
Petri Net Based Navigation Planning with Dipole Field and Dynamic
Window Approach for Collision Avoidance

Lan Anh Trinh, Mikael Ekström and Baran Cürüklü

Abstract— This paper presents a novel path planning system
for multiple robots working in an uncontrolled environment in
the presence of humans. The approach combines the use of
Petri net to plan the movement of multiple robots to prevent
the risk of congestion caused by routing several robots into
a narrow region, together with a dipole field with dynamic
window approach to avoid collisions of a robot with dynamic
obstacles. By regarding the velocity and direction of both
humans and robots as a source of magnetic dipole moment,
the dipole-dipole interaction between the moving objects will
generate repulsive forces to prevent collisions. The whole
system is presented on robot operating system platform so
that its implementation can be extendable into real robots.
Experimental results with Gazebo simulator demonstrates the
effectiveness of the proposed approach.

I. INTRODUCTION
Path planning is a core component of a robot for finding

an optimal path from a start to a goal with respect to a
cost function. The path needs to be collision free, i.e. the
robot is able to avoid collisions with static, and moving
objects along its path. Although path planning has been
addressed thoroughly since 1990s [1, 2], many solutions of
the problem has been restricted to a static environment or a
single robot. Recently, new challenges have emerged for path
planning of (semi-)autonomous robots within the Industry
4.0 context [3]. With an example of an automated warehouse,
more advanced features are needed nowadays for robotic
agents to deal with changing environments as well as moving
objects, that introduces some levels of uncertainty into the
path planning problem. In industrial areas, a robot may share
the working space with humans and other robots, leading to
a requirement of cooperation of multiple robots to address
the navigation tasks at a large scale. As autonomous control
allows the robot to have a freedom of movement as well
as a direct interaction between robot and human, there is
a critical need of setting a high safety level of autonomous
robots to prevent any dangerous actions to a user. At the same
time, a robot must complete the task with correct outputs and
within a specified time. Those issues lead to the critical needs
of dependable properties for the path planning algorithm
[4]. The main focuses of those dependability properties are
centered on availability, reliability, and safety with the aim
toward a correct and reliable safe path planning algorithm for
multiple robots and to ensure a safe path planning service to
avoid any unwanted consequences on humans, other robots,
and finally the environment.

*School of Innovation, Design, and Technol-
ogy, Mälardalen University, Västerås, Sweden
anh.lan@mdh.se, mikael.ekstrom@mdh.se and
baran.curuklu@mdh.se

Solutions with the aim of dependable path planning start
with the understanding of the threats to the system depend-
ability which includes failures, errors and faults. A failure
happens when the service provided by a system does not
comply with its specifications. This results in an error, which
affects the services, and will/may cause a fault. This fault is
thus the main root leading to the failure of the system. The
implementation of a dependable system focuses on different
means such as fault prevention, fault removal, fault analysis,
and fault tolerance. Among different approaches, Petri net
(PN) provides a broad solution to address the dependability
of an autonomous system with regards to analyse and solve
conflicts and sharing of resources. Related works of PN for
system modelling and analysis are found by Samanta and
Sarkar [5]Meanwhile, the uses of PN to design autonomous
robots are demonstrated by Yasuda et al. [6], Iocchi et al. [7]
and to implement fault tolerance by Miyagi et al. [8], Lusier
et al. [9]. Moreover, PN has been used with robot operating
system (ROS) to be implemented into real robots by Fabre
et al. [10], which was also applied for collaborative robots
by Lill et al. [11].

