
Mälardalen University Licentiate Thesis
No.277

Facilitating Automated
Compliance Checking of
Processes against Safety

Standards

Julieth Patricia Castellanos Ardila

March 2019

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden



Copyright c© Julieth Patricia Castellanos Ardila, 2019
ISBN 978-91-7485-422-0
ISSN 1651-9256
Printed by E-print AB, Stockholm, Sweden



Populärvetenskaplig
sammanfattning

Runtomkring oss i våra liv idag har vi olika system som anses vara
säkerhetskritiska, system som vid eventuella funktionsfel skulle kunna få
katastrofala konsekvenser för oss. Dessa system finns i krockkuddar i bilar,
medicinsk utrustning som utför röntgenterapi, och system som styr flygplan,
för att nämna några av dem. Tillverkare av de här systemen följer en
områdesspecifik säkerhetsstandard, som beskriver vad som är en allmänt
accepterad nivå av säkerhet. Vissa specifika områden har säkerhetsstandarder
som beskriver de krav för processer som man måste tillämpa när man
utvecklar säkerhetskritiska system. För att följa en sådan standard måste
företag anpassa sina rutiner och kunna uppvisa övertygande
säkerhetsbevisning av processen, från och med de första stegen av
produktionen. I synnerhet är planeringen av utvecklingsprocessen en
väsentlig del av bevisen som används i bedömningen, i enlighet med de krav
som ställs i den specifika standarden. Att konstruera en sådan bevisning kan
dock vara tidskrävande och innebära en stor felmarginal eftersom det kräver
att processingenjörerna måste kontrollera att hundratals krav baserade på
deras specifika processer uppfylls. Med tillgång till lämpliga verktygsstödda
metoder skulle processingenjörerna kunna utföra sitt jobb både effektivare och
på litligare.

I praktiken är det svårt att genomföra automatiserad kontroll av de
processer som krävs ur ett säkerhetskritiskt perspektiv. En orsak är att
säkerhetsstandards uttrycker krav i naturligt språk, vilket datorer inte kan
förstå. Det finns redan metoder som möjliggör att en dator i viss mån kan
tolka skriftligt språk men de innehåller inte de koncept som behövs för att
följa existerande standarder. Därför föreslår vi ett nytt tillvägagångssätt som

i



ii

kombinerar dessa tre egenskaper: 1) processmodelleringsfunktioner för att
representera system- och mjukvaruprocesspecifikationer, 2) normativ
representation för tolkning av kraven i säkerhetsstandarderna i en adekvat
maskinläsbar form samt 3) möjlighet att kontrollera att processen
överensstämmer med den branschspecifika standarden. Inom vårt tillvägagå
ngssätt har vi definierat metodiska riktlinjer som gör det lättare att följa de
krav som beskrivs i ISO 26262, vilken är standarden som behandlar säkerhet
inom bilindustrin. Slutligen introducerar vi ett tillvägagångssätt för att
systematiskt kunna återanvända de vanligast förekommande kontrollerna. Vår
metodik utvärderas i denna licentiatavhandling genom akademiska exempel
men försatt arbete inkluderar utvärderingar genom industriella fallstudier.



Abstract

A system is safety-critical if its malfunctioning could have catastrophic
consequences for people, property or the environment, e.g., the failure in a
car’s braking system could be potentially tragic. To produce such type of
systems, special procedures, and strategies, that permit their safer deployment
into society, should be used. Therefore, manufacturers of safety-critical
systems comply with domain-specific safety standards, which embody the
public consensus of acceptably safe. Safety standards also contain a
repository of expert knowledge and best practices that can, to some extent,
facilitate the safety-critical systems engineering. In some domains, the
applicable safety standards establish the accepted procedures that regulate the
development processes. For claiming compliance with such standards,
companies should adapt their practices and provide convincing justifications
regarding the processes used to produce their systems, from the initial steps of
the production. In particular, the planning of the development process, in
accordance with the prescribed process-related requirements specified in the
standard, is an essential piece of evidence for compliance assessment.
However, providing such evidence can be time-consuming and prone-to-error
since it requires that process engineers check the fulfillment of hundreds of
requirements based on their processes specifications. With access to suitable
tool-supported methodologies, process engineers would be able to perform
their job efficiently and accurately.

Safety standards prescribe requirements in natural language by using
notions that are subtly similar to the concepts used to describe laws. In
particular, requirements in the standards introduce conditions that are
obligatory for claiming compliance. Requirements also define tailoring rules,
which are actions that permit to comply with the standard in an alternative
way. Unfortunately, current approaches for software verification are not
furnished with these notions, which could make their use in compliance

iii



iv

checking difficult. However, existing tool-supported methodologies designed
in the legal compliance context, which are also proved in the business domain,
could be exploited for defining an adequate automated compliance checking
approach that suits the conditions required in the safety-critical context.

The goal of this Licentiate thesis is to propose a novel approach that
combines: 1) process modeling capabilities for representing systems and
software process specifications, 2) normative representation capabilities for
interpreting the requirements of the safety standards in an adequate
machine-readable form, and 3) compliance checking capabilities to provide
the analysis required to conclude whether the model of a process corresponds
to the model with the compliant states proposed by the standard’s
requirements. Our approach contributes to facilitating compliance checking
by providing automatic reasoning from the requirements prescribed by the
standards, and the description of the process they regulate. It also contributes
to cross-fertilize two communities that were previously isolated, namely
safety-critical and legal compliance contexts. Besides, we propose an
approach for mastering the interplay between highly-related standards. This
approach includes the reuse capabilities provided by SoPLE (Safety-oriented
Process Line Engineering), which is a methodological approach aiming at
systematizing the reuse of process-related information in the context of
safety-critical systems. With the addition of SoPLE, we aim at planting the
seeds for the future provision of systematic reuse of compliance proofs.
Hitherto, our proposed methodology has been evaluated with academic
examples that show the potential benefits of its use.



Para mi familia, con profundo amor.





Acknowledgments

First and foremost, I would like to express my highest appreciation to my
supervisory team, Barbara Gallina and Faiz UL Muram, without whom this
thesis would not be possible. Thanks to their guidance and encouragements, I
have been inspired and motivated during my research. Special thanks to
Guido Governatori, Group Leader of the Software Systems Research Group at
CSIRO’s Data611, for sharing his knowledge and expertise.

I also want to take the opportunity to be grateful with the head of our
division, Radu Dobrin, as well as Jenny Hägglund and Carola Ryttersson for
facilitating all the MDH routines. My gratitude is also for the people, who are,
or have been colleagues at MDH. In particular, I thank Jan Carlson, Antonio
Cicchetti, Mirgita Frasheri, Irfan Sljivo, Simin Cai, Filip Markovic, LanAnh
Trinh, Muhammad Atif Javed, Soheila Sheikh Bahaei, Gabriel Campeanu,
Omar Jaradat, Inmaculada Ayala, Luciana Provenzano, Zulqarnain Haider,
Mustafa Hashmi, Husni Khanfar and Robbert Jongeling, for taking their time
to answer my countless questions, sharing their knowledge and/or interests.
Special thanks to Cristina Seceleanu for reviewing my thesis and giving me
valuable comments.

I also want to give special thanks to my mother Mercedes for always
believing in me, offering her most caring support and enthusiasm. Finally, and
most important, I would like to express my gratitude and love to my husband
Ola and my son Gabriel. Their company, patience, and unconditional support
and love have strengthened me through this challenging experience.

The work in this Licentiate thesis has been supported by EU and
VINNOVA via the ECSEL JU project AMASS (No. 692474) [1].

Julieth Patricia Castellanos Ardila
Västerås, March, 2019

1https://www.data61.csiro.au/

vii





List of Publications

Papers Included in the Licentiate Thesis2

Paper A: Enabling Compliance Checking against Safety Standards from
SPEM 2.0 Process Models, Julieth Patricia Castellanos Ardila, Barbara
Gallina and Faiz UL Muram. In Proceedings of the 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
Prague, Czech Republic, August 2018.

Paper B: Transforming SPEM 2.0-compatible Process Models into Models
Checkable for Compliance, Julieth Patricia Castellanos Ardila, Barbara
Gallina and Faiz UL Muram. In Proceedings of the 18th International
Software Process Improvement and Capability Determination Conference
(SPICE), Thessaloniki, Greece, October 2018.

Paper C: Formal Contract Logic Based Patterns for Facilitating Compliance
Checking against ISO 26262, Julieth Patricia Castellanos Ardila and Barbara
Gallina. In Proceedings of the 1st Workshop on Technologies for Regulatory
Compliance (TeReCom), Luxembourg, Luxemburg, December 2017.

Paper D: Lessons Learned while Formalizing Functional Safety Standards for
Compliance Checking, Julieth Patricia Castellanos Ardila, Barbara Gallina
and Guido Governatori. In Proceedings of the 2nd Workshop on Technologies
for Regulatory Compliance (TeReCom), Groningen, The Netherlands,
December 2018.

Paper E: Towards Increased Efficiency and Confidence in Process

2The included papers have been reformatted to comply with the thesis layout

ix



x

Compliance, Julieth Patricia Castellanos Ardila and Barbara Gallina. In
Proceedings of the 24th European Conference on Software Process
Improvement (EuroAsiaSPI), Ostrava, Czech Republic, September 2017.

Additional Peer-reviewed Publications Related to
the Thesis3

Paper 1: Towards Efficiently Checking Compliance Against Automotive
Security and Safety Standards Julieth Patricia Castellanos Ardila and Barbara
Gallina. In Proceedings of the 7th IEEE International Workshop on Software
Certification (WoSoCer), Toulouse, France, October 2017.

Paper 2: Compliance of Agilized (Software) Development Processes with
Safety Standards: a Vision, Barbara Gallina, Faiz UL Muram and Julieth
Patricia Castellanos Ardila. In Proceedings of the 4th international workshop
on Agile Development of Safety-Critical Software (ASCS), Porto, Portugal,
May 2018.

Paper 3: Facilitating Automated Compliance Checking of Processes against
Safety Standards, Julieth Patricia Castellanos Ardila. Accepted research
abstract at the Doctoral Symposium hosted by the 8th International
Symposium On Leveraging Applications of Formal Methods, Verification and
Validation (ISoLa-DocSymp). Limassol, Cyprus. November, 2018

3These papers are not included in this thesis



Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 13
2.1 Safety-Critical Systems . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Safety-Critical Systems Overview . . . . . . . . . . . 13
2.1.2 Process Assurance-based Safety Standards . . . . . . 14
2.1.3 Safety Standard ISO 26262 . . . . . . . . . . . . . . . 14
2.1.4 Cybersecurity Guidebook SAE J3061 . . . . . . . . . 17

2.2 Software Process Modeling Languages . . . . . . . . . . . . . 17
2.2.1 Software Process Models Overview . . . . . . . . . . 18
2.2.2 SPEM 2.0 . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 EPF Composer . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Safety-oriented Process Line Engineering . . . . . . . 21

2.3 Process-based Compliance Checking . . . . . . . . . . . . . . 23
2.3.1 Compliance of Processes in the Safety-Critical Context 23
2.3.2 Norms Representation . . . . . . . . . . . . . . . . . 25
2.3.3 Formal Contract Logic . . . . . . . . . . . . . . . . . 26
2.3.4 Regorous . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Property Specification Patterns . . . . . . . . . . . . . . . . . 33

3 Research Summary 35
3.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . 35
3.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Problem Identification . . . . . . . . . . . . . . . . . 38
3.2.2 Research Motivation . . . . . . . . . . . . . . . . . . 39

xi



xii Contents

3.2.3 Research Goals . . . . . . . . . . . . . . . . . . . . . 39

4 Thesis Contributions 41
4.1 Conditions for Automatically Checking Compliance in the

Safety-Critical Context . . . . . . . . . . . . . . . . . . . . . 41
4.2 Automated Compliance Checking Vision . . . . . . . . . . . 44
4.3 ISO 26262-related Compliance Patterns Definition . . . . . . 47
4.4 Methodological Guidelines for Formalizing ISO 26262 . . . . 49
4.5 Logic-based Framework for Enabling Reuse of Compliance

Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Related Work 53
5.1 Approaches for Compliance Checking . . . . . . . . . . . . . 53
5.2 Facilitating Formal Specification of Requirements . . . . . . . 56
5.3 Reuse of Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusions and Future Work 59
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 65

II Included Papers 79

7 Paper A:
Enabling Compliance Checking against Safety Standards from
SPEM 2.0 Process Models 81
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.1 SPEM 2.0 . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.2 IBM Standards Mapping Method . . . . . . . . . . . 85
7.2.3 Regorous . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.4 ISO 26262 . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Automated Compliance Checking Vision . . . . . . . . . . . 87
7.4 Modeling and Annotating a Small Example from ISO 26262 . 88
7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 94
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Contents xiii

8 Paper B:
Transforming SPEM 2.0-compatible Process Models into Models
Checkable for Compliance 97
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2.1 EPF Composer . . . . . . . . . . . . . . . . . . . . . 100
8.2.2 Regorous . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2.3 Automatic Compliance Checking Vision: The

Modeling Part . . . . . . . . . . . . . . . . . . . . . . 101
8.2.4 CENELEC EN 50128 . . . . . . . . . . . . . . . . . 102

8.3 Generating Regorous Inputs . . . . . . . . . . . . . . . . . . 104
8.4 Models Checkable for Compliance from the Rail Sector . . . . 106
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 115
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Paper C:
Formal Contract Logic Based Patterns for Facilitating Compliance
Checking against ISO 26262 119
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2.1 ISO 26262 . . . . . . . . . . . . . . . . . . . . . . . 122
9.2.2 Specification Patterns . . . . . . . . . . . . . . . . . . 123
9.2.3 Formal Contract Logic . . . . . . . . . . . . . . . . . 123

9.3 Safety Compliance Patterns Identification and Definition . . . 124
9.3.1 Our definition of Safety Compliance Pattern . . . . . . 124
9.3.2 ISO 26262-related Compliance Patterns Identification 125
9.3.3 ISO 26262-related Compliance Patterns Definition . . 126

9.4 ISO 26262-related Compliance Patterns Instantiation . . . . . 127
9.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 129
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10 Paper D:
Lessons Learned while Formalizing ISO 26262 for Compliance
Checking 133
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xiv Contents

10.2.1 ISO 26262 . . . . . . . . . . . . . . . . . . . . . . . 136
10.2.2 Formal Contract Logic . . . . . . . . . . . . . . . . . 137
10.2.3 Safety Compliance Patterns . . . . . . . . . . . . . . 138

10.3 Formalization-oriented Pre-processing of ISO 26262 . . . . . 138
10.3.1 Identify essential normative parts in ISO 26262 . . . . 139
10.3.2 Identify SCP . . . . . . . . . . . . . . . . . . . . . . 140
10.3.3 Create SPC templates . . . . . . . . . . . . . . . . . . 140
10.3.4 Methodological guideline for formalizing ISO 26262 . 143

10.4 Formalizing ISO 26262 Part 3 . . . . . . . . . . . . . . . . . 144
10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 148
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11 Paper E:
Towards Increased Efficiency and Confidence in Process
Compliance 153
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.2.1 Automotive SPICE . . . . . . . . . . . . . . . . . . . 156
11.2.2 ISO 26262 . . . . . . . . . . . . . . . . . . . . . . . 156
11.2.3 SoPLE . . . . . . . . . . . . . . . . . . . . . . . . . 158
11.2.4 Defeasible Logic . . . . . . . . . . . . . . . . . . . . 159
11.2.5 Compliance Checking Approach . . . . . . . . . . . . 159

11.3 SoPLE&Logic-basedCM . . . . . . . . . . . . . . . . . . . . 160
11.4 Applying SoPLE&Logic-basedCM . . . . . . . . . . . . . . . 160

11.4.1 SoPL Modeling . . . . . . . . . . . . . . . . . . . . . 160
11.4.2 Definition of the Proofs of Compliance . . . . . . . . 161
11.4.3 Lessons Learnt . . . . . . . . . . . . . . . . . . . . . 166

11.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 167
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



I

Thesis

1





Chapter 1

Introduction

Our everyday life is surrounded by systems that are considered safety-critical,
i.e., systems whose failures could result in death, injury, loss of property, or
environmental harm [2]. Such systems can be situated on, e.g., the car airbags,
medical devices that perform radiation therapy, the flight control that guides
aircrafts, to mention just some of them. It is predicted that the scope of
safety-related areas will be expanded with the implementation of
technological advances, such as Artificial Intelligence and Machine Learning
techniques [3]. The essential feature characterizing the current and future
safety technology is that they are more and more dependent on complicated
software [4]. The increasing use of software in safety-systems has been
considered closely related to the increasing occurrence of systematic failures,
which can lead to accidents [5]. However, the world of ”risky technology” [6]
can be controlled by using proved procedures and strategies that permit these
systems to be safer deployed into society. Thus, safety-critical manufacturers
rely on safety standards, which not only embody the public consensus of
acceptable risk [7] but also contain a repository of expert knowledge and best
practices that can, to some extent facilitate the safety-critical system’s
engineering [8].

The intent of compliance with the requirements provided by a safety
standard would assure particular qualities of engineering entities, whose focus
is often on demonstrating technical properties of that system [8]. However,
there is no real consensus on absolutely essential metrics for assuring the
safety of products [9]. Thus, the assurance of processes emerges as an
accepted approach for safety qualification [10]. In particular, process features

3



4 Chapter 1. Introduction

can derive the evidence regarding issues such as the competency of the
personnel producing the system, the suitability and reliability of the methods
used, and the qualification of tool support [11]. Therefore, standards, such as
DO-178C [12], IEC 61508 [13], ISO 26262 [14], EN 50128 [15], were
conceived to focus on the development process used to engineer safety-critical
systems. Such standards, also known as “process assurance-based
standards” [11], prescribe a safety lifecycle which is defined in terms of
safety integrity levels (SIL) [16]. The higher the SIL, more stringent are the
safety requirements that have to be fulfilled in the processes. A safety
lifecycle suggests that instead of safety being included in the system after
system development, safety should rather be designed into the system from
the beginning [2]. Therefore, the planning of the development process, in
accordance with the prescribed safety lifecycle and the adoption of the
necessary process-related requirements specified in the standard, is an
essential piece of evidence required during compliance assessment [17].

Compliance with process assurance-based safety standards requires
complete and convincing justifications regarding the processes used to
develop systems [18]. According to a survey carried out in [19], compliance
checking reports are beneficial during compliance verification since they
facilitate the auditor’s job in detecting the defects of the inspected process.
Besides, compliance checking reports are useful in identifying compliance
errors, assisting the creation of process specifications and preventing
non-compliance tasks from being performed [20]. However, their manual
production may be time-consuming and challenging since it requires that the
process engineer checks hundred of requirements based on the information
provided by the specification of the development process used to engineer
their systems. An approach for facilitating automated compliance checking of
processes against safety standards would provide process engineers the means
to perform their job efficiently and accurately.

Process modeling languages and their associated runtime structures are
available off the shelf to support process engineer’s job. These languages
provide the means to generate and manage process models [21]. In particular,
SPEM 2.0 (Systems & Software Process Engineering Metamodel) [22] is a
metamodel that is considered well suited for modeling development
processes, not only for the provision of generic process concepts (e.g.,
activities, tasks, work products, role, and guidance) but also for the provision
of extension mechanisms that allows for modeling and documenting a wide
range of development projects [23]. SPEM 2.0 specification is the first step
towards formalizing the engineering of processes, using the same kind of



5

language that is used to model software systems [24], i.e., UML (Unified
Modeling Language) [25]. Moreover, SPEM 2.0 includes the improvement of
human comprehension of the processes and the facilitation of process
tailoring and reuse [26]. Besides, SPEM 2.0 is a good candidate to model
processes mandated by safety standards [27], and to some extent, it also
supports the creation of compliance tables, i.e., the mapping between
standards requirements and process elements [28, 29]. SPEM 2.0 assists the
process engineer in representing knowledge about plans with the provision of
capability patterns. Capability patterns are generic and reusable process
pieces that can be used to assemble complete development processes.
However, SPEM 2.0, like many other methodologies for modeling processes,
lacks mechanisms for reasoning about plans in a flexible way. Thus,
automated compliance checking of processes against safety standards is not
currently supported by SPEM 2.0.

In practice, automated compliance checking is difficult to implement since
process assurance-based safety standards are usually prescribed in natural
language, which computers cannot understand [30]. However, Rule-based
systems can provide support for building an environment that contributes to
the reasoning capabilities required to automatically checking compliance of
process plans. Such a system could help to manage the knowledge about
compliance requirements, compare this knowledge with the one provided by
the elements in a process, and retrieve information regarding the fulfillment of
the requirements. There have been efforts in this matter, such as the ones
described in [24] and [26], in which process constraints are expressed using
the SWRL (Semantic Web Rule Language) [31], and in [32], which instead,
OWL (Web Ontology Language) [33] is used. However, semantic web
methods for deriving proofs are not expressive enough for modeling
compliance notions [34]. LTL (Linear Temporal Logics) is also used in [35]
and [36] for formalizing process properties. However, safety requirements are
fundamentally expressed with concepts and terms that are more alike to those
used in law, namely, the normative provisions. Normative provisions are the
legally binding notions that are anchored to the structure of legislative
text [37], which related to rights and obligations, privileges and
liabilities [38]. These notions are difficult to implement in languages of the
family of Temporal Logics [39].

Thus, a language that offers concepts close to the notions of interest needs
to be selected. From the compliance perspective, the normative provisions of
importance are the deontic notions, which are indicators of states that are legal
or illegal [40]. There are three basic deontic notions [41]. Obligation, which



6 Chapter 1. Introduction

is a deontic notion for a state, an act, or a course of action to which a bearer is
legally bound, and which, if it is not achieved or performed, results in a
violation. Prohibition, which is a deontic notion for a state, an act, or a course
of action to which a bearer is legally bound, and which, if it is achieved or
performed, results in a violation. Permission, which is a deontic notion for a
state, an act, or a course of action where the bearer has no obligation or
prohibition to the contrary. Thus, Deontic Logic, which has traditionally been
used to analyze the structure of normative law and normative reasoning, and it
has been specially used in computer science in the area of legal
applications [42], could also be used to provided the modeling capabilities
required to represent safety standards. We also need to be able to provide
reasoning about violations of the requirements, which is the failure in
fulfilling a requirement within the constraint of the warranting situation [43].
In addition, we need to be able to model imprecise requirements, which is a
common situation found in standards requirements [44], that may derive in
inconsistencies [45]. Therefore, a suitable approach for formalizing the
process-based requirements prescribed by the safety standards must be based
on Defeasible Logic [46] and Deontic Logic of Violations [47]. In one hand,
Defeasible Logic allows that contrary evidence defeats earlier reasoning,
supporting the management of inconsistencies. On the other hand, Deontic
Logic of violations allows to encode normative provisions as implications in
which the antecedent is read as a property of a state of affairs, and the
conclusion has a deontic nature [48]. The language that meets these
requirements is Formal Contract Logic (FCL) [47], which is a deontic
defeasible reasoning formalism, designed and implemented in the legal
compliance context. FCL has also been proved in business process
compliance checking.

Regorous [49, 50], which is a compliance checker available on the shelf,
supports reasoning with FCL rules. Regorous takes as inputs, the ruleset that
contains the requirements formalized in FCL, and the model of the process
which should be enriched with compliance effects annotations. Compliance
effects annotations are effects that describe the cumulative interactions
between process tasks [51]. Compliance effects annotations are derived from
the formulas of the logic (FCL rules) and describe the set of permissible states
(according to the standards requirements) of the process tasks. With this
information, Regorous can automatically check compliance and provide a
compliance report, which could help process engineers to understand the
reasons why a process does not comply with a specific standard. A
compliance report is based on a set of constructive proofs, i.e., for any



1.1 Thesis Outline 7

conclusion it is possible to have a trace of its derivation [52].
This Licentiate thesis aims at facilitating automated compliance checking

of processes against standards in the context of safety-critical systems. For
this, we combine and enhance existing tool-supported methodologies. In
particular, we propose an automated compliance checking vision [53],
consisting of the combination of the three components. The first component is
a language to model process that provides process modeling and annotation
capabilities. The language selected is SPEM 2.0, which tool-support can be
facilitated with the implementation provided by EPF (Eclipse Process
Framework) Composer [54] of the SPEM 2.0 reference metamodel called
UMA (Unified Method Architecture) [55]. The second component is a
rule-based formalism that provides normative representation capabilities, to
permit the interpretation of the standards requirements in an adequate
machine-readable form, and the generation of the compliance effects required
for annotating process models. FCL is the selected rule-based formalism.
Finally, the third component is a compliance checker that provides the
reasoning capabilities necessary to conclude whether the annotated process
model corresponds to a model with compliant states. Regorous provides this
component. Within this vision, we have also identified the essential elements
required to generate process models checkable for compliance in SPEM 2.0,
and the transformations necessary to automatically generate the models that
can be processed by Regorous [56]. Since we are aware that the formalization
process of safety requirements into FCL rules requires skills which cannot be
taken for granted, we have also started an exploration of safety compliance
patterns [57] and methodological guidelines [58], which should facilitate the
interpretation of safety requirements. These initial attempts are primarily
oriented to the automotive functional safety standard called ISO 26262.
Finally, we offered the design of a framework for incrementing efficiency in
process compliance, called SoPLE&Logic-basedCM [59]. This framework
aims at planting the seeds for future provision of systematic reuse of
compliance proofs. Hitherto, our proposed methodology has been evaluated
with academic examples that show the potential benefits of its use.

1.1 Thesis Outline

We organize this thesis in two parts. In the first part, we summarize the
research as follows: In Chapter 2, we recall essential background information
used throughout this thesis. In Chapter 3, we describe our research



8 Chapter 1. Introduction

methodology and the thesis research goals. In Chapter 4, we describe the
specific research contributions of this thesis. In Chapter 5, we discuss related
work. Finally, in Section 6 we present conclusions and future work.

The second part is a collection of the papers included in this thesis. We
now present a brief overview of the included papers.

Paper A: Enabling Compliance Checking against Safety Standards from
SPEM 2.0 Process Models, Julieth Patricia Castellanos Ardila, Barbara
Gallina, and Faiz UL Muram. In Proceedings of the 44th Euromicro
Conference on Software Engineering and Advanced Applications
(SEAA-2018), Prague, Czech Republic, August 2018.

Abstract: Compliance with process-based safety standards may imply the
provision of a safety plan and its corresponding compliance justification.
However, the provision of this justification is time-consuming since it requires
that the process engineer checks the fulfillment of hundred of requirements by
taking into account the evidence presented in the process entities. In this
paper, we aim at supporting process engineers by introducing our compliance
checking vision, which consists of the combination of process modeling
capabilities via SPEM 2.0 (Systems & Software Process Engineering
Metamodel) reference implementations and compliance checking capabilities
via Regorous, a compliance checker, used for business processes compliance
checking. Our focus is on the identification and exploitation of the appropriate
(minimal set of) SPEM 2.0-like elements, available in the selected reference
implementation, which can be used by Regorous for compliance checking.
Then, we illustrate our vision by applying it to a small excerpt from ISO
26262. Finally, we draw our conclusions.

My contribution: I was the primary driver of the paper under the supervision
of the coauthors. My specific contribution included the description of a
compliance checking vision supported by preexisting tool-supported
methodologies. I also modeled an example from the automotive context to
illustrate the vision and wrote the paper. Both co-authors contributed equally
with ideas for defining the compliance checking vision as well as reviews and
comments for improving the paper.

Paper B: Transforming SPEM 2.0-compatible Process Models into Models
Checkable for Compliance, Julieth Patricia Castellanos Ardila, Barbara
Gallina, and Faiz UL Muram. In Proceedings of the 18th International SPICE



1.1 Thesis Outline 9

Conference (SPICE-2018), Thessaloniki, Greece, October 2018.

Abstract: Manual compliance with process-based standards is
time-consuming and prone-to-error. No ready-to-use solution is currently
available for increasing efficiency and confidence. In our previous work, we
have presented our automated compliance checking vision to support the
process engineers work. This vision includes the creation of a process model,
given by using a SPEM 2.0 (Systems & Software Process Engineering
Metamodel)-reference implementation, to be checked by Regorous, a
compliance checker used in the business context. In this paper, we move a
step further for the concretization of our vision by defining the transformation,
necessary to automatically generate the models required by Regorous. Then,
we apply our transformation to a small portion of the design phase
recommended in the rail sector. Finally, we discuss our findings, and present
conclusions and future work.

My contribution: I was the primary driver of the paper under the supervision
of the coauthors. My specific contribution included the definition of the
transformations required to concretize the automatic compliance checking
vision described in Paper A. I also illustrated the transformation by creating a
model checkable for compliance from the rail sector, and I wrote the paper.
The co-authors contributed equally with reviews and comments for improving
the paper.

Paper C: Formal Contract Logic Based Patterns for Facilitating
Compliance Checking against ISO 26262, Julieth Patricia Castellanos Ardila
and Barbara Gallina. In Proceedings of the 1st Workshop on Technologies for
Regulatory Compliance (TeReCom-2017), Luxembourg, Luxemburg,
December 2017.

Abstract: ISO 26262 demands a confirmation review of the safety plan,
which includes the compliance checking of planned processes against safety
requirements. Formal Contract Logic (FCL), a logic-based language
stemming from business compliance, provides means to formalize normative
requirements enabling automatic compliance checking. However, formalizing
safety requirements in FCL requires skills, which cannot be taken for granted.
In this paper, we provide a set of ISO 26262-specific FCL compliance patterns
to facilitate rules formalization. First, we identify and define the patterns,
based on Dwyer’ et al.’s specification patterns style. Then, we instantiate the



10 Chapter 1. Introduction

patterns to illustrate their applicability. Finally, we sketch conclusions and
future work.

My contribution: I was the primary driver of the paper under the supervision
of the coauthor. My specific contribution included the definition of safety
compliance patterns as well as the identification of ISO 26262-related
compliance patterns and their instantiation. I also wrote the paper. Both
authors contributed equally in discussions and developing the paper
contribution. The co-author contributed with reviews and comments for
improving the paper.

Paper D: Lessons Learned while Formalizing Functional Safety Standards
for Compliance Checking, Julieth Patricia Castellanos Ardila, Barbara
Gallina, and Guido Governatori. In Proceedings of the 2nd Workshop on
Technologies for Regulatory Compliance (TeReCom-2018), Groningen, The
Netherlands, December 2018.

Abstract: A confirmation review of the safety plan is required during
compliance assessment with ISO 26262. Its production could be facilitated by
creating a specification of the standard’s requirements in FCL (Formal
Contract Logic), which is a language that can be used to automatically
checking compliance. However, we have learned, via previous experiences,
that interpreting ISO 26262 requirements and specifying them in FCL is
complex. Thus, we perform a formalization-oriented pre-processing of
ISO 26262 to find effective ways to proceed with this task. In this paper, we
present the lessons learned from this pre-processing which includes the
identification of the essential normative parts to be formalized, the
identification of SCP (Safety Compliance Patterns) and its subsequent
documentation as templates, and the definition of a methodological guideline
to facilitate the formalization of normative clauses. Finally, we illustrate the
defined methodology by formalizing ISO 26262 part 3 and discuss our
findings.

My contribution: The content of this paper is the result of intensive
discussions performed to formalize the automotive safety standard ISO 26262
into FCL. In the discussions, all the three authors were involved. I was the
primary writer of the paper, and the coauthors contributed with reviews and
comments to improve the paper.



1.1 Thesis Outline 11

Paper E: Towards Increased Efficiency and Confidence in Process
Compliance, Julieth Patricia Castellanos Ardila and Barbara Gallina. In
Proceedings of the 24th European Conference on Software Process
Improvement (EuroAsiaSPI-2017), Ostrava, Czech Republic, September
2017.

Abstract: Nowadays, the engineering of (software) systems has to comply
with different standards, which often exhibit common requirements or at least
a significant potential for synergy. Compliance management is a delicate,
time-consuming, and costly activity, which would benefit from increased
confidence, automation, and systematic reuse. In this paper, we introduce a
new approach, called SoPLE&Logic-basedCM. SoPLE&Logic-basedCM
combines (safety-oriented) process line engineering with defeasible
logic-based approaches for formal compliance checking. As a result of this
combination, SoPLE&Logic-basedCM enables automation of compliance
checking and systematic reuse of process elements as well as compliance
proofs. To illustrate SoPLE&Logic-basedCM, we apply it to the automotive
domain, and we draw our lessons learned.

My contribution: I was the primary driver of the paper under the supervision
of the coauthor, who provided the initial idea. My specific contribution
included the specification of the approach presented in this paper, which is
called SoPLE&Logic-basedCM. I also illustrated the approach by defining an
example for the automotive domain, and I wrote the paper. Both co-authors
contributed with ideas for defining the approach. The co-author also
contributed with reviews and comments for improving the paper.





Chapter 2

Background

In this chapter, we introduce essential background and highlight specific
definitions which are required by the conducted research. In particular, in
Section 2.1, we recall basic information about safety-critical systems. In
Section 2.2, we recall information about software process modeling
languages. In Section 2.3, we recall essential information regarding
process-based compliance management. Finally, in Section 2.4, we recall the
basis of property specification patterns.

2.1 Safety-Critical Systems
In this section, we present an overview of safety-critical systems. We also
present basic information regarding process assurance-based standards.
Finally, we recall the functional safety standard ISO 26262 and the
cybersecurity guidebook SAE J3061.

