of the data field evalua-
tors.
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Reneé Perrin and Alain Darte, editors, The Data Parallel Programming
Model: Foundations, HPF Realization, and Scientific Applications, Vol.
1132 of Lecture Notes in Comput. Sci., pages 220–251, Les Ménuires,
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in Comput. Sci., pages 18–44, Linköping, Sweden, April 1996. Springer-
Verlag.

76



[35] Simon L. Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Con-
current Haskell. In Conference Record of POPL ’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 295–308, St. Petersburg Beach, Florida, 21–24 January
1996.

[36] Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will Par-
tain, and Philip Wadler. The glasgow haskell compiler: a technical
overview. In Proc. UK Joint Framework for Information Technology
(JFIT) Technical Conference, July 1993.

[37] Simon L. Peyton Jones and Thomas Nordin. Green card: A foreign-
language interface for Haskell. In Proceedings of the 2nd ACM Haskell
Workshop, Amsterdam, the Netherlands, June 1997.
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Appendix A

Formal definition of data

field extensions to Haskell

A.1 The Data Field module

module Datafield(Datafield, Bounds, datafield, (!), bounds, (<\>),

translate, (<:>), (<*>), universe, empty, sparse,

predicate, finite, enumerate, inBounds, size,

lowerBound, upperBound, transBound, join, meet,

prod_2, prod_3, prod_4, --etc

tab, strictTab, hstrictTab, foldrDf, foldr1Df,

foldlDf, foldl1Df, scanl1Df, scanr1Df,

matrix, unmatrix, assoctoDf, outofBounds,

isoutofBounds, module Pord) where

infixl 9 !

infixl 3 <*>

infix 2 <:>

infixr 1 <\>

-- Creation of data fields

datafield :: (Pord a,Ix a) => (a -> b) -> Bounds a -> Datafield a b

-- Basic operations on data fields

(!) :: (Pord a,Ix a) => Datafield a b -> a -> b

bounds :: (Pord a,Ix a) => Datafield a b -> Bounds a

(<\>) :: (Pord a,Ix a) =>

Datafield a b -> Bounds a -> Datafield a b

translate :: (Pord a,Ix a,Num a) =>

a -> (Datafield a b) -> (Datafield a b)
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-- Creation of bounds

(<:>) :: (Pord a,Ix a) => a -> a -> Bounds a

(<*>) :: (Pord a,Ix a, Pord b, Ix b) =>

Bounds a -> Bounds b -> Bounds (a,b)

universe :: (Pord a,Ix a) => Bounds a

empty :: (Pord a,Ix a) => Bounds a

sparse :: (Pord a,Ix a) => [a] -> Bounds a

predicate :: (Pord a,Ix a) -> (a -> Bool) -> Bounds a

-- Basic operations on bounds

finite :: (Pord a,Ix a) => Bounds a -> Bool

enumerate :: (Pord a,Ix a) => Bounds a -> [a]

inBounds :: (Pord a,Ix a) => a -> Bounds a -> Bool

size :: (Pord a,Ix a) => Bounds a -> Int

lowerBound :: (Pord a,Ix a) => Bounds a -> a

upperBound :: (Pord a,Ix a) => Bounds a -> a

transBound :: (Pord a,Ix a,Num a) => a -> Bounds a -> Bounds a

-- join/meet - used by semantics

join :: (Pord a,Ix a) => Bounds a -> Bounds a -> Bounds a

meet :: (Pord a,Ix a) => Bounds a -> Bounds a -> Bounds a

-- Products

prod_2 :: (Pord a,Ix a,Pord b,Ix b) =>

Bounds a -> Bounds b -> Bounds (a,b)

prod_3 :: (Pord a,Ix a,Pord b,Ix b,Pord c,Ix c) =>

Bounds a -> Bounds b -> Bounds c -> Bounds (a,b,c)

prod_4 :: (Pord a,Ix a,Pord b,Ix b,Pord c,Ix c,Pord d,Ix d) =>

Bounds a -> Bounds b -> Bounds c -> Bounds d ->

Bounds (a,b,c,d)