The open challenges for development of dependable path
planning of an autonomous robot involves the fact that the
robot must be able to recognise and work with humans,
and/or other robots, in a unstructured and unknown environ-
ment. Currently, in the most widely used robotic framework,
ROS, the navigation stack, including global path planning
and local path planning with dynamic window approach
(DWA) [12], mainly considers humans and other moving
objects as static obstacles. This may lead to slow response
when the robots are to avoid close obstacles. Besides, the
navigation of several robots into one narrow area may make
them to block each other and harder to find the way out from
the area to reach their goals, e.g dead- or live- lock situations.
To address the congestion of routing multiple robots into one
place, a group of robots should proactively define effective
routes to avoid conflicts with each other. As aforementioned
is PN an effective tool in dependable autonomous control
to resolve conflicting problems, the first contribution of this
paper presents a new approach of using PN to plan the
paths of multiple robots with a delay to avoid routing many
robots into a same place to avoid congestion. Moreover, to
address the other issue with considering moving objects as
static obstacles in the conventional local path planning with
DWA, the next contribution of this paper presents a new local
path planning with dipole fields on top of DWA for obstacle
avoidance based on the moving directions and speeds of
dynamic objects.

The rest of the paper is organised as follows. The back-
grounds of PN model, global path planning and local path
planning with DWA are presented in Section 2. The proposed
path planning algorithm based on PN planning and obstacle
avoidance based on DWA and dipole field are demonstrated
in Section 3. Further on Section 4 shows the experiments to
evaluate the proposed system. Finally, Section 5 concludes
the paper with contributions of the paper and future works.

II. BACKGROUNDS

A. Petri Net (PN) Model

PN is defined in mathematical aspect as a bipartite graph
of a set of tuples (P, T,W), where P = {p1, p2, ..., p|P |}
and T = {t1, t2, ..., t|T |} are disjoint sets of places and
transitions, |P | and |T | are the number of elements of P
and T respectively, and W ⊆ (P × T) ∪ (T × P) is a
set of arcs connecting from a place to transition and vice
versa. The arcs that go out from a place to a transition
are named as the input places of transitions. While the
ones running out from a transition to place are the output
places of transitions. The weights are added to the input
and output flows of each transition. With regards to a set
of output weights O and a set of input weights I , PN is
described as a set of five tuples G(P, T,W,O, I). Places
in a PN may consist of a number of marks named tokens.
The number of available tokens at place p is represented by
M(p), and M is marking vector that denotes availability of
tokens at all place p ∈ P . The marking M is expressed as a
vector [M(p1),M(p2), ...,M(pi), ...,M(p|P |)], in which pi
is a place, |P | is the number of places in PN, and M(pi)
is the number of tokens at the place pi. Let O be a two
dimensional matrix of weights O(pi, tj) from the place pi
to the transition tj . I is similarly defined by the weight
I(tj , pi) from the transition tj to the place pi. It is noted
that 1 ≤ j ≤ |T |, where |T | is the total number of transition.
Thus, a change of the marking vector of a transition from
M to M ′ is given by a finite sequence of transitions

M ′(p) = M(p) + I(t, p)−O(p, t),∀p. (1)

It is said that the marking M ′ is reached by the marking M
by firing t. In general, the marking M ′ is reachable from M
by a finite sequence of k transitions σ = ti1ti2 ...tik . With an
initial marking M0, the full description of a PN consists of
six tuples G(P, T,W, I,O,M0). A full graph of all possible
markings and transitions, i.e. a reachability set, is described
by state-space analysis. As the number of vertices and edges
of the state-space graph increase dramatically with regards to
the number of places and transitions, the state-space analysis
is limited to a small PN.

B. Global Path Planning and Theta* Algorithm

In general, the path planning system of an robot is divided
into local path planning and global path planning. The local
path planning controls the movements of a robot within
a local area once the route of the robot to the goal has
been established. Meanwhile, the global path planning needs
information regarding the environment e.g. as a scanned map

beforehand to generate a global path from a starting point
to a desired goal. However, the global path planning mainly
applies for a static environment. This means that in order to
compute the global path to a goal for the robot, the presence
of the other robots and human, i.e. dynamic objects, are not
taken into account, but only static obstacles in the working
space are concerned. Conventionally, the algorithms used for
planning the global paths are graph/map/grid search-based
algorithms. The Dijkstra algorithm [1] and its extension
A* [2] are well-known approaches for searching in a map.
Recent researches in this field has lead to any-angle path
planning algorithms, which are able to find an optimal path
in any direction. Theta* [13] has realised an any-angle path