2.1.1 Safety-Critical Systems Overview
Safety-critical systems are systems that have to perform high-risk
functions [60]. An error or failure in these functions could result in death,
injury, loss of property, or environmental harm [2]. The scope of
safety-critical systems is broad. We can find safety-critical systems in cars,
medical devices, aircraft flight control, weapons, and nuclear systems.
Besides, future systems are likely to implement new advances in technology
such as Artificial Intelligence and Machine Learning techniques [3], defining

13



14 Chapter 2. Background

a new era of safety technology. For these applications, software is crucial.
However, the increasing use of software is closely related to the increasing
occurrence of accidents [5]. Therefore, the software development for
supporting safety technology needs to follow rigorous development processes
to reach adequate levels of functional safety.

Definition 2.1.1. Functional safety is part of the overall safety of a system and
generally focuses on electronics and related software [61].

Functional safety aims at bringing risk down to a tolerable level (it is not
possible to eliminate risk completely [62]), by measuring how likely a given
event will occur and how severe it would be, namely, how much harm it could
cause [61]. The functional safety assurance is guided by the application of
functional safety standards.

2.1.2 Process Assurance-based Safety Standards
In some safety-critical domains, the applicable safety standards (also called
process assurance-based standards) prescribe requirements that regulate
processes [11]. Specifically, these kind of requirements specify the process to
be used for producing the system or for maintaining/changing it rather than
specific design features of the system itself [63]. In particular, process
assurance-based standards prescribe a safety lifecycle, which requirements are
identified with Safety Integrity Levels (SILs) and recommendation levels, e.g.,
highly recommended or recommended [11, 16].

Definition 2.1.2. A safety lifecycle corresponds to that part of the lifecycle
during which activities related to assuring the safety of the system take
place [61].

In a safety lifecycle, which is normally defined in a task flow graph with a
fixed structure, other tasks may appear if they are prerequisites for tasks
associated with assuring the safety of the system [61].

2.1.3 Safety Standard ISO 26262
ISO 26262 [14] is a standard that addresses functional safety in a specific
class of road vehicles. ISO 26262 also introduces the notion of Automotive
Safety Integrity Level (ASIL), which represents a criterion to specify the
item’s necessary safety requirements, needed to ensure a certain level of
confidence.



2.1 Safety-Critical Systems 15

Definition 2.1.3. ASIL corresponds with one of four levels to specify the
item’s or element’s necessary requirements of ISO 26262 and safety measures
to apply for avoiding an unreasonable residual risk, with D representing the
most stringent and A the least stringent level [14].

Functional safety (see Definition 2.1.1) is influenced by the development
lifecycle process. Therefore, ISO 26262 specifies a safety lifecycle (see
Definition 2.1.2) that comprises the entirety of phases from concept through
decommissioning of the system. ISO 26262 safety lifecycle is based upon a
V-model. Planning, coordinating and documenting the safety activities of all
phases of the safety lifecycle are key management tasks during the
implementation of ISO 26262.

Definition 2.1.4. A V-model splits the process lifecycle into two branches: the
left-hand branch contains the requirements, analysis, and design tasks,
leading to coding at the bottom of the ”V.” In the right-hand branch, the
phases regarding the system integration, testing, and verification [64].

ISO 26262 is a large document, which is structured in ten parts. The first
part is dedicated to the description of the vocabulary that will be used in the
other nine parts, which contain the requirements. These nine parts are
structured similarly, containing, a foreword, introduction, bibliography,
annexes, and clauses. Some of the clauses represent phases of the safety plan.
Inside the phases, activities and tasks are also described. Clauses, in general,
describe normative requirements. However, the first three clauses, which are
similar in all the parts of the standard, only have an informative nature.
Clause 1 recalls the general scope of the standard and situate the particular
part in this scope. Clause 2, recalls the normative references indispensable for
the adoption of the specific part. Clause 3 recalls the reference for terms,
definitions, and abbreviated terms. Clause 4 is of particular importance since
it describes two compliance conditions required along all the standard. First,
the general requirements for compliance which are recalled in Table 2.1.
Second, the interpretation of tables which is recalled in Table 2.2.

Table 2.1: General requirements for compliance with ISO 26262 [14]

Each requirement of ISO 26262 shall be fulfilled unless:
a) tailoring of the safety activities has been planned, or
b) an assessed rationale is available that the non-compliance is acceptable.



16 Chapter 2. Background

Table 2.2: Interpretation of tables recommending methods in ISO 26262 [14]

Each method in a table is either a consecutive entry or an alternative entry
a) For consecutive entries, all methods shall be applied as recommended
in accordance with the ASIL. If methods other than those listed are to
be applied, a rationale shall be given that these fulfill the corresponding
requirement.
b) For alternative entries, an appropriate combination of methods shall be
applied in accordance with the ASIL indicated, independent of whether they
are listed in the table or not. If methods are listed with different degrees of
recommendation for an ASIL, the methods with the higher recommendation
should be preferred. A rationale shall be given that the selected combination
of methods complies with the corresponding requirement.

The rest of the clauses states the objectives, general information of the
clause, inputs for the clause, requirements and recommendations to be fulfilled,
and finally the work products that are to be generated (see Table 2.3)

Table 2.3: ISO 26262:2011 part 3

5 Item definition
Objectives. The first objective is to define and describe the...
General. This clause lists the requirements and recommendations for...
5.3 Inputs of this clause.
5.3.1. Prerequisites. None.
5.3.2. Further supporting information. Any information that already exists
concerning the item, ...
5.4 Requirements and recommendations
5.4.1 Functional and non-functional requirements shall be made available,
including:
a) functional concept
...
5.4.2 ...
...
5.5 Work products: Item definition resulting from the requirements of 5.4.

Notes are also included, but they have informative character, i.e., they are
expected to help the applicant in understanding and interpreting the
requirements. The requirements and recommendations section describes not



2.2 Software Process Modeling Languages 17

only the activities and the tasks required during the engineering process but
also specific conditions required for compliance.

2.1.4 Cybersecurity Guidebook SAE J3061

SAE J3061 [65] consists of a guidebook that provides a process reference
model, high-level guiding principles and information on existing tools, and
methods to help organizations identify and assess cybersecurity threats, and
design cybersecurity into cyber-physical vehicle systems. The current version
of SAE J3061 was release in January 20161, but the definition of Automotive
Cybersecurity Integrity Level (ACsIL)2 is still a work in progress. A
cyber-physical vehicle system is a vehicle embedded control systems where
there exists a tight coupling between the computational elements, the physical
elements of the system and the environment around the system. Cybersecurity
is an attribute of cyber-physical systems. A Cybersecure system is a system
protected against unauthorized access or attacks. A threat is a circumstance or
event with the potential to cause harm, where harm may be financial,
reputation, privacy, safety or operational. Cybersecurity should be built into
the design. Therefore an appropriate lifecycle, which addresses threats from
concept to decommissioning is required. SAE J3061 proposes a lifecycle for
handling cybersecurity which is based on ISO 26262’s safety lifecycle.
Therefore, the cybersecurity process can be integrated to a safety process
tailored from ISO 26262 by simply including the cybersecurity activities for
each product lifecycle phase, with the corresponding activities for each
product lifecycle phase described in the safety process.

2.2 Software Process Modeling Languages

In this section, we first recall some aspects regarding software process models.
Then, we recall essential information regarding SPEM 2.0, a language
specially created for modeling development processes. Then, we recall basic
information about EPF Composer, which implements a SPEM 2.0-like
specification called UMA metamodel. Finally, we recall the essentials of a
methodology for systematizing reuse in process models called SoPLE.

1http://standards.sae.org/j3061_201601/
2http://standards.sae.org/wip/j3061-1/



18 Chapter 2. Background

2.2.1 Software Process Models Overview
A software process model is the representation of a process that leads to the
production of a software product [66]. A software process model facilitates not
only human understanding and communication, but also process management
support and improvement [64].

Definition 2.2.1. A process is a sequence of units of work (phases, activities,
tasks or steps) that consume resources such as employee energy, time
infrastructure, machines, and money to transform inputs, such as data or
material, into value-added outputs, such as products services or
information [67].

Appropriate software process models are often used as a mechanism to
convince third parties, such as regulatory bodies, about the quality of the
software [64]. Thus, standards discussing the reliability, safety or security of
(software) systems usually include a number of requirements on the processes
used to develop these systems [64]. Currently, the modeling of software
process can be supported by tools. To use these tools, a description of the
concepts used to define the objects on the process description level is
required. In the context of this thesis, we consider to describe the processes
with SPEM 2.0, a process metamodel created specifically for modeling
systems and software process (see Section 2.2.2).

Definition 2.2.2. A software process metamodel defines the notation to be used
for modeling a software process [64].

2.2.2 SPEM 2.0
SPEM 2.0 (Software & Systems Process Engineering Metamodel) [22] is a
standard created with the set of elements necessary to define any software and
systems development processes. SPEM 2.0 provides four main capabilities.
First, there is a clear separation of reusable method content, which describes
the concepts used to build up a knowledge base that is used to built processes,
i.e., tasks, roles, work products definition from their usage in processes.
Second, there is possible to maintain consistency between different
development processes. Third, SPEM 2.0 allows flexible process variability
and extension mechanisms, i.e., an element can be extended from a base
element in different ways without directly altering any of its existing
properties. There are four types of variability management, i.e., an element
can be extended from a base element in different ways without directly



2.2 Software Process Modeling Languages 19

altering any of its existing properties. Contributes is a variability type that
allows extending a base in an additive fashion. Replaces is a variability type
that allows the substitution of (some) properties of an element in the extended
element. Extends allows to easily reuse elements from a base plugin by
providing a kind of inheritance for the special variability element.
Extends-replace combines the effects of extends and replace variability into
one new variability type. Fourth, it is also possible to generate replaceable and
reusable process chunks, by using Capability Patterns. A Delivery Process in
SPEM 2.0 is a structure used to define a complete and integrated approach for
performing a specific project type using the elements specified in the Method
Content. A delivery process contains a breakdown structure, which allows the
nesting of units of work and the definition of predecessors and dependencies
among them. Some of the elements described in SPEM 2.0 are recalled in
Table 2.4.

Table 2.4: Basic Elements contained in SPEM 2.0 [22].

Element Description Icon
Task Definition Describes an assignable unit of work
Work Product
Definition

Describes the expected inputs and outputs of
the units of work

Role Definition
Defines a set of related skills, competencies,
and responsibilities of an individual or a set
of individuals

Tool Definition
Describes the capabilities of a any specific
tool that supports the associated roles in
performing the work defined by a task

Guidance
It is a special element that provides additional
information to describe elements and the
entire processes

Custom Category It is a special element that is used to group
elements in a recursive way

Delivery Process
It is a special process that describes
a complete and integrated approach for
performing a specific project type.



20 Chapter 2. Background

2.2.3 EPF Composer
EPF (Eclipse Process Framework) Composer [68, 55] is a stand-alone java
application that uses the Eclipse Rich Client Platform (RCP) to implement
UMA (Unified Method Architecture) Metamodel [55].

Definition 2.2.3. UMA is a metamodel that has been developed to provide the
concepts and capabilities of different method and process engineering
languages, such as SPEM 2.0 [55].

EPF Composer is based on open standards and specifications to allow
exchange of process models specifications between different tools. In
particular, XMI (XML Meta Interchange) is used to store and exchange
metadata in XML format. In addition, UML 2.0 Diagram Interchange
Specification is used to provide EPF Composer with a proprietary activity
diagram, which can be used to generates the execution semantics of a process
from a process definition. The functionality of EPF Composer mainly offers
two capabilities, as follows.

Method Authoring: Functionality used to capture a set of reusable building
blocks, i.e., roles, tasks, work products, guidance. Figure 2.1 has an example
of a plugin, called Process Elements.

Figure 2.1: An example of Method Content Elements in EPF Composer [56].

As Figure 2.1 depicts, the plugin contains the definition of a role, i.e.,
designer, three tasks, i.e., design software unit, specify software unit design



2.2 Software Process Modeling Languages 21

and start software unit design process and three work products, i.e., software
architectural design, software safety requirements and software unit design.
These elements are defined by using the subset of elements defined in
SPEM 2.0 (see Table 2.4), which are also described by UMA metamodel.

Process Authoring: Functionality used to organize reusable process building
blocks into processes by defining Work Breakdown Structures that describe
the order of the process workflow. The workflow can also be represented as an
Activity Diagram as depicted in Figure 2.2

Figure 2.2: An example of an activity diagram of a process. Taken from [56].

EPF composer implements the method plugin package, which defines the
capabilities of modularization and extensibility required to manage libraries
of method content and processes, allowing the reuse of process and process
elements defined in previous projects.

2.2.4 Safety-oriented Process Line Engineering
Safety-oriented Process Line Engineering (SoPLE) [27] is a methodological
approach that builds on top of an approach called Product Line Engineering
(PLE) [69]. PLE is a reuse-oriented engineering method that consists of the
systematisation of commonalities and variabilities characterising a set of
products belonging to the same family/product line. A process line is a set of
processes that capture commonalities and controlled variabilities and each of
these processes is developed from a common set of core assets (features) in a
prescribed way [70].

Definition 2.2.4. Safety-oriented Process Line Engineering (SoPLE) is a
methodological approach that permits process engineers to systematise the
reuse of process-related information in the context of safety-critical
systems [27].



22 Chapter 2. Background

SoPLE is constituted of two phases. The first phase is aimed at
engineering reusable safety process-related commonalities and variabilities.
For example, Table 2.5 presents the comparison of activities between the
description of the software unit design and implementation phase presented in
the functional safety standard ISO 26262 (recalled in Section 2.1.3) and its
counterpart presented in the cybersecurity guidebook SAE J3061 (recalled in
Section 2.1.4). We called the activities that are common Commonality Points
(CP), and the ones that varies Variability Points (VP). In the table we can find
four commonality points, which are marked with the unique identifier CP1,
CP2, CP3 and CP4. These commonality points can be extended with the
variants that belong to the corresponding standard. For example, there is a
variability point called VP1a, which contains the information regarding the
ISO 26262 requirement (IR), that corresponds to the first activity (IA1), the
design concerning safety. In a similar manner, there is a variability point
called VP1b, which contains the information regarding the SAE J3061
requirements (JR), that corresponds to the first activity (JA1) the design
concerning cybersecurity.

Table 2.5: Activities comparison ISO 26262/SAE J3061.

ID IR JR Common Name
CP1 IA1 JA1 Unit design
VP1a IA1 Design concerning safety
VP1b JA1 Design concerning cybersecurity
CP2 IA2 JA3 Unit design review
VP2a IA2 Design review concerning safety
VP2b JA3 Design review concerning cybersecurity
CP3 IA3 JA2 Unit implementation
VP3a IA3 Unit implementation concerning safety
VP1b JA2 Unit implementation concerning cybersecurity
CP4 IA4 JA4 Unit implementation review
VP4a IA4 Implementation review concerning safety
VP4b JA4 Implementation review concerning cybersecurity

The second phase is aiming at engineering single safety processes via
selection and composition of previously engineered reusable process
elements. For this, we need to initially describe the skeleton that conforms the
software process line. As presented in Figure 2.3, the skeleton is conformed
by the Commonality Points, CP1, CP2, CP2 and CP4, which conform its main



2.3 Process-based Compliance Checking 23

part. The variants are added to the commonality points by using the variability
type called contributes, which is provided by SPEM 2.0 (recalled in
Section 2.2.2). Recalling, contributes is used to extend a base in an additive
fashion, meaning that we extend the content of the commonality point with
the specific elements provided by the variant.

Figure 2.3: A process line skeleton. Taken from [71].

Currently, SoPLE is supported by the integration of EPF Composer
(recalled in Section 2.2.3), which is used to model the base process and its
related library, and Base Variability Resolution (BVR) Tool [72], which
allows users to model the variability, make choices at variation points and
bind the conceptual representation of the variable elements. The integration of
EPF Composer and BVR Tool is described in more details in [73].

2.3 Process-based Compliance Checking
In this section we present an overview of process-based compliance in the
safety-critical context. Then, we recall brief information about norms
representation, and FCL (Formal Contract Logic), which is a language created
to represent legal and normative requirements. Finally, we summarize the
main capabilities of Regorous, which supports FCL-based compliance
checking..

2.3.1 Compliance of Processes in the Safety-Critical Context
In the assurance of safety for safety-critical systems, the focus is often on
demonstrating technical properties of that system [18]. However, there are no
real consensus on absolutely essential metrics for assuring the safety of
products [9]. Therefore, complete, compelling justifications regarding the
processes used to develop the systems is also required is some safety-critical
domains [18]. Thus, process-based compliance deals with the compliance



24 Chapter 2. Background

management that is required with process assurance-based safety standard’s
(recalled in Section 2.1.2).

Definition 2.3.1. Process-based compliance can be understood as the
consistency between the actual development process and the normative
reference model embedded in the standard [74].

One key consideration when conducting regulatory safety assessment is
that regulations are obligations on licensee to fulfill in order to get an
authorization [75]. To assure safety, it is common to adopt a highly
prescriptive approach, where safety assurance is demonstrated by showing
compliance with the requirements set out as a prescribed process in a safety
standard, during audits [11].

Definition 2.3.2. An audit is an examination of an implemented process [14],
which is typically conducted to ascertain compliance with policies and
standards [76].

A prescriptive regulatory approach requires comprehensive regulatory
guides prescribing detailed acceptance criteria [75]. In particular, a key
evidence for process-based compliance management is the safety plan, which
represents that a plan has been conceived and documented in compliance with
the prescribed process-related requirements.

Definition 2.3.3. A safety plan is used to manage and guide the execution of
the safety activities of a project including dates, milestones, tasks, deliverables,
responsibilities and resources [14].

A safety plan is a piece of evidence used for safety demonstration; more
precisely, a plan identifies the types of evidence that will be used, and how
and when this evidence shall be produced [77]. However, the provision of
a development safety plan is not sufficient during the compliance assessment
process. A compliance justification, which is expected to be scrutinized by a
safety auditor, should be produced [17].

Definition 2.3.4. A compliance justification is a document given in term of
either a checklist, or an argument, or some proof (e.g. a verification report)
which can show/argue/prove that the development plan comply with the
requirements [17].

The safety plan and the compliance justification should be agreed upon at
the beginning of the project between the regulatory body and the applicant [77].
A regulatory body is an organization or individual authorized to conduct safety
assessments during regulatory processes [78].



2.3 Process-based Compliance Checking 25

2.3.2 Norms Representation

Normative systems are systems of norms, namely, the rules of a game or of a
language, the laws of a country or the regulations and rules of a social club as
forming a system [79].

Definition 2.3.5. Norms are documents written in natural language that arise
from different sources (regulations, laws, standards, branch-specific
guidelines, internal code of conduct, social and moral rules) [80]. The scope
of norms is to regulate the behaviour of their subjects and to define what is
legal and what is not [81]. In addition, norms prescribe the conditions under
which they are applicable, i.e., the meaning of the terms or concepts where the
norms are valid, and the normative provisions they cause when applied. [40].

Definition 2.3.6. Normative provisions are the legally binding notions that are
anchored to the structure of legislative text, laws and regulations [37].

The intention of states and international organizations which make use of
norms, upon recognition of such conduct complying with international
standards, is to influence their mutual conduct in a normative, permissive or
prohibitive manner [82]. Therefore, as described in [83], the normative
provisions required for compliance with such norms are provided by the
Deontic Logic.

Definition 2.3.7. The system of Deontic logic studies propositions about the
obligatory, the permitted and the forbidden [84].

Deontic logic has traditionally been used to analyze the structure of norms
and normative reasoning [42]. As presented in [83], the deontic notions
regarding obligations and prohibitions are constraints that limit the behavior
of processes. The difference between obligations and prohibitions and other
types of constraints is that they can finish in a violation. Instead, a permit is
the lack of the obligation to the contrary (and a violation requires an
obligation it violates). Thus permissions cannot be violated. A violation could
be compensated. A compensation is a set of obligations in force after a
violation of an obligation. Since the compensations are obligations
themselves, they can be violated, and they can be compensable as well. Thus
we need a recursive definition for the notion of compensated obligation. The
classification of normative provisions required for compliance is presented in
Figure 2.4.



26 Chapter 2. Background

Figure 2.4: Normative provisions classification (Adapted from [40]).

2.3.3 Formal Contract Logic
Formal Contract Logic (FCL) [47] is a language based on the system of
deontic logic (see Definition 2.3.7) and Defeasible Logic (see
Definition 2.3.8), which was designed to represent the norms (see
Definition 2.3.5) required for compliance. FCL was initially used for
representing business contracts, and then it was used to generate automatic
support for compliance checking of business processes.

Definition 2.3.8. Defeasible Logic is a rule-based logic that provides
reasoning with incomplete and inconsistent information [85].

In general, law and legal reasoning largely admits that norms can be
represented as conditional rules.

Definition 2.3.9. Rules describe the general association of causes with effects
(laws), situations with actions (triggers), premises with conclusions
(implications) [86].

FCL rules has the form presented in formula 2.1.

r : a1, ..., an ⇒ c, (2.1)

where the antecedent a1, ..., an represents the conditions of the applicability
of the norm and the precedent c represents the normative effects. FCL is an
skeptical non-monotonic logic, meaning that it does not support contradictory
conclusions but seeks to resolve conflicts. In case there is sustainable support
to conclude both c and −c, FCL does not conclude any of them. However,
if the support for c has priority for the support of −c, then c is concluded.
This means that a designer of FCL rules has to identify pairs of incompatible



2.3 Process-based Compliance Checking 27

literals, namely, literals that contradict each other (such as c and −c). Once
defined the incompatible literals, a superiority relation (>) among rules is used
to determine priorities, as presented in the Formula 2.2.

r : a1, ..., an ⇒ c,

r′ : b1, ..., bn ⇒ −c,
r′ > r

(2.2)

Normative effects, also called normative provisions (see Definition 2.3.6) can
be of two types. One type describes the environment in which the process will
be executed (constitutional rules). The second type triggers deontic effects,
such as Obligations, which are mandatory situations, Prohibitions, which are
forbidden situations and Permissions, which are allowed situations. In addition,
if something is permitted the obligation to the contrary does not hold. A norm
can specify that an obligation is in force at a particular time point n only, i.e.,
a norm indicates when an obligation is active. As presented in Figure 2.5, the
obligation O is in force at n in t. An obligation is considered to remain in force
until it is terminated or removed.

Figure 2.5: Obligation in Force [40].

FCL provides a classification model of normative requirements based on
temporal validity of obligations, specifically the concept of Obligation in
Force (presented in Figure 2.5), and the effects of violations on obligations. If
an obligation needs to be obeyed for the whole duration within the interval in
which it is in force, it is categorised as a maintenance obligation (see
Figure 2.6).

Figure 2.6: Maintenance Obligation [40].

If achieving the content of the obligation at least once is enough to fulfill it,
it is called achievement obligation. An achievement obligation is Preemptive



28 Chapter 2. Background

if it could be fulfilled even before the obligation is in force. An achievement
obligations is non-preemptive if it only can be fulfilled after it is in force (see
Figure 2.7).

Figure 2.7: Achievement Obligation (Preemptive and Non-Preemptive) [40].

An achievement obligation is Perdurant if after being violated, the
obligations is still required to be fulfilled (see Figure 2.8). An achievement
obligation is Non-Perdurant if after being violated, the obligation does not
require to be fulfilled.

Figure 2.8: Achievement-Perdurant Obligation [40].

FCL normative effects are summarized in Table 2.6. Following, we present
examples of statements that could be modeled in FCL by using the types of
obligations presented in Table 2.6.

1. For the party in John’s house, you can dress informally. This is an
statement that could be interpreted as a permission since it uses the
modal can. Therefore, a representation of the statement in FCL, could
have as an antecedent the proposition that refers to the fact that there is
a party in John’s house, which conclusion is that there is a permit for
dressing informally (see Formula 2.3).

r : PartyInJohn′sHouse⇒ [P ]dressInformally (2.3)

2. You must not walk the dog in the avenue. This statement could be
represented as a prohibition since it uses the modal must not. In FCL a



2.3 Process-based Compliance Checking 29

Table 2.6: FCL rule notations [47]

Notation Description
[P]P P is permitted
[OM]P There is a maintenance obligation for P

[OAPP]P There is an achievement, preemptive, and non-perdurant
obligation for P

[OANPP]P There is an achievement, non-preemptive and perdurant
obligation for P

[OAPNP]P There is an achievement, preemptive and non-perdurant
obligation for P

[OANPNP]P There is an achievement, non-preemptive and non-
perdurant obligation for P

prohibition is formulated as the negation of the content of a
maintenance obligation. Therefore, a representation of the statement in
FCL could have as an antecedent the proposition that refers to the
action walk the dog, which conclusion is the prohibition to do it in the
Avenue (see Formula 2.4).

r : walkTheDog ⇒ [OM ]− walkTheDogInAvenue (2.4)

3. You have to pay the loan fee every month. This statement could be
represented as an obligation since it uses the modal have to. Moreover,
this obligation is considered as an achievement obligation because
doing it once in the month is enough to fulfil the obligation. It is also a
preemptive obligation, because the fee could even be paid before the
deadline. It is also perdurant because the no payment means a violation
that continues in the future. Therefore, a representation of the statement
in FCL could have as an antecedent the fact that the month starts, which
conclusion is the Obligation, Achievement, Perdurant, Preemtive of pay
the loan (see Formula 2.5).

r : startTheMonth⇒ [OAPP ]payLoanFee (2.5)

4. When the package arrives it has to be register. This statement could
be represented as an achievement obligation since the package has to
be register only once. However, you cannot register it before it arrives.



30 Chapter 2. Background

Thus, the achievement obligation is non-preemptive. In addition, if the
package is not registered as soon as it arrives, there is a violating of the
norm, but it does not mean that the packages should not be registered
anyway. Therefore, the obligation is also perdurant. A representation of
the statement in FCL is presented in Formula 2.6.

r : PackageArrives⇒ [OANPP ]registerPackage (2.6)

5. You should buy the machine with discount. Discounts are only
today. In this case, buying the machine only once is enough to fulfil the
obligation. However, you cannot buy before today, so, it is a
non-preemptive achievement obligation. Moreover, if you do not buy
today, you cannot buy tomorrow with discount. Thus the obligation is
also non-perdurant. A representation of the statement in FCL is
presented in Formula 2.7.

r : BuyMachine⇒ [OANPNP ]buyingWtihDiscount (2.7)

2.3.4 Regorous
Regorous Process Designer (for simplicity called only Regorous) [49, 50] is a
process compliance checker, which is part of the NICTAs Regorous Toolsuite3.
Regorous architecture is depicted in Figure 2.9.

Definition 2.3.10. A process-based requirement is checkable for compliance
if there is information in the process that corroborate that the requirement is
fulfilled [28].

Regorous assists process engineers during the design of the processes with
mapping normative systems to specific process and process steps to produce
constructive proofs.

Definition 2.3.11. Constructive proofs are conclusions from which it is
possible to have a trace of its derivation [52].

Regorous uses the constructive proofs to report the traces, tasks, rules and
obligations involved in the non-compliance issues, so that processes can be
designed or re-designed in a compliant way. Regorous is the result of the
implementation of the compliance by design approach proposed in [52].

3Regorous Process Designer is available under an evaluation license in https://
digital-legislation.net/



2.3 Process-based Compliance Checking 31

Figure 2.9: Regorous Architecture [50].

Definition 2.3.12. Compliance by design is an approach that provides the
capability of capturing compliance requirements through a generic modeling
framework, and subsequently facilitate the propagation of these requirements
into the process models [52].

To check whether a process is compliant with a relevant regulation,
Regorous requires two elements. The first one is the formal representation of
the regulation in Formal Contract Logic (FCL), which was recalled in
Section 2.3.3.

Definition 2.3.13. Formal specification is a subcategory of formal methods
and is a specification expressed in a language whose vocabulary, syntax and
semantics are formally defined [87].

The second element is a semantically annotated process model. An
annotation is extra information that is attached to supplement a concept [88].
Semantic annotations on process elements are literals, that record data,
resources and other information that are used by machines to refer, compute



32 Chapter 2. Background

and align information [40]. In particular, the recorded information represent
the effects caused by the tasks, which are used by Regorous to perform the
analysis of compliance [40].

Definition 2.3.14. Compliance effects are caused by the cumulative
interaction between process tasks that are adhered to the standard
requirements influences [51].

In particular, for the n-th element in a trace t, it is used the annotation
form State (t,n) to semantically annotate the set of facts in the computation to
determine which rules fire.

Definition 2.3.15. A trace is a sequence of tasks, in which a process can be
executed.

Consequently, obligations are in force after rules fire. Rules in force are
annotated with Force(t,n+1). In addition, the semantic annotation Force (t,n)
contains the obligations that are in force but are not terminated in n. After
compliance checking with Regorous, a process can be deemed fully or partially
compliant [50].

Definition 2.3.16. Let be N a normative system (in this cases a normative
system corresponds to the safety standard)

• A process P fully complies with N if and only if every trace t complies
with the normative system N.

• A process P partially complies with N if and only if there is a trace t that
complies with the normative system N.

To check compliance of an annotated process model against a relevant
normative system, the procedure executed is the following [50]:

1. Generate an execution trace of the process.

2. Traverse the trace:

• For each task in the trace, cumulate the effects of the task. Remark: if
an effect in the current task conflicts with a previous annotation, update
using the effects of the current task.

• Use the set of cumulated effects to determine which obligations enter into
force at the current task. This is done by a call to of FCL reasoner.



2.4 Property Specification Patterns 33

• Add the obligations obtained from the previous step to the set of
obligations carried over the previous task.

• Determine which obligations have been fulfilled, violated or a pending,
and if there are violated obligations, check whether they have been
compensated.

3. Repeat for all traces.

An obligation can be terminated if the deadline is reached, the obligation has
been fulfilled, or if the obligation has been violated and it is not perdurant. A
process is fully compliant if all its traces are compliant (all obligations have
been fulfilled, or if violated, they have been compensated). A process is
partially compliant if there is at least one trace that is compliant.

2.4 Property Specification Patterns
Patterns are abstractions from concrete forms which keeps recurring in specific
non-arbitrary context [89].

Definition 2.4.1. Property specification patterns are generalized descriptions
of a commonly occurring requirement on the permissible state/event sequences
in a finite state model of a system [90].

A property specification pattern [90] not only describes the essential
structure of some aspect of a systems behavior but also provides expressions
of this behavior in a range of common formalisms. Each pattern has a scope,
which is the extent of the program execution over which the pattern must
hold. There are five kinds of scope:

• Global: the entire program execution.

• Before: the execution up to a given state.

• After: the execution after a given state.

• Between: Any part of the execution from one given state to another given
state

• After-until: Any part of the execution from one given state to another given
state, but the designated part of the execution continues even if the second state
does not occur.





Chapter 3

Research Summary

In this chapter, we present a summary of the research performed in this thesis.
In Section 3.1, we describe the research methodology applied. In Section 3.2,
we describe the specific research problem we aim at solve in this thesis.

3.1 Research Methodology

The research presented in this thesis is based on the methodology created
in [91], which incorporates principles, practices, and procedures required for
conducting design science (DS) research in information systems (IS). The DS
process includes six tasks: problem identification and motivation, the
definition of the objectives for a solution, design and development,
demonstration, evaluation, and communication. This methodology has been
adapted to the needs of this specific research. The adaptation, which is
presented in 3.1, includes the work regarding the subgoals that are derived
from an initial main goal (instead of objectives). The definition of subgoals
required the definition of a loop that finishes when all subgoals have been
tackled. To describe the research process, we use SPEM 2.0 elements,
described in Section 2.2.2.

The methodology starts with identifying a relevant real-world problem
which has the potential for theoretical contribution. Thus, the first task is
called identify and motivate the problem. In this task, the researcher should
define the overall problem and formulate a motivation about the need to solve
the problem. The resources required for this task include the knowledge of the

35



36 Chapter 3. Research Summary

Figure 3.1: Research Methodology.

state of the art and the state of the practice. The output of this task is the
problem formulation in which the research problem aimed at being solved is
clarified as well as to whom and where it is relevant. The problem formulation
should have the potential to be investigated through the research process,
understandable and formulated in a logical way. The second task is called
define the main goal. In this task, the overall research goal that shapes all the
research is defined. The goal is inferred from the problem formulation and the
knowledge of what is possible and feasible. The output of this task is the
overall research goal. The third task is called define a subgoal. This task
considers the problem formulation and the overall research goal, which are
the work products of the previous tasks. The output of this task is the
formulation of a subgoal. The fourth task is called create the artifact, in
which the type of artifact, i.e., constructs, models, methods, or instantiations,



3.2 Research Problem 37

new properties of technical, social, and/or informational resources, that solves
the problem is produced. This task includes determining the artifact’s desired
functionality, its architecture and its actual development. Resources required
for moving from the goal to creation of the artifact include knowledge of the
theoretical approaches, i.e., additional state of the art, that can be brought to
bear in a solution as well as the tools required for modeling and development.
The output of this task is the produced artifact and the guidance required for
the artifact use. Once the artifact is created, we carry out the fifth task, which
is called demonstration. In this task, the use of the artifact to solve the
specific instance of the problem is demonstrated. The demonstration could
involve the use of examples or other appropriate actions. Resources required
for the demonstration include adequate knowledge of how to use the artifact,
which is given by the artifact use guidance, and the actual artifact. Besides,
the description of the example that would be used. The output of this task is
the demonstrative example. After a subgoal is reached, the sixth task, called
communication is performed. In the communication tasks, the goal defined
and its importance, the artifact, its utility and novelty, the rigor of its design,
and its effectiveness is communicated to the research community and
practitioners. In the case of this research, the main communication channels
are academic publications. Thus, the knowledge of the disciplinary culture is
a basic input for this task. These four steps are repeated for every subgoal that
is described in the research. Once we consider that the main problem has been
reached and there are not more subgoals to be defined, we carry out the
seventh task, which is called integration, in which all the solutions that
contribute to reaching subgoals are combined in a general solution that
supports the procurement of the overall research goal. The output of this task
is the integrated artifact. The eighth task is called Publication of the results,
which is a task defined to collect the overall work, in the main output, for the
performed research, which in our case is the the Licentiate thesis.