-- etc

-- Parallel evaluators

tab :: (Pord a,Ix a) => Datafield a b -> Datafield a b

strictTab :: (Pord a,Ix a) => Datafield a b -> Datafield a b

hstrictTab :: (Pord a,Ix a) => Datafield a b -> Datafield a b
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-- folds, scans, etc

foldrDf :: (Pord a,Ix a,Eval c) =>

(b -> c -> c) -> c -> (Datafield a b) -> c

foldr1Df :: (Pord a,Ix a,Eval a) => (b -> b -> b) -> (Datafield a b) -> b

foldlDf :: (Pord a,Ix a,Eval b) =>

(b -> c -> b) -> b -> (Datafield a c) -> b

foldl1Df :: (Pord a,Ix a,Eval a) => (b -> b -> b) -> (Datafield a b) -> b

scanr1Df :: (Pord a,Ix a,Eval a) =>

(b -> b -> b) -> (Datafield a b) -> (Datafield a b)

scanl1Df :: (Pord a,Ix a,Eval a) =>

(b -> b -> b) -> (Datafield a b) -> (Datafield a b)

-- foldDf and scanDf are only guaranteed to work correctly functions

-- which are associative

foldDf :: (Pord a,Ix a,Eval b) => (b -> b -> b) -> (Datafield a b) -> b

scanDf :: (Pord a,Ix a,Eval b) =>

(b -> b -> b) -> (Datafield a b) -> (Datafield a b)

-- misc

outofBounds :: a

isoutofBounds :: Eval a => a -> Bool

-- utilites

matrix :: [[a]] -> Datafield (Int,Int) a

unmatrix :: Datafield (Int,Int) a -> [[a]]

assoctoDf :: (Pord a,Ix a) -> [(a,b)] -> Datafield a b

This module provides the abstract data types Data Field and Bounds and
operations on them. Data Fields can be constructed by applying datafield

to a function and a expression of the Bounds-type.
We give the semantics of the operations as equations between different

Haskell-expression. These equations mean that, if we ignore the bounds
derived for forall-abstractions, the left-hand side can be substituted for
the right-hand side, and vice versa. For example, the bound for derived for

forall x -> (datafield f b)!x

will not be the same as the bound derived for
forall x -> if inBounds x b then f x else outofBounds

but in all other contexts one can be substituted for the other.
The following holds for the basic operations on data fields: :
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bounds (datafield f b) = b

(datafield f b) ! x =

if inBounds x b then f x else outofBounds

(datafield f b1) <\> b2 = data field f (b2 ‘meet‘ b1)

(translate a d) ! x = d ! (x-a)

Data fields with finite bounds can be tabulated by the tab, strictTab

and hstrictTab functions, where tab tabulates the data field, but does
not evaluate it (as the array function in Haskell), strictTab tabulates
the data field, and evaluates the elements to weak-head normal form (i.e
evaluate them to the outermost constructor), and hstrictTab tabulates the
data field, and evaluates the elements to the innermost constructor.

The following equations hold for the basic operations on bounds:
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inBounds x universe = True

inBounds x empty = False

inBounds x (l <:> u) = lt l x && lt x u

inBounds x (sparse l) = x ‘elem‘ l

inBounds x (predicate p) = p x

inBounds (x,y) (b1 <*> b2) = inBounds x b1 && inBounds y b2

finite universe = False

finite empty = True

finite (predicate p) = False

finite (sparse l) = True

finite (l <:> u) = True

finite (b1 <*> b2) = finite b1 && finite b2

enumerate (l<:>u) = range (l,u)

enumerate (sparse l) = (nub . sort) l

enumerate (b1 <*> b2)

= [(x,y) | x <- enumerate b1, y <- enumerate b2]

enumerate empty = []

-- enumerate of an infinite data field is illegal

size b = length (enumerate b)

-- size of an infinite data field is illegal

lowerBound (l <:> u) = l

lowerBound (sparse l) = foldr1 glb l

lowerBound (b1 <*> b2) = (lowerBound b1, lowerBound b2)

upperBound (l <:> u) = u

upperBound (sparse l) = foldr1 lub l

upperBound (b1 <*> b2) = (upperBound b1, upperBound b2)

transBound a (l <:> u) = (l-a) <:> (u-a)

transBound a (sparse l) = sparse (map (subtract a) l)

transBound a (predicate p) = predicate (p . \x -> x+a)

transBound a universe = universe

transBound a empty = empty

The following holds for meet and join:
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universe ‘meet‘ b = b

b ‘meet‘ universe = b

empty ‘meet‘ b = empty

b ‘meet‘ empty = empty

(l1 <:> u1) ‘meet‘ (l2 <:> u2)