Algorithm 1: Theta* algorithm
Input: sstart and sgoal
Output: The shortest path from sstart to sgoal by a set

of line segments
1 open← ∅, closed← ∅, g[sstart]← 0;
2 parent[sstart]← sstart;
3 open.insert(sstart, g[sstart] + h[sstart]);
4 while open 6= ∅ do
5 s← open.pop();
6 if s = sgoal then
7 return ”path found”;

8 closed← closed ∪ {s};
9 for s′ ∈ neighbor(s) do

10 if s′ 6∈ closed then
11 g[s′]←∞;
12 parent[s′]← NULL;

13 gold ← g[s′];
14 if LOS(parent[s], s′) then
15 fp = f(parent[s]) + h(parent[s], s′) ;
16 if fp < f [s′] then
17 parent[s′]← parent[s];
18 f [s′]← fp;

19 else
20 if f [s] + h(s, s′) < f [s′] then
21 parent[s′]← s;
22 f [s′]← f [s] + h(s, s′);

23 if g[s′] < gold then
24 if s′ ∈ open then
25 open.remove(s′);

26 open.insert(s′, g[s′] + h[s′]);

27 return ”no path found”;

algorithm by adding a line-of-sight detection function to each
search iteration. Unlike A* or Dijkstra, the path found by
Theta* is a connection of line-of sight nodes so that the
generated path is smoother, realistic and has fewer turns.
With regards to those advantages of Theta*, it has been used
as the main global path planning in this paper. The roles of
the global path planning with Theta* in the whole system

are described in more details in Section III-A. The pseudo
codes of the Theta* is described in Algorithm 1.

C. Dynamic Window Approach

Dynamic window approach (DWA) was introduced by Fox
et al. [12] to use multiple constraints of velocity limits, of
acceleration limits, and of following the predefined global
path into the local path planning. The local searching space is
reduced to dynamic windows in a three-step progress. Firstly,
DWA considers the robot’s trajectories as circular trajectories
or curvatures determined by a set of translation and rotation
velocities (vt, vr). Secondly, only admissible pairs of (vt, vr)
corresponding to their trajectories are considered if the robot
is able to move forward without colliding with obstacles.
Finally, the dynamic window limits the admissible velocities
to those that the robot can safely reach to the goal in a
short time with optimised accelerations. To do so a following
objective function given by equation (2) is used to score the
admissible velocities. Only the pair of (v∗t , v

∗
r) is selected if

the objective function reaches to maximum,

(v∗t , v
∗
r) = argmax

(vt,vr)

F (vt, vr) = argmax
(vt,vr)

f
(
αH(vt, vr)+

βD(vt, vr) + γV (vt, vr) +
∑
i

ωiΩi(vt, vr)
)
. (2)

In this equation, H(vt, vr) is a goal heading which is max-
imised if the robot directly moves towards from the starting
point to the goal; D(vt, vr) is a distance from the robot to the
closest obstacles on the robot’s trajectory; V (vt, vr) is the
forward velocity; and Ωi(vt, vr) are optional cost functions.
The smooth function f(·) is used to smoothen the weighted
sum of the above components, α, β, γ and ωi are the weight
of each component.

III. PETRI NET PLANNING AND OBSTACLE
AVOIDANCE WITH DIPOLE FIELD AND DWA

A. Overall System

The whole system is built with three main components
(Fig. 1). The global path planning utilises the Theta* al-
gorithm to search for the path to the goal for each robotic
agent. The paths are formulated as a set of line segments as
the typical output of the Theta* algorithm and shared among
the team of robots within the working space. By checking
the intersections of the planned paths, the PN planning is
constructed to control the movements of the robots when
they enter intersection regions. The DWA-based local path

Fig. 1. The overall architecture of the path planning system.

planning realises moving obstacle avoidance with a dipole

field and drives the robots to follow the configured global
path to the goal with constraints on the maximum and
minimum velocities and accelerations. In the case that one
of the robots is getting stuck, the global path planning is
reactivated to generate a new path from current position to
the goal and PN planning is updated with a new moving
control plan.