3.2 Research Problem

In this section, we initially identify the problem to be solved within this thesis.
Based on the identified problem, we present a research motivation, in which
we describe the reasons why we do our research and what are the specific
outcomes we are pursuing. Later, we use the research motivation to describe
the overall research goal and the required concrete subgoals.



38 Chapter 3. Research Summary

3.2.1 Problem Identification

Manufacturers in the safety-critical context comply with domain-specific
safety standards to demonstrate that the deployment of their systems is
acceptably safe. In some domains, the applicable safety standards establish
the accepted procedures that regulate the development processes used to
engineer safety-critical systems. Companies aiming at complying with such
standards should adapt their practices, and provide evidence that demonstrates
the fulfillment of the requirements. In particular, compliance checking of
process plans against safety standards is a mechanism that can be used to
demonstrate the adherence of the safety plan (see Definition 2.3.3) to the
standard requirements regarding processes. The result of this demonstration,
which can take the form of a compliance checking report, can support the
provision of the compliance justification (see Definition 2.3.4), which is
required during the interaction with the certification bodies in the planning
phase. Compliance checking may involve several steps. Initially, a process
engineer should know and understand the range of the criteria provided in the
standard’s requirements, i.e., what are the process entities and their associated
properties that can fulfill the requirements. Then, a careful examination of the
process description (which could already exist from older projects or being
designed for the current project) and the interactions between process
elements, should be done to identify whether the elements involved in the
planning of the process conforms to the standards prescriptions. Fulfilled
requirements can be considered checkable for compliance, in the sense that is
presented in Definition 2.3.10. However, the checking mark is not enough. It
is expected that a compliance checking report informs not only the fulfillment
of the requirements but also how they are fulfilled (what is the evidence
collected that demonstrates that the process satisfies the requirements). Thus,
information regarding the identified elements is also considered evidence that
demonstrates compliance, and should be documented within the checking
mark, to produce a proper compliance checking report. The process engineer
can use the compliance checking report to identify areas in the process that
are uncompliant and, if needed, improve the process. The improvement can be
done by modifying or deleting existing process elements, or by adding new
process elements, according to the compliance checking report
recommendations. However, improving some process elements may affect the
behavior of others, resulting in new uncompliant situations. Therefore, a
complete re-checking may be required. Once fully compliance is reached, the
compliance checking report itself can be used as the evidence required for the



3.2 Research Problem 39

certification bodies to justify process compliance. However, manually
performing all the steps described before can be time-consuming and
prone-to-error since standards are large documents with hundreds of
process-related requirements. Besides, a company can have many
safety-critical-related processes to be checked.

3.2.2 Research Motivation
As presented in Section 3.2.1, compliance checking requires that the process
management area in the organizations, headed by the process engineer,
performs several, time-consuming and repetitive steps with a lot of focus.
This kind of activities are typically considered tedious and error-prone, in
which the required focus may be lost leading to mistakes. Mistakes in
compliance reports may endanger audits (see Definition 2.3.2), leading to
delays in the production and thus, economically lost. It is clear that the
process engineer requires support for performing compliance checking. Thus,
in this thesis, we aim at providing an approach for automated compliance
checking of processes against safety standards to facilitate the production of
the compliance checking report required during planning phases. More
specifically, this thesis aims at identifying the aspects that are required to
provide automatic support for reasoning from standard’s requirements and the
description of the process they regulate. Once these aspects are identified, an
approach for supporting the process engineers in their compliance checking
tasks is proposed. Moreover, patterns and methodological guidelines that
facilitate the use of the proposed approach are offered, to guarantee its
understanding and its use. Finally, the reuse of compliance checking results
between highly-related safety-oriented process plans that could improve
efficiency in the production of compliance checking reports is studied.

3.2.3 Research Goals
Given the problem identified in Section 3.2.1, and the research motivation
presented in Section 3.2.2, we present our overall research goal and the
concrete subgoals in this section. Our overall research goal is formulated as
follows:

Overall Goal: Provide an approach that facilitates compliance checking of
the processes used to engineer safety-critical systems against the standards
mandated (or recommended) in the safety-critical context.



40 Chapter 3. Research Summary

In order to address the overall research goal, we define concrete subgoals
that address specific challenges. The subgoals are described as follows:

Subgoal 1: Elicit the requirements to be met to support the automation of
process-based compliance checking in the safety-critical context.

The challenge with this goal consists of identifying the specific conditions
required to provide an appropriate methodology that permits automated
compliance checking in the safety-critical context.

Subgoal 2: Identify methodologies that contribute to automate the
compliance checking of planned process against process-based safety
standards.

The challenge with this goal consists of discovering existing approaches that
meet the specific conditions required to automate compliance checking.
Besides, this goal aims at determining how existing approaches can be
appropriately combined to offer the required support for compliance checking
of process plans against the safety standards.

Subgoal 3: Facilitate the creation of formal specifications of the
process-based requirements prescribed by safety standards.

The challenge with this goal consists of understanding how the standards are
structured and how these structures can be managed to facilitate the
formalization required for using approaches for compliance checking.

Subgoal 4: Analyse existing methodological approaches that could be
used for increasing efficiency in process compliance.

The challenge with this goal consists of understanding the way in which
systematic reuse of proofs of compliance can be performed between highly
related-processes in order to improve the efficiency of the productions of
compliance checking reports.



Chapter 4

Thesis Contributions

In this chapter, we present a brief description of the five technical
contributions provided by this thesis. In particular, in Section 4.1, we describe
the first contribution, which is called Conditions for automatically checking
compliance in the safety-critical context. In Section 4.2, we describe the
second contribution, which is called Automated Compliance Checking Vision.
In Section 4.3, we describe the third contribution, which is called ISO 26262-
related Safety Compliance Patterns. In Section 4.4, we describe the fourth
contribution, which is called Methodological Guidelines for Formalizing
ISO 26262. Finally, In Section 4.5, we describe the fifth contribution called
Logic-based Framework for Enabling Reuse of Compliance Proofs.

4.1 Conditions for Automatically Checking
Compliance in the Safety-Critical Context

As recalled in Section 2.1.1, to support the production of safety technology,
rigorous development processes prescribed by safety standards should be
followed. Prescribed process usually include the definition of the activities
regarding safety specifically compiled in a safety lifecycle (see
Definition 2.1.2). To comply with these requirements, it is common to adopt a
highly prescriptive regulatory approach that have to be achieved from the
initial steps of the development process. Therefore, the safety plan (see
Definition 2.3.3) should get an initial approval from regulatory bodies and
should be used to manage the execution of safety activities during the

41



42 Chapter 4. Thesis Contributions

engineering of safety-critical systems. To be able to get the approval, a
compliance justification (see Definition 2.3.4) should be available during the
safety audit (see Definition 2.3.2). As the definition recalls, a compliance
justification contains information that shows/argues/prove that the
development plans fulfill the requirements imposed by the standards. The
production of the compliance justification requires that the process engineer
checks whether the standards requirements are fulfilled via the model of the
process plan. However, the manual production of the compliance checking
report may be time-consuming since the standards are constituted by hundreds
of requirements. Besides, a company may have planned multiple processes.
Therefore, automatizing the compliance checking is considered useful to
facilitate the procurement of the compliance justification report. Since we are
conceiving compliance at the initial stages of the development process, i.e.,
the planning phase, we have selected the compliance by design approach (see
Definition 2.3.12). As the definition recalls, for performing compliance by
design we need to model two components: the model that describes the norms
(see Definition 2.3.5), which will be propagated into the model that describes
the process (see Definition 2.2.1). This propagation is possible by a
mechanism called compliance effects (see Definition 2.3.14) annotation. This
mechanism consists of recording the information that represents the effects
caused by the tasks that are aligned with the requirements influences. Giving
this appreciation, we could assume that the compliance effects unlike other
effects caused by the process tasks, corresponds to the permissible states
(according to the standard’s requirements) of the process tasks. The
permissible states trigger other (possible) permissible states that describe a
model with compliant states. When permissible states are possible to be
annotated into a process model, the requirements that represent are considered
to be checkable for compliance (see Definition 2.3.10), because they have the
possibility to occur in the process model. Thus, we can assign a boolean
function to the requirements that is true when it occurs and false otherwise.
Based on the previous reasoning, we have defined the conditions for
automatically checking compliance in the safety-critical context as follows
(see the introduced Definition 4.1.1):

Definition 4.1.1. Automatic compliance checking of a safety plan involves the
annotation of the process elements defined to manage and guide the execution
of safety activities with compliance effects, which correspond to the
permissible states provided by the standards requirements, to describe a
model with standard-compliant states.



4.1 Conditions for Automatically Checking Compliance in the
Safety-Critical Context 43

The conditions for automatically checking compliance in the
safety-critical context, described in Definition 4.1.1, require the association of
three components as depicted in Figure 4.1. The first component is a language
to model processes that provides not only the process modeling capabilities
but also the annotation capabilities that allows the enrichment of process
tasks with compliance effects. The second component is a language to encode
requirements that provides normative representation capabilities, to permit
the interpretation of the standard’s requirements in an adequate machine
readable form, and the generation of the permissible states that will be used as
the compliance effects required for the annotation process. Finally, the third
component is a compliance checker that provides the reasoning capabilities
necessary to conclude whether the annotated process model corresponds to a
model with compliant states.

Figure 4.1: Required Components for Automating Compliance Checking.

This contribution addresses the first subgoal presented in Chapter 3,
specifically in Section 3.2.3 that says: Elicit the requirements to be met to
support the automation of process-based compliance checking in the
safety-critical context, which challenges is related to the understanding of the
specific conditions that define the required components for automatically
checking compliance in the safety critical context. This contribution has been
particularly discussed in papers A and E.



44 Chapter 4. Thesis Contributions

4.2 Automated Compliance Checking Vision

In Section 4.1, we have described the conditions for automatically checking
compliance (see Definition 4.1.1). We also described the characteristics of the
required components to fulfil these conditions. In this part of the research, we
describe the identified tool-supported methodological approaches that provide
the capabilities required by the mentioned components, and describe our
automated compliance checking vision.

Process Modeling and Annotation Capabilities

A Process Engineer deals with the representation of the process (more or less
formal), which can be composed of hundreds of entities. Software process
metamodels (see Definition 2.2.2) have been developed to provide process
engineers the possibility to model and have more control over their processes.
In particular, SPEM 2.0 (Systems & Software Process Engineering
Metamodel, which was recalled in Section 2.2.2, is considered well suited for
modeling software and systems processes, not only for the provision of
generic process concepts (e.g., tasks, work products and roles) but also for the
extension mechanisms for modeling and documenting a wide range of
processes. Besides, SPEM 2.0 is a good candidate to model processes
mandated by safety standards, as demonstrated in the description of process
lines for the safety-critical context (see Section 2.2.4). To some extent,
SPEM 2.0 also supports the creation of compliance tables, and is the first step
towards formalizing the engineering of processes, as presented in our
introductory part (see Chapter 1). Moreover, SPEM 2.0 process elements can
be documented with special types of guidance (See Table 2.4). This capability
can be enforced and used to add the extra information required for checking
compliance, i.e., compliance effects (see Definition 2.3.14). Furthermore,
SPEM 2.0 is tool-supported. In particular, the provision of SPEM 2.0-like
process model is feasible with EPF Composer. As recalled in Section 2.2.3,
EPF Composer implements UMA metamodel (see Definition 2.2.3), which
has a good coverage of SPEM-2.0 elements. EPF Composer also provides the
option for modeling activity diagrams of the process models, which can be
used to supply the creation of the structure of the process, as well as a
graphical view of the flow of the process. In addition, EPF Composer
facilitates process tailoring and reuse. Specifically, EPF Composer allows the
representing of the knowledge about plans, with the provision of capability
patterns, which are generic and reusable process pieces which can be used to



4.2 Automated Compliance Checking Vision 45

assemble complete development processes. The annotations and the process
flow can be used to describe the process checkable for compliance required to
automatically checking compliance.

Normative Representation Capabilities

The requirements provided by the safety standards, should be encoded in
formal notations that can express not only their contradictory, incomplete and
inconsistent nature, but also their normative provisions (see Definition 2.3.6).
From the compliance perspective, as recalled in Section 2.3.2, the normative
provisions of importance are those related to the obligations, prohibitions and
permissions. Therefore, a promising approach for formalizing requirements
could be based on defeasible logic (see Definition 2.3.8), in which contrary
evidence defeats earlier reasoning, supporting the management of
inconsistencies. Also, normative provisions should be encoded as
implications in which the antecedent is read as a property of a state of affairs,
and the conclusion has a deontic nature as provided by the Deontic Logic (see
Definition 2.3.7). Moreover, we need to be able to provide reasoning about
violations of the requirements, which is the failure in fulfilling a requirement.
Thus, we argue that deontic defeasible reasoning formalisms, such as Formal
Contract Logic (FCL) (recalled in Section 2.3.3), can be used to represent the
requirements prescribed by the safety standards, in an adequate
machine-readable form.

Reasoning Capabilities

As recalled in Section 2.3.4, Regorous is a tool-supported methodology for
compliance checking designed and implemented in the legal compliance
context, and also proved in the business context. Regorous is of particular
interest since it implements compliance by design (see Definition 2.3.12),
which, as described in Section 4.1, is a methodology that is adequate for
compliance checking of process plans, which are mandatory pieces of
evidence required by the majority of standards. In the process of compliance
checking, Regorous provides constructive proofs (see Definition 2.3.11)
which helps process engineers to understand why a process does not comply.
Regorous methodology is process modeling language agnostic, i.e., only
requires a process description that contains compliance effects (see
Definition 2.3.14). Therefore, we argue that Regorous is the appropriate tool



46 Chapter 4. Thesis Contributions

for generating automatic support to reason from standards requirements and
the description of the process they regulate.

Our Compliance Checking Vision

Our compliance checking vision (see Figure 4.2), which has the potential to
automatize the compliance checking in the safety-critical context, considers
the combination of the tool-supported methodological approaches that
provides the required capabilities previously described. In particular, the
vision includes the provision of a compliance rule base in FCL, which
provides the normative representation capabilities required for annotating the
process models and check compliance. Moreover, we include EPF Composer,
which provides the process modeling and annotation capabilities, as well as a
basic platform for FCL rule edition. Finally, we include Regorous, which
provides reasoning capabilities with FCL rules required for compliance
checking. In the vision is also included the two main roles required, i.e., a
Process engineer, which should support the interpretation of the standards
requirements, model, annotate the process, and analyze the compliance report,
and the FCL expert, which should interpret standard’s requirements and
formalize them in FCL.

Figure 4.2: Automated Compliance Checking Vision [53].

The tool-support previously described is conceived in three steps. First,
we consider the definition of the mechanisms to annotate process models, to
support the process engineers. Then, we consider the definition of the



4.3 ISO 26262-related Compliance Patterns Definition 47

facilities required for editing FCL rules to produce the rule set supporting
FCL experts. Finally, we created the mechanisms to ensure EPF Composer
and Regorous compatibility. These mechanisms consist of a series of
transformations that take the models produced by EPF Composer and convert
them into the models that Regorous can process. During the production of the
transformations, we realize that the tool-support provided by Regorous is not
process modeling language agnostic, as the Regorous methodology. In
particular, Regorous depends on a specific process modeling language, i.e.,
BPMN (Business Process Model and Notation) to produce the compliance
report. We need to detach the compliance report from the modeling language
to be able to backpropagate the compliance results into EPF composer. The
result of this discovering is that Regorous has entered a refactoring period,
from which we expect to concretize our automated compliance checking
vision in the future.

The automated compliance checking vision and the identification of the
modeling capabilities in EPF Composer were presented in the paper A, while
the transformation of models from EPF Composer to Regorous was presented
in paper B. This contribution addresses the second subgoal presented in
Chapter 3, specifically in Section 3.2.3 that says: Identify methodologies that
contribute to automate the compliance checking of planned process against
process-based safety standards.

4.3 ISO 26262-related Compliance Patterns
Definition

Formal Contract Logic (FCL) (recalled in Section 2.3.3), is a logic-based
language stemming from business compliance which provides the normative
representation capabilities necessary to formalize the requirements provided
by the safety standards and supports compliance checking in the
safety-critical context, as discussed in Section 4.2. However, formalizing
safety requirements in FCL is not an easy task, since it requires skills, which
cannot be taken for granted. Patterns could represent a solution. As presented
in Section 2.4, the idea of design patterns is extended into property
specification patterns (see Definition 2.4.1). Property specification patterns
(as recalled in Definition 2.4.1) were created to ease the formalization of
systems requirements for finite state system model verification. We follow
property specification patterns style, to draw a general definition of safety
compliance pattern as presented in introduced Definition 4.3.1.



48 Chapter 4. Thesis Contributions

Definition 4.3.1. Safety compliance patterns describe commonly occurring
normative safety requirements on the permissible state sequence of a finite
state model of a process.

With this definition, we can develop a mapping between specification
patterns and safety compliance patterns, as presented in the Observation 4.3.1.

Observation 4.3.1. The mapping between specification patterns and safety
compliances patterns permits that the state of the obligation imposed to an
element in the process is considered in a similar way as the presence of a state
in a system, and that the scope corresponds to the interval in a process when
the obligations formulated by the pattern are in force.

For the identification of ISO 26262-related compliance patterns, we have
delineated five methodological steps, which are depicted in Figure 4.3.

Figure 4.3: Methodological steps for identifying safety compliance patterns.

The first step consists of the selection of a recurring structure in the
standard since, as recalled in Section 2.1.3, safety requirements in ISO 26262
have implicit and explicit structures. The second step is the description of the
obligation for compliance, namely, the reasons why the structure is required
for safety compliance. The third step is the pattern description, based on
similar (or a combination of) behaviors of the property specification patterns
described in Section 2.4. This description is contextualized to safety
compliance, based on the mapping presented in Observation 4.3.1. In this
step, we also assign a name for the safety compliance pattern, which reflects
the related obligation for compliance. The fourth step is the definition of the
scope of the pattern, which we also based on the scopes defined to the
property specification patterns. The fifth step is the formalization in FCL. To
formalize the pattern, the scope defined for the pattern (see Section 2.4)
requires being mapped into the rule notations provided by FCL (see
Section 2.3.3). Therefore, a global scope, which represents the entire process
model execution, can be mapped to maintenance obligation, which represents
that an obligation has to be obeyed during all instants of the process interval.



4.4 Methodological Guidelines for Formalizing ISO 26262 49

A before scope, which includes the execution of the process model up to a
given state, can be mapped to the concept of preemptive obligation, which
represents that an obligation could be fulfilled even before it is in force. An
after scope, which includes the execution of the process model until a given
state, can be mapped to the concept of non-preemptive obligation, which
represents that an obligation cannot be fulfilled until it is in force. It should be
noted that, in safety compliance, it is possible to define exceptions for the
rules. Therefore, if the obligation admits an exception, the part of the pattern
that corresponds to the exception is described as a permission, since, as
recalled in Section 2.3.3, if something is permitted the obligation to the
contrary does not hold. The obligation, to which the exception applies, is
modeled as non-perdurant, since the permission is not a violation of the
obligation, and therefore the obligation does not persist after the permission is
granted. In this case, the obligation and the permission have contradictory
conclusions, but the permission is superior since it represent an exception.

The definition of safety compliance pattern as well as the identification,
definition and instantiation of an initial set of ISO 26262-specific FCL
compliance patterns is presented in Paper C. This contribution addresses the
third subgoal presented in Chapter 3, specifically in Section 3.2.3 that says:
Facilitate the creation of formal specifications of the process-based
requirements prescribed by safety standards.

4.4 Methodological Guidelines for Formalizing
ISO 26262

Our initial efforts to formalize ISO 26262 into FCL, as recalled in Section 4.3,
gave us some insights about the complexity that this task entails. As recalled
in Section 2.1.3, ISO 26262 is structured in a specific way, i.e., it is composed
of parts, which are subdivided into very structured clauses. We encounter that
not all the structures are required to be formalized. We also find that some
structures are repetitive, and can be represented as Safety Compliance
Patterns (see Definition 4.3.1). Therefore, to be able to formalize effectively,
we consider that doing a pre-processing of ISO 26262 was necessary. The
pre-processing, which is depicted in Figure 4.4, includes three tasks. Initially,
we identify the essential normative structures, namely those structures that
define the safety process to be adopted for developing the cars safety-critical
systems. Then, we identified the repetitive structures of the standard that can
be considered Safety Compliance Patterns. With the identified Safety



50 Chapter 4. Thesis Contributions

Compliance Patterns, we create templates to consolidate a reusable
knowledge base for future formalization jobs. Finally, the knowledge gathered
in the pre-processing is used to define a methodological guideline for
facilitating the formalization of normative clauses in ISO 26262.

Figure 4.4: Pre-processing.

From the pre-processing tasks described above, we got an understanding
of what to formalize and how we could proceed in the formalization process.
The parts to be formalized are those that determine the safety lifecycle,
namely, those clauses that start from Clause 5 in every part of the standard
ISO 26262. To formalize these clauses, we have described a methodological
guideline, which we depict in Figure 4.5.

Figure 4.5: Methodological Guidelines.

As Figure 4.5 depicts, initially, the given context of the phase, which is
described in the safety standard, should be understood. For this, the reading
and the analysis of the objectives and the main general information of the
clause to be formalized are required. Then, the formalization process initiates
with the prerequisites and followed by the title. These two formalizations can
be done by following the Safety Compliance Patterns called Prerequisites and



4.5 Logic-based Framework for Enabling Reuse of Compliance Proofs
51

Initiation of a phase (see those patterns in paper D). After, one requirement is
selected from the list of Requirements and Recommendations. We suggest
that the requirements are selected in the order they are presented and that the
rules are named following the requirement numeration to ensure consistency
and traceability. For instance, if a textual requirement is marked with the label
5.1, the corresponding rule should be called r.5.1. During the formalization of
the requirements, Safety Compliance Patterns templates could be used to
facilitate this task. However, if there are no templates, brainstorming sessions
are required. The brainstorming session can be carried out in different ways,
but the most relevant is that the group takes one requirement at the time,
discuss its importance in the compliance process (e.g., related requirements or
permits for tailoring), divide the requirement into smaller sentences that have
only one idea, and discuss every sentence. If the requirement has to be divided
into several rules, the name of the rule has to be named with the number that
accompanies the requirement plus a letter, i.e., r.5.1.a, r.5.1.b. Finally, when
all requirements available in Requirements and Recommendations are
covered, the work products can be formalized by using the Safety Compliance
Pattern template called Work Product. The generated rule set should be
verified to avoid inconsistencies and typos in the rules since Regorous do not
recognize incorrectly formed rule sets. The preprocessing tasks as well as the
methodological guidelines derived from the preprocessing, are presented in
Paper D. This contribution addresses the third subgoal presented in Chapter 3,
specifically in Section 3.2.3 that says: Facilitate the creation of formal
specifications of the process-based requirements prescribed by safety
standards..

4.5 Logic-based Framework for Enabling Reuse
of Compliance Proofs

The engineering of (software) systems (as recalled in Section 2.1.2) has to
comply with different standards, which often exhibit common requirements or
at least a significant potential for synergy. Compliance management is a
delicate, time-consuming, and costly activity that occupies an enormous
amount of time from the process engineers. Since the ultimate goal of our
work is to free time for activities, such as verification, and validation of the
systems, we believe that process compliance would highly benefit from
automation and systematic reuse. Moreover, confidence in the evidence could
be increased via logic-based approaches. Safety-oriented Process Line



52 Chapter 4. Thesis Contributions

Engineering (SoPLE), recalled in Section 2.2.4, permits process engineers to
systematize the reuse of process-related information. However, to argue about
or prove compliance, SoPLE is not enough. Therefore, we intend to provide a
layer of confidence by offering a logic-based framework that enables formal
proofs of compliance. To do that, we build on top of results stemming from
the legal compliance and business process-related community. Specifically,
we use defeasible logic (see Definition 2.3.8), a rule-based approach for
efficient reasoning with incomplete and inconsistent information, a typical
scenario in normative systems. Our approach, which is called
SoPLE&Logic-basedCM, is depicted in Figure 11.1.

Figure 4.6: SoPLE&Logic-basedCM Framework.

SoPLE&Logic-basedCM is the result of the combination of SoPLE
(recalled in Section 2.2.4), the compliance by design methodology (see
Definition 2.3.12) and defeasible logic (see Definition 2.3.8). As Figure
depicts, a process engineer is expected to:

1. Model a SoPL, which includes manually modeling the skeleton of the
process sequence (see Figure 2.3).

2. Formalize the standards rules, select the set of rules that overlap, and
analyze the compliance of the SoPL commonalities with the overlapping
rules.

3. Analyze the effects of the tasks that contribute to the variabilities in the
in the standard-specific process.

SoPLE&Logic-basedCM was presented in the paper E, and it contributes
to addressing the fourth subgoal presented in Chapter 3, specifically in
Section 3.2.3 that says: Analyse existing methodological approaches that
could be used for increasing efficiency in process compliance.



Chapter 5

Related Work

In this chapter, we extend the related work already done in the papers. In
particular, we perform an extended state of the art on approaches for
compliance checking in Section 5.1, approaches for formal specifications of
requirements in Section 5.2, and approaches for reuse of proofs in 5.3.

5.1 Approaches for Compliance Checking

Compliance to normative frameworks (such the ones proposed by the
process-based standards) is a matter of decision-making, in which managers
should consider the selection of a strategy that fits within the boundaries
allowed by the norm [38]. Supporting that decision-making process requires
the provision of the right level of abstraction of those boundaries in a way that
the conditions for compliance can be evaluated. It may be suitable, specially
for small companies, to have process-based assessments supported by tools,
which can provide, e.g., periodic checks [92]. It may be also convenient for
companies to have methodological tool-support when they adopt the usage of
agile development methods/practices in the context of regulatory
domains [17]. Tool-supported approaches are developed to follow these
premises. In [93], the authors propose a semi-automatic compliance process
to support the definition of a formal specification of software requirements.
In [94], the authors present an approach to reason about the correctness of the
process structure, which is based on the combination of CTN (Composition
Tree Notations) [30] and Description Logic (DL). An extension of [94], which

53



54 Chapter 5. Related Work

includes ontological modeling of ISO/IEC 15504 [95] for defining capability
levels, is presented in [96]. A similar approach to [94] and [96] is used in [97]
and [98] to enable the definition process capability levels, according to
ISO/IEC 15504 and CMMI (Capability Maturity Model Integration)
v1.3 [99]. In [100], the author presents a formalization of data usage policies
in a fragment of OWL (Web Ontology Language) [33], which is a DL-based
modeling language. All the previous approaches, i.e., [93], [94], [96], [97],
[98] and [100], consider the use of DL to reason about the compliance of the
process structure. One of the problems of DL, as presented in [101], is its
relative expressiveness, which makes more difficult the modeling of certain
concepts. Besides, the previous approaches only consider the analysis of the
process structure. Instead, our approach considers the use of a mechanism that
permits the recording of the information that represents the effects caused by
the tasks, which is called compliance effects annotation (see
Definition 2.3.14). This mechanism is not only useful for checking the
compliance of a process structure, but also its behavior. Other difference, we
have included in our approach, is the use of an SPEM 2.0-compatible software
process modelling language, called UMA metamodel (see Definition 2.2.3),
which is a tool-supported language that provides the modeling, annotation and
reuse capabilities that suits our purposes.

SPEM 2.0 community is interested in addressing checking and monitoring
capabilities. In [36], the authors propose a framework that uses LTL (Linear
Temporal Logics) on top of SPEM 2.0 for adding the ability to monitor and
control a real process according to its defined process model. The
methodology provided in [36] is also used in [35], to ensure process
compliance during execution time, by comparing the executed process with
the process reference model specified by a standard. The work presented
in [24] aims at facilitating the checking of constraints that can be defined as
part of a specific process model (e.g., standards requirements, metrics) by
using SWRL (Semantic Web Rule Language) [31]. The approach in [24] is
also used in [26], to permit that the description of IT (Information
Technology) process models are checked with the constraints provided by the
business perspective. An approach for representing SPEM 2.0 process models
in DL, to provide process analysis such as reasoning and consistency checks,
is presented in [102]. The generation of the tailored process, in the automotive
domain, is done by using ontologies created in OWL, which outputs are
transformed into SPEM 2.0 process models [32]. There are also approaches
that systematically exploit the modeling capabilities of SPEM 2.0 for
collecting the compliance elements required by specific standards. Examples



5.1 Approaches for Compliance Checking 55

of those approaches are presented in [103], which collects compliance
information for EN 50128 [15], and in [3], which collects evidence for
supporting compliance with DO-178C [12]. Models for representing
Deployment Packages and Implementation Guides for the Standard
ISO/IEC 29110 [104] in EPF Composer, are presented in [105]. The use of
SPEM 2.0 in the previous approaches, i.e., [36], [35], [24], [26], [102] [32],
[103], [3] and [105], are limited to the modeling of the elements required to
create the process structure. There are other approaches that, in addition to the
structure of the process, use other concepts provided by SPEM 2.0 for
modeling other elements required for compliance. An example of these
approaches can be found in [29], in which a customization of the elements
defined in SPEM 2.0 is performed to give the possibility to generate
compliance tables. The modeling of standard’s requirements in SPEM 2.0,
presented in [106], is used to detect whether the process model contains
sufficient evidence for supporting the requirements, providing feedback to the
safety engineers regarding detected fallacies and recommendations to solve
them. As in [29] and in [106], our approach combines the modeling
capabilities for modeling standard’s requirements, plus customization of
preexisting modeling concepts to generate a centralized compliance-related
knowledge base. In addition, we add a layer of confidence by considering the
use of methods that allow us to derive proofs of compliance. However, we do
not use semantic web methods for deriving our proofs since they are not
expressive enough for modelling compliance notions [34]. In addition,
semantic web methods are computational methods that deal with ontologies
and rules, whose combination could be undecidable [107].

Approaches for compliance checking have been widely studied in the
business context. For instance, in [108], the authors propose to capture
high-level policies with a compliance metamodel called REALM
(Regulations Expressed As Logical Models), to support the formalization of
compliance requirements in Real-time Temporal Object Logic [109]. In [110],
an object life cycle approach is used to generate a set of actions for the
generation of process models, in which the order of the model of the process
actions is determined and then combined into process fragments that are
connected to decision and merge nodes. In [111], the authors propose an SOA
(Service Oriented Architecture)-based compliance governance, called
COMPAS, to define compliant process fragments. In [112], authors propose a
compliance checking method for business process models, in which norms are
expected to be modeled in BPSL (Business Property Specification Language)
and then formalized in LTL (Linear Temporal Logic). Once the two formal



56 Chapter 5. Related Work

specifications are given, model checking via the NuSMV2-based
OpenProcessAnalyser is performed for checking compliance. In [113], the
authors propose a solution for ensuring compliance by using a formal
language for specifying a subset of business rules, called semantic constraints,
and the necessary mechanisms for parsing the constraints and ensuring
compliance of process management systems. There are also several
compliance checking frameworks that combine the modeling capabilities
provided by BPMN (Business Process Model and Notations) [114] and
Temporal Logics for the modeling of regulations. Examples of these kind of
frameworks can be found in [115], [116], and [117]. In our approach, we are
using a similar methodology that the presented in the previous mentioned
approaches, i.e., [108], [109], [110], [111], [112], [113], [115], [116],
and [117]. In particular, we defined a formal specification of the standards
requirements which is contrasted to a model of the processes. The main
differences in our approach with the previous ones is the use of the modeling
languages. In particular, we use FCL (see Section 2.3.3), and not any
language derived from the family of Temporal Logics, for creating the formal
specification of the standards requirements. The reason for not using
Temporal Logics is that this logic is not able to provide conceptually sound
representations of the regulatory requirements governing a process [39].

5.2 Facilitating Formal Specification of
Requirements

As is expressed in [118], writing formal specifications is very difficult, and
the common failure is to suggest an implementation rather than a specification
of what is required. One of the major challenges associated to the
formalization of regulatory texts is the regulatory interpretation, which can
include disambiguations, clarifications, and the accounting for
exceptions [119]. In this respect, the research found in the state of the art
mainly aims at bridging the gap between the normative expertise required to
interpret the regulatory text, and the modeling skills required to build the
knowledge base. In particular, in [120], the authors focus on the
representation of constitutive rules in a machine-readable form. In [121], the
authors propose a framework for identifying terms and refining the goals
proposed by a privacy legislation. In [122], the authors present a pattern-based
approach to capture the knowledge of domains experts. In [43], the authors
present a methodology to formalize norms as logic programs. In [123], the



5.3 Reuse of Proofs 57

authors uses SBVR (Semantics of Business Vocabulary and Business Rules),
which is a controlled natural language, to develop business vocabulary and
business rules. In [124], the authors use high-Level methodological
approaches for the extraction and representation of compliance objectives,
rules and constraints by using semantic web technologies. In [125], the
authors specify a conceptual model for representing standards in the
safety-critical context. In [126], the authors also use conceptual models to
extract information from standards that apply to agricultural production.
In [127], the authors describe a methodology for requirements formalization
for the flight-critical systems verification. Guidelines are also widely used to
spread the used of novel methods in engineering tasks. In [128], the authors
describe the Oracle Policy Modeling best practices guidelines for business
rules modeling. Similarly, in [129], the authors describe a methodology to
guide companies to establish Cyber-Physical Social System data subjects’
consent and data usage policies. In [130], the authors present guidelines for
supporting the formal representation of safety regulatory requirements.
In [131], the authors present the use of tabular expressions to generate formal
models of system requirements. The authors of FCL have also published
explicative examples of the modeling of FCL rules within the business
context, e.g., [132, 50], which can be used as a guideline for learning the
language. In [133], the authors present a methodology for extracting models
from ISO 26262, called “snowball”, in which high-level requirements
(objectives section of the standard) are modeled first, and then the low-level
requirements (requirements and recommendations) are added as rolling a
snowball in the snow. The use of FCL for supporting compliance management
tasks in automotive is a novelty. We did not find specific examples or
guidelines that apply to the domain yet. Therefore, the results of the
formalization-oriented pre-processing of ISO 26262 presented in this thesis
may be of interest for process engineers involved in the road vehicles
manufacturing. Additionally, we consider that this work can be used as a
starting point to derive domain-specific guidance applicable to process-based
safety standards beyond ISO 26262.