= (glb l1 l2) <:> (lub u1 u2)

(bx1 <*> by1) ‘meet‘ (bx2 <*> by2)

= (bx1 ‘meet‘ bx2) <*> (by1 ‘meet‘ by2)

(bx1 <*> by1) ‘meet‘ ((lx,ly) <:> (ux,uy))

= (bx1 <*> by1) ‘meet‘ ((lx <:> ux) <*> (ly <:> uy))

((lx,ly) <:> (ux,uy)) ‘meet‘ (bx2 <*> by2)

= ((lx <:> ux) <*> (ly <:> lx)) ‘meet‘ (bx2 <*> by2)

-- if none of the above equations apply,

-- the following holds:

-- if b1 finite:

b1 ‘meet‘ b2

= sparse [x | x <- enumerate b1, inBounds x b2]

-- if b2 finite:

b1 ‘meet‘ b2

= sparse [x | x <- enumerate b2, inBounds x b1]

-- otherwise:

b1 ‘meet‘ b2

= predicate (\x -> inBounds x b1 && inBounds x b2)

universe ‘join‘ b = universe

b ‘join‘ universe = universe

empty ‘join‘ b = b

b ‘join‘ empty = b

(l1 <:> u1) ‘join‘ (l2 <:> u2)

= (lub l1 l2) <:> (glb u1 u2)

(bx1 <*> by1) ‘join‘ (bx2 <*> by2)

= (bx1 ‘join‘ bx2) <*> (by1 ‘join‘ by2)

(bx1 <*> by1) ‘join‘ ((lx,ly) <:> (ux,uy))

= (bx1 <*> by1) ‘join‘ ((lx <:> ux) <*> (ly <:> uy))

((lx,ly) <:> (ux,uy)) ‘join‘ (bx2 <*> by2)

= ((lx <:> ux) <*> (ly <:> uy)) ‘join‘ (bx2 <*> by2)

-- if none of the above equations apply, the following holds:

-- if b1,b2 finite:

b1 ‘join‘ b2

= sparse (enumerate b1 ++ enumerate b2)

-- otherwise:

b1 ‘join‘ b2

= predicate (\x -> inBounds x b1 || inBounds x b2)
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The following holds for outofBounds and isoutofBounds

-- outofBounds represent the error value *,

-- which behaves as _|_, except that it can be tested for

-- by isoutofBounds

isoutofBounds x = True -- if x evaluates to *

isoutofBounds x = False -- otherwise

The following holds for the folds
foldlDf f a df = foldl f’ a (enumerate (bounds df))

where f’ z x = if isoutfBounds (f z (df!x))

then z

else (f z (df!x))

-- Similar equations hold for the other folds

A.2 Partial orders

module Pord(Pord(lub,glb,lt)) where

class Pord a where

lub :: a -> a -> a

glb :: a -> a -> a

lt :: a -> a -> Bool

instance Pord Char where ...

instance Pord Int where ...

instance Pord Integer where ...

instance (Pord a, Pord b) => Pord (a,b) where ...

-- et cetera

instance Pord Bool where ...

instance Pord Ordering where ...

The Pord class is used to provide least upper bounds, lub, and greatest
lower bounds, glb, according to a partial order, lt. That is, lt should
be reflexive, antisymmetric and transitive. In addition, the following laws
should hold for instances of Pord:

x ‘lt‘ (lub x y)

y ‘lt‘ (lub x y)

x ‘lt‘ u && y ‘lt‘ u implies (lub x y) ‘lt‘ u
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instance (Pord a, Pord b) => Pord (a,b) where

lub (x1,x2) (x1’,x2’) = (lub x1 x1’, lub x2 x2’)

glb (x1,x2) (x1’,x2’) = (glb x1 x1’, lub x2 x2’)

(x1,x2) ‘lt‘ (x1’,x2’) = x1 ‘lt‘ x1’ && x2 ‘lt‘ x2’

-- Instances for other tuples are obtained from this scheme:

--

-- instance (Pord a1,..., Pord ak) => Pord (a1,...,ak) where

-- lub (x1,...,xk) (x1’,...,xk’)

-- = (lub x1 x1’,...,lub xk xk’)

-- glb (x1,...,xk) (x1’,...,xk’)

-- = (glb x1 x1’,...,lub xk xk’)

-- (x1,...,xk) ‘lt‘ (x1’,...,xk’)

-- = x1 ‘lt‘ x1’ && ... && xk ‘lt‘ xk’

Figure A.1: Derivation of Pord instances.