B. Petri Net Planning

The working space is divided into non-overlapping regions
called cells where the most simple yet effective way to do
this division is to use a grid layout to segment a space with
vertical and horizontal cuts. The area of a partition cell is
assumed to be small so that not many robots are allowed to
enter the cell at any same time to avoid congestion. In this
work, only one robot is granted permission to pass through
a cell at an instance of time, however in general this solution
can be extended to allow more than one robot within a cell.
The realisation of the path planning is actually the step-
by-step moving of a robot from one cell to another along
the predefined trajectory until the robot reaches its goal.
Considering a cell as a space resource allocated to a single
robot each time, the PN model is constructed by Algorithm
2 to synchronise the movements of multiple robots. In
Algorithm 2 (also in Fig. 2), a place of PN is correspondent
to a cell and each transition represents a physical connection
between two adjacent cells.

Fig. 2. An example of creating a control place to synchronise the
movements of two robots. The places assigned for the moving paths of robot
1 and robot 2 are named by P1 {index} and P2 {index} respectively.
The two places P1 3 and P2 3 point to the same area (a cell) thus a control
place C is made to manage two robots to pass through the intersection.

The whole system is organised in a centralised manner
where a server is used to create PN model for each robot
and share information with all robots via communication
channels. Once the above PN model is built, the movement of
each robot is controlled by firing the enabled transitions and
following a sequence of places visited by the token assigned
to that robot. Each robot is linked to one token given in
Line 6 of Algorithm 2. The movement controlling algorithm
for a team of robots is implemented by the Algorithm 3.
The PN planning mainly deals with the congestion of robots
by preventing several robots to be navigated into a narrow
cell at the same time. The prerequisite requirement for this
control with PN is that the global planner paths are shared

by the robots. However, this is not applied for humans and
other moving obstacles if they do not share their moving
trajectories. To avoid those objects, the local path planning
with DWA and dipole field is applied.

Algorithm 2: Construction of PN model
Input: A team of robot with initial positions, a set of

global paths planned for every robots of the
team Ξ = {ξ1, ξ2, ..., ξn}, and the working space

Output: The PN model (P, T,W,M0) of the team
1 Partition the working space into non-overlapping cells;
2 Let P ← ∅, T ← ∅, W ← ∅, M0 ← 0;
3 for ξi ∈ Ξ do
4 Find a set of cells p1i , p

2
i , ..., p

ni
i which are crossed

by ξi;
5 Add places to PN P = P ∪ {p1i , p2i , ..., p

ni
i };

6 Add one token into the starting place M0[p1i] = 1;
7 for j ← 1 to ni − 1 do
8 Add transition ti,j to T;
9 W := W ∪ {(pj , ti,j), (ti,j , pj+1)};

10 Find all cells C = {c1, c2, ..., cnC} that are passed by at
least two paths;

11 for ci ∈ C do
12 Add a control place into PN P = P ∪ {ci};
13 Add one token into this control place M0[ci] = 1;
14 Add transitions to connect ci with related places

with an example given in Fig. 2;

C. Dipole Field for Obstacle Avoidance

The dipole field has been introduced by the authors for
obstacle avoidance with moving human or robotic agents [4].
In this method, the magnetic field B of dipole moment vector
m generated by an agent is given by