5.3 Reuse of Proofs

“State explosion phenomenon” [134] refers to the exponential grow of the
state space required to be verified by automatic checking methods.
Essentially, research impacting the reduction of this phenomenon is studied in



58 Chapter 5. Related Work

software verification. In [135], the authors present an approach for exploiting
the evolutionary nature of programs for reusability of proofs, in which a tree
of connected proved fragments of a program is built. In [136], the authors
present a reuse method, that uses incremental proof construction for reusing
correctness proofs of Java programs. In [137], the authors give an overview of
techniques for the reuse of information obtained in verifications results from
past trials. In [138], the authors present a family-based strategy for
minimizing the efforts in verification of product lines. In particular, this
verification can be achieved by combining all code of all features in a single
product simulator, which checks all valid execution paths of all products
without the need of generating and checking any individual product. In the
area of process compliance, only few approach that consider reuse of proofs
are presented. In [111], the authors consider that after doing many
customization steps, which can include techniques, such as abstraction or
parametrization, a process fragment can be employed for the reuse of
functionality. However, for the application of process fragments to perform
compliance checks, special formalizations have to be performed. In [116],
business process are augmented with reusable fragments, called process
fragments for compliance, which are stored in a fragment repository that
supports versioned storage and retrieval. The intention is to ensure process
compliance to the corresponding compliance requirements. In this approach,
the process is modeled in BPMN (Business Process Model and Notation) and
the rules are formalized in LTL (Linear Temporal Logic). According to the
authors, the selection of LTL is justified by the fact that Temporal Logics have
great trajectory in system property specification, and thus, well tool-support.
In our case, we do not base the formalization of the rule in any language of the
temporal logics family. Moreover, our approach, which is oriented to the
modelling of processes used in engineering tasks, does not uses BPMN
(Business Process Model and Notation). Finally, our approach is not
considering the uses of process fragments, but the proof of the process line,
namely the common elements that conform the family.



Chapter 6

Conclusions and Future
Work

This chapter finalizes the work presented in this thesis. In particular, we present
concluding remarks in Section 6.1, and future work in Section 6.2.

6.1 Conclusions
Compliance with process assurance-based safety standards requires that
companies provide complete and convincing evidence regarding the processes
used to engineer safety-critical systems. The production of compliance
checking reports appears as a useful alternative not only for compliance
assessment but also for assisting the creation of process specifications.
However, the production of compliance checking reports requires that the
process engineer performs several, time-consuming and repetitive steps with
much focus. This kind of activities are typically considered tedious and
error-prone, in which the required focus may be lost leading to mistakes and
delays is compliance assessments. For this reason, facilitating automated
means for compliance checking is an existing research problem in the
safety-critical context.

In this thesis, we aim at providing an approach that facilitates automated
compliance checking of the processes used to engineer safety-critical systems
against the standards mandated (or recommended) in the safety-critical
context. For reaching this goal, we have defined the conditions for

59



60 Chapter 6. Conclusions and Future Work

automatically checking compliance based on the application of the
compliance by design methodology (see Definition 2.3.12), as follows:

Automatic compliance checking of a safety plan involves the
annotation of the process elements defined to manage and guide
the execution of safety activities with compliance effects, which
correspond to the permissible states provided by the standards
requirements, to describe a model with standard-compliant states.

With this definition, we proposed an automated compliance checking
vision that suits the needs in the safety-critical context. The compliance
checking vision combines:

1. process modeling and process annotation capabilities that are required for
defining process models checkable for compliance,

2. normative representation capabilities that permit the interpretation of the
standards requirements in an adequate machine-readable form, and the
generation of the compliance effects, which are the permissible states
required for the annotation process, and

3. reasoning capabilities necessary to conclude whether an annotated process
model corresponds to the model with the compliant states described in the
standards requirements.

These capabilities are tool-supported, as follows: SPEM 2.0 (Software and
Systems Process Engineering Metamodel) provides the modeling and
annotation capabilities, FCL (Formal Contract Logic) provides the normative
representation capabilities, and Regorous provides compliance checking
capabilities. To support the compliance checking vision, we identified the
essential elements required to generate process models checkable for
compliance in SPEM 2.0, and the transformations necessary to automatically
generate the models that can be processed by Regorous. We have also
explored techniques for facilitating the formalization of the process-based
requirements provided by ISO 26262, which is the functional safety standard
applicable to the automotive industry. The result of this exploration was the
characterization of safety compliance pattern as follows:

Safety compliance patterns describe commonly occurring
normative safety requirements on the permissible state sequence
of a finite state model of a process.



6.2 Future Work 61

With this characterization, we identify, define, and instantiate
ISO 26262-related compliance patterns, which may be useful for supporting
automated compliance checking in automotive. We also generate a
methodological guideline for facilitating the formalization of normative
clauses in ISO 26262. Finally, we introduce an approach for mastering the
interplay between highly-related standards. This approach, called
SoPLE&Logic-basedCM, includes the reuse capabilities provided by SoPLE
(Safety-oriented Process Line Engineering), which is a methodological
approach aiming at systematizing the reuse of process-related information in
the context of safety-critical systems. With the addition of SoPLE, we aim at
planting the seeds for the future provision of systematic reuse of compliance
proofs.

Hitherto, our proposed methodology has been evaluated with academic
examples that show the potential benefits of its use. Our work represents a
novelty in process-based compliance in the safety-critical context, which may
contribute to increasing efficiency, via automation, and confidence, via formal
checking. It also contributes to cross-fertilize previously isolated
communities, i.e., the safety-critical and the legal contexts.

Figure 6.1 presents the way in which the contributions (described in
Chapter 4), the subgoals (presented in Chapter 3, Section 3.2.3), and the
papers published (described in Chapter 1, Section 1.1) are connected.

6.2 Future Work
The results of our thesis can be improved in several directions. Here, we
present the suggested areas of research in the future.

• The mapping of regulations to the process tasks, i.e. the annotation of the
compliance effects, is done manually, by deducing the effects that can
eventually be caused by the tasks in the general compliance status. When
the processes are small, this mapping is straightforward. However, when
processes are extensive, the mapping may be difficult to achieve. Therefore,
methodologies and tactics should be investigated so that the process
annotation does not become a burden for the application of the compliance
checking approach.

• The automated compliance checking vision, described in this Licentiate
thesis, only permits that the analysis of compliance is performed in the
sequence of tasks assigned to a process plan. However, a process plan is not



62 Chapter 6. Conclusions and Future Work

Figure 6.1: Connection between subgoals, contributions and the published
papers.

only comprised by tasks but also it contains other process elements, such as
roles and work products. We aim at extending our approach for permitting
that compliance effects annotated to process elements beyond tasks are also
included in the analysis of compliance.

• The compliance checking methodology used in our approach is,
undoubtedly, process modeling language agnostic. However, the current
tool-support lacks agnosticism, i.e., it depends on a specific modeling tool
to provide compliance checking results. This characteristic impedes the
back-propagation of the compliance results in our selected process
modeling language. Therefore, we need to investigate methods and
strategies that allow us to represent the compliance checking results in an



6.2 Future Work 63

agnostic way so that we can concretize our compliance checking vision.

• We have limited our analysis of patterns and methodological guidelines to
the functional safety standard ISO 26262. This restriction may also limit the
applicability of our approach. To expand our horizon, we need to generalize
the use of patterns and methodological guidelines so that we can incorporate
a wide range of standards. Therefore, comparative studies between standards
and definition of generalized patterns, as well as standard-specific patterns
could be investigated.

• The reuse of proofs of compliance may increase efficiency and confidence in
compliance checking. Thus, we aim at studying in deep the conditions that
are required for compositionality of proofs of compliance. We also need to
provide metrics for measuring increased confidence and increased efficiency.

• Our work has only be evaluated with academic examples. Therefore, we
require to further validating the approach with more complex cases, i.e.,
industrial cases.

• We need to better situate our work in the context of the state of the art.
Therefore, an extended and systematic literature review will be performed.

• To augment the impact for our results, we plan to integrate our automated
compliance checking approach to the platform created by the European
project AMASS (Architecture-driven, Multi-concern and Seamless
Assurance and Certification of Cyber-Physical Systems) [1]. We also plan
to develop a course module in which students can learn about automated
compliance checking with our approach.





Bibliography

[1] AMASS.: Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems

[2] Leveson, N.: Safety : Why , What , and How. ACM Computing Surveys
(CSUR) 18(2) (1986) 125–163

[3] Gannous, A., Andrews, A., Gallina, B.: Toward a Systematic and
Safety Evidence Productive Verification Approach for Safety-Critical
Systems. The 29th IEEE International Symposium on Software
Reliability Engineering (ISSRE 2018) (2018) 329–336

[4] Tordrup, L., Nielsen, P.: A conceptual model of agile software
development in a safety-critical context: A systematic literature review.
Information and Software Technology (2018)

[5] Leveson, N.: System Safety in Computer-Controlled Automotive
Systems. Technical report, SAE Technical Paper (2000)

[6] Perrow, C.: Normal Accidents: Living with High Risk Technologies.
Princeton University Press (2011)

[7] Dunn, W.: Designing Safety-Critical Computer Systems. Computer
36(11) (2003) 40–46

[8] Knight, J., Rowanhill, J.: The Indispensable Role of Rationale in Safety
Standards. In: 35th International Conference SAFECOMP. Volume
2788., Springer (2016) 39–50

[9] Gallina, B.: How to increase efficiency with the certification of process
compliance. In: The 3rd Scandinavian Conference on Systems &
Software Safety. (2015)

65



66 Bibliography

[10] Varkoi, T., Nevalainen, R., Makinen, T.: Process Assessment in A
Safety Domain. In: 10th International Conference on the Quality of
Information and Communications Technology. (2016) 52–58

[11] Kelly, T.: Can process-based and product-based approaches to software
safety certification be reconciled? Improvements in System Safety
(2008) 3–12

[12] RTCA/DO-178C: Software Considerations in Airborne Systems and
Equipment Certification. (2011)

[13] IEC 61508: Functional safety of electrical/electronic/programmable
electronic safety-related systems (2010)

[14] ISO 26262: Road vehicles Functional safety. (2011)

[15] EN50128, B.: Railway applications-Communication, signaling and
processing systems Software for railway control and protection systems.
British Standards Institution (2011)

[16] McDermid, J., Rae, A.: Goal-Based Safety Standards: Promises and
Pitfalls. Achieving Systems Safety (2012) 257–270

[17] Gallina, B., Ul Muram, F., Castellanos Ardila, J.: Compliance of
Agilized (Software) Development Processes with Safety Standards: a
Vision. In: 4th international workshop on Agile Development of Safety-
Critical Software (ASCS). (2018)

[18] Hawkins, R., Richardson, T., Kelly, T.: Using Process Models in System
Assurance. In: Computer Safety, Reliability, and Security, Springer
International Publishing (2016) 27–38

[19] Jiménez, J., Amelio, J., Merodio, M., Sanz, L.: Computer Standards
& Interfaces Checklists for compliance to DO-178C and DO-278A
standards. Computer Standards & Interfaces 52 (2017) 41–50

[20] Chung, P.W.H., Cheung, L.Y.C., Machin, C.H.C.: Compliance
Flow - Managing the compliance of dynamic and complex processes.
Knowledge-Based Systems 21(4) (2008) 332–354

[21] Fuggetta, A., Di Nitto, E.: Software process. In: Future of Software
Engineering. (2014) 1–12



Bibliography 67

[22] Object Management Group Inc.: Software & Systems Process
Engineering Meta-Model Specification. Version 2.0. OMG Std., Rev
(2008) 236

[23] Koudri, A., Champeau, J.: MODAL: A SPEM extension to improve co-
design process models. New Modeling Concepts for Today’s Software
Processes 6195 (2010) 248–259

[24] Rodrı́guez, D., Garcia, E., Sanchez, S., Rodrı́guez-Solano Nuzzi, C.:
Defining software process model constraints with rules using OWL and
SWRL. International Journal of Software Engineering and Knowledge
Engineering 20(04) (2010) 533–548

[25] Object Management Group: Unified Modeling Language Specification
Version 2.5.1 (2017)

[26] Valiente, M., Garcı́a-Barriocanal, E., Sicilia, M.: Applying Ontology-
Based Models for Supporting Integrated Software Development and IT
Service. IEEE Transactions on Systems, Man and Cybernetics, Part C:
Applications and Reviews 42(1) (2012) 61–74

[27] Gallina, B., Sljivo, I., Jaradat, O.: Towards a Safety-oriented Process
Line for Enabling Reuse in Safety Critical Systems Development and
Certification. In: 35th Annual IEEE Software Engineering Workshop
(SEW). (2012) 148–157

[28] McIsaac, B.: IBM Rational Method Composer: Standards Mapping.
Technical report, IBM Developer Works (2015)

[29] ECSEL Research and Innovation actions (RIA) - AMASS: D6.5
Prototype for Cross/Intra-Domain Reuse (b) (2017)

[30] Wen, L., Tuffley, D., Rout, T.: Using Composition Trees to Model
and Compare. In: International Conference on Software Process
Improvement and Capability Determination. Number March 2014,
Springer (2011) 1–15

[31] Horrocks, I., Patel-schneider, P., Boley, H., Tabet, S., Grosof, B., Dean,
M.: SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member submission 21(79) (2004) 1–31



68 Bibliography

[32] Jost, H., Köhler, S., Köster, F.: Towards a Safer Development of
Driver Assistance Systems by Applying Requirements-Based Methods.
In: 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC), IEEE (2011) 1144–1149

[33] OWL Working Group: Web Ontology Language (OWL)

[34] Palmirani, M., Governatori, G.: Modelling Legal Knowledge for
GDPR Compliance Checking. Frontiers in Artificial Intelligence and
Applications 313 (2018) 101–110

[35] Golra, F., Dagnat, F., Bendraou, R., Beugnard, A.: Continuous
Process Compliance Using Model Driven Engineering. In: International
Conference on Model and Data Engineering, Springer (2017) 42–56

[36] Bendraou, R., Combemale, B., Crégut, X., Gervais, M.: Definition of
an executable SPEM 2.0. In: 14th Asia-Pacific Software Engineering
Conference (ASPEC). (2007) 390–397

[37] Francesconi, E.: Semantic model for legal resources: Annotation and
reasoning over normative provisions. Semantic Web 7(3) (2016) 255–
265

[38] Siena, A., Mylopoulos, J., Perini, A., Susi, A.: From Laws to
Requirements. In: Requirements Engineering and Law (RELAW’08).
(2008) 6–10

[39] Governatori, G., Hashmi, M.: No Time for Compliance. IEEE
19th International Enterprise Distributed Object Computing Workshop,
(EDOCW) (2015) 9–18

[40] Hashmi, M., Governatori, G., Wynn, M.: Normative requirements for
regulatory compliance: An abstract formal framework. Information
Systems Frontiers. 18(3) (2016) 429–455

[41] Oasis: LegalRuleML Core Specification Version 1.0 (2017)

[42] Wieringa, R., Meyer, J.: Applications of Deontic Logic in Computer
Science : A Concise Overview. Deontic logic in computer science
(1993) 17–40

[43] Akinkunmi, B., Babalola, M.: Knowledge Representation for High-
Level Norms and Violation Inference in Logic Programming. arXiv
preprint arXiv:1801.06740 (2018)



Bibliography 69

[44] Fenton, N., Neil, M.: A Strategy for Improving Safety Related Software
Engineering Standards. IEEE Transactions on Software Engineering
24(11) (1998) 1002–1013

[45] de la Vara, J., Ruiz, A., Attwood, K., Espinoza, H., Panesar-Walawege,
R., López, A., del Rı́o, I., Kelly, I.: Model-based specification of safety
compliance needs for critical systems: A holistic generic metamodel.
Information and Software Technology 72 (2016) 16–30

[46] Nute, D.: Defeasible Logic. In: International Conference on
Applications of Prolog, Springer (2001) 151–169

[47] Governatori, G.: Representing business contracts in RuleML.
International Journal of Cooperative Information Systems 14(02n03)
(2005) 181–216

[48] Alberti, M., Gavanelli, M., Lamma, E., Riguzzi, F., Zese, R.:
Dischargeable Obligations in Abductive Logic Programming. In
Springer, ed.: International Joint Conference on Rules and Reasoning.
(2017) 7–21

[49] Governatori, G., Shek, S.: Regorous: A Business Process Compliance
Checker. In: 14th International Conference on Artificial Intelligence
and Law (ICAIL), ACM (2013) 245–246

[50] Governatori, G.: The Regorous Approach to Process Compliance.
In: IEEE 19th International Enterprise Distributed Object Computing
Workshop (EDOCW), IEEE (2015) 33–40

[51] Koliadis, G., Ghose, A.: Verifying Semantic Business Process Models
in Inter-operation. In: IEEE International Conference on Service-
Oriented Computing (SCC). (2007) 731–738

[52] Sadiq, S., Governatori, G., Namiri, K.: Modeling Control Objectives for
Business Process Compliance. In: International Conference on Business
Process Management. (2007) 149–164

[53] Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Enabling
Compliance Checking against Safety Standards from SPEM 2.0 Process
Models. In: 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). (2018)

[54] The Eclipse Foundation: Eclipse Composer Framework



70 Bibliography

[55] IBM Corporation: Key Capabilities of the Unified Method Architecture
(UMA)

[56] Castellanos Ardila, J.P., Gallina, B., UL Muram, F.: Transforming
SPEM 2.0-compatible Process Models into Models Checkable for
Compliance. In: 18th International SPICE Conference. (2018)

[57] Castellanos Ardila, J.P., Gallina, B.: Formal Contract Logic Based
Patterns for Facilitating Compliance Checking against ISO 26262. In:
1st Workshop on Technologies for Regulatory Compliance (TeReCom).
(2017) 65–72

[58] Castellanos Ardila, J., Gallina, B., Governatori, G.: Lessons Learned
while formalizing ISO 26262 for Compliance Checking. In: 2nd
Workshop on Technologies for Regulatory Compliance (TeReCom),
CEUR-Workshop Proceedings (2018) 1–12

[59] Castellanos Ardila, J.P., Gallina, B.: Towards Increased Efficiency
and Confidence in Process Compliance. In: Systems, Software and
Services Process Improvement (EuroAsiaSPI). Volume 748., Springer
International Publishing (2017) 162–174

[60] Knight, J.C.: Safety critical systems: challenges and directions. In: 24rd
International Conference on Software Engineering, ACM (2002) 547 –
550

[61] International Electrotechnical Commission: Functional safety. Essential
to overall safety (2015)

[62] Leveson, N.: Safeware: system safety and computers. Addison Wesley
(1995)

[63] Leveson, N.: The use of safety cases in certification and regulation.
Massachusetts Institute of Technology. Engineering Systems Division
(November) (2011)

[64] Kneuper, R.: Software Processes and Life Cycle Models. An
Introduction to Modelling, Using and Managing Agile, Plan-Driven and
Hybrid Processes. Springer, Cham (2018)

[65] SAE: Surface Vehicle Recommended Practice. Technical report (2016)



Bibliography 71

[66] Sommerville, I.: Software Processes. In: Software Engineering. 9th
editio edn. Addison-Wesley (2011) 43–55

[67] Boutros, T., Purdie, T.: The process improvement handbook:
A blueprint for managing change and increasing organizational
performance. (2014)

[68] Tuft, B.: Eclipse Process Framework (EPF) Composer: Installation,
Introduction, Tutorial and Manual

[69] Clements, P., Northrop, L.: Software Product Lines: Practices and
Patterns. Addison-Wesley Reading (2002)

[70] Ternité, T.: Process lines : a product line approach designed for process
model development. In: 35th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). (2009) 173–180

[71] Castellanos Ardila, J.P., Gallina, B.: Towards Efficiently Checking
Compliance Against Automotive Security and Safety Standards. In: The
7th IEEE International Workshop on Software Certification (WoSoCer).
(2017)

[72] Haugen, Ø., Øgård, O.: BVR Better Variability Results. In:
International Conference on System Analysis and Modeling. (2014) 1–
15

[73] Javed, M., Gallina, B.: Safety-oriented Process Line Engineering via
Seamless Integration between EPF Composer and BVR Tool. In: 22nd
International Systems and Software Product Line Conference, ACM
(2018) 23–28

[74] Emmerich, W., Finkelstein, A., Montangero, C., Antonelli, S.,
Armitage, S., Stevens, R.: Managing Standards Compliance. IEEE
Transactions on Software Engineering 25(6) (1999) 836–851

[75] International Atomic Energy Agency: Approaches and Methods to
Conduct Regulatory Safety Review and Assessment (2013)

[76] IEEE Computer Society: Guide to the Software Engineering Body of
Knowledge Version 3.0 (SWEBOK Guide V3.0). (2014)



72 Bibliography

[77] Bel V, BfS, CSN, ISTec, ONR, SSM, STUK: Licensing of safety critical
software for nuclear reactors. Common position of seven European
nuclear regulators and authorised technical support organisations.
Technical report (2010)

[78] Vilkomir, S., Ghose, A.: Development of a Normative Package
for Safety-Critical Software Using Formal Regulatory Requirements.
In: International Conference on Product Focused Software Process
Improvement. (2004) 523–537

[79] Raz, J.: Practical Reason and Norms. Oxford Scholarship Online (1999)

[80] Koetter, F., Kochanowski, M., Renner, T., Fehling, C., Leymann, F.:
Unifying compliance management in adaptive environments through
variability descriptors. Proceedings - IEEE 6th International Conference
on Service-Oriented Computing and Applications, SOCA 2013 (2013)
214–219

[81] Governatori, G., Hashmi, M., Lam, H., Villata, S., Palmirani, M.:
Semantic Business Process Regulatory Compliance Checking using
LegalRuleML. In: European Knowledge Acquisition Workshop,
Springer (2016) 746–761

[82] Diallo, B.: The Binding Force of International Legal Standards in
the Face of the Recurrent Practice of Soft Law. Adam Mickiewicz
University Law Review 7 (2017) 79–91

[83] Hashmi, M.: Evaluating Business Process Compliance Management
Frameworks. Doctoral dissertation, Queensland University of
Technology (QUT) (2015)

[84] Von Wright, G.H.: Deontic logic. Mind 60(237) (1951) 1–15

[85] Antoniou, G., Billington, D., Governatori, G., Maher, M.J.:
Representation Results for Defeasible Logic. ACM Transactions on
Computational Logic (2) (2000) 255–287

[86] RuleML: Uses of Rules. http://wiki.ruleml.org/index.php/RuleML Home

[87] Barlas, K., Berki, E., Stefaneas, P., Koletsos, G.: Towards formal open
standards : formalizing a standard ’ s requirements. Innovations in
Systems and Software Engineering 13(1) (2017) 51–66



Bibliography 73

[88] Lin, Y.: Semantic Annotation for Process Models: Facilitating Process
Knowledge Management via Semantic Interoperability. Doctoral thesis,
Norwegian University of Science and Technology (2008)

[89] Riehle, D., Züllighoven, H.: Understanding and using patterns in
software development. Tapos 2(1) (1996) 3–13

[90] Dwyer, M., Avrunin, G., Corbett, J.: Property Specification for Finite-
State Verification. In: 2nd Workshop on Formal Methods in Software
Practice. (1998) 7–15

[91] Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A Design
Science Research Methodology for Information Systems Research.
Journal of Management Information Systems 24(3) (2007) 45–77

[92] O’Connor, R., Laporte, C.: An innovative approach to the development
of an international software process lifecycle standard for very small
entities. Volume III. IGI Global (2018)

[93] Engiel, P., Sampaio do Prado Leite, J., Mylopoulos, J.: A Tool-
Supported Compliance Process for Software Systems. In: 2017
11th International Conference on Research Challenges in Information
Science (RCIS), IEEE (2017) 66–76

[94] Kabaale, E., Wen, L., Wang, Z., Rout, T.: Representing Software
Process in Description Logics: An Ontology Approach for Software
Process Reasoning and Verification. In: Software Process Improvement
and Capability Determination, Springer (2016) 362–376

[95] SPICE Project Organization: ISO/IEC 15504 -Software Process
Assessment (SPICE).

[96] Kabaale, E., Wen, L., Wang, Z., Rout, T.: Ensuring
Conformance to Process Standards Through Formal Verification.
In: International Conference on Software Process Improvement and
Capability Determination. Volume 2., Springer International Publishing
(2018) 248–262

[97] Proença, D., Borbinha, J.: Formalizing ISO/IEC 15504-5 and SEI
CMMI v1.3 Enabling automatic inference of maturity and capability
levels. Computer Standards and Interfaces (2018)



74 Bibliography

[98] Soydan, G., Kokar, M.: A Partial Formalization of the CMMI-DEV
A Capability Maturity Model for Development. Journal of Software
Engineering and Applications 5(10) (2012) 777–788

[99] Software Engineering Institute, C.M.: CMMI R© for Development,
Version 1.3 CMMI-ACQ, V1.3. Technical Report November, Software
Engineering Institute, Carnegie Mellon (2010)

[100] Bonatti, P.: Fast Compliance Checking in an OWL2 Fragment. In: 27th
International Joint Conferences on Artificial Intelligence Organization
(IJCAI). (2018) 1746–1752

[101] Borgida, A.: On the relative expressiveness of description logics and
predicate logics. Artificial intelligence 82(1-2) (1996) 353–367

[102] Wang, S., Jin, L., Jin, C.: Represent S oft w are Process Engineering
Metamode l in Description Logic. World Academy of Science,
Engineering and Technology 11 (2006) 109–113

[103] Gallina, B., Gómez-Martı́nez, E., Earle, C.: Deriving Safety Case
Fragments for Assessing MBASafe ’ s Compliance with EN 50128.
In: International Conference on Software Process Improvement and
Capability Determination. Volume 1. (2016) 3–16

[104] ISO/IEC TR 29110: Systems and software engineering – Lifecycle
profiles for Very Small Entities (VSEs). 2 (2016) 23

[105] École de technologie supérieure of Canada.: Deployment Packages
for the Generic Profile Group for VSEs Developing Systems and/or
Software (2010)

[106] Ul Muram, F., Gallina, B., Gomez Rodriguez, L.: Preventing
Omission of Key Evidence Fallacy in Process-based Argumentations.
In: 11th International Conference on the Quality of Information and
Communications Technology (QUATIC). (2018)

[107] Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, (2009)

[108] Giblin, C., Müller, S., Pfitzmann, B.: From Regulatory Policies to Event
Monitoring Rules: Towards Model-Driven Compliance Automation.
Technical report, IBM Research Laboratory, Zurich (2006)



Bibliography 75

[109] Giblin, C., Liu, A., Müller, S., Pfitzmann, B., Zhou, X.: Regulations
Expressed As Logical Models (REALM). Technical report, IBM China
Research Lab (2005)

[110] Küster, J., Ryndina, K., Gall, H.: Generation of Business Process
Models for Object Life Cycle Compliance. In: International Conference
on Business Process Management, Springer (2007) 165–181

[111] Daniel, F., Casati, F., Mulo, E., Zdun, U., Strauch, S., Schumm,
D., Leymann, F., Sebahi, S., De Marchi, F., Hacid, M.S.:
Business compliance governance in service-oriented architectures. In:
International Conference on Advanced Information Networking and
Applications (AINA). (2009) 113–120

[112] Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking
Using BPMN-Q and Temporal Logic. International Conference on
Business Process Management (2008) 326–341

[113] Ly, L., Göser, K., Rinderle-ma, S., Dadam, P.: Compliance of Semantic
Constraints A Requirements Analysis for Process Management
Systems. In: 1st Int’ernational Workshop on Governance, Risk and
Compliance - Applications in Information Systems (GRCIS). (2008)

[114] Object Management Group: Business Process Model and Notation
Version 2.0. (2011)

[115] Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.:
Formalizing and applying compliance patterns for business process
compliance. Software and Systems Modeling. (2016) 119–146

[116] Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F.,
van den Heuvel, W.: Business Process Compliance through Reusable
Units of Compliant Processes. In: International Conference on Web
Engineering. (2010) 325–337

[117] El Kharbili, M.: Business Process Regulatory Compliance Management
Solution Frameworks: A Comparative Evaluation. In: 8th Asia-Pacific
Conference on Conceptual Modelling. (2012) 23–32

[118] Rushby, J.: Formal methods and the certification of critical systems.
Technical report, SRI International (1993)



76 Bibliography

[119] Abi-lahoud, E., Brien, L., Butler, T.: On the Road to Regulatory
Ontologies Interpreting Regulations with SBVR. AI Approaches to the
Complexity of Legal Systems (2014) 188–201

[120] Ceci, M., Butler, T., Brien, L., Al Khalil, F.: Legal Patterns for Different
Constitutive Rules. AI Approaches to the Complexity of Legal Systems
(2015) 105–123

[121] Islam, S., Mouratidis, H., Wagner, S.: Towards a Framework to
Elicit and Manage Security and Privacy Requirements from Laws and
Regulations. In: International Working Conference on Requirements
Engineering: Foundation for Software Quality. (2010) 255–261

[122] Faßbender, S., Heisel, M.: A Computer-Aided Process from Problems
to Laws in Requirements Engineering. In: Software Technologies,
Springer Berlin Heidelberg (2014) 215–234

[123] Bouzidi, K., Faron-Zucker, C., Fies, B., Le Thanh, N.: An ontological
approach for modeling technical standards for compliance checking.
In: International Conference on Web Reasoning and Rule Systems,
Springer (2011) 244–249

[124] Bala, S., Cabanillas, C., Haselböck, A., Havur, G., Mendling, J., Sperl,
S., Steyskal, S.: A Framework for Safety-Critical Process Management
in Engineering Projects. In: International Symposium on Data-Driven
Process Discovery and Analysis. Volume 1. (2015) 1–27

[125] de la Vara, J., Gómez, A., Gallego, E., Génova, G., Fraga, A.:
Representation of Safety Standards with Semantic Technologies Used
in Industrial Environments. In: International Conference on Computer
Safety, Reliability, and Security. (2017) 265–272

[126] Nash, E., Wiebensohn, J., Nikkilä, R., Vatsanidou, A., Fountas, S.,
Bill, R.: Towards automated compliance checking based on a formal
representation of agricultural production standards. Computers and
Electronics in Agriculture 78(1) (2011) 28–37

[127] Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., Howar, F.,
Temesghen, K.: Verifying the Safety of a Flight-Critical System. In:
International Symposium on Formal Methods, Springer (2015) 308–324

[128] Lee, J.: Oracle Policy Automation (OPA). Best Practice Guide for policy
Modelers. (2018)



[129] Fernandez, J.: Deliverable 6.1: Privacy policy formalization (v. 1)
(2018)

[130] Vilkomir, S., Bowen, J., Ghose, A.: Formalization and assessment
of regulatory requirements for safety-critical software. Innovations in
Systems and Software Engineering 2(3-4) (2006) 165–178

[131] Singh, N., Lawford, M., Maibaum, T., Wassyng, A.: Use of Tabular
Expressions for Refinement Automation. In: International Conference
on Model and Data Engineering. (2017) 167–182

[132] Governatori, G.: Practical Normative Reasoning with Defeasible
Deontic Logic. In: Reasoning Web International Summer School.
(2018) 1–25

[133] Luo, Y., Van Den Brand, M., Engelen, L., Favaro, J., Klabbers, M.,
Sartori, G.: Extracting models from ISO 26262 for reusable safety
assurance. Lecture Notes in Computer Science 7925 LNCS (2013) 192–
207

[134] Giannakopoulou, D., Namjoshi, K., Pasareanu, K.: Compositional
reasoning. In: Handbook of logic and language. Springer (2018) 345–
383

[135] Reif, W., Stenzel, K.: Reuse of Proofs in software verification. In:
International Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), Lecture Notes in Computer
Science (1993) 284–293

[136] Beckert, B., Klebanov, V.: Proof reuse for deductive program
verification. In: Proceedings of the Second International Conference
on Software Engineering and Formal Methods (SEFM ), IEEE (2004)
77–86

[137] Beyer, D., Wendler, P.: Reuse of verification results conditional model
checking, precision reuse, and verification witnesses. Model Checking
Software 7976 (2013) 1–17

[138] Apel, S., Von Rhein, A., Wendler, P., Groslinger, A., Beyer, D.:
Strategies for product-line verification: Case studies and experiments.
International Conference on Software Engineering (2013) 482–491





II

Included Papers

79





Chapter 7

Paper A:
Enabling Compliance
Checking against Safety
Standards from SPEM 2.0
Process Models

Julieth Patricia Castellanos Ardila, Barbara Gallina and Faiz UL Muram.
In Proceedings of the Euromicro Conference on Software Engineering and
Advanced Applications (SEAA-2018), Prague, Czech Republic, August 2018.