(glb x y) ‘lt‘ x

(glb x y) ‘lt‘ y

‘lt‘ x && l ‘lt‘ y implies l ‘lt‘ (glb x y)

For types which are instances of both Ix and Pord the following should

hold:

foldr1 glb (range (l,u)) = l

foldr1 lub (range (l,u)) = u

The Pord class is used in the data field extensions to define pointwise lub,
glb and lt for tuples and user defined data types.

A.2.1 Deriving instances of Pord

Derived instance declarations for the class Pord are possible for enumerations
(data types having only nullary constructors), and single constructor data
types with constituent types which are instances of Pord. For enumeration
types, lub, glb and lt are derived in the same way as max, min and <=

for the Ord class. For single-constructor data types, the derived instance
declarations are as shown for tuples in Figure A.1.
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A.3 The Show class

class Show a where

showsPrec :: Int -> a -> ShowS

showsPrec’ :: Int -> a -> ShowS

showList :: [a] -> ShowS

showsType :: a -> ShowS

showsOutofbounds :: a -> ShowS

showList xs = handle (showLs xs) (showsOutofbounds (head xs))

where showLs [] = showString "[]"

showLs (x:xs) = showChar ’[’ . shows x .

(handle (showl xs)

(showString ", " . showsOutofbounds x))

showl [] = showChar ’]’

showl (x:xs) = showString ", " . shows x .

(handle (showl xs)

(showString ", " . showsOutofbounds x))

showsPrec p x = handle (showsPrec’ p x) (showsOutofbounds x)

showsOutofbounds _ = showString "<OUB>"

To make the printing of the value ∗ configurable for each type, we add
a method showsOutofbounds to the Show class. To minimize the nece-
sary modifications of the instances for the basic types, we add a method
showsPrec’ which should work as showsPrec in the Haskell report. The
new showsPrec is, as default, a wrapper which checks is the result of apply-
ing showPrec’ is ∗, and if so, calls showsOutofbounds.

showsOutofbounds is, as default, defined as printing <OUB>.
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instance (Eval a1, ..., Eval ak) => Eval (T a1 ... ak) where

x ‘seq‘ y = case x of

C1 _ ... _ -> y

_ -> y

x ‘hseq‘ y =

let x’ = case x of

C1 x1 ... xk1 ->

x1 ‘hseq‘ (x2 ‘hseq‘ ... (xk1 ‘hseq‘ y)...)

C2 x1 ... xk2 ->

x1 ‘hseq‘ (x2 ‘hseq‘ ... (xk2 ‘hseq‘ y)...)

.

.

.

Cn x1 ... xkn ->

x1 ‘hseq‘ (x2 ‘hseq‘ ... (xkn ‘hseq‘ y)...)

in if isoutofBounds x’ then y else y

Figure A.2: Derivation of Eval instances.

A.4 The Eval class

infixr 0 ‘seq‘

infixr 0 ‘hseq‘

class Eval a where

seq :: a -> b -> b

strict :: (a -> b) -> a -> b

hseq :: a -> b -> b

hyperstrict :: (a -> b) -> a -> b

strict f x = x ‘seq‘ f x

hyperstrict f x = x ‘hseq‘ f x

We add methods hseq and hyperstrict to the Eval class. They are hy-
perstrict analogs to the seq and strict methods. However, while seq and
strict are strict both in the error value ∗ and ⊥, hseq and hyperstrict

are hyperstrict only in ⊥.

The new Eval instance derived by the compiler for a type T with con-
structors C1, ..., Cn is as shown in Figure A.2
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A.5 forall-abstraction

forall-abstraction is a construct for specifying data field in a implicit way.
It is the same as the ϕ-abstraction in [25]. Syntactically it works as λ-
abstraction:

forall apat1 . . . apatn -> exp

As for λ-abstractions, the general form above is equivalent to

forall x1 . . . xn -> case ( x1 , . . . , xn ) of

( pat1 , . . . , patn ) -> exp

where x1, . . . , xn are fresh identifiers. The types of the identifiers being
abstracted over must be instances of the Pord and Ix classes. So if the type
of

\x1 . . . xn -> expr

is

c => a1 -> ... -> an -> t

where the ai are type variables and c is a context, i.e a list (C1u1, . . . Cnun)
where the Ci are class identifiers and the ui are type variables, then the type
of

forall x1 . . . xn -> expr

is

c′ => Datafield a1 (Datafield a2 (... Datafield an t))

where c′ is c with type assertions (Pord a1 , Ix a1 , . . . Pord an , Ix an)
added.