81



Abstract

Compliance with process-based safety standards may imply the provision of a
safety plan and its corresponding compliance justification. However, the
provision of this justification is time-consuming since it requires that the
process engineer checks the fulfillment of hundred of requirements by taking
into account the evidence presented in the process entities. In this paper, we
aim at supporting process engineers by introducing our compliance checking
vision, which consists of the combination of process modeling capabilities via
SPEM 2.0 (Systems & Software Process Engineering Metamodel) reference
implementations and compliance checking capabilities via Regorous, a
compliance checker, used for business processes compliance checking. Our
focus is on the identification and exploitation of the appropriate (minimal set
of) SPEM 2.0-like elements, available in the selected reference
implementation, which can be used by Regorous for compliance checking.
Then, we illustrate our vision by applying it onto a small excerpt from ISO
26262. Finally, we draw our conclusions.



7.1 Introduction 83

7.1 Introduction

Compliance with process-based safety standards, which impose requirements
on the processes to be adopted to engineer safety-critical systems [1], may
imply the provision of a safety plan (used to manage and facilitate the
execution of safety activities) together with a compliance justification [2]. The
provision of this justification is time-consuming since it requires that the
process engineer checks the fulfilment of hundred of requirements by taking
into account the evidence provided by the process entities. In order to support
compliance checking, existing tools and their methodologies are available. On
the one hand, the software processes can be modeled by using SPEM 2.0 [3],
a metamodel that provides generic process concepts and extension
mechanisms for modeling and documenting software processes [4].
SPEM 2.0 characteristics have been used to support the creation of
compliance tables (mapping between standard’s requirements and process
entities [5]). On the other hand, there is Regorous [6], a tool-supported
methodology for automated compliance checking used in the business and
legal contexts. Regorous provides a generic framework in which formally
captured normative requirements can be propagated in the process models as
compliance effects to derive proofs of compliance. Compliance effects are
those effects that are caused by the cumulative interaction between the process
tasks that are adhered to the standard requirements influences [7]).

Compliance checking of software process plans against safety standards
may add value during the negotiation with the certification bodies in the
planning phase. Therefore, In this paper, we aim at supporting process
engineers by introducing our compliance checking vision, which consists of
the combination of process modeling capabilities via SPEM 2.0 (Systems &
Software Process Engineering Metamodel) reference implementations and
compliance checking capabilities via Regorous, a compliance checker, used
for business processes compliance checking. Our focus is on the identification
and exploitation of the appropriate (minimal set of) SPEM 2.0-like elements,
available in the selected reference implementation, which can be used by
Regorous for compliance checking. We illustrate our vision by applying it
onto a small excerpt from ISO 26262 [8], and show how the report with
compliance results can help the process engineer to trace the unfulfilled
requirements.

The rest of the paper is organized as follows. In Section 11.2, we provide
background. In Section 7.3, we present our compliance checking vision and the
mechanism to annotate software process. In Section 7.4, we examine an ISO



84 Paper A

26262-based small example. In Section 7.5, we present related work. Finally,
in Section 7.6, we provide conclusions and future work.

7.2 Background

In this section, we provide essential background on which we base our work.

7.2.1 SPEM 2.0

SPEM 2.0 [3] is a standard that describes Method Content (knowledge base
for describing process) and Processes. We recall some elements used in this
paper. A task definition is an assignable unit of work which has expected
input/output work products. Guidance provides additional descriptions to
method content elements, e.g., Concept and Reusable Asset. Custom Category
is a way to organize elements. A Delivery Process, which is an integrated
approach for performing a project, contains a Breakdown Structure, which
allows the nesting of units of work (as task use). SPEM 2.0 supports
variability management, e.g., Contributes, which allows extending a base in
an additive fashion without altering its existing properties. The open-source
tool EPF (Eclipse Process Framework) Composer [9], implements UMA
(Unified Method Architecture), a metamodel that exhibits a good coverage of
SPEM 2.0 concepts. Also, EPF Composer has a proprietary activity diagram
which partially generates the execution semantics of a defined process, and
permits importing and exporting libraries with projects (a.k.a. plugins)
allowing reusability. Some of the concepts mentioned are described with
icons (see Table 7.1).

Table 7.1: Subset of Icons used in SPEM 2.0/EPF Composer.

SPEM 2.0/EPF Composer Icon
Task Definition/Use /
Work Product
Delivery Process
Custom category



7.2 Background 85

7.2.2 IBM Standards Mapping Method

Within AMASS project [10], the IBM approach for mapping software
processes to standard’s requirements [5] was adopted and adapted resulting in
an approach to model standard’s requirements with EPF Composer [11]. It
requires the definition of three plugins. First, the Standard’s requirements
plugin, in which requirements are captured in a user-defined type and grouped
into a nested table of content by using custom categories. Second, a Lifecycle
elements plugin which contains the documented process elements. Third, a
Requirements mapping which contains an extended copy (by using a
contributes relationship) of the standards requirements to be mapped to the
process elements that fulfil them. Within

7.2.3 Regorous

Regorous [6] is a tool-supported methodology that implements compliance by
design, an approach that helps process engineers to reach compliance by
providing, in a compliance report, the causes of regulations violations and
reparation policies. For this, Regorous defines a logical state representation of
the process model to be contrasted with a compliance rule set. Three are the
main inputs of Regorous. First, the rule set, which is obtained from the
formalization of the normative requirements in FCL (Formal Contract Logic,
the underlying rule-base language used by Regorous). Second, the execution
semantics of the process, which is obtained from the modeling of the process.
Third, the compliance effects annotated in the process tasks, which are effects
extracted from the set of formulas of the logic that represent the regulations.

7.2.4 ISO 26262

ISO 26262 [8] is a standard that addresses functional safety in automotive.
ISO 26262 prescribes a safety lifecycle and uses ASIL (Automotive Safety
Integrity Levels) to specify applicable safety requirements. In this section, we
present a set of rules extracted from the requirements presented in Table 11.2.
The interested reader may refer to our previous work [1] for the complete
explanation of the formalization process. However, we briefly explain the
meaning of the rules. Initially, a rule (r1 in the Ruleset 1) indicates initiation
of the Software Unit Design process (R1 in Table 11.2). The expression in
accordance with (R2) recalls the concept of precondition, namely a task is
prohibited (specification of the software units) until the previous tasks or



86 Paper A

elements are provided (architectural design and safety requirements) (rules r2
and r′2). The use of mandatory methods in the description of software units
which are conditioned by the ASIL and the recommendation levels (R3) can
be tailored by providing a rationale that the selected methods comply with the
corresponding requirement (see r3, r′3). Conflicts between r2 and r′2 as well
as r3 and r′3 due to the presence of contradictory conclusions can be solved by
adding superiority relations. Superiority relations give high priority to a rule
over the other allowing the checker to derive conclusions without
contradictions.

Table 7.2: Requirements for ISO 26262:6 clause 8.

ID Ref Description
R1 8 Software unit design phase initiation.

R2 8.1 Specify software units in accordance with the architectural
design and the associated safety requirements.

R3 8.4.2 The software unit design shall be described using specific
notations, according to ASIL and recommendation levels.

RuleSet 1: ISO 26262-Software Unit Design Process

r1 :⇒ [OM ]addressSwUnitDesignProcess

r2 : addressSwUnitDesignProcess

⇒ [OANPNP ]− performSpecifySwUnit

r
′
2 : performProvideSwArchitecturalDesign,

performProvideSwSafetyRequirements

⇒ [P ]performSpecifySwUnit

r3 : performSpecifySwUnit

⇒ [OANPNP ]selectMandatoryNotationsforSwDesign

r
′
3 : provideRationaleForNotSelectMandatoryNotationsforSwDesign

⇒ [P ]− selectMandatoryNotationsforSwDesign

r
′
2>r2, r

′
3>r3

(7.1)



7.3 Automated Compliance Checking Vision 87

7.3 Automated Compliance Checking Vision

Our automated compliance checking vision uses SPEM 2.0 elements that
implemented in EPF Composer can be used to provide the minimal set of
elements to be process by the compliance checker Regorous. As depicted in
Figure 8.1, a process engineer should support an FCL expert in the
formalization of the rules, as well as model and annotate the software
processes, by using EPF Composer. The interaction between these two tools
requires data transformation since EPF Composer and Regorous have
different data schemas. In particular, EPF Composer produces the standards
description and their formalization, the annotated software process and a
diagram model, which should be transformed into the rule set, the compliance
annotated tasks and the process execution semantics required by Regorous.
Regorous produces a compliance report, which includes rules violations and
reparation policies. The information provided by the compliance report can
be, through back-propagation into EPF Composer, support the analysis and
improvement of the software process.

Figure 7.1: Automated Compliance Checking Vision.

The rest of the content of this paper focuses on the region delimited by the
dotted line depicted in Figure 8.1, which has a twofold function. First, we
identify which modeling capabilities should be used for capturing standard’s



88 Paper A

information, i.e., we use the guidance kinds offered by SPEM 2.0 called
Reusable Asset to capture superiority relations between rules, Concept to
capture compliance effects, and custom categories, to organize a nested list of
the standard requirements. These elements are customized with the icons
depicted in Table 7.3.

Table 7.3: EPF Composer Customization

EPF Composer Compliance Information Suggested Icons
Reusable Asset Rule Set
Concept Compliance Effect
Custom category Standard requirement

Second, we provide mechanisms to model and annotate the process with
compliance effects. This mechanism includes the creation of three plugins in
a similar way as presented in Section 7.2.2. The first plugin captures
standard’s requirements by using the customized SPEM 2.0 elements
presented in Table 7.3. The second plugin captures the process elements
required to support the software process description. The third plugin captures
the annotated process, in which compliance effects are added (in the guidance
part) to the process tasks that shows adherence to the rules that they represent.
Process tasks are an extended copy of the tasks defined in the plugin that
contains the process elements (the extension is done by using a contributes
relationship to the original ones). The delivery process and its corresponding
activity diagram are created with the annotated tasks. Finally, we export our
three plugins.

7.4 Modeling and Annotating a Small Example
from ISO 26262

In this section, we apply the mechanism to model and annotate software
process using EPF Composer (described in Section 7.3) by modeling a simple
example from ISO 26262. Initially, we create the plugin for capturing
standard’s requirements. For this, we define a custom category root called
Standard Requirements ISO 26262 Software Unit Design, to which we
associate the requirements presented in Table 11.2, with a short but
descriptive name, in a nested list of custom categories. Then, we create the
rules that are associated to the requirement. For example, R3 is a requirement



7.4 Modeling and Annotating a Small Example from ISO 26262 89

that has two associated rules r3.1 and r3.2. Then, we associate to the rules the
corresponding compliance effects, which are presented in the precedent and
consequent of the rules described in RuleSet 1. The customized list of
standard’s requirement, the rules and compliance annotations are depicted in
Figure 7.2.

Figure 7.2: Requirements and their Associated Elements.

The actual rule is written in the main description field of the compliance
effect (See Figure 7.3).

Figure 7.3: Specification of Rule r3.1

The rule set is defined in a customized reusable asset (called Rule Set-ISO
26262-Software Unit Design), which contains the superiority relations between
rules (See Figure 7.4).



90 Paper A

Figure 7.4: Rule Set Specification

Then, we create the plugin for capturing process elements. In this example
(See Figure 7.5), the definition of the process elements is based on our
interpretation of the requirements provided in Table 11.2. From R1, we
deduce that there is one task called Start Software Unit Design Process in
which the requirements for the process are collected, namely, the Software
Architectural Design and the Software Safety requirements, which are work
products resulting from previous phases. From R2 we deduce the existence of
the task Specify Software Unit and from R3, we deduce that we have a task
called Design Software Unit which output is the Software Unit Design.

Figure 7.5: Process Elements Plugin.

Finally, we create the third plugin, in which we copy and extend (with
contributes) the tasks that are part of the delivery process. Then, we annotate
the tasks by deducing the compliance effects that they produce. For example,
the task Start Software Unit Design Process, produces the compliance effect
addressSoftwareUnitDesignProcess, since with this task we initiate
addressing the process. This task has two inputs, i.e., the software safety



7.4 Modeling and Annotating a Small Example from ISO 26262 91

requirements and the architectural design. Thus, it also produce the
compliance effects performProvideAssociatedSwSafetyRequirements and
performProvideSwArchitecturalDesign. The annotation can be seen in the
section called Concepts (See Figure 7.6).

Figure 7.6: Start Software Unit Design Process Task

Then, we create the delivery process, in which the annotated tasks (storage
in the method content of the plugin) are used to describe the breakdown
structure and the activity diagram. Once created, we export the plugins. We
get two files that we briefly describe (for space reasons, we do not provide
code). First, we get an XMI file (usually called diagram), which contains
enough elements for defining the process execution semantics required by
Regorous and described in the activity diagram (See Figure 7.7).

Figure 7.7: Activity Diagram of the Software Unit Design Process.

The elements of interest are an Activity that provides the name of the
process, an inital node and a final node that represent the start and the end
event respectively, one Activity parameter node for every task and one control
flow for every sequence. We did not model other process elements in this



92 Paper A

example, but the file can also provides a decision, merge, fork and join nodes
for modeling exclusive and parallel gateway respectively, which can be useful
for complex processes. Second, we get an XML file, which provides the
compliance annotated process information (see Table 7.4). As the table
shows, the activity name corresponds to the process name. Tasks has
associated concepts which correspond to the compliance effects. We can also
create the rule set since every concept is described with the actual rule and the
reusable asset with the superiority relations (not represented in the table for
space reasons).

Table 7.4: Process Description

Element Information
Activity name Software Unit Design Process
task use name Start Software Unit Design Process

-concept
addressSwUnitDesignProcess
performProvideAssociatedSwSafetyRequirements
PerformProvideSwarchitecturalDesign

task usename Specify Software Unit Design
-concept performSpecifySoftwareUnit
task use name Design Software Unit
-concept selectMandatoryNotationsForSwDesign

The process previously described is manually modeled in Regorous and
checked for compliance. To identify how back-propagation of standard’s
requirements violations should be done, we have purposely introduced a fault
in the description, i.e., the compliance annotation
selectMandatoryNotationsForSwDesign was eliminated. Regorous report is
presented in Table 7.5. As expected, Regorous reports the compliance
violation that occurs in the process model. Specifically, it says that the

Table 7.5: Regorous Report

Compliance Check Results: Process is non-compliant.
Description: Unfulfilled obligation to
’selectMandatoryNotationsForSwDesign’ (Achievement, non-pre-
emptive, non-persistent).
Element name: Specify Software Unit.



7.5 Related Work 93

obligation selectMandatoryNotationsForSoftwareDesign is unfulfilled.
Tracing back (manually) this compliance effect in the plugin that describes the
standard information (see Figure 7.2), we can find that the violation is related
to the rule r3.1 which is related to the requirement R3. With this information,
the process engineer can refer to the requirement description and understand
how the process could be improved.

7.5 Related Work

To the best of our knowledge, there are no attempts for enabling compliance
checking from SPEM2.0 process models. Apart from the IBM method
presented in Section 7.2.2, works related to mapping regulations have been
proposed to facilitate process engineers work. In [12], the authors examine
techniques to map a single taxonomy to multiple regulations. In [13], authors,
use Semantics of Business Vocabularies and Rules (SBVR) to represent
similarity between concepts from regulations and organization operational
specifics concepts. Ontological approaches to map regulations can be seen
in [14], in which the authors propose a metamodel (SafetyMet) that includes
concepts and relationships for safety targeted for facilitating safety
compliance. In [15], the authors present a method for mapping the
information security knowledge of the French EBIOS (Expression des
Besoins et Identification des Objectifs de Scurit - Expression of Needs and
Identification of Security Objectives) standard and the German IT
Grundschutz Manual to an OWL-DL security ontology. In our work, we
based our mapping on SPEM 2.0 metamodel, and we do not design a specific
ontology or schema to map standards concepts. The usage of SPEM 2.0
elements to map standards can be seen in [16], in which the concepts
involved in the Capability Maturity Model Integration (CMMI) standard are
mapped to SPEM 2.0. As in [16], we have used Category to classify
standard’s requirements. Approaches for verifying software process models
are presented in [17] and [18]. In [17], BPMN is used to formally specify the
software project management and the software process, to deploy and execute
agile avionics software development process, adopting the idea of model
checking to enable detection and elimination of inconsistencies in process
interaction. However, this approach does not explicitly address the checking
of software process model against safety standards. In [18], a validation of the
process model is carried out with formal tools, specifically model-checkers
available in the area of Petri nets. The validation consists of evaluating



94 Paper A

process properties such as termination of the process, and process planning
fulfillment (process constraints). This work is only conceptual, and no tool
support is provided. In our case, we have provided tool support for our
methodology in EPF Composer and determined compliance with Regorous.

7.6 Conclusion and Future Work
In this paper, we explained our compliance checking vision which consists
of the combination of process modeling capabilities via SPEM 2.0 reference
implementation, and compliance checking capabilities via Regorous. Then,
we focus on the identification and exploitation of the appropriate (minimal set
of) SPEM 2.0-like elements available in the selected reference implementation.
We illustrated our vision by applying it to a simple example from ISO 26262.
Also, we manually map the obtained model into the input model of Regorous
to check compliance and show how a compliance report can help the process
engineer to trace the unfulfilled requirements.

In future, we plan to add a rule editor to support the modeling of the FCL
rules. Moreover, we plan to address the transformation required to convert the
information provided by EPF Composer into the input format required by
Regorous. Additionally, we plan to back-propagate the compliance report
information produced by Regorous into the EPF Composer to facilitate the
analysis work that the process engineer has to perform. From a validation
perspective, we are aware that we are using a small academic example. For
this reason, we plan to study complex use cases to further validate our
approach.

Acknowledgment
This work is supported by the EU and VINNOVA via the ECSEL JU project
AMASS (No. 692474) [10]. We thank I. Ayala for her contribution on
requirements modeling using customized elements in EPF Composer [11].



Bibliography

[1] Castellanos Ardila, J.P., Gallina, B.: Towards Increased Efficiency
and Confidence in Process Compliance. In: Systems, Software and
Services Process Improvement (EuroAsiaSPI). Volume 748., Springer
International Publishing (2017) 162–174

[2] Gallina, B., Ul Muram, F., Castellanos Ardila, J.: Compliance of
Agilized (Software) Development Processes with Safety Standards: a
Vision. In: 4th international workshop on Agile Development of Safety-
Critical Software (ASCS). (2018)

[3] Object Management Group Inc.: Software & Systems Process
Engineering Meta-Model Specification. Version 2.0. OMG Std., Rev
(2008) 236

[4] Koudri, A., Champeau, J.: MODAL: A SPEM extension to improve co-
design process models. International Conference on Software Process
(2010) 248–259

[5] McIsaac, B.: IBM Rational Method Composer: Standards Mapping.
Technical report, IBM Developer Works (2015)

[6] Governatori, G.: The Regorous approach to process compliance.
In: IEEE 19th International Enterprise Distributed Object Computing
Workshop. (2015) 33–40

[7] Koliadis, G., Ghose, A.: Verifying Semantic Business Process Models in
Inter-operation. In: IEEE International Conference on Service-Oriented
Computing. (2007) 731–738

[8] ISO 26262: Road vehicles Functional safety. (2011)

95



[9] The Eclipse Foundation.: Eclipse Process
Framework (EPF) Composer 1.0 Architecture Overview.
http://www.eclipse.org/epf/composer architecture/ (2013)

[10] AMASS.: Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems

[11] ECSEL Research and Innovation actions (RIA) - AMASS: D6.5
Prototype for Cross/Intra-Domain Reuse (b) (2017)

[12] Cheng, C., Lau, G., Law, K.: Mapping regulations to industry-specific
taxonomies. In: 11th international conference on Artificial intelligence
and law . (2007) 59–63

[13] Sunkle, S., Kholkar, D., Kulkarni, V.: Toward better mapping between
regulations and operational details of enterprises using vocabularies
and semantic similarity. Complex Systems Informatics and Modeling
Quarterly (5) (2015) 39–60

[14] De La Vara, J.L., Panesar-Walawege, R.: SafetyMet: A metamodel
for safety standards. In: International Conference on Model Driven
Engineering Languages and Systems. (2013) 69–86

[15] Fenz, S., Pruckner, T., Manutscheri, A.: Ontological mapping of
information security best-practice guidelines. International Conference
on Business Information Systems (2009) 49–60

[16] Portela, C., Vasconcelos, A., Silva, A., Sinimbú, A., Silva, E., Ronny,
M., Lira, W., Oliveira, S.: A Comparative Analysis between BPMN and
SPEM Modeling Standards in the Software Processes Context. Journal
of Software Engineering and Applications 5(5) (2012) 330–339

[17] Kingsbury, P., Windisch, A.: Modeling of Agile Avionics Software
Development Processes through the Application of an Executable Process
Framework. In: International Conference on Design and Modeling in
Science, Education, and Technology. (2011)

[18] Bendraou, R., Combemale, B., Crégut, X., Gervais, M.: Definition of
an executable SPEM 2.0. In: 14th Asia-Pacific Software Engineering
Conference. (2007) 390–397



Chapter 8

Paper B:
Transforming
SPEM 2.0-compatible
Process Models into Models
Checkable for Compliance

Julieth Patricia Castellanos Ardila, Barbara Gallina and Faiz UL Muram.
In Proceedings of the 18th International SPICE Conference (SPICE-2018),
Thessaloniki, Greece, October 2018.

97



Abstract

Manual compliance with process-based standards is time-consuming and
prone-to-error. No ready-to-use solution is currently available for increasing
efficiency and confidence. In our previous work, we have presented our
automated compliance checking vision to support the process engineers work.
This vision includes the creation of a process model, given by using a
SPEM 2.0 (Systems & Software Process Engineering Metamodel)-reference
implementation, to be checked by Regorous, a compliance checker used in the
business context. In this paper, we move a step further for the concretization
of our vision by defining the transformation, necessary to automatically
generate the models required by Regorous. Then, we apply our transformation
to a small portion of the design phase recommended in the rail sector. Finally,
we discuss our findings, and present conclusions and future work.



8.1 Introduction 99

8.1 Introduction

Claiming compliance with process-based standards requires that companies
show, via the provision of a justification which is expected to be scrutinized
by an auditor, the fulfillment of its requirements [1]. The manual production
of this justification is time-consuming and prone-to-error since it requires that
the process engineer checks hundreds of requirements [2]. A process-based
requirement is checkable for compliance if there is information in the process
that corroborate that the requirement is fulfilled [3]. This checking can be
facilitated by using FCL (Formal Contract Logic) [4], a rule-based language
that can be used to generate automatic support to reason from requirements
and the description of the process they regulate. In our previous work [5], we
have presented our automatic compliance checking vision (See Fig. 8.1). It
consists of the combination of process modeling capabilities via
SPEM 2.0 [6]-reference implementation, specifically by using EPF (Eclipse
Process Framework) Composer [7], and compliance checking capabilities via
Regorous [8], an FCL-based reasoning methodology, and tool.

In our vision, EPF Composer contributes with the appropriate (minimal
set of) SPEM 2.0-compatible elements required by Regorous, which, in turn,
produces a report that can be used to analyze and improve compliance.

In this paper, we define the transformation necessary (dotted line region
shown in Fig. 8.1) to automatically generate the models required by Regorous,
i.e., the FCL rule set, the structural representation of the process and the
compliance effects annotations (cumulative interactions between process tasks
that produce the desired global properties mandated by the standards [9]).
Then, we apply our transformation to a small portion of the design phase
recommended in the rail sector and discuss our findings.

The rest of the paper is organized as follows. In Section 11.2, we recall
essential background information. In Section 8.3, we present the
transformations specification for generating Regorous inputs. In Section 8.4,
we illustrate the transformation with a small example from the rail sector. In
Section 11.4.3, we discuss our findings. In Section 11.5, we discuss related
work. Finally, in Section 11.6, we derive conclusions and future work.

8.2 Background

In this section, we provide basic information on which we base our work.



100 Paper B

Figure 8.1: Automated Compliance Checking Vision [5].

8.2.1 EPF Composer

EPF Composer [7] is an open-source tool aiming at supporting the modeling
of customizable software processes. We recall two open source standards used
by EPF Composer and also required in this paper. UMA (Unified Method
Architecture) Metamodel [10], a subset of SPEM 2.0 [6], is used to model and
manage reusable method content and processes. Method Content defines the
core elements used in a process, i.e., tasks, work products and roles. Managed
Content defines textual descriptions, such as Concept and Reusable Asset.
Custom Category defines a hierarchical indexing to manage method content.
A delivery process describes a complete and integrated approach for
performing a specific project and it contains a Breakdown Structure, which
allows nesting of tasks. UML 2.0 Diagram Interchange Specification [11]
supports diagram interchange among modeling tools by providing an UML
activity diagram representation. An Activity corresponds to a process, while a
Node represents a point in the process, and an Edge is used to connects points.
Nodes can be of different types. An Activity Parameter Node represents a
task. Initial and Final Nodes represent the start and the end of the process.
Fork and Join Nodes represent the parallel flows and Decision and Merge
Nodes represent conditional behavior.



8.2 Background 101

8.2.2 Regorous

Regorous [8] is a tool-supported methodology for compliance checking in
which the compliance status of a process is provided with the causes of
existing violations. To check compliance, Regorous requires a rule set, which
is the formal representation of the standard’s requirements in Formal Contract
Logic (FCL) [4]. An FCL rule has the form r : a1, ..., an ⇒ c, where r is the
unique identifier, a1, ..., an, are the conditions of the applicability of a norm
and c is the normative effect. The different kind of normative effects can be
found in [4]. A rule set is represented in the schema called Combined Rule Set
from which we recall some elements. Vocabulary contains an element called
term, which attribute atom is used to describe rule statements. The second
element, called Rule, is used to define every rule of the logic. A rule is
specified with the unique identifier called label, the description of the rule
called control objective, and the actual rule called formal representation.
Regorous current implemented tool uses the Canonical Process
Format (CPF) [12], a modeling language agnostic representation that only
describes the structural characteristics of the process. A Canonical Process is
the container of a set of Nets which represent graphs made up of Nodes and
Edges. Nodes types can be (OR, XOR, AND) Splits/Joint, which capture
elements that have more than one incoming/outgoing edge. Nodes can also
represent Tasks and Events, which are nodes that have at most one
incoming/outgoing edge. The compliance effect annotations, which
represents the fulfillment of a rule on a process element, are captured in
Regorous by using a schema called Compliance Check Annotations. A
ruleSetList contains the ruleSets uri which is the identification of the rule set.
The conditions and the taskEffects represent the process sequence flow and
the tasks respectively and have an associated effects name which corresponds
to its actual compliance effects annotation.

8.2.3 Automatic Compliance Checking Vision: The
Modeling Part

In this section, we recall the methodology used for modeling the
SPEM 2.0-compatible models in EPF Composer required by Regorous. The
methodology is explained with an example from ISO 26262 presented in [5].
The modeled requirement is obtained from part 6 clause 8, number 8.1, which
states: “Specify software units in accordance with the architectural design



102 Paper B

and the associated safety requirements”. The formal representation of this
requirement is presented in Equation 10.6.

r2.1 : addressSwUnitDesignProcess⇒ [OANPNP ]− performSpecifySwUnit

r2.2 : performProvideSwArchitecturalDesign,

performProvideSwSafetyRequirements

⇒ [P ]performSpecifySwUnit

r2.2>r2.1

(8.1)

The modeling in EFP Composer required the creation of three plugins.
Initially, we create a plugin for capturing standard’s requirements (See
Fig. 8.2), which contains not only their description in natural language e.g.,
R2, but also its atomization e.g., r2.1 and r2.2. The requirement atomization is
used to assign the rule representation (See Equation 10.6). A second plugin is
used to capture process elements, as depicted in Fig. 8.3.

Figure 8.2: Requirements Plugin.

Finally, a third plugin is used to capture the compliance annotated tasks,
in which we also create the delivery process and its corresponding activity
diagram (See Fig. 8.4). To annotate the tasks, the concept that represents the
compliance effects is added to the task. The reader can discover more details
about the previous modeling in [5].

8.2.4 CENELEC EN 50128
CENELEC EN 50128 [13] is a standard that prescribes requirements for the
development, deployment, and maintenance of safety-related software for
railway control and protection application. The software component design



8.2 Background 103

Figure 8.3: Process Elements Plugin.

Figure 8.4: Process Activity Diagram.

phase is part of the lifecycle required by the software quality assurance, which
states that the quality concerning the lifecycle shall address activities and
tasks consistent with the plans (e.g., the safety plan). We recall some
requirements corresponding to the software component design phase in
Table 8.1.

Table 8.1: Requirements from the Rail Standard.

ID Description

R1 Initiate component design phase.
R2 Input documents: Software Design Specification.

R3 A software component design shall be written under the
responsibility of the designer.



104 Paper B

8.3 Generating Regorous Inputs

In this section, we present the two steps required to generate Regorous inputs,
namely the mapping between the elements provided by EPF Composer and
required by Regorous, and their algorithmic solution. We start with the
mapping of the elements required for creating the rule set. As presented in
Table 8.2, the information related to the rules is obtained from the Delivery
Process provided by EPF Composer (described with UMA elements), and
should conform to the Regorous schema called Combined Rule Set. Then, in
Table 8.3, we present the mapping required for the process structure, which is
provided in a UML activity diagram and required to be transformed to the
canonical process (CPF). Finally, the compliance effects annotations require a
structure that complies to the Regorous schema called Compliance Check
Annotations. This information can be retrieved from EPF Composer taking
into account that the process elements can be extracted from the process
structure (described with UML elements) and the compliance effects
annotations can be extracted from the delivery process (described with UMA
elements). The mapping is presented in Table 8.4.

Table 8.2: Mapping Elements from UMA to the Rule Set

UMA Rule
Set Mapping Description

Reusable
Asset Rule Set

Reusable Asset is used in EPF composer to storage
the information related to the rule set. Therefore,
its information is transformed into the rule set
required by Regorus. The attributes transferred are
name, presentationName and briefDescription.

Concept Term

Concept is used in EPF Composer to storage the
information related to the vocabulary used in the
creation of the rules. Therefore its content is
transformed into the vocabulary required in the
rule set, specifically, each Concept is a Term. The
attribute transferred is name.

Content
Category Rule

Content categories contain rules. Therefore,
their content is transformed into the body of
the rule. The attributes transferred are name,
presentationName, and briefDescription.



8.3 Generating Regorous Inputs 105

Table 8.3: Mapping Elements from UML Diagram to the Canonical Process

UML CPF Mapping description

Activity Canonical
Process

The UML activity diagram is used in
EPF Composer to describe the dynamics of
the software process. Therefore, its information is
transformed into a canonical process in CPF. The
attribute transferred is id.

Initial
Node

Start
Event

The initial node of the activity diagram becomes a
node with type start event in CPF.

Parameter
Node

Task
Type

Each parameter node in the activity diagram
becomes a task type in the CPF. Attributes
transferred are id and name.

Control
Flow Edge

Each control flow in the activity diagram becomes
an edge in CPF. Attributes transferred are id,
name, source and target.

Final
Node

End
Event

The final node in the activity diagram becomes an
end event type in CPF.

Decision
/Merge
Node

XOR
Split
/Join

The decision/merge nodes in the activity diagram
becomes an XORSplit/XORJoin Type in CPF.

Fork
/Join
Node

AND
Split/Join

The fork/join nodes in the activity diagram
becomes an ANDSplit/ANDJoin Type in CPF.

The algorithmic solution for obtaining the rule set, which mapping is
described in Table 8.2, is presented in Algorithm 1. The algorithm initiates
with the description of its required input (DeliveryProcess), and the expected
output (RuleSet). Then, the input is parsed with the function
getElemementsByTagName, which searches the elements to be mapped, with
the function Map to the output. The first element searched is the
uma:ReusableAsset, which attribute name is mapped to the rules URI. Then,
the algorithm searches for the elements uma:ContentCategory, which
provides the attributes id, controlObjective and formalRepresentation of each
rule. Algorithm 2, which maps the elements described in Table 8.3, takes as
input the UML Activity Diagram and provide the Canonical Format. The
function getElementsByTagName searches for every elements that describes
process structure and maps it to their counterpart in CPF. The mapping of the



106 Paper B

Table 8.4: Mapping from UMA/UML Metamodel to the Compliance
Annotations

UML
/UMA

Compliance
Annotations Mapping Description

Reusable
Asset ruleSet A reusable asset becomes a ruleSetList. The

attribute transferred is the name.

edge conditions
Each edge becomes a special element in the
compliance annotations file called condition.
The attribute transferred is the id.

node Task
Effects

Each node becomes a Task Effect. The attribute
transferred is the id. Then, the id is also
used to search for the concepts that should be
converted into the compliance effects in the
delivery process file.

Concept Effect
Every concepts associated to the task is
transferred to the Effect. The attribute
transferred is the name.

process structural elements requires a unique identifier that is generated
internally each time the function Map is used. Algorithm 3 describes the
solution for mapping the elements presented in Table 8.4. The required inputs
are the UML Activity Diagram and the DeliveryProcess. The expected output
is the ComplianceEffectsAnnotations. The algorithm searches in the delivery
process the element tagged as uma:ReusableAsset and mapped it to the rule
set. Similarly, the algorithm searches for the elements tagged as uml:edge and
uml:node in the UML Activity Diagram and mapped them to the conditions
and taskEffects respectively. The node id is used to search for the elements
tagged as uma:concept in the DeliveryProcess, which is mapped to the effects.