If we have a type of the above form where the ai are not type variables,
the situation is a bit more complicated, since only type variables may appear
in contexts. If ai = C v1 . . . vn, where C is a type constructor and vi are type
variables, then C must be an instance of Pord and Ix, and we must add con-
texts (Pord v1, Ix v1, ..., Pord vn, Ix vn) to c. The above applies recursively if
the vi are not type variables. Thus the expression forall ((x,y),z) -> x

will have the type

(Pord a, Ix a, Pord b, Ix b, Pord b, Ix c) =>

Datafield ((a,b),c) -> a

A.5.1 Other modifications to the prelude

The putChar and putStr functions are modifiued so that they print <OUB>
if ∗ is encountered. That is:
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putChar c = if isoutofBounds c then

putStr "<OUB>"

else

primPutchar c

putStr xs = if isoutofBounds xs then

putStr "<OUB>"

else

case xs of

[] -> return ()

(x:xs) -> do putChar x

putStr xs

A.5.2 Semantics of forall-abstraction

In [29], the semantics of advanced syntactic structures are given as trans-
lation into the Haskell kernel, a very simple subset of Haskell. In this tra-
dition, we give the semantics of forall-abstraction as a translation from
the Haskell kernel with forall-abstractions into the Haskell kernel without
forall-abstractions. However, for convenience we do not assume that let-
expressions have been removed. We do assume all case-expressions have
been “flattened”, and written on the form

case v of { K x1 . . . xn -> e ;

_ -> e ′ }

Where v and x1, . . . , xn are variables.

Semantics for pattern-matching

The formal semantics for case-expressions in [29, section 3.17.3] is changed
slightly. The rule

(b) case v of { p1 match1; . . . ; pn matchn }

= case v of { p1 match1 ;

_ -> . . . case v of {

pn matchn

_ -> error "No match" }. . .}
where each matchi has the form:
| gi,1 -> ei,1 ; . . . ; | gi,mi

-> ei,mi
where { declsi }

is replaced by
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(FORALL1) forallx1...xn->e
= forallx1->...-> forallxn->e

(FORALL2) forallx->e
= datafield(\x->e)B(e, {x}, ∅)

Figure A.3: Translation of forall-abstractions.

(b’) case v of { p1 match1; . . . ; pn matchn }

= case v of { p1 match1 ;

_ -> . . . case v of {

pn matchn

_ -> caseNoMatch }. . .}
where each matchi has the form:
| gi,1 -> ei,1 ; . . . ; | gi,mi

-> ei,mi
where { declsi }

We need caseNoMatch to formally distinguish pattern-matching errors from
other errors in the semantics for forall-abstractions. caseNoMatch can be
implemented by the compiler as

caseNoMatch = error "No match"

so this change does not change the semantics of pattern matching in practice.

Translation of forall-abstractions

The translation of forall-abstractions is given in Figure A.3. A forall-
abstraction with multiple arguments is first translated into nested forall-
abstractions with one argument each. The forall-abstractions with single
arguments are translated into an application of the datafield constructor
on a λ-abstraction and a bound which is derived from the expression. The
rules for how the bounds are derived is based on the rules for how explicit
restrictions can be propagated for partial functions. Some examples of this
can be found in section 1.2, but for a complete treatment, see [25]. The
derivation of the bound is given by the B-scheme, shown in Figure A.4.
B is closely based on the corresponding scheme for ϕ-abstractions in [25].
There are some differences, however, since the B-scheme given there is more
of a operational description of how a ϕ-expression should be reduced, and
requires that part of the expression has been reduced already. We do not
want to do any reduction (except translating into the Haskell kernel) before
applying the B-scheme. The scheme given in [25] also has a problem with
recursive user-defined functions, in that some expressions which intuitively
should work as definitions of data fields has no normal form (i.e the eval-
uation of them will loop forever). We handle this by viewing all functions
as strict with respect to the propagation of bounds. Remember that we for
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strict functions g have

λx.g(f1\b1 x) . . . (fn\bn x) =

(λx.g (f1x) . . . (fnx))\(λy.(b1 y) ∧ . . . ∧ (bn y))

For propagation of bounds, we apply a similar rule for all functions, regard-
less of whether they are strict or not. This might give us a bound which is
tighter than the domain for the corresponding partial function.