8.4 Models Checkable for Compliance from the
Rail Sector

The purpose of this section is to provide evidence that the models provided by
EPF Composer, and transformed with our algorithm, are checkable for
compliance with Regorous. The software process model to be checked for
compliance is the one modeled in Fig. 8.4 (originally created for compliance



8.4 Models Checkable for Compliance from the Rail Sector 107

input : DeliveryProcess
output: RulseSet
LoadFile (DeliveryProcess);
NodeReusableAsset←getElementsByTagName (uma:ReusableAsset);
Map (ruleSet←ReusableAsset);
conceptsList←getElementsByTagName (uma:Concept);
for i← 0to getLength (ConceptsList) do

Map (Term.atom←Concept.name)
end
contentCategoryList← getElementsByTagName (uma:ContentCategory);
for j ← 0to getLength (contentCategoryList) do

ruleControlObjective←getAttribute (briefDescription);
if ruleControlObjective is not empty then

Map (rule←contentCategory)
end

end
Algorithm 1: Algorithm for Obtaining the Rule Set.

input : UMLActivityDiagram
output: CanonicalFormat
LoadFile (UMLActivityDiagram);
NodeActivity←getElementsByTagName (uml:Activity) ;
Map (CanonicalProcess← NodeActivity);
nodesList←getElementsByTagName (uml:node);
for i← 0 to getLength (nodesList) do

if nodeType=uml:ActivityParameterNode then
Map (TaskType←node)

end
if nodeType=uml:InitialNode then

Map (StatEvent←node)
end
if nodeType=uml:ActivityFinalNode then

Map (EndEvent←node)
end
if nodeType=uml:ForkNode then

Map (ANDSplitType←node)
end
if nodeType=uml:JoinNode then

Map (ANDJoinType←node)
end
if nodeType=uml:DecisionNode then

Map (XORSplitType←node)
end
if nodeType=uml:MergeNode then

Map (XORJoinType←node)
end

end
edgesList←getElementsByTagName (uml:edge);
for j ← 0to getLength (edgeList) do

Map (Edge←edge)
end

Algorithm 2: Algorithm for Obtaining the Process Structure.



108 Paper B

input : UMLActivityDiagram,DeliveryProcess
output: ComplianceEffectsAnnotations
LoadFile (UMLActivityDiagram, DeliveryProcess) ;
NodeReusableAsset (from DeliveryProcess)←getElementsByTagName (uma:ReusableAsset) ;
Map ((ruleSet←ReusableAsset) ;
edgesList(from UMLProcess)← getElementsByTagName (uml:edge);
for i← 0 to getLength (edgeList) do

Map (conditions←edge)
end
nodeList(from UMLProcess)← getElementsByTagName (uml:node);
for j ← 0 to getLength (nodeList) do

Map (taskEffects←node) TaskId←ObtainUMAValue(nodeList);
ContentElementList(from DeliveryProcess)← getElementsByTagName(ContentElement);
for k ← 0 to getLength (ContentElementList) do

if ContentElementList.id = TaskId then
ConceptsList(from DeliveryProcess)← getElementsByTagName(Concept);
for l← 0 to getLength (ConceptsList) do

Map (effects←Concept);
end

end
end

end
Algorithm 3: Algorithm for Obtaining the Compliance Effects
Annotations.

with an automotive standard). In this evaluation, three steps are required.
Initially, we generate the compliance annotated software process in
EPF Composer, following the methodology described in Section 8.2.3.
Second, we apply the transformation described in Section 8.3. Finally, we
verify that the models generated have enough information to be processed by
Regorous. This verification is done manually, namely, we highlight the
mapping of the elements required for checking compliance. We also check
compliance with Regorous and describe the type of analysis that can be
carried out after compliance checking.

We start by annotation a small portion of the design phase (modeled in
Fig. 8.4) with the recommended requirements provided in the rail sector (see
CENELEC requirements in Section 8.2.4). First, we formalize the standard’s
requirements applying the definitions for creating the rules presented in
Section 8.2.2. As the formula 8.2) shows, the rule r1.1, which is the
formalization of the requirement R1, defines an obligation of addressing the
phase. Rules r.2.1 and r.2.2 are related to the requirement R2 in the following
way: r.2.1 prohibits the specification of the design, but r.2.2 permits the
specification of software units if the software design specification is obtained.
Similarly to r.3.1 and r.3.2, which are related to requirement R3. Rule r.3.1
prohibits the production of software units, but r.3.2 permits them if not only



8.4 Models Checkable for Compliance from the Rail Sector 109

Figure 8.5: Requirements Plugin.

the specification is performed but also is a designer has been assigned. In the
previous rules, priority relations are defined to give higher priority to the
permits over the obligations.

r1.1 : [OM ]addressComponentDesignPhase

r2.1 : addressComponentDesignPhase

⇒ [OANPNP ]− performSpecifyComponentDesign

r2.2 : obtainSoftwareDesignSpecification

⇒ [P ]performSpecifyComponentDesign

r3.1 : performSpecifyComponentDesign

⇒ [OANPNP ]− produceSoftwareComponentDesign

r3.2 : performSpecifyComponentDesign, assignDesigner

⇒ [P ]produceSoftwareComponentDesign

r2.2>r2.1

r3.2>r3.1

(8.2)

Standards requirements and the respective rules are modeled in
EPF Composer in a plugin as depicted in Fig. 8.5.

Then, we import the plugin that contains the process elements (See
Fig. 8.3). Finally, we create the plugin for annotating the process tasks. In this



110 Paper B

plugin, we copy the tasks from the plugin that contains the process elements
and make them contribute to the original ones, which allows to extend them in
an additional way. The tasks are annotated according to the compliance
effects they represent. For this, we check the process model depicted in
Fig. 8.4. As we see, the task Start Software Unit Design Process represents
the initiation of the software component design and therefore it produces the
compliance annotation addressComponentDesignPhase. This task also
responds to the compliance effect obtainSoftwareDesignSpecification since it
has a work product with a similar name. Task Specify Software Units responds
to the compliance effect performSpecifyComponentDesign. Finally, the task
Design Software Unit has a work product Software Unit Design, which makes
the task respond to the compliance effect produceSoftwareComponentDesign.
Once the tasks are annotated, we create the delivery process and the activity
diagram, export the plugins and apply the transformations to obtain the
Regorous inputs to check compliance.

In what follows, we provide essential code snippets, in which we highlight
the mapping of the elements required for checking compliance. We start
showing the generated Rule Set. As presented in Listing 8.1, the generated
Rule Set has the elements Vocabulary, which contains the rules, described in
EPF Composer with an uma:concept. It also contains the rules, which were
described in the content category elements that correspond to the rules.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” yes ” ?>
<RuleSet xmlns=” h t t p : / /www. n i c t a . com . au / bpc / C o m b i n e d R u l e S e t D e f i n i t i o n / 0 . 1 ”

u r i =” R u l e S e t R a i l S t a n d a r d s ” >
<Vocabulary>

<Term atom=” addres sComponen tDes ignPhase ” />
...<!−− o t h e r Term atoms −−>

</ Vocabulary>
<Rules>

<Rule x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”
x s i : t y p e =” DflRuleType ” r u l e L a b e l =” r1 . 1 ”>

<C o n t r o l O b j e c t i v e>r1 . 1 Address s o f t w a r e u n i t d e s i g n p r o c e s s</
C o n t r o l O b j e c t i v e>

<F o r m a l R e p r e s e n t a t i o n>=&g t ; [ OANPP] addres sComponen tDes ignPhase</
F o r m a l R e p r e s e n t a t i o n>

</ Rule>
...<!−− o t h e r r u l e s −−>

<S u p e r i o r i t y R e l a t i o n s>
. . .

</ S u p e r i o r i t y R e l a t i o n s>
</ RuleSet>

Program 8.1: Rule set generated

In Listing 8.2, we present the generated process structure. We highlighted
one Node that represents the start point of the process and one node that



8.4 Models Checkable for Compliance from the Rail Sector 111

represents a task Type. An Edge represents a connection between the nodes.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” t r u e ” ?>
<n s 4 : C a n o n i c a l P r o c e s s name=” S o f t w a r e Un i t Des ign P r o c e s s ” . . .>

<Net i d =” 1529072497607 ”>
<Node i d =” 1529072497608 ” x s i : t y p e =” ns4 :Even tType ” x m l n s : x s i =” h t t p : / /

www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”>
<name>S t a r t</ name>
<a t t r i b u t e v a l u e =” s t a r t e v e n t 1 ” t y p e R e f =” Id ” />

</ Node>
<Node i d =” 1529072497609 ” x s i : t y p e =” ns4 :TaskType ” x m l n s : x s i =” h t t p : / /

www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”>
<name>S t a r t S o f t w a r e Design P r o c e s s</ name>
<a t t r i b u t e v a l u e =” S t a r t S o f t w a r e D e s i g n P r o c e s s I D ” t y p e R e f =” Id ” />

</ Node>
...<!−− o t h e r nodes −−>
<Edge i d =” 1529072497612 ” t a r g e t I d =” 1529072497609 ” s o u r c e I d =”

1529072497608 ” d e f a u l t =” f a l s e ”>
...<!−− o t h e r edges −−>

</ Net>
</ n s 4 : C a n o n i c a l P r o c e s s>

Program 8.2: Process structure generated

In Listing 8.3, we present the compliance annotations. For example, the
rule set uri is the rule set identification, conditions element id represent control
flows identification, and the taskEffects represent the tasks, which effects name
corresponds to the effects.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” ASCII ” ?>
<cca:Compl ianceAnnotat ions x m i : v e r s i o n =” 2 . 0 ” xmlns :xmi =” h t t p : / /www. omg . org

/XMI” x m l n s : c c a =” h t t p : / /www. n i c t a . com . au / bpc / e c l i p s e /
Compl i anceCheckAnno ta t i ons ”>

<r u l e S e t L i s t>
<r u l e S e t s u r i =” R u l e S e t R a i l S t a n d a r d s ” />

</ r u l e S e t L i s t>
<c o n d i t i o n s e l e m e n t I d =” jNj1AExVEeiW4M4duzOA6Q” />
<c o n d i t i o n s e l e m e n t I d =” jukQUExVEeiW4M4duzOA6Q” />
...<!−− o t h e r c o n d i t i o n s−−>
<t a s k E f f e c t s e l e m e n t I d =” hCKUcExVEeiW4M4duzOA6Q”>

<e f f e c t s name=” addres sComponen tDes ignPhase ” n e g a t i o n =” f a l s e ”>
<e f f e c t s name=” o b t a i n S o f t w a r e D e s i g n S p e c i f i c a t i o n ” n e g a t i o n =” f a l s e ”>

...<!−− o t h e r t a s k E f f e c t s −−>
<l o ca lVocabu lary />

</ cca:Compl ianceAnnotat ions>

Program 8.3: Compliance annotations generated

Then, we checked compliance with Regorous. The report results (See
Fig. 8.6) not only shows that the process in non-compliant, but also the
description of the uncompliant situation, the element that may be the source of
the violation, the rule that has been violated and the possible resolution. With
this information, it may be easier for the process engineer to make a focused



112 Paper B

analysis to improve the compliance status. In the example, the rule 3.1
(highlighted in Fig. 8.5), refers to Incomplete requirements for the design of
software Components, which means that we do not have the requirements in
place to address the task called Specify Software Unit Design. To solve the
uncompliant situation, we refer to the counterpart rule, which is the one
marked as r.3.2, in which the compliance effects assign designer and
produceSoftwareComponentDesign and performSpecifyComponentDesign are
included. To be able to complete the assignment of these effects, we need to
include a role called designer to the task Specify Software Unit Design as
presented in Fig. 8.7. The improved process is again checked, resulting in a
report with no violations of the rules.

Figure 8.6: Compliance Report.

Figure 8.7: Activity Diagram.



8.5 Discussion 113

8.5 Discussion

Automated compliance checking of software processes with Regorous
generates a compliance report that not only communicate the compliance
status of the software process, i.e., whether the process is compliant or not,
but also the sources of violations, i.e, the rules that have being violated and
the target of the uncompliant situations (specific tasks), and possible
resolutions. This information may increase efficiency in the process
compliance since it permits the process engineer to focus on specific process
elements and the reparation policies they may require. In the example
presented in Section 8.6, it was clear, from the compliance report, that the task
affected was Specify Software Unit and we focus on it to understand the
missing process elements. If rules are correctly formalized, and their
formalization covers the standards requirements entirely, also confidence can
be increased since uncompliant situations, in all the levels, would be spotted.
Since we have modeled in detail the requirements provided in Table 8.1, we
can consider the checking of the small process reliable. A software process
can be checked for compliance with different standards. This specific aspect
could potentially be beneficial since it promotes process reusability, i.e., a
process engineer can take processes designed in previous projects, check their
compliance status with the normative requirements of the new project and
improve it, based on the violations reported. In the example, we saw that the
software process model created for automotive could be used as a base for
model a small portion of the design phase recommended in the rail sector.

As we see in Fig. 8.1, the adopted methodological approach for our
automatic compliance checking vision, is tool supported. While the maturity
of the methodology is high, its tool support still requires additional work. EPF
Composer and Regorous have been tested separately and the bridge between
them, namely, the transformations between the EPF Composer and Regorous,
have been designed and implemented. The transformations, applied to the
portion of the design phase recommended in the rail sector (See Section 8.4),
are correct since they have generated a complete set of inputs that are
compatible with Regorous schemas, making possible to check compliance.
The transformation implementation, which is still in a prototyping stage,
could be improved if techniques, such as Model Driven Engineering (MDE)
are applied. We consider essential to further exploit the process modeling
language agnosticism underlying Regorous methodology to be able to
perform a future seamless integration of the tools required for our compliance
checking vision.



114 Paper B

8.6 Related Work

Automatic compliance checking of processes is one of the mechanisms that
can provide benefits, as we have discussed above, to compliance management.
In particular, researchers in the business and legal compliance context have
explored potential formalisms to create compliance checking frameworks,
such as the ones presented in [14] and in [15]. However, they are based on
temporal logics, in which the modeling of normative requirements is still
considered difficult. To model the rules more naturally, we have chosen
Regorous, which underlying formalism called FCL, permits the modeling of
deontic notions (i.e., obligations, prohibitions and permissions) which are the
actual notions that describe normative requirements. Automatic compliance
checking of safety-critical software processes has not been as explored as in
business management. However, in [16], the authors presented initial steps of
an approach for process reasoning and verification, which is based on the
combination of Composition Tree Notations (CTN), a high-level modeling
notation used for modeling process structure, and Description Logics (DL).
DL is used to reason about the compliance of the process structure. Instead,
our approach includes the accumulation of compliance effects that trigger new
effects, focusing on the process behavior. Another difference we have
included in our approach is the use of SPEM 2.0-compatible software process
models, which may be preferred over other process modeling languages since
it allows the creation of process method contents that can be reused in
different kind of processes. SPEM 2.0-related community, to the best of our
knowledge, has not addressed compliance checking. However, based on
SPEM 2.0, some solutions for compliance management exists. In [3],
compliance tables are generated. Compliance tables require the modeling of
the standard’s requirements, which should be mapped to the process elements
that fulfill them. The modeling of compliance elements is also exploited
in [17], in which the modeling of standards requirements is required to detect
whether the process model contains sufficient evidence for supporting the
requirements. The approach provides feedback to the safety engineers
regarding detected fallacies and recommendations to solve them. In our case,
we have also exploited not only the modeling of standard requirements, but
also we have provided a mechanism to include rules within the standard’s
requirements, which facilitate the resolution of uncompliant situations after
the automatic compliance checking is performed.



8.7 Conclusions and Future Work 115

8.7 Conclusions and Future Work
In this paper, we defined the transformation necessary to automatically
generate the models checkable for compliance in Regorous from
SPEM 2.0-compatible process models. We also applied our transformation to
a small portion of the software component design phase recommended in the
rail sector and discussed aspects related to our findings.

To increase the maturity of the results shown in this paper, a proper plugin
is going to be implemented to enable the push-button solution for the entire
generation of the inputs required by Regorous. Also, as presented in [5], we
need to further validate our approach and complete some tasks, i.e., the addition
of the rule editor to facilitate the modeling of FCL rules, which currently is
done manually, and the mechanism to back-propagate compliance results into
EPF Composer. This work is expected to be partly delivered within the final
release of the AMASS platform [18].

Acknowledgment
This work is supported by the EU and VINNOVA via the ECSEL JU project
AMASS (No. 692474) [19].





Bibliography

[1] Gallina, B., Ul Muram, F., Castellanos Ardila, J.: Compliance of
Agilized (Software) Development Processes with Safety Standards: a
Vision. In: 4th international workshop on Agile Development of Safety-
Critical Software (ASCS). (2018)

[2] Castellanos Ardila, J.P., Gallina, B.: Towards Increased Efficiency
and Confidence in Process Compliance. In: Systems, Software and
Services Process Improvement (EuroAsiaSPI). Volume 748., Springer
International Publishing (2017) 162–174

[3] McIsaac, B.: IBM Rational Method Composer: Standards Mapping.
Technical report, IBM Developer Works (2015)

[4] Governatori, G.: Representing business contracts in RuleML.
International Journal of Cooperative Information Systems. (2005) 181–
216

[5] Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Enabling Compliance
Checking against Safety Standards from SPEM 2.0 Process Models.
In: Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). (2018)

[6] Object Management Group Inc.: Software & Systems Process
Engineering Meta-Model Specification. Version 2.0. OMG Std., Rev
(2008) 236

[7] The Eclipse Foundation.: Eclipse Process
Framework (EPF) Composer 1.0 Architecture Overview.
http://www.eclipse.org/epf/composer architecture/ (2013)

117



[8] Governatori, G.: The Regorous approach to process compliance.
In: IEEE 19th International Enterprise Distributed Object Computing
Workshop. (2015) 33–40

[9] Koliadis, G., Ghose, A.: Verifying Semantic Business Process Models in
Inter-operation. In: IEEE International Conference on Service-Oriented
Computing. (2007) 731–738

[10] IBM Corporation: Key Capabilities of the Unified Method Architecture
(UMA)

[11] Object Management Group: UML 2 . 0 Diagram Interchange
Specification. (2003)

[12] La Rosa, M., Reijers, H., van der Aalst, W., Dijkman, R., Mendling, J.,
Dumas, M., Garcı́a-bañuelos, L.: APROMORE: An advanced process
model repository. Expert Systems With Applications (2011) 7029–7040

[13] EN50128, B.: Railway applications-Communication, signaling and
processing systems Software for railway control and protection systems.
British Standards Institution (2011)

[14] Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.:
Formalizing and applying compliance patterns for business process
compliance. Software and Systems Modeling. (2016) 119–146

[15] El Kharbili, M.: Business Process Regulatory Compliance Management
Solution Frameworks: A Comparative Evaluation. In: 8th Asia-Pacific
Conference on Conceptual Modelling. (2012) 23–32

[16] Kabaale, E., Wen, L., Wang, Z., Rout, T.: Representing Software Process
in Description Logics: An Ontology Approach for Software Process
Reasoning and Verification. In: Software Process Improvement and
Capability Determination., Springer (2016) 362–376

[17] Ul Muram, F., Gallina, B., Gomez Rodriguez, L.: Preventing
Omission of Key Evidence Fallacy in Process-based Argumentations.
In: 11th International Conference on the Quality of Information and
Communications Technology (QUATIC). (2018)

[18] AMASS Platform: https://www.polarsys.org/opencert/

[19] AMASS.: Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems



Chapter 9

Paper C:
Formal Contract Logic
Based Patterns for
Facilitating Compliance
Checking against ISO 26262

Julieth Patricia Castellanos Ardila and Barbara Gallina.
In Proceedings of the 1st Workshop on Technologies for Regulatory
Compliance (TeReCom-2017), Luxembourg, Luxemburg, December 2017.

119



Abstract

ISO 26262 demands a confirmation review of the safety plan, which includes
the compliance checking of planned processes against safety requirements.
Formal Contract Logic (FCL), a logic-based language stemming from
business compliance, provides means to formalize normative requirements
enabling automatic compliance checking. However, formalizing safety
requirements in FCL requires skills, which cannot be taken for granted. In this
paper, we provide a set of ISO 26262-specific FCL compliance patterns to
facilitate rules formalization. First, we identify and define the patterns, based
on Dwyer’ et al.’s specification patterns style. Then, we instantiate the
patterns to illustrate their applicability. Finally, we sketch conclusions and
future work.



9.1 Introduction 121

9.1 Introduction

Safety critical systems designers rely on safety standards, which embody the
public consensus of acceptable risk [1]. Particularly, the automotive industry
has adopted the functional safety standard ISO 26262 [2], which guides the
development of the safety-related systems included in a specific class of road
vehicles. To claim compliance with ISO 26262 from a process perspective,
necessary pieces of evidence are: the safety plan, which is used to manage the
execution of safety activities, as well as the corresponding confirmation
review, which includes the compliance checking of planned processes against
safety requirements. In [3, 4], we have identified that automatic compliance
checking of safety processes involves the definition of a finite state model of
the process, where normative safety requirements provides the permissible
states of the process elements. This task can be supported with available on
the shelf tools. In particular, Formal Contract Logic (FCL) [5], a logic-based
language stemming from business compliance, provides means to formalize
normative requirements. However, formalizing safety requirements in FCL
requires skills, which cannot be taken for granted. Patterns, which are
”abstractions from concrete forms which keeps recurring in specific
non-arbitrary context” [6], could represent a solution. In this paper, we follow
Dwyer et al.’s specification patterns style [7], created to ease the formalization
of systems requirements for finite state system model verification, to draw a
general definition of safety compliance pattern. We also use specification
patterns to identify and define a set of ISO 26262-specific FCL compliance
patterns. The defined patterns are instantiated to illustrate their applicability.
This work will contribute to AMASS project [8], in particular, it aims at
support the compliance management vision proposed, in which automotive is
one of the 11 domains involved [9].

The rest of the paper is organized as follows. In Section 11.2, we provide
essential background. In Section 9.3, we provide our definition of safety
compliance pattern as well as our identified and defined ISO 26262-related
patterns. In Section 9.4, we instantiate the defined safety compliance patterns.
In section 11.5, we present related work. Finally, in Section 9.6, we present
conclusions and future work.

9.2 Background

This section recalls essential information required in our work.



122 Paper C

9.2.1 ISO 26262

ISO 26262 [2] addresses functional safety in automotive. The safety process
influences functional safety. Thus, a confirmation review of the safety plan,
which includes the compliance checking of the planned process against safety
requirements is mandatory. The safety process can be either strictly planned,
i.e., including all the activities provided by the reference process, or flexibly
planned, i.e., by tailoring activities (omitting/performing them
differently) [10]. According to ISO 26262:2, if a safety activity is tailored, a)
the tailoring shall be defined in the safety plan and b) a rationale as to why
the tailoring is adequate and sufficient to achieve functional safety shall be
available.

From a structure perspective, ISO 26262 is divided into parts, which are
subdivided into clauses. Some clauses represent phases of the safety process,
which also describe activities and tasks. ISO 26262 uses Automotive Safety
Integrity Levels (ASIL), which are levels to specify item’s necessary safety
requirements. Alternative methods to use in the planning of safety activities
(e.g., tables) have to be chosen according to the higher recommendation for
the ASIL assigned, but if not, a rationale shall be given that the selected
methods comply with the corresponding requirement. Disjoint alternatives are
also included in the text of the normative requirements. Frequently recurring
expressions, which can guide the reading of the standard, can also be found,
e.g., in accordance with. In Table 11.2, we recall a subset of requirements
from ISO 26262:6 clause 8, which specifies the software unit design and
implementation phase.

Table 9.1: Requirements for ISO 26262:6 clause 8.

ID Ref Description

R1 8 The Software unit design and implementation phase start.

R2 8.1 Specify software units in accordance with the architectural design and the associated
safety requirements.

R3 8.2 The detailed design will be implemented as a model or directly as source code.

R4 8.4.2 The software unit design shall be described using specific notations, which are listed as
alternative methods.



9.2 Background 123

9.2.2 Specification Patterns
The specification patterns, formulated by Dwyer et al.’s [7], are ”generalized
descriptions of commonly occurring requirements on the permissible state
sequence of a finite state model of a system.” A selected set of Dwyer et al.’s
patterns is presented in Table 9.2. The reader may refer to [11] to see the
complete set of patterns with their entire descriptions. Each pattern has a
scope, which is the extent of the program execution over which the pattern
must hold. The types of scope that we consider in this paper are: global,
which represent the entire program execution, before, which includes the
execution up to a given state, and after which includes the execution after a
given state.

Table 9.2: Dwyer’s specification patterns [7]

Name Description

Absence A given state P does not occur within a scope

Existence A given state P must occur within a scope

Universality A given state P must occur throughout a scope

Precedence A state P must always be preceded by a state Q within a scope

Response A state P must always be followed by a state Q within a scope

9.2.3 Formal Contract Logic
Formal Contract Logic (FCL) [5] is a language designed to formalize
normative requirements. FCL is implemented in Regorous, a tool developed
by Data61/CSIRO in Australia1. An FCL rule is represented as follows:

r : a1, ..., an ⇒ c, where:
a1, ..., an = Conditions of the applicability of the norm.
c = Normative effect.

If a rule has an empty antecedent, it represents the definition of a new term.
Otherwise, it represents the triggering of deontic notions, i.e., obligations,
situations to which the bearer is legally bounded, or that should avoid, and
permissions. If something is permitted the obligation to the contrary does not

1https://research.csiro.au/data61/regorous/.



124 Paper C

hold [12]. In the modeling of the rules, the normative effect requires a
notation that clarifies the applicability of the norm (presented in Table 9.3).
Thus, if an obligation has to be obeyed during all instants of the process

Table 9.3: FCL rule notations [12]

Notation Description

[P]P P is permitted

[OM]P There is a maintenance obligation for P

[OAPP]P There is an achievement, preemptive, and non-perdurant obligation for P

[OANPP]P There is an achievement, non-preemptive and perdurant obligation for P

[OAPNP]P There is an achievement, preemptive and non-perdurant obligation for P

[OANPNP]P There is an achievement, non-preemptive and non-perdurant obligation for P

interval, it is called maintenance obligation. If achieving the content of the
obligation at least once is enough to fulfill it, it is called achievement
obligation. An achievement obligation is preemptive if it could be fulfilled
even before the obligation is actually in force. Otherwise, it is
non-preemptive. If the obligation persists after being violated, it is a perdurant
obligation, otherwise is a non-perdurant. A binary relation between rules (>)
allows handling rules with conflicting conclusions.

9.3 Safety Compliance Patterns Identification and
Definition

This section introduces our definition of safety compliance pattern as well as
our identified and defined ISO 26262-related compliance patterns.

9.3.1 Our definition of Safety Compliance Pattern
As recalled in the introduction, automatic compliance checking of safety
process involves the definition of a finite state model of the process, where
normative safety requirements provide the permissible states of the process
elements. This statement allows us to think of a process as a kind of system
that can be verified. Thus, we can translate the specification pattern definition
(see Section 9.2.2) into our context as follows: safety compliance patterns are
patterns that describe commonly occurring normative safety requirements on
the permissible state sequence of a finite state process model. With this



9.3 Safety Compliance Patterns Identification and Definition 125

definition, we can develop a mapping between specification patterns and
safety compliance patterns, as follows: the presence of a state in a system can
be interpreted as the state of the obligation imposed to an element in the
process, and the scope corresponds to the interval in a process when the
obligations formulated by the pattern are in force. In Section 9.3.2, we
identify the safety compliance patterns extracted from ISO 26262.

9.3.2 ISO 26262-related Compliance Patterns Identification

For identifying a safety compliance pattern in ISO 26262, we have delineated
five methodological steps. The first step consists of the selection of a
recurring structure in the standard since, as recalled in Section 11.2.2, safety
requirements in ISO 26262 have implicit and explicit structures. The second
step is the description of the obligation for compliance, namely, the reasons
why the structure is required for safety compliance. The third step is the
pattern description, based on similar (or a combination of) behaviors of the
patterns described by Dwyer et al.’s (see Table 9.2). This description is
contextualized to safety compliance, based on the mapping presented in
Section 9.3.1. In this step, we also assign a name for the safety pattern, which
reflects the related obligation for compliance. The fourth step is the definition
of the scope of the pattern, which we also base on Dwyer et al.’s work. The
fifth step is the formalization in FCL. To formalize the pattern, the scope
defined for the pattern requires being mapped into the rule notations provided
by FCL. Therefore, a global scope, which represents the entire process model
execution, can be mapped to maintenance obligation, which represents that an
obligation has to be obeyed during all instants of the process interval. A
before scope, which includes the execution of the process model up to a given
state, can be mapped to the concept of preemptive obligation, which
represents that an obligation could be fulfilled even before it is in force. An
after scope, which includes the execution of the process model until a given
state, can be mapped to the concept non-preemptive obligation, which
represents that an obligation cannot be fulfilled until it is in force. It should be
noted that, in safety compliance, it is possible to define exceptions for the
rules. Therefore, if the obligation admits an exception, the part of the pattern
that corresponds to the exception is described as a permission, since, as
recalled in Section 9.2.3, if something is permitted the obligation to the
contrary does not hold. The obligation, to which the exception applies, is
modeled as non-perdurant, since the permission is not a violation of the
obligation, and therefore the obligation does not persist after the permission is



126 Paper C

granted. In this case, the obligation and a permission have contradictory
conclusions, but the permission is superior since it represent an exception.
These methodological steps have helped us to define an initial set of four
ISO 26262 - related FCL compliance patterns, presented in Section 9.3.3. The
description of our patterns has information related to the steps mentioned
above. Therefore, the corresponding expressions in bold represent the
elements of the pattern’s description.

9.3.3 ISO 26262-related Compliance Patterns Definition
In what follows, we define our safety compliance patterns in ISO 26262.

Pattern: Address Phase. Recurring structure: A phase. Obligation for
compliance: Every phase proposed by the safety model must be addressed. A
phase can be omitted if tailoring is performed and a rationale is provided.
Pattern description: Universality + absence - A phase must occur. Not
addressing the phase requires its tailoring and the provision of a rationale.
Scope: Global. FCL mapping: A maintenance obligation address{Phase} is
triggered by a previous task {optionalTriggeringObligation}, which can be
empty if the phase is checked for compliance in isolation from the other
phases. The permission for not addressing the phase requires two antecedents,
tailor{Phase} and rationaleForOmiting{Phase} (See Formula 10.1).

r : {optionalTriggeringObligation} ⇒ [OM ]address{Phase}

r
′
: tailor{Phase}, rationaleForOmiting{Phase} ⇒ [P ]− address{Phase}

r
′
>r

(9.1)

Pattern: Perform Preconditions. Structure: The structure implicit in the
expression in accordance with. Obligation for compliance: A task is
prohibited until the preconditions are performed. Pattern description:
Absence + precedence - A given task cannot occur within a scope. The task is
permitted to be performed if the preconditions are performed. Scope: After.
FCL mapping: A rule triggered by a previous rule {TriggeringObligation}
prohibits the performing of the task perform{Task}. The permission of
performing perform{Task} is granted after the preconditions are fulfilled
perform{Preconditions} (See Formula 10.2).

r : {TriggeringObligation} ⇒ [OANPNP ]− perform{Task}

r
′
: perform{Precondition1}, ..., perform{PreconditionN} ⇒ [P ]perform{Task}

r
′
>r

(9.2)



9.4 ISO 26262-related Compliance Patterns Instantiation 127

Pattern: Select Disjoint Methods. Structure: Structure implicit when the
word or is used to list two methods. Obligation for compliance: Only one
method can be selected from a list of two. Pattern description: Existence +
absence - A given method can be selected within a scope. The presence of a
second method derogates the selection of the first method. Scope: After. FCL
mapping: A rule triggered by previous obligations {TriggeringObligation}
imposes the obligation of selecting a method select{Method1}. The selection
of a second method select{Method2}, derogates the previous selection
select{Method1} (See Formula 10.3).

r : {TriggeringObligation} ⇒ [OANPNP ]select{Method1}]

r
′
: select{Method2} ⇒ [P ]− select{Method1}

r
′
>r

(9.3)

Pattern: Select alternative methods. Structure: Alternative methods given in
tables. Obligation for compliance: Methods should be selected according to
ASIL/recommendation levels. Alternative methods can be selected if a
rationale is provided. Pattern description: Response + absence - A given
obligation has to occur. The provision of a rationale grants the permission to
derogates the obligation. Scope: After. FCL mapping: A rule triggered by
previous obligations {TriggeringObligation} imposes the selection of
methods according to the requirements select{mandatoryMethods}. The
provision of the rationale is the permission that derogates the obligation (See
Formula 10.4).

r : {TriggeringObligation} ⇒ [OANPNP ]select{mandatoryMethods}

r
′
: provideRationaleForNotSelect{mandatoryMethods}

⇒ [P ]− select{mandatoryMethods}

r
′
>r

(9.4)

9.4 ISO 26262-related Compliance Patterns
Instantiation

In this section, we instantiate the patterns defined in Section 9.3.3, using the
ISO 26262 requirements presented in Table 11.2.