We also handle case-expressions, and we give a more explicit definition
of what happens when data fields are applied to tuples.

Below, and in Figure A.4, x and v stand for variables, while e and t
stand for Haskell core-expressions.

Some notes on the translation: The parameters in B(e, ~x, Y ) are an
Haskell core expression e, a tuple ~x, alternatively written (x1, ..., xn) (where
n might be 1), and a set Y . e is the expression being analyzed. ~x is the
argument which we analyze e as a data field over. At the beginning, this is
the argument of the forall-abstraction, and is thus a single variable, but
since case-expressions may bind new variables to the components of a tuple,
we also need to find the applications of data fields to those variables. This
is done by analyzing the sub expression where the binding has effect with
respect to the tuple which contains the new variables. The set Y is used to
keep track of variables which are bound after the variable being abstracted
over. These are needed since we can consider variables which are bound
earlier as constants (i.e they can occur in the derived bound).

By abuse of notation, we will write Y ∪ ~x for Y ∪ {x1, ..., xn}.
To keep the description more readable the function meet is denoted by

⊓, join by ⊔, and prod_ne1...en is written either as e1× . . .×en, as ×n
i=1

ei,
or, if all factors are identical, as en. We assume that all bound variables are
distinct.

We also define a family of projection functions on bounds, prm
k . Let ρ be

a (set-theoretic) partial function from [1,m] to Haskell expressions, and b be
a m-dimensional bound (i.e a bound which represents a set of m-tuples). The
projection prm

k (ρ, b) is the projection of the bound b in the k:th dimension,
with additional constraints in the dimensions for which the partial function
ρ is defined. We first define prm

k for product bounds. Let πm
k be a family of

functions with the property πm
k (b1 × . . . × bk × . . . × bm) = bk, and

prm
k (ρ, b) = if cond then πm

k (b) else empty

where
cond = vi1 ‘inBounds‘ πm

i1
(b) && ... && vil ‘inBounds‘ πm

il
(b)

ρ = {(i1, vi1), ..., (il, vil)}

This definition works for dense bounds as well, if we define

πm
k ((l1, ..., lk , ..., lm)<:>(u1, ..., uk , ..., um)) = lk <:> uk
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For sparse bounds we can define πm
k as

πm
k (sparse l) = sparse (map (\(x1, ..., xk , ..., xm) ->xk) l)

and prm
k (ρ, b) as

prm
k (ρ, b) = πm

k (b ⊓ (predicate p))

where

p = (\(x1, ..., xm) -> xi1 == vi1 && ... && xil == vil))

For predicate bounds, we have

prm
k (ρ, predicate p) = \xk->p (ρ(1), ..., xk , ..., ρ(m))

if ρ(i) is defined for i ∈ {1, ...,m} \ {k}, and

prm
k (ρ, predicate p) = universe

otherwise.
For universe and empty we have

prm
k (ρ, universe) = universe

and
prm

k (ρ, empty) = empty

We now explain the rules in Figure A.4.

• The (LAM)-rule simply keeps track of variables bound by λ-abstractions.

• The (CASE1)-rule handles the fact that case-expressions can be used
to bind variables to the components of a tuple which is a component
of the tuple ~x. That is, we get a new representation ~v = (v1, ..., vm) of
the component xi in ~x. This means that we need to consider data field
being applied to the variables v1, ..., vn as well as the original variables.
This is handled by analyzing both over ~v and over ~x and applying ⊓
to the results. Since ~v is a representation of a single component xi of
~x, the expression derived by B(e,~v, Y ∪ ~x) only restricts the bound in
the dimension i. This is the reason for the universe bounds in the
other dimensions.

Since matching of tuples never fail, we do not need to bother with the
other branch of the case-expression.

• The (CASE2)-rule handles case-expressions where the pattern is not a
tuple. This means that (in general) any branch could be taken, which
means that the bound derived for the case-expression should be ⊔
applied to the bounds of the branches.
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• The (APP1)-rule handles applications of data fields, on tuples or non-
tuples (a non-tuple is simply considered a tuple of arity 1). One should
note that this rule matches syntactically on the !-operator. Thus the
rule does not hold if we replace ! with f, even if f is defined as f = (!).
The details of data field application is given in the (TUPLE)-rule.

• The (APP2)-rule handles applications of other functions than !. Ap-
plication is strict in the function being applied, so the bounds of the
application will depend on the bounds of data fields occurring in the
expression which we apply. The bounds of the application may or may
not depend on data fields in the argument (for the corresponding rule
for partial functions it depends on whether or not the function applied
is strict), but for the purpose of the propagation of bounds we assume
that all functions are strict, which means bounds from the argument
should be propagated.

• The (LET)-rule handles let expressions. The (LET)-rule can be seen
as a theorem following from the transformations of let to λ- and case-
expressions given in [30] and the other rules given here. But since this
is not obvious, we give the rule for (LET) here.

• The (PFAIL)-rule handles pattern-matching failure. We need to dis-
tinguish pattern-matching failure from other errors since we otherwise
would get the bound universe for all case-expressions.

• The (AFAIL)-rule should be self-explanatory (an expression which is
out of bounds is defined nowhere).

• (DEFAULT) takes care of all cases which do not match any other rule.

• (TUPLE) defines the T -scheme which is used to define data field ap-
plication on tuples. The bound T (b,~t, ~x) calculated from the bound b
is a product where the i:th component is restricted by the occurrences
of xi in ~t. Basically, if xi occurs in tk, then the k:th dimension of
b might restrict the i:th dimension of the resulting bound. Exactly
how depends in what context xi occurs. The details are given by the
(COMP)-rule.

• (COMP) defines C, which is used to by the T -scheme to analyze the
occurrences of a variable in a component of a tuple.

A.6 for-abstraction

for-abstraction specifies the bounds of data fields more explicitly than
forall-abstraction. The syntax is
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for pat in { e1 -> e ′
1
; . . . ; en -> e ′

n
}

which is equivalent to

(forall pat -> if inBounds pat (e1) then e ′
1

else if inBounds pat (e2) then e ′
2

. . .
else if inBounds pat (en) then e ′

n

else outofbounds) <\>

(e1 ) ⊔ (e2 ) ⊔ . . . ⊔ (en)
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(LAM) B(\ v1 ... vn -> e, ~x,Y )
= B(e, ~x, Y ∪ {v1, ..., vn})

(CASE1) B(case xi of {( v1, ..., vn ) -> e ; _ -> e′ }, ~x, Y )
= ((universe i−1 ×B(e,~v, Y ∪ ~x)× universem−i)

⊓B(e, ~x, Y ∪ ~v))

(CASE2) B(case x of { K v1 ... vn -> e ; _ -> e’}, ~x,Y )
= B(e, ~x, Y ∪ {v1, ..., vn}) ⊔ B(e′, ~x, Y )

(APP1) B((!) e (t1, ..., tm), ~x, Y )
= T (bounds e, (t1, ..., tm), ~x, Y ), if FV(e) ∩ (Y ∪ ~x) = ∅

(APP2) B(e1 e2, ~x, Y )
= B(e1, ~x, Y ) ⊓ (e2, ~x, Y )

(LET) B(let {v1=e1;...;vn=en} in e, ~x, Y )
= B(e1, ~x, Y ∪ {v1, ..., vn}) ⊓ ... ⊓ B(en, ~x, Y ∪ {v1, ..., vn})

⊓B(e, ~x, Y ∪ {v1, ..., vn})

(PFAIL) B(caseNoMatch,~x,Y )
= empty

(AFAIL) B(outofBounds,~x,Y )
= empty

(DEFAULT) B(e, ~x, Y )
= universe , if none of the other rules apply

(TUPLE) T (b, (t1, ..., tm), (x1, ..., xn), Y )
= ×n

i=1 ⊓
m
k=1

C(b, k, (t1, ..., tm), xi, Y ∪ ~x)

(COMP) C(b, k, (t1, ..., tm), xi, Y )
= transBound(prm

k (ρ, b), a) if tk ≡ xi + a,
where FV(a) ∩ Y = ∅

= prm
k (ρ, b) if tk ≡ xi

= T (prm
k (ρ, b), (t′1, ..., t

′

l), xi, Y \ {xi}) if tk ≡ (t′1, ..., t
′

m),
and xi ∈ FV(tk)

= universe otherwise
where ρ = {(j, tj) | FV(tj) ∩ Y = ∅}

Figure A.4: Derivation of bounds.

96