Requirement R1, which defines the phase software unit design and
specification, can be specified by using the pattern Address Phase. We assume



128 Paper C

that the phase is checked in isolation from other phases (See Formula 10.5).
r1 :⇒ [OM ]addressSwUnitDesignAndImplementation

r
′
1 : tailorSwUnitDesignAndImplementation,

rationaleForOmitingSwDesignAndImplementation

⇒ [P ]− addressSwUnitDesignAndImplementation

r
′
1>r1

(9.5)

Requirement R2 have the expression in accordance with, which can be
represented with the pattern Perform Preconditions. Specifically, the software
architectural design and the associated safety requirements are preconditions
to specify the software units. We assume that the triggering rule is
addressSwUnitDesignAndImplementation (See Formula 10.6).

r2 : addressSwUnitDesignAndImplementation

⇒ [OANPNP ]− performSpecifySwUnit

r
′
2 : performProvideSwArchitecturalDesign, performProvideSafetyRequirements

⇒ [P ]performSpecifySwUnit{Task}

r
′
2>r2

(9.6)

Requirement R3 mentions the use of two disjoint implementation strategies,
namely implementation as a model or directly as source code. Therefore, this
requirement can be modeled using the pattern Select Disjoint Methods. We
assume that the triggering rule is implementingSwUnit (See Formula 10.7).

r3 : implementingSwUnit⇒ [OANPNP ]selectImplementingAsSourceCode(X)

r
′
3 : selectImplementingAsModel(X)⇒ [P ]− selectImplementingAsSourceCode(X)

r
′
3>r3

(9.7)

Requirement R4 refers to a table with alternative entries. This requirement can
be represented by using the pattern Select alternative methods. We assume that
the triggering rule is performSpecifySwUnit (See Formula 9.8).
r4 : performSpecifySwUnit⇒ [OANPNP ]selectMandatoryNotationsforSwDesign

r
′
4 : provideRationaleForNotSelectMandatoryNotationsforSwDesign

⇒ [P ]− selectMandatoryNotationsforSwDesign

r
′
4>r4

(9.8)

9.5 Related Work
Patterns for the formal specification of system safety requirements are
presented in [13]. These patterns consider the cases and the terminology used



9.6 Conclusion and Future Work 129

in industrial automation systems to facilitate formal verification. Our patterns,
instead, are restricted to process-centered requirements. Some works provide
patterns for facilitating the formalization of the normative requirements for
compliance checking in areas like business process compliance, e.g., the
works presented in [14, 15] which extends Dwyer et al.’s specification
patterns, and the work presented in [16], which uses REA (Resources, Events,
and Agents) approach. A similar work, in the context of security, is presented
in [17], which aims at providing a pattern structure for generating security
policies for service-oriented architectures. In our work, as in some of the
previously mentioned works, we use Dwyer et al.’s specification patterns as a
base for providing our definition for safety compliance pattern. Also, we
identified and defined the safety compliance patterns present in some
structures of the standard ISO 26262. Moreover, our patterns are formalized
in FCL, a formal language that is explicitly created for compliance checking,
providing precise structures for modeling, e.g., deontic effects, which
facilitate the expression of normative requirements in a more natural way.

9.6 Conclusion and Future Work
In this paper, we use Dwyer et al.’s specification patterns style to provide our
definition of safety compliance patterns. Also, we identify and define set of
ISO 26262-specific FCL compliance patterns, which were extracted from
implicit and explicit recurring structures provided by ISO 26262. In the last
part of our work, we have instantiated the defined safety compliance patterns,
to illustrate their applicability.

In future, we plan to examine other clauses of ISO 26262 to apply the
proposed patterns and discover additional ones. Once a complete catalogue of
safety compliance patterns embracing ISO 26262 is ready, we plan to
facilitate their instantiation by providing more elaborated guidelines. Our
work on safety compliance patterns is expected to be combined with
previously achieved results [3, 4] regarding the provision of a framework to
increase efficiency and confidence in process compliance management.

Acknowledgment
This work is supported by the EU and VINNOVA via the ECSEL JU project
AMASS (No. 692474) [8].





Bibliography

[1] Dunn, W.: Designing Safety-Critical Computer Systems. Computer
36(11) (2003) 40–46

[2] ISO 26262: Road Vehicles-Functional Safety. International Standard
(2011)

[3] Castellanos Ardila, J.P., Gallina, B.: Towards Increased Efficiency
and Confidence in Process Compliance. In: Systems, Software and
Services Process Improvement (EuroAsiaSPI). Volume 748., Springer
International Publishing (2017) 162–174

[4] Castellanos Ardila, J.P., Gallina, B.: Towards Efficiently Checking
Compliance Against Automotive Security and Safety Standards. In: The
7th IEEE International Workshop on Software Certification (WoSoCer).
(2017)

[5] Governatori, G.: Representing business contracts in RuleML.
International Journal of Cooperative Information Systems. (2005) 181–
216

[6] Riehle, D., Züllighoven, H.: Understanding and using patterns in
software development. Tapos 2(1) (1996) 3–13

[7] Dwyer, M., Avrunin, G., Corbett, J.: Property Specification for Finite-
State Verification. In: International Conference on Software Engineering.
(1998) 411–420

[8] AMASS.: Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems

131



[9] AMASS: Case studies description and business impact D1.1.
https://www.amass-ecsel.eu/content/deliverables. Technical report
(2017)

[10] Gallina, B.: How to increase efficiency with the certification of process
compliance. In: The 3rd Scandinavian Conference on Systems &
Software Safety. (2015)

[11] Santos Laboratory: Specification Patterns.
http://patterns.projects.cs.ksu.edu/

[12] Hashmi, M., Governatori, G., Wynn, M.: Normative requirements for
regulatory compliance: An abstract formal framework. Information
Systems Frontiers. 18(3) (2016) 429–455

[13] Bitsch, F.: Safety patterns: the key to formal specification of
safety requirements. In: International Conference on Computer Safety,
Reliability, and Security., Springer (2001) 176–189

[14] Namiri, K., Stojanovic, N.: Pattern-Based Design and Validation of
Business Process Compliance. On the Move to Meaningful Internet
Systems. (2007) 59–76

[15] Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.:
Formalizing and applying compliance patterns for business process
compliance. Software and Systems Modeling. (2016) 119–146

[16] Karimi, V.R.: Formal Analysis of Access Control Policies for Pattern-
Based Business Processes. In: World Congress on Privacy, Security, Trust
and the Management of e-Business. (2009) 239–242

[17] Menzel, M., Warschofsky, R., Meinel, C.: A pattern-driven generation
of security policies for Service-oriented Architectures. In: IEEE
International Conference on Web Services. (2010) 243–250



Chapter 10

Paper D:
Lessons Learned while
Formalizing ISO 26262 for
Compliance Checking

Julieth Patricia Castellanos Ardila, Barbara Gallina and Guido Governatori.
In Proceedings of the 2st Workshop on Technologies for Regulatory
Compliance (TeReCom-2018), Groningen, The Netherlands, December 2018.

133



Abstract

A confirmation review of the safety plan is required during compliance
assessment with ISO 26262. Its production could be facilitated by creating a
specification of the standard’s requirements in FCL (Formal Contract Logic),
which is a language that can be used to automatically checking compliance.
However, we have learned, via previous experiences, that interpreting
ISO 26262 requirements and specifying them in FCL is complex. Thus, we
perform a formalization-oriented pre-processing of ISO 26262 to find
effective ways to proceed with this task. In this paper, we present the lessons
learned from this pre-processing which includes the identification of the
essential normative parts to be formalized, the identification of SCP (Safety
Compliance Patterns) and its subsequent documentation as templates, and the
definition of a methodological guideline to facilitate the formalization of
normative clauses. Finally, we illustrate the defined methodology by
formalizing ISO 26262 part 3 and discuss our findings.



10.1 Introduction 135

10.1 Introduction

A confirmation review of the safety plan is a piece of evidence required for
compliance assessment with ISO 26262 [1] in the automotive industry.
Producing this evidence is time-consuming since ISO 26262 contains
hundreds of requirements that have to be checked based on the information
provided by the specification of the development processes used to engineer
the safety-critical systems included in cars. To automate this task,
requirements should be encoded in formal notations, which can express not
only their contradictory, incomplete and inconsistent nature, but also their
normative provisions, which are the notions anchored to the structure of
regulations [2]. From the compliance perspective, the normative provisions of
importance are those related to the obligations, permissions, and
prohibitions [3]. Therefore, a promising approach for formalizing
requirements could be based on defeasible logic, in which contrary evidence
defeats earlier reasoning, supporting the management of inconsistencies [4].
Also, normative provisions should be encoded as implications in which the
antecedent is read as a property of a state of affairs, and the conclusion has a
deontic nature [5]. Thus, we argue that deontic defeasible reasoning
formalisms, such as Formal Contract Logic (FCL) [6], can be used to generate
automatic support to reason from standard’s requirements and the description
of the process they regulate [7, 8].

In our previous work [9], we explored mechanisms to support the
formalization work of the process engineers. From this initial attempt, a
definition of SCP (Safety Compliance Patterns), as well as a set of ISO
26262-specific FCL-SCP were formulated. We also performed the
formalization of standard’s requirements into FCL in [7, 8]. Via these
experiences, we learnt that interpreting ISO 26262 requirements and
specifying them in FCL is a complex task. Therefore, we perform a
formalization-oriented pre-processing of ISO 26262 to gain fundamental
knowledge about efficient ways to proceed. In this paper, we present the
lessons learned resulting form this pre-processing which includes the
identification of the essential normative parts to be formalized, the
identification of Safety Compliance Patterns (SCP), and its subsequent
documentation as templates, and the definition of a methodological guideline,
which can be used to facilitate the formalization of normative clauses. We
also illustrate the defined methodology by formalizing ISO 26262 part 3 and
discuss our findings.

The rest of the paper is structured as follows. In Section 10.2, we present



136 Paper D

essential background. In Section 10.3, we describe the formalization-oriented
pre-processing of ISO 26262. In Section 10.4, we illustrate the methodological
guideline derived from the pre-processing of ISO 26262. In Section 10.5, we
discuss our findings. In Section 10.6, we present related work. Finally, in
Section 10.7, we present conclusions and future work.

10.2 Background
This section presents the background required in this paper. Section 10.2.1
recalls essential information related to ISO 26262. Section 10.2.2 recalls the
basis of Formal Contract Logic. Finally, Section 10.2.3, recalls Safety
Compliance Patterns.

10.2.1 ISO 26262
ISO 26262 [1] is a functional safety standard that regulates all phases of the
production process of road vehicles with a gross mass up to 3500 kg.
ISO 26262 uses ASIL (Automotive Safety Integrity Levels) to specify the
safety requirements needed to be fulfilled during the development process of
safety-critical systems included in cars, e.g., automobile brake system.
ISO 26262 is composed of ten parts. Part 1 specifies the terms, definitions and
abbreviated terms for application in all parts of ISO 26262. The remaining
nine parts, which are normative, are structured in a similar way, containing, a
foreword, introduction, bibliography, annexes, and clauses. Clause 1 recalls
the general scope of the standard and situates the particular part in this scope.
Clause 2 and Clause 3, recalls the normative references indispensable for the
adoption of the specific part. Clause 4, which is repeated in all parts, contains
two general compliance conditions. Item 4.1 relates to the tailoring of the
safety activities, which is valid if “an assessed rationale is available that the
non-compliance is acceptable”. Item 4.2 relates to the interpretation of tables,
as follows:
• Tables with consecutive entries: All methods shall be applied as recommended in accordance with the

ASIL. If methods other than those listed are to be applied, a rationale shall be given.

• Tables with alternative entries: An appropriate combination of methods shall be applied in accordance
with the ASIL indicated. Methods with the higher recommendation for the ASIL should be preferred.
A rationale shall be given that the selected combination of methods complies with the corresponding
requirement.

The description of the phases of the safety process is distributed in clauses
included in the nine normative parts starting from Clause 5. Each of these



10.2 Background 137

clauses states its Objectives, which describe the generic goals of the clause,
General information, which gives an overall explanation of the clause, Inputs
of the clause, i.e., prerequisites, Requirements and Recommendations (R&R),
which describe the specific conditions that the process should fulfill, and the
Work products, which are the mandatory deliverables. Notes and Examples are
expected to help the applicant in interpreting the requirements. We focus on a
subset of requirements from ISO 26262 part 3 presented in Table 10.1, which
specifies the requirements for the concept phase for automotive applications.

Table 10.1: ISO 26262:2011 part 3 (Adapted from [1])

5 Item definition - 5.3 Inputs of this clause: None.

5.4 Requirements and recommendations

5.4.1 Functional and non-functional requirements shall be made available, including: a) functional concept
and b) operational constraints.

5.5 Work products: Item definition resulting from the requirements of 5.4.

6 Initiation of the safety lifecycle - 6.3 Inputs of this clause: item definition in accordance with 5.5.

7 Hazard analysis and risk assessment

7.4.3 The severity shall be assigned to one of the severity classes S0, S1, S2 or S3 in accordance with:

7.4.4 Determination of ASIL and safety goals - The safety requirements shall be specified by an appropriate
combination of the methods as presented in the table (H means Highly and R means Recommended).

10.2.2 Formal Contract Logic
Formal Contract Logic (FCL) [6] is a defeasible deontic logic created for
checking the compliance of business contracts, and modelling normative
requirements. An FCL rule has the form:

r : a1, ..., an ⇒ c, where:

a1, ..., an = Conditions of the applicability of the norm.

c = Normative effect.

Normative effects trigger deontic notions, namely, Obligations, Prohibitions,
and Permissions. An Obligation is a statement describing a mandatory
situation. In FCL, an obligation is represented by the operator [O] plus a
proposition, which corresponds to the content of the obligation. FCL is
equipped with different kind of obligations, which depend on the timing of the
application of the normative provision and their persistence after a violation



138 Paper D

(see [6]). A Prohibition is a forbidden situation. In FCL a prohibition is
represented as the negation of the content of an obligation. A Permission is an
allowed situation. Exceptions for the rules can be formalized by using
permissions, taking into account the premise “if something is permitted the
obligation to the contrary does not hold” [3]. Permissions in FLC are
represented with the operator [P ]. The formalization of normative systems
sometimes may contain conflicting normative effects, such as the obligation of
performing an action but also its prohibition. In FCL, these conflicts can be
solved by defining a superiority relation between rules (>).

10.2.3 Safety Compliance Patterns
Safety compliance patterns (SCP) [9] describe commonly occurring
normative safety requirements on the permissible state sequence of a finite
state model of a process. An SCP has a general formalization structure (which
in our case is defined in FCL), which is derived from the interpretation of a
recurring structure described in the text of the standard. Currently, a list of
SCP is defined in [9].

10.3 Formalization-oriented Pre-processing of
ISO 26262

Our initial efforts to formalize ISO 26262 into FCL (see our previous
work [9, 8]), gave us some insights about the complexity that this task entails.
As recalled in Section 10.2.1, ISO 26262 is structured in a specific way, i.e., it
is composed of parts, which are subdivided into very structured clauses. We
encounter that not all the structures are required to be formalized. We also find
that some structures are repetitive, and can be represented as SCP. Therefore,
to be able to formalize effectively, we consider that doing a pre-processing of
ISO 26262 was necessary. The pre-processing, which is depicted in
Figure 10.1, includes three tasks. Initially, we identify the essential normative
structures (see Section 10.3.1), namely those structures that define the safety
process to be adopted for developing the car’s safety-critical systems. Then,
we identified the repetitive structures of the standard that can be considered
SCP (see Section 10.3.2). With the identified SCP, we create templates to
consolidate a reusable knowledge base for future formalization jobs (see
Section 10.3.3). Finally, the knowledge gathered in the pre-processing is used
to define a methodological guideline for facilitating the formalization of



10.3 Formalization-oriented Pre-processing of ISO 26262 139

normative clauses in ISO 26262 (see Section 10.3.4). The pre-processing
tasks were performed in the form of intensive group brainstorming sessions
(in total ten 5-hour sessions). The group included three participants. The first
participant has expertise in formal approaches (particularly FCL) applied to
legal informatics. The second participant has expertise in certification
(particularly in the safety-critical context). The third participant is a Ph.D.
student whose research work is focused on the compliance checking of safety
processes against safety standards (particularly ISO 26262).

Figure 10.1: Methodological Guidelines to formalize ISO 26262 into FCL.

10.3.1 Identify essential normative parts in ISO 26262
As presented in Section 10.2.1, ISO 26262 has nine normative parts. In each
of the normative parts, Clauses 1, 2 and 3 are not required to be formalized
since the text does not represent a constraint to the development process.
Clause 4 is subdivided into two items. Item 4.1, which title is General
requirements, describes the tailoring of safety activities, namely its application
in a way different to the indicated by the standard. Item 4.2, which title is
Interpretation of tables, illustrate the way in which normative methods listed
in tables (with consecutive and alternative entries) should be applied. By
themselves, these two requirements are not directly constraining the process.
However, they shape the way in which other requirements should be applied.
Therefore, Clause 4 is an essential structure that gives important elements for
the formalization process. The specific normative clauses that describe the
phases of the safety process are documented from Clause 5 in each of the nine
normative parts. In those clauses, the title represents the initiation of the
phase. Therefore, the title is part of the formalization process. However, the
formalization of the title must be preceded by the formalization of the
Prerequisites, since they represent the preconditions constraining the initiation
of the particular phase. Prerequisites as well as Work products are essential
since they are part of the description of the safety process which is expected to
be represented via a model embracing input/output elements. The presence of



140 Paper D

the verbs shall and must in the section R&R is an explicit indication of a
normative provision that constrains the breakdown of the work as well as for
guidance on how it should be planned and executed. Information under the
titles Objectives, General, Notes and Examples are not formalized since they
do not prescribe the process to be adopted. However, these elements can be
used to provide context for the application of the requirements.

10.3.2 Identify SCP
Within the essential normative parts of ISO 26262, seven SCP are identified.
In Clause 4, the provision of a rationale is done in the same way whenever a
safety activity is tailored. Similarly, the applicable methods that are described
in tables with alternative entries and tables with consecutive entries.
Therefore, Clause 4 describes three repetitive structures. Within the
description of the phases of the safety process, represented from clause 5 in
each of the normative parts, other three repetitive structures are easily
recognizable. The first one is the Initiation of a phase, which is recognized in
the title of every clause. The second repetitive structure corresponds to the
Prerequisites, which describe the preconditions of the phase. Similarly, the
Work products, which are defined as the result of safety activities, represent a
third repetitive structure. Since R&R contains many requirements, and each
one describes a different structure, we cannot consider this structure as
repetitive itself (even though we can find the title R&R in all the normative
parts). However, inside the R&R one repetitive structure, called Guidance, is
recognized. A requirement, which we call the main normative effect, contains
guidance when it is accompanied by a list of descriptive items ( a, b,..., n).
Together, those items provide additional normative descriptions about the
main normative effect, and therefore, they also become mandatory
requirements.

10.3.3 Create SPC templates
For each SCP, we provide a general formalization structure in FCL which is
derived from the interpretation of the repetitive structure it represents (as
described in Section 10.2.3). The rules in the template contains the symbol #
between brackets ({ }), which should be replaced with the identification of
the requirement that the rule is representing. The space between the brackets
in the rule statement ({ }) is a placeholder for the particular instantiation of
the template.



10.3 Formalization-oriented Pre-processing of ISO 26262 141

Provision of a rationale: A rationale implies compliance with conditions.
For being valid, it should be always verified by an expert. Therefore,
when a rationale is attached to a safety process, its verification is
obligated (see Template 10.1).

r{#:}attach{Rationale} ⇒ [O]verifyByExpert{Rationale} (10.1)

Alternative entries: The normative provision for tables with alternative
entries obliges the verification of the ASIL, the provision of a
combination of the listed methods and a the provision of a weak
rationale. The combination of these methods also obliges the inclusion
of those marked with the highest recommendation level. The provision
of other methods is also possible if a strong rationale is provided. There
is an inconsistency between rules r{#.a:}and r{#.g:}. Thus, a
superiority relation that gives priority to r{#.g:} (which describes an
exception for the requirement) is provided (see template 10.2).

r{#.a:}verify{ASIL}
⇒ [O]provideCombinationOfListedMethods

r{#.b:}provideCombinationOfListedMethods

⇒ [O]include{HigherRecommendedNotationsForASIL}
r{#.c:}include{HigherRecommendedNotationsForASIL}
⇒ [O]attachWeakRationaleSupportingListedMethods

r{#.d:}attachWeakRationaleSupportingMethods

⇒ [O]V erifyWeakRationaleByDomainExpert

r{#.e:}includeNotListedMethods{OtherMethods}
⇒ [O]atachStrongRationaleSupporting{OtherMethods}
r{#.f:}atachStrongRationaleSupporting{OtherMethods}

⇒ [O]verifyStrongRationaleByDomainExpert{OtherMethods}
r{#.g:}includeNotListedMethods{OtherMethods},

[O]atachStrongRationaleSupporting{OtherMethods},
verifyStrongRationaleByDomainExpert{OtherMethods}

⇒ [P ]− provideCombinationOfTheListedMethods

r{#.g}>r{#.a}

(10.2)

Consecutive entries: The normative provision for tables with consecutive
entries obliges the verification of the ASIL and the utilization of all
listed methods. The combination of methods beyond the ones listed in
the table is also possible if a strong rationale is provided (see
Template 10.3). There is an inconsistency between rules r{#.a:}and
r{#.d:}. Thus, a superiority relation that gives priority to r{#.d:}



142 Paper D

(which describes an exception for the requirement) is provided (see
template 10.2).

r{#.a:}verify{ASIL}
⇒ [O]provideAllfListedMethods

r{#.b:}includeNotListedMethods{otherMethods}
⇒ [O]atachStrongRationaleSupporting{otherMethods}

r{#.c:}attachStrongRationaleSupporting{otherMethods}
⇒ [O]verifyStrongRationaleByDomainExpert{otherMethods}

r{#.d:}includeNotListedMethods{otherMethods},
[O]atachStrongRationaleSupporting{otherMethods},

verifyStrongRationaleByDomainExpert{OtherMethods}
⇒ [P ]− provideCombinationOfTheListedMethods

r{#.d}>r{#.a}

(10.3)

Prerequisites: The antecedents of the initiation of a phase are the
prerequisites. Therefore, they are obliged before the phase is initiated
(see Template 10.4).

r{#.a}:⇒ [O]provide{prerequisiteA}
...

r{#.n}:⇒ [O]provide{prerequisiteN}
(10.4)

Initiation of a phase: The template considers the prerequisites
(formalization presented in Template 10.4) as the conditions of the
applicability of the rule which normative conclusion is the initiation of
the phase (see Template 10.5).

r{#:}provide{prerequisiteA}..., provide{prerequisiteN}
⇒ [O]initiate{TitleClause}

(10.5)

Guidance: Guidance components are the conditions that obliges the provision
of the element guided (see formula 10.6).

r{#.a:}{TriggeringObligation}
⇒ [O]provide{FirstGuidanceElement}

...

r{#.n:}{TriggeringObligation}
⇒ [O]provide{LastGuidanceElement}

r{#:}provide{FirstGuidanceElement}, ...,
provide{LastGuidanceElement} ⇒ [O]provide{GuidedElement}

(10.6)



10.3 Formalization-oriented Pre-processing of ISO 26262 143

Work Product: Work products are the result of certain requirements.
Therefore, these requirements are presented as antecedents that obliged
the provision of the related work product (see Template 10.7).

r#:provide{PreviousObligations} ⇒ [O]produce{WorkProduct} (10.7)

10.3.4 Methodological guideline for formalizing ISO 26262
From the pre-processing tasks described above, we got an understanding of
what to formalize and how we could proceed in the formalization process. The
parts to formalized are those that determine the safety lifecycle, meaning those
clauses that start from Clause 5. To formalize these clauses, we have described
a methodological guideline, which we depict in Figure 10.2.

Figure 10.2: Methodological Guidelines to formalize ISO 26262 into FCL.

Initially, the context of the phase should be understood. For this, the
reading and analysis of the objectives and the main general information of the
clause to be formalized is required. Then, the formalization process initiates
with the prerequisites and followed by the title. These two formalizations can
be done by following the SCPs called Prerequisites and Initiation of a phase.
After, one requirement is selected from the list of R&R. We suggest that the
requirements are selected in the order they are presented and that the rules are
named following the requirement numeration to ensure consistency and
traceability. For instance, if a textual requirement is marked with the label 5.1,
the corresponding rule should be called r.5.1. During the formalization of the
requirements, SCP templates could be used to facilitate this task. However, if



144 Paper D

there are no templates, brainstorming sessions are required. The
brainstorming session can be carried out in different ways, but the most
relevant is that the group takes one requirement at the time, discuss its
importance in the compliance process (e.g., related requirements or permits
for tailoring), divide the requirement into smaller sentences that have only one
idea, and discuss every sentence. If the requirement has to be divided into
several rules, the name of the rule has to be named with the number that
accompanies the requirement plus a letter, i.e., r.5.1.a, r.5.1.b. Finally, when
all requirements available in R&R are covered, the work products can be
formalized by using the SCP template called Work Product. The generated
rule set should be verified to avoid inconsistencies and typos in the rules since
Regorous do not recognize incorrectly formed rule sets.

10.4 Formalizing ISO 26262 Part 3
In this section, we illustrate the methodological guideline depicted in
Figure 10.2 by formalizing the requirements provided in Table 10.1. The
formalization starts from clause 5 (see Table 10.1) providing requirements for
the definition and description of the item. There are no prerequisites in this
clause. Thus, we continue with the formalization of the title of the phase,
which provides the obligation to initiate item definition (see rule r5). Then,
we continue with the formalization of requirement 5.4.1, that defines guidance
to provide the functional and non-functional requirements for the item
definition. This requirements is formalized by using the SCP Guidance in
which initially, the components of the guidance should be provided (see rules
r5.4.1.a and r5.4.1.b), and then, they integrate the main normative provision
(see r5.4.1). When all the requirements are formalized, we proceed with the
work products, which are defined in clause 5.5. To formalize a work product,
the requirements (in this case specified by clause 5.4) are presented as
antecedents, and the work product itself is the normative provision (see r.5.5).

r5:⇒ [O]initiateItemDefinition

r5.4.1.a:performItemDefinition⇒ [O]provideFunctionalConcept

r5.4.1.b:performItemDefinition⇒ [O]provideOperationalConstraints

r5.4.1:provideFunctionalConcept, provideOperationalConstraints

⇒ [O]provideFunctionalAndNonFunctionalRequirements

r.5.5:provideFunctionalAndNonFunctionalRequirements⇒ [O]produceItemDefinition

Clause 6 in Table 10.1 presents the title of the clause and its inputs. Thus,
we only applied the steps related to the formalization of the prerequisites and



10.4 Formalizing ISO 26262 Part 3 145

the title of the clause. The prerequisites were already formalized in clause 5,
(see Table 10.1, Inputs of this clause: item definition in accordance with 5.5.).
Therefore, it is only needed the formalization of the title which defines the
obligation of performing the phase Initiation of the safety lifecycle after the
normative provision produceItemDefinition (see rule r6).

r6:produceItemDefinition⇒ [O]initiateInitiationSafetyLifeCycle

Clause 7, which is related to Hazard analysis and risk assessment, does not
mention any inputs for the clause and it is formalized as rule r5 (see rule r7).
Two requirements are described in tables. The first requirement refers to a
table which has constitutive information. The formalization of this table is
done by taking the description of the entries as the antecedent of the rule and
its category as the normative provision (see rules r7.4.3.a to 7.4.3.d).

r7:⇒ [O]performHazardAnalysisAndRiskAssessment

r7.4.3.a:descriptionSeverityS0⇒ [O]CatergoryNoInjuries

r7.4.3.b:descriptionSeverityS1⇒ [O]CatergoryLightAndModerateInjuries

r7.4.3.c:descriptionSeverityS2⇒ [O]CatergorySevereAndlifeThreateningInjuries

r7.4.3.d:descriptionSeverityS2⇒ [O]CatergoryFatalInjuries

Clause 7.4.4 is presented in a table with alternative entries. We take into
account the selection of methods for ASIL A. As recalled in Section 10.2.1 for
alternative entries the normative provision suggest the obligation to provide a
combination of the methods listed in the table (see rule r7.4.4.a), which at the
same time obliges the selection of those with higher recommendation level for
the ASIL, in this case, Informal Notations (see ruler7.4.4.b). Also, a rationale
shall be given that the selected methods comply with the corresponding
requirements (see rule r7.4.4.c). If the highest recommended is selected, only
a weak rationale (i.e., a less stringent explanation of the selection) must be
provided. However, if the highest recommended is not selected, a more
elaborated rationale (called strong) should be provided (see rule r7.4.4.e). A
domain expert should verify the rationales (strong and weak) (see rule
r7.4.4.d and r7.4.4.f ). Providing the strong rationale, its verification and the
methods selected, grant the permit of not providing the combinations of the



146 Paper D

recommended methods (see rule r7.4.4.g).

r7.4.4.a:verifyASILA⇒ [O]provideCombinationOfListedMethods

r7.4.4.b:provideCombinationOfListedMethods⇒ [O]includeInformalNotations

r7.4.4.c:includeInformalNotations

⇒ [O]attachWeakRationaleSupportingListedMethods

r7.4.4.d:attachWeakRationaleSupportingMethods

⇒ [O]V erifyWeakRationaleByDomainExpert

r7.4.4.e:includeNotListedMethods

⇒ [O]atachStrongRationaleSupportingNotListedMethods

r7.4.4.f:attachStrongRationaleSupportingNotListedMethods

⇒ [O]verifyStrongRationaleByDomainExpert

r7.4.4.g:includeNotListedMethods,

atachStrongRationaleSupportingNotListedMethods,

verifyStrongRationaleByDomainExpert

⇒ [P ]− provideCombinationOfTheListedMethods

r7.4.4.g>r7.4.4.a

10.5 Discussion
Interpreting and specifying ISO 26262 requirements in FCL can be
error-prone and time-consuming. One reason is that ISO 26262 is a large
document with hundreds of requirements, which like many other standards
and regulations, are difficult to interpret. The other reason is that FCL is not
yet enough known and existing examples (mostly from the business and legal
domains) are insufficient to guide the formalization of the normative notions
that constrain the processes used in safety-critical development projects.
However, the effort invested in the production of formal specifications of
safety standards is compensated by several advantages, i.e., deep
understanding of its requirements, practical application in development
projects, and the provision of an essential input for facilitating automated
compliance checking. Therefore, we consider that discovering efficient ways
to proceed with the formalization work can boost the usage of this formal
language in the compliance tasks in the safety-critical context. In the
remainder, we discuss some aspects that were observed during the performing
of the formalization-oriented pre-processing of ISO 26262 and the
formalization of its part 3.

Useful formalization path: As recalled in Section 10.2.1, ISO 26262 is
structured in a specific way. However, not all the structures should be used to



10.5 Discussion 147

obtain the formal specification in FCL. Therefore, performing a
pre-processing of ISO 26262 provides us an useful formalization path to
follow, i.e., a methodological guideline and SCP templates. Process engineers
in the automotive context, who are interested in starting their formalization
work with FCL, may find useful this formalization path since it permits to
focus on specific tasks and skip some others that may be not relevant in the
formalization process. Performing a similar pre-processing of safety standards
beyond ISO 26262 may also be useful for increasing and spreading the use of
FCL and its potential benefits.

Related skills, competencies and responsibilities: In our experience,
group brainstorming sessions have facilitated the production of the FCL
specifications. In particular, the participation of different kind of experts has
provided different views that were important in the discussions performed
during the formalization process. We highlight the fact that brainstorming
sessions were mainly guided by the certification expert, whose knowledge
provided specific details that are of importance for the safety auditor during
the safety assessment. The opportunity to have an FCL expert speeded up the
formalization and the creation of templates for reuse. However, FCL is not a
very known language. Thus, there are not many FCL experts available.
Therefore, it is necessary to provide training courses for teaching FCL. The
target group for the training may be mainly conformed by process engineers
who already have expertise in compliance management.

Tooling: In our current work, the rules were written manually, introducing
the possibility of typos in the syntax of the rules and inconsistencies in the
rules statements. Therefore, the production of our initial FCL specifications
resulted in incoherent files that were not understood by the compliance
checker. To solved this issue, edition and syntactic correctness of the FCL
specifications were ensured manually. However, manual corrections are long
and tedious activities. For this reason, we consider that the provision of tools
for supporting the process of writing and verifying rules, as well as the
creation and instantiation of SCP templates should be developed. Part of our
work should also be the provision of these tools.



148 Paper D

10.6 Related Work

The collection of experiences distilled from formalization projects is an
advisable way to save time and avoid mistakes in future projects. We can find
lessons learned in the formalization of software engineering standards in [10].
In a similar way, we have collected the specific lessons learned in a
methodological guideline, aiming at facilitating the formalization of the
ISO 26262 clauses. Guidelines are also widely used to spread the used of
novel methods in engineering tasks. One example is the Oracle Policy
Modeling best practices guidelines [11] whose aim is helping analysts to
describe the way in which different types of business rules can be modeled.
Similarly, a methodology to guide companies to establish Cyber-Physical
Social System data subjects consent and data usage policies (described in
OWL) is presented in [12]. Guidelines for supporting the formal
representation of safety regulatory requirements (using Z) are introduced
in [13]. The use of tabular expressions in [14] can also be seen as a guideline
to generate formal models of system requirements. The authors of FCL have
also published explicative examples of the modeling of FCL rules within the
business context, e.g., [15, 16], which can be used as a guideline for learning
the language.

The use of FCL for supporting compliance management tasks in
automotive is a novelty. We did not find yet specific examples or guidelines
that apply to the domain. Therefore, the results of the formalization-oriented
pre-processing of ISO 26262 documented in this paper may be of interest for
process engineers involved in the cars manufacturing. Additionally, we
consider that this work can be used as a starting point to derive
domain-specific guidance applicable to process-based safety standards beyond
ISO 26262.

10.7 Conclusions and Future Work

In this paper, we presented the lessons learned from performing a
formalization-oriented pre-processing of ISO 26262. Initially, we identify the
essential normative structures, namely those structures that define the safety
process to be adopted for developing the car’s safety-critical systems. Then,
we identified the repetitive structures of the standard that can be considered
SCP. With the identified SCP, we create templates to consolidate a reusable
knowledge base for future formalization jobs. The knowledge gathered in the



10.7 Conclusions and Future Work 149

pre-processing is used to define a methodological guideline for facilitating the
formalization of normative clauses in ISO 26262. We also illustrate the
defined methodology by formalizing ISO 26262 part 3 and discussed our
findings.

From the discussion presented in Section 10.5, we consider that one
important part of the future work is the training of process engineers in FCL.
Therefore, a course called Quality assurance - Certification of safety-critical
(software) systems1, which is under construction, will consider an overview of
compliance checking and the formalization of compliance rules with FCL. We
also need to optimize the creation and verification of rule sets. Thus, we are
considering the design and development of a pattern-based rule editor to
facilitate rules creation, and rule sets verification. We consider that
methodological guidelines are also needed in other safety-critical domains.
Thus, we aim at studying other safety standards and adapt any required step
resulting from their specificities. This work is also expected to be combined
with previously achieved results [7, 8] regarding the provision of automated
compliance checking vision for the safety-critical context.

Acknowledgment
This work is supported by the EU and VINNOVA via the ECSEL JU project
AMASS (No. 692474) [17].

1http://www.promptedu.se/quality-assurance-certification-of-safety-critical-software-systems/





Bibliography

[1] ISO 26262: Road Vehicles-Functional Safety. International Standard
(2011)

[2] Francesconi, E.: Semantic model for legal resources: Annotation and
reasoning over normative provisions. Semantic Web 7(3) (2016) 255–
265

[3] Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements
for regulatory compliance: An abstract formal framework. Information
Systems Frontiers 18(3) (2016) 429–455

[4] Nute, D.: Defeasible Logic. In: International Conference on Applications
of Prolog, Springer (2001) 151–169

[5] Alberti, M., Gavanelli, M., Lamma, E., Riguzzi, F., Zese, R.:
Dischargeable Obligations in Abductive Logic Programming. In
Springer, ed.: International Joint Conference on Rules and Reasoning.
(2017) 7–21

[6] Governatori, G.: Representing business contracts in RuleML.
International Journal of Cooperative Information Systems. (2005) 181–
216

[7] Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Enabling Compliance
Checking against Safety Standards from SPEM 2.0 Process Models.
In: Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). (2018)

[8] Castellanos Ardila, J.P., Gallina, B., UL Muram, F.: Transforming SPEM
2.0-compatible Process Models into Models Checkable for Compliance.
In: 18th International SPICE Conference. (2018)

151



[9] Castellanos Ardila, J.P., Gallina, B.: Formal Contract Logic Based
Patterns for Facilitating Compliance Checking against ISO 26262. In:
1st Workshop on Technologies for Regulatory Compliance (TeReCom).
(2017) 65–72

[10] Verlage, M., Munch, J.: Formalizing software engineering standards. In:
Third IEEE International Software Engineering Standards Symposium
and Forum. (1997) 196–206

[11] Lee, J.: Oracle Policy Automation (OPA). Best Practice Guide for policy
Modelers. (2018)

[12] Fernandez, J.: Deliverable 6.1: Privacy policy formalization (v. 1) (2018)

[13] Vilkomir, S., Bowen, J., Ghose, A.: Formalization and assessment
of regulatory requirements for safety-critical software. Innovations in
Systems and Software Engineering 2(3-4) (2006) 165–178

[14] Singh, N., Lawford, M., Maibaum, T., Wassyng, A.: Use of Tabular
Expressions for Refinement Automation. In: International Conference
on Model and Data Engineering. (2017) 167–182

[15] Governatori, G.: Practical normative reasoning with defeasible deontic
logic. In: Reasoning Web International Summer School. (2018) 1–25

[16] Governatori, G.: The regorous approach to process compliance. In: IEEE
19th International Enterprise Distributed Object Computing Conference
Workshops and Demonstrations. (2015) 33–40

[17] AMASS.: Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems



Chapter 11

Paper E:
Towards Increased Efficiency
and Confidence in Process
Compliance

Julieth Patricia Castellanos Ardila and Barbara Gallina.
In Proceedings of the 24th European & Asian Systems, Software & Service
Process Improvement & Innovation (EuroAsiaSPI-2017), Ostrava, Czech
Republic, September 2017.

153



Abstract

Nowadays, the engineering of (software) systems has to comply with different
standards, which often exhibit common requirements or at least a significant
potential for synergy. Compliance management is a delicate, time-consuming,
and costly activity, which would benefit from increased confidence,
automation, and systematic reuse. In this paper, we introduce a new approach,
called SoPLE&Logic-basedCM. SoPLE&Logic-basedCM combines
(safety-oriented) process line engineering with defeasible logic-based
approaches for formal compliance checking. As a result of this combination,
SoPLE&Logic-basedCM enables automation of compliance checking and
systematic reuse of process elements as well as compliance proofs. To
illustrate SoPLE&Logic-basedCM, we apply it to the automotive domain and
we draw our lessons learnt.



11.1 Introduction 155

11.1 Introduction

In the context of safety critical systems engineering, quality (and more
specifically safety) standards act as a baseline aimed at contributing to
”assuring society at large that deployment of a given system does not pose an
unacceptable risk of harm” [1]. Standards impose requirements on the
processes to be adopted to engineer the systems as well as on the expected
behaviour of the systems. To adhere to the requirements regarding the
processes, companies adapt their practices, and provide evidence (e.g.,
arguments or even proofs of compliance), which to some extent supports the
fulfilment of the requirements. Providing such evidence is a time-consuming
and costly activity, which risks to steal time and focus from other activities
related to e.g., verification of systems behaviour. Since the ultimate goal of
our work is to free time for such verification activities, we believe that process
compliance would be highly benefit from automation and systematic reuse.
Moreover, confidence in the evidence could be increased via logic-based
approaches. Safety-oriented Process Line Engineering (SoPLE) [2, 3] permits
process engineers to systematise the reuse of process-related information. To
argue about or prove compliance, SoPLE is not enough. In a previous
work [4, 5], SoPLE was combined with argumentation patterns and
model-driven engineering principles to automate the creation of reusable
process-based argument fragments aimed at showing compliance. In this
paper, we intend to provide an additional layer of confidence by offering a
logic-based framework that enables formal proofs of compliance. To do that,
we build on top of results stemming from the business process-related
community and legal compliance. Specifically, we use defeasible logic, a
rule-based approach for efficient reasoning with incomplete and inconsistent
information, a typical scenario in normative systems [6]. Our approach
represents a novelty which contributes to 1) increasing efficiency (via
automation and systematic reuse) and confidence (via formal checking) in
process compliance, and 2) cross-fertilising previously isolated
communities. In this paper, we do not only present our new approach but we
also apply it to the automotive domain. In particular, we consider ASPICE
(Automotive Software Process Improvement and Capability
Determination) [7], which provides a software process assessment model, and
ISO 26262 [8], a safety standard that regulates the development process of
safety-critical automotive systems. The motivation for this choice is that it is
well-known that process reference models of these two standards overlap and
exhibit several similarities [3, 9], specially in process elements related to



156 Paper E

software and system engineering [10].
The rest of the paper is organised as follows. In Section 11.2, we provide

background information related to our work. In Section 11.3, we introduce
SoPLE&Logic-basedCM for efficient and confidence process compliance. In
Section 11.4, we apply SoPLE&Logic-basedCM to the automotive domain,
and based on the application of our approach, we derive our lessons learned.
In Section 11.5, we discuss related work. Finally, in Section 11.6, we present
conclusions and future work.

11.2 Background
This section provides basic information on which we base our work. In
Section 11.2.1 and 11.2.2, we present two automotive standards. In
Section 11.2.3, we recall SoPLE. In Section 11.2.4, we present defeasible
logic, and in Section 11.2.5, we recall an abstract formal framework for
regulatory compliance.

11.2.1 Automotive SPICE
ASPICE [7] is a standard that addresses the software process capability
maturity in automotive. To determine maturity, the process assessment model
selects the process reference model and augments it with indicators. These
indicators are used to identify if the process outcomes (PO), the result of the
achievement of the process, and the process attribute outcomes (PA), the
result of the achievement of a specific process attribute, are present. Base
practices (BP) (activity-oriented PAs), must be evaluated to establish the
capability of the process to be achieved. BPs for the process Software
Detailed Design and Unit Construction (SWE.3) are: BP1-Develop software
detailed design, BP2-Define interfaces of software units, BP3-Describe
dynamic behavior, BP4-Evaluate software detailed design, BP5-Establish
bidirectional traceability, BP6-Ensure consistency, BP7-Communicate agreed
software detailed design, and BP8-Develop software units. These BPs are
related to one or more of the POs presented in Table 11.1.

11.2.2 ISO 26262
ISO 26262 [8] is a standard that focuses on the functional safety of
electrical/electronical systems in vehicles (gross mass up to 3500 kg). In ISO



11.2 Background 157

Table 11.1: POs for ASPICE SWE.3.

ID Process outcome description

PO1 A detailed design is developed that describes software units.

PO2 Interfaces of each software unit are defined.

PO3 The dynamic behavior of the software units is defined. NOTE: Not all software units have dynamic
behavior to be described.

PO4 Evaluate the software detailed design in terms of interoperability, interaction, criticality, technical
complexity, risks and testability.

PO5 Consistency and bidirectional traceability are established between e.g., software requirements and
software units. NOTE: Consistency is supported by bidirectional traceability.

PO6 The software detailed design and the relationship to the software architectural design is agreed and
communicated to all affected parties.

PO7 Software units defined by the software detailed design are produced.

26262, ASIL (Automotive Safety Integrity levels) are used to specify
applicable safety requirements, but both safety and non-safety requirements
are implemented within one development process. Specifically, in the
sub-phase Software Unit Design and Implementation (SUDI), described in
part 6, clause 8 of the standard, single software units are addressed, and the
following activities are included: A1-Specify the software units, A2-Verify the
software unit design, A3-Implement the software units, and A4-Verify the
software unit implementation. These activities are related to one or more of
the requirements presented in Table 11.2.

Table 11.2: Requirements for ISO 26262 SUDI.

ID Requirements description

R1 The requirements of this subclause shall be complied with if the software unit is safety-related
(”Safety-related” means that the unit implements safety requirements).

R2 Software units are designed by using a notation that depends on the ASIL and the recommendation
level.

R3 The specification of the software units shall describe the functional behaviour and the internal design
to the level of detail necessary for their implementation.

R4
Design principles for software unit design and implementation shall be applied depending on the ASIL
and the recommendation levels to reach properties like consistency of the interfaces, correct order of
execution of subprograms and functions, etc.

R5 Software unit design and implementation are verified by applying verification methods according to
the ASIL and the recommendation levels to demonstrate, e.g., traceability.

R6 When ASIL and recommendation levels are not followed, a rationale that explains the reasons for this
behavior must be provided (Interpretation of tables, ISO 26262-Section 4.2).



158 Paper E

11.2.3 SoPLE

As recalled in the introduction, SoPLE is a methodological framework to
systematically model commonalities and variabilities between highly-related
processes to facilitate reuse and flexible process derivation. To identify
commonalities and variabilities, common terminology that allows the
comparisons between the standards is required. In [3], a mapping of common
terms between ASPICE and ISO 26262 is provided (see Table 11.3). These
terms are used as follows: if an activity in ISO 26262 is equivalent to a base
practice in ASPICE, the elements are mapped to the common identifier
activity, and are modeled in SPEM2.0/EPF (Eclipse Process
Framework)-Composer with a TaskUse. SPEM2.0/EPF-Composer is
suggested in the application of SoPLE. SPEM2.0 (Software and Systems
Process Engineering Metamodel) [11] is a standard that provides the elements
required to define software and systems development process. SPEM2.0 is
implemented in EPF Composer [12], a tool able to store reusable core
methods separated from its application in processes. One basic method
content is the Task, which symbolizes an assignable unit of work. Method
content variability allows adaptation of created content without affecting the
original content. We recall one variability type called contributes, which
provides a way for process elements instances to contribute with their
properties into the base variability element. Process structures can be built
incorporating method content elements (for example, a task realized as a
TaskUse) in a breakdown structure. Commonalities in processes are usually
partial, i.e., a process element contains a subset of common aspects. Common
aspects constitute the commonality points (CP) while variability points (VP)
are the process elements that are replaced with particular instances of process
elements (called variants). It should be noted that in SPEM2.0 there is no
notion of variability point, thus, we introduce an empty task, which is made
vary via contributes.

Table 11.3: Mapping of terms in ISO 26262, ASPICE and SPEM2.0/EPF [3].

Common Identifier ISO 26262 ASPICE SPEM2.0/EPF

Activity Activity Base Practice TaskUse/



11.2 Background 159

11.2.4 Defeasible Logic

Defeasible logic [13] is a rule-based logic that provides reasoning with
incomplete/inconsistent information. A defeasible theory is a knowledge base
in defeasible logic, which contains: a) facts: indisputable statements; b) strict
rules: rules in the classical sense, whenever the premises are indisputable, so
is the conclusion; c) defeasible rules: rules that can be defeated by contrary
evidence; d) defeaters: rules used only to prevent conclusions; e) superiority
relation: a relation among rules used to define priorities. Formally, r: A(r)
↪→ C(r), a rule r consists of an antecedent A, the consequence of the rule C,
and the rule ↪→= {→ (strict),⇒ (defeasible), or  (defeater)}. A
defeasible proof requires that we: a) Put forward a supported rule for the
conclusion we want to prove; b) consider all possible reasons against the
desired conclusion; and c) rebut all counterarguments, by either showing that
some premises of the counterargument do not hold, or the argument is
defeated by another argument.

11.2.5 Compliance Checking Approach

In this subsection, we recall the abstract formal framework for modeling
compliance by design defined in [6], an approach in which compliance of a
process with a set of rules is verified before deploying. This approach is based
on deontic logic of violations [14], in which deontic notions are modelled
using defeasible logics. Deontic notions are present in normative systems e.g.,
an obligation is a deontic effect that arises when a norm bounds the bearer to a
specific situation. When a violation occurs, a reparation obligation is in force.
For compliance checking, we should: 1) determine the obligations of the
rules, 2) determine the state of each task in a process, 3) determine the
obligations in force for each task, and 4) check if the obligations in force have
been fulfilled or violated. The approach requires that the traces of the process
(sequence of tasks, in which a process can be executed, respecting the order
given by the connectors), and semantic annotations (functions that describe
the environment in which a process operates) are defined. The function
Ann(n,t,i) returns the state of a trace (n) obtained after a task (t), in the
step (i). The function Force(n,t,i) = {p} associates to each task (t) in a
trace (n), in the step (i) a set of obligations (p).



160 Paper E

11.3 SoPLE&Logic-basedCM
This section provides an overview of SoPLE&Logic-basedCM (see Fig. 11.1),
our approach for increasing confidence and efficiency in process compliance,
by combining safety-oriented process line engineering, the definition of
defeasible theories as presented in Section 11.2.4, and the use of the
framework for modelling compliance, presented in Section 11.2.5. As
Fig. 11.1 depicts, a process engineer is expected to: 1) model a SoPL (which
includes manually modelling the skeleton of the process sequence);
2) formalise the standards rules, select the set of rules that overlap, and
analyse the compliance of the SoPL commonalities with the overlapping
rules; 3) analyze the effects of the tasks that contributes to the variabilities in
the in the standard-specific process.

Figure 11.1: SoPLE&Logic-basedCM overview.

11.4 Applying SoPLE&Logic-basedCM
In this section, for illustration purposes, we apply SoPLE&Logic-basedCM to
the software unit development process part provided by ASPICE and ISO
26262. The remaining part of this section is structured as follows: in
Section 11.4.1, we model a SoPL. In Section 11.4.2, we define the proofs of
compliance. In Section 11.4.3, we present the lessons learnt.

11.4.1 SoPL Modeling
In this subsection, we apply SoPLE, recalled in Section 11.2.3. The scope is
ASPICE SWE.3, and ISO 26262 SUDI recalled in Sections 11.2.1 and 11.2.2
respectively. In the domain engineering phase, we find the equivalent process



11.4 Applying SoPLE&Logic-basedCM 161

activities by applying the terminology mapping presented in Table 11.3, and
by analysing the scope of each activity. Terminological similarity is found
between BP1 and A1. However, the scope of A1 (see Table 11.2 - R4) is
broader than the scope of BP1, including also BP2 and BP3. Hence, the
commonality point (CP1) is defined as a task called Define software unit
design, which contains three successive steps, namely develop software
detailed design, define interfaces of software units, and describe dynamic
behavior. A similar analysis is done for CP2, where there is a correspondence
between A2 (scope determined in Table 11.2 - R4/R5) with BP4/BP5/BP6.
CP3 is a straightforward comparison between A3 and BP8. Our comparison
also includes standard-specific variants, for example, ISO 26262 variants are
activities that deal with ASIL. Variants of this type are A1a-Define software
unit design concerning safety derived from A1, and A2a-Verify the software
unit design concerning safety derived from A2. These and other activities that
are standard-specific are represented as variability points (VP)
(see Table 11.4). The result of the domain engineering phase is a SoPL,
depicted in Fig. 11.2.

Table 11.4: SPICE SWE.3/ISO 26262 SUDI activities mapping.

ID
Step
in the
trace

ISO
26262 ASPICE Common Name

CP1 1 A1
BP1,
BP2,
BP3

Define software unit design

VP1 2 A1a Define software unit design concerning safety

CP2 3 A2
BP4,
BP5,
BP6

Verify the software unit design

VP2 4
A2a Verify the software design concerning safety

BP7 Communicate agreed software detailed design

CP3 5 A3 BP8 Implement the software units

VP3 6 A4 Verify the software developed units

11.4.2 Definition of the Proofs of Compliance
In this subsection, we formalize the standards requirements and discover the
overlapping set of formal rules. These rules are used to annotate the
commonality points of the SoPL model to define common proofs of



162 Paper E

Figure 11.2: SoPL model embracing ASPICE SWE.3 and ISO 26262 SUDI.

compliance. Then we define the effects of the rules that apply to the
variability points of the SoPL model and analyse their effects in the common
proofs. The formalization of the rules includes the definition of defeasible
theories, as recalled in Section 11.2.4. For ASPICE SWE.3 (see Table 11.5)
the rules PO2, PO4, PO5 and PO6 (see Table 11.1) can be translated into the
strict rules RA3, RA5, RA6 and RA7 respectively, since these requirements
are indisputable statements that are necessary to achieve for compliance. PO1
and PO7 are also indisputable, but each one can be expressed in a more
granular way, RA1, RA2 and RA8, RA9, respectively. PO3, instead, is a
defeasible rule (RA4), since the note, ”not all software units have dynamic
behaviour to be described”, presented in the requirement, defeats the rule.
This defeasible rule does not have a defeater, so its conclusion is considered
provable, as well as the conclusions of the strict rules.

Table 11.5: Defeasible theories for ASPICE SWE.3.

PO ID Rule Rule description

PO1
RA1 sud→ d. software unit design (sud) is developed (d).

RA2 sud→ su. sud describes software units (su).

PO2 RA3 su→ i. su has defined interfaces.

PO3 RA4 su⇒ db. su has usually described dynamic behavior (db).

PO4 RA5 sud→ v. sud is verified (v).

PO5 RA6 su→ tc. su has established traceability and consistency (bt).

PO6 RA7 sud→ ac. sud is agreed and communicated (ac).

PO7

RA8 sui→ sud. software unit implementation (sui) is based on sud.

RA9 sui→ i. sui is implemented (i).

For ISO 26262 SUDI, a similar analysis is done (see Table 11.6). Hence,
nine strict rules and three defeasible rules have resulted. The defeasible rules
have a defeated rule, namely RI12, which is in favor of the conclusions. For



11.4 Applying SoPLE&Logic-basedCM 163

example, if RI7 is not achieved (sud ⇒ ¬dp) then a rationale is provided
(¬dp→ r). Rules of this type are provable, because their counterargument is
a strict rule. The mapping of the defeasible theories is presented in Table 11.7.
Direct mapping is done for the strict rules CR1 (RA1/RI2), CR2 (RA2/RI4),
CR5 (RA8/RI8) and CR6 (RA9/RI9), since these rules affect the processes in
a similar way. CR3 is the mapping between RA3 (definition of the interfaces)
and RA4 (description of dynamic behavior) to RI6 (description of the internal
design). This mapping is base on the premise that ISO 26262 is not specific
on what the software unit should show as internal design. However, definition
of interfaces and dynamic behavior are defined as properties that shall be
reached by the software unit design (see Table 11.2 - R4). For CR4 a similar
situation occurs, since traceability is considered one of the aspects that have to
be demonstrated in ISO 26262 when verification is carried out (see
Table 11.2 - R5). Hence, the mapping for CR4 is RA5 (software unit is
verified) and RA6 (software unit has established traceability) to
RI10 (software unit design is verified).

Table 11.6: Defeasible theories for ISO 26262 SUDI.

Req. ID Rule Rule description

R1 RI1 sud→ sr. software unit design (sud) is safety related (sr).

R2

RI2 sud→ d. sud is design (d).

RI3 d⇒ n. d is usually implemented by using a notation that depends on the
ASIL and the recommendation level (n).

RI4 sud→ su. sud describes software units (su).

R3
RI5 sud→ fb. sud has described functional behavior (fb).

RI6 sud→ id. sud has described internal design (id).

R4

RI7 sud⇒ dp. sud is implemented by using design principles (dp) that depends on
the ASIL and the recommendation level.

RI8 sui→ sud. software unit implementation (sui) is based on sud.

RI9 sui→ i. sui is implemented (i).

R5
RI10 sud, sui→ v. sud, sui are verified.

RI11 v⇒ m. v is usually done by using a method that depends on the ASIL and
the recommendation level (m).

R6 RI12 ¬n, ¬dp,
¬vm→ r.

If n, dp or m are not applied depending on the ASIL and the
recommendation levels, then rationale (r) is required.

The SoPL model (see Fig. 11.2) is constituted by one trace tSoPL. The
effects of its tasks (tSoPL:<CP1, VP1, CP2, VP2, CP3, VP3>) are determined with the
function Ann (defined in Section 11.2.5) and presented in Listing 11.1.



164 Paper E

Table 11.7: Rules comparison and commonality identification.

SPICE SWE.3 ISO 26262 SUDI Common
Rule

Description
ID Rule ID Rule

RA1 sud→ d. RI2 sud→ d. CR1 Software unit design (sud) is
developed (d).

RA2 sud→ su. RI4 sud→ su. CR2 sud describe software units (su)

RA3 su→ i.
RI6 sud→ id

.
CR3

Internal design is described, including
interfaces and dynamic behaviorRA4 su⇒ db.

RA5 sud→ v.
RI10 sud→ v. CR4

su is verified and traceability
demonstratedRA6 su→ tc

RA8 sui→ sud. RI8 sui→ sud. CR5 su implementation (sui) is based on
sud

RA9 sui→ i. RI9 sui→ i. CR6 sui is implemented (i)

Ann ( tSoPL , CP1 , 1 ) ={CP1}
Ann ( tSoPL , VP1 , 2 ) =Ann ( tSoPL , CP1 , 1 ) U {VP1}
Ann ( tSoPL , CP2 , 3 ) =Ann ( tSoPL , VP1 , 2 ) U {CP2}
Ann ( tSoPL , VP2 , 4 ) =Ann ( tSoPL , CP2 , 3 ) U {VP2}
Ann ( tSoPL , CP3 , 5 ) =Ann ( tSoPL , VP2 , 4 ) U {CP3}
Ann ( tSoPL , VP3 , 6 ) =Ann ( tSoPL , CP3 , 5 ) U {VP3}

Program 11.1: Annotations for the trace tSoPL.

A task determines its state taking its effect and inheriting the previous
effects. Once the states are determined, the obligations in force (rules that
apply to the tasks) are assigned, using the function Force (recalled in
Section 11.2.5). In Table 11.8, common defeasible theories (Table 11.7) are
assigned to the commonality points (CPs) of the SoPL trace tSoPL. In tSoPL,
rules CR1, CR2, CR3 are effective at CP1, meaning that for the software unit
design task (CP1), software unit is designed (CR1), units are described (CR2),
and the internal design, including interfaces and dynamic behaviour is
described (CR3) (Proof 1). Rule CR4 is effective at CP2, meaning that in the
verification of the software design task, the software is verified and
traceability is demonstrated (CR4) (Proof 2). Finally, CR5 and CR6 are
effective at CP3, meaning that in the develop of the software units activity,
implementation is based on design (GR5) and unit implementation is carried
out (GR6) (Proof 3). The obligations triggered by the rules are fulfilled in the
corresponding step, meaning that the obligation cannot be postponed for other
steps. As presented in Section 11.2.5, this means that the commonality points
of the trace tSoPL are compliant with the set of rules presented in Table 11.7.

Standard-specific processes are generated when variability points are



11.4 Applying SoPLE&Logic-basedCM 165

Table 11.8: Applicable rules and obligations in force for tSoPL.

Task,
Step Rule Obligations in force

CP1,1 CR1, CR2, CR3 Force(tSoPL,CP1,1) = {CR1} U {CR2} U {CR3}

VP1,2 (standard-
specific) Force(tSoPL,VP1,2) = Force(tSoPL,CP1,1) U {standard-specific}

CP2,3 CR4 Force(tSoPL,CP2,3) = Force(tSoPL,VP2,2) U {CR4}

VP2,4 (standard-
specific) Force(tSoPL,VP2,4) = Force(tSoPL,CP2,3) U {standard-specific}

CP3,5 CR5, CR6 Force(tSoPL,CP3,5) = Force(tSoPL,VP2,4) U {CR5} U {CR6}

VP3,6 (standard-
specific ) Force(tSoPL,VP3,6) = Force(tSoPL,CP3,5) U {standard-specific}

deployed with specific tasks. ASPICE SWE.3 process is tA:<CP1, CP2, BP7, CP3>,
where VP2 is contributed with BP7. ISO 26262 SUDI process is tI:<CP1, A1a,

CP2, A2a, CP3, A4>, where VP1 is contributed with A1a, VP2 with A2a and VP3
with A4. Table 11.9 shows the influence of the obligations in force for these
tasks.

Table 11.9: Applicable rules for the variability points.

tSoPL tA tI Rules Influence of the obligations in force

VP1 A1a

RI1,
RI3,
RI5,
RI7

For the design of the software units concerning safety
(A1a), the software is safety-related (RI1), the design is
usually implemented by using a notation that depends on the
ASIL and the recommendation level (RI3), the design has
described functional behavior (RI5), and the design is usually
implemented by using design principles that depend on the
ASIL and the recommendation level (RI7).

VP2
BP7 RA7 The software unit design communication (BP7) is done

(RA7).

A2a RI11
The verification of the software unit design concerning safety
(A2a) is done according to methods that depends on the ASIL
and the recommendation level (RI11)

VP3 A4 RI10,
RI11

The verification of the software unit implementation (A4) is
done (RI10) according to methods that depends on the ASIL
and the recommendation level (RI11)

In ASPICE SWE.3, the proof obtained for CP1 (Proof 1), and the one
obtained in CP2 (Proof 2) are not altered, since the variability point (VP1) do
not have any corresponding task in the trace. The rule applied in VP2
(replaced by BP7) is triggered and fulfilled in BP7, so the proof obtained for



166 Paper E

CP3 is not altered. In ISO 26262 SUDI, the proofs obtained in CP1 (Proof 1),
CP2 (Proof 2) and CP3 (Proof 3) corresponds to non-safety related rules,
while the rules that apply to the variability points corresponds to safety-related
rules. Hence, the proofs obtained in VP1 and VP2 adds information to the
trace, and influence the proofs obtained in CP2 (Proof 2) and CP3 (Proof 3)
respectively. In this case, we can conclude that the proof can be partially used.

11.4.3 Lessons Learnt

Our automotive SoPL describes commonality and variability points presented
in ASPICE and ISO 26262, as a sequence of ordered tasks distributed in a
trace. Tasks have assigned states and obligations in force (normative rules)
that produce tasks effects. These effects can influence the tasks’ behaviors in
the trace, and define whether the designed trace is compliant or not with a
given set of rules. Our analysis started with the annotation of the commonality
points of the SoPL with the overlapping set of rules, obtained from the
comparison of the requirements provided by the two standards. These
annotations provide the possibility to derive a common set of proofs of
compliance. However, the states and obligations in force for the tasks that
contribute to the variability points, once the standard-specific processes are
deployed, can affect the proof obtained for the commonality points. Hence,
proofs of compliance can be fully reused or may be partially reused,
depending on the effects produced by the variability points. Fully reused
proofs can be applied to commonality points that are not preceded by a
variability point, or that are preceded by a variability point that either remains
empty after deployment, or its state after deployment does not produce effects
that can be spread out in the trace. Partially reused proofs can be applied to
variability points that are contributed with standard-specific tasks which states
and obligations in force influence the process proofs obtained. Therefore, a
classification of the standard-specific tasks that contribute to the
standard-specific processes is required to understand whether the common
proofs can be fully/partially reused.

11.5 Related Work
Related work regarding increased efficiency via automation and reuse was
already discussed in [4, 5]. Thus, in this paper, we limit our attention to
automated compliance checking, the novel layer added to SoPLE. Automated



11.6 Conclusions and Future Work 167

compliance checking is not a new research area, specially in business
management. An example of a framework that define proofs of compliance by
design is presented in [15], where rules are formalized using logics. However,
these frameworks do not contemplate the reuse of proofs of compliance. A
more closely related work is presented in [16] where business process are
augmented with reusable fragments to ensure process compliance by design.
In this approach, rules are formalized with temporal logics. In our approach,
we seek to establish compliance proofs for safety compliance, using
defeasible logic and deontic logic of violations, instead of temporal logics.
Approaches for reusing proofs are also found in other areas. For example, in
[17, 18], software verification tasks are benefited by the reuse of chunks of
proofs. Our reusable chunks of proofs are instead derived from the
comparison between the set of rules and the process reference model provided
by a normative system.

11.6 Conclusions and Future Work

In this paper, we introduced SoPLE&Logic-basedCM, a novel approach for
confident and efficient process compliance based on the combination of
safety-oriented process line engineering, defeasible logic, and an approach for
compliance by design. We have applied SoPLE&Logic-basedCM to the
automotive domain to illustrate its potential in terms of reuse of proofs. More
specifically, we have limited our illustration to a specific portion of
automotive standards (ASPICE and ISO 26262) and we have shown that sets
of compliance-related proofs can be fully/partially reused.

The formalization of the approach presented in this paper is limited to
process-related activities, and a general view of the deontic notion obligation.
For future work, other process elements, e.g., work products will be
addressed, as well as a broader range or deontic notions classification
(permissions and prohibitions). Further validation of the approach on more
complex processes is also required, as well as the exploration of tools that can
potentially support the automation of our work, like Regorous [19], a
compliance checker, and logic reasoners like SPINdle1 and Deimos2,
programs that are used to compute the consequence of defeasible logic
theories.

1http://spindle.data61.csiro.au/spindle/
2http://www.ict.griffith.edu.au/arock/defeasible/Defeasible.cgi



168 Paper E

Acknowledgment
This work is supported by the EU and VINNOVA via the ECSEL JU project
AMASS (No. 692474) [20].



Bibliography

[1] Rushby, J.: New Challenges in Certification for Aircraft Software. In:
9th ACM International Conference on Embedded Software (EMSOFT).
(2011) 211–218

[2] Gallina, B., Sljivo, I., Jaradat, O.: Towards a Safety-oriented Process
Line for Enabling Reuse in Safety Critical Systems Development and
Certification. In: 35th Annual IEEE Software Engineering Workshop
(SEW). (2012) 148–157

[3] Gallina, B., Kashiyarandi, S., Martin, H., Bramberger, R.: Modeling
a Safety- and Automotive-Oriented Process Line to Enable Reuse and
Flexible Process Derivation. In: IEEE 38th International Computer
Software and Applications Conference Workshops (COMPSACW).
(2014) 504–509

[4] Gallina, B., Lundqvist, K., Forsberg, K.: THRUST: A Method
for Speeding up the Creation of Process-related Deliverables. In:
IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC). (2014)
5D4–11

[5] Gallina, B.: A Model-Driven Safety Certification Method for Process
Compliance. 2nd Int. Workshop on Assurance Cases for Software-
intensive Systems (ISSREW) (2014) 204–209

[6] Hashmi, M., Governatori, G., Wynn, M.T.: Normative Requirements for
Regulatory Compliance: An Abstract Formal Framework. Information
Systems Frontiers (2016) 429–455

[7] Automotive SPICE: Process Assessment/Reference Model (2015)

169



170 Bibliography

[8] ISO 26262: Road Vehicles-Functional Safety. International Standard
(2011)

[9] Lami, G., Falcini, F.: Automotive SPICE Assessments in Safety-Critical
Contexts: An Experience Report. In: IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). (2014) 497–502

[10] Bleakley, G.: How Rational can Help with Compliance to ISO 26262 &
ASPICE. Technical report, IBM Software Group (2014)

[11] SPEM 2.0: Software & Systems Process Engineering Meta-model (2008)

[12] Eclipse Composer Framework: https://eclipse.org/epf/

[13] Antoniou, G., Billington, D., Governatori, G., Maher, M.J.:
Representation Results for Defeasible Logic. ACM Transactions on
Computational Logic (2) (2000) 255–287

[14] Governatori, G., Rotolo, A., Sartor, G.: Temporalised Normative
Positions in Defeasible Logic. In: 10th International Conference on
Artificial Intelligence and Law (ICAIL). (2005) 25–34

[15] Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using
BPMN-Q and Temporal Logic. International Conference on Business
Process Management (BPM) (2008) 326–341

[16] Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F.,
van den Heuvel, W.J.: Business Process Compliance through Reusable
Units of Compliant Processes. In: International Conference on Web
Engineering (ICWE). (2010) 325–337

[17] Reif, W., Stenzel, K.: Reuse of Proofs in software verification. In:
International Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), Lecture Notes in Computer
Science (1993) 284–293

[18] Beckert, B., Bormer, T., Klebanov, V.: Reusing Proofs when Program
Verification Systems are Modified. Long Beach, California, USA (2005)
41

[19] Governatori, G.: The Regorous Approach to Process Compliance.
In: IEEE 19th International Enterprise Distributed Object Computing
Workshop (EDOCW), IEEE (2015) 33–40



[20] AMASS: Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems. http://www.amass-ecsel.eu/