B(m,d) = ρ(3(m · d̂)d̂−m)/d3 (3)

where d is the distance vector, d = ‖d‖, d̂ = d/‖d‖,
in which ||.|| denotes the norm of the vector, and ρ is a
constant. The magnetic moment m is designed to be aligned
with the moving directions of the agent and its magnitude
is proportional to the speed of the agent. An agent with the
magnetic moment mj within the magnetic field Bk of mk

would be affected by the force

Fjk = ∇mj ·Bk = ρ∇
(
mj ·

3(mk · d̂)d̂−mk

d3

)
(4)

where the gradient∇ presents the change of potential mj·Bk

generated per unit distance, ρ is a constant. To integrate the
dipole field into DWA, it is noted that the potential changes
reflect the repulsive forces that prevent agents to collide with
each other. Therefore, the new term Ωjk(vt, vr) = −mj ·Bk

is added into Equation (2) to weight the trajectories based on
the possibility of collisions. The dipole field term is removed
if Ωjk(vt, vr) < 0 (not create repulsive forces), and the pair
(vt, vr) and its trajectory are also removed if they will cause

Algorithm 3: Moving controls
Input: The Petri net model (P, T,W,M0)
Output: Step-by-step moving strategy for each robot of

the team
1 Let M ←M0;
2 Based on the target goals, define the ending marking

Me;
3 while M 6= Me do
4 Find all enabled transitions Ṫ ⊆ T ;
5 for t ∈ Ṫ do
6 Allow a robot to move if its related token is

fired into a new place;
7 Use local obstacle avoidance while the robot is

on the moving way to the next place;
8 Time of arrival of the token to the next place is

updated by the moving time of the robot;
9 Update the marking M by firing t,

M ←M +W+(t)−W−(t);

the collisions with another robot or moving objects with
regards to the definition of velocity obstacles introduced by
Fiorini and Shiller [14].

IV. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

A. ROS-based Implementation

The system presented here is implemented in the Robot
Operating System (ROS) platform [15] with version Kinetic
Kame on Ubuntu 16.04 operating system. As a consequence,
the evaluation is performed with the Gazebo simulator (Fig.
3) which provides a realistic simulation for ROS-based robots
in both indoor and outdoor environments. The simulated
robotic agents are Husqvarna research platform (HRP) [16]
mowers with an extra depth sensor, and a LIDAR laser
scanner. The robots in the same working space share their lo-
cations and global path information through ROS messages.
The human actor plugin of Gazebo simulator is customised
to allow controlling the moving trajectories of a human
subject by either repeated or random patterns. The blob-
based detection using the laser scanner developed by the
SPENCER project [17] is applied to track the trajectories
and velocities of moving human subjects and obstacles in
the working space. The PN planning module is programmed
in Python with the support of the SNAKES library [18].
Meanwhile, the global path planning with Theta* algorithm
and the obstacle avoidance with dipole field on DWA are
implemented in C++.

B. Crossing Scenario of Two Robots

The first experiment evaluates the effectiveness of using
PN control to avoid collisions of two robots when their
planned global paths pass across each other. In Fig. 4.A, the
size of the cell in PN planning is configured to 0.2m, close
to the radius of the circular footprint of the robots, so that

Fig. 3. The Gazebo world with HRP robots and humans in the simulation.

the obstacle avoidance is mainly based on dipole field with
DWA. Meanwhile, in Fig. 4.B, that size is configured to 2.5m
and the PN control is activated to let one robot stop moving
and wait until the second robot pass through the intersection
area before moving again. Although no collisions happen,

(A) (B)
Fig. 4. The crossing scenario of two robots, (A) the cell size is small so
that PN planning is not applied, (B) obstacle avoidance where PN planning
gets involved. The thick solid lines visualise the global paths created by
Theta*. The thin lines present the actual trajectories of robots under local
path planning. The moving trajectory of Robot 1 is shown in red, while that
of Robot 2 is green. The green coloured robots indicate the target locations.

two robots need to travel longer paths in the former case, as
shown in Table I, to avoid the collisions with each other. The
overall moving time of the two robots to reach their goals is
55s (simulation time from ROS) without PN controls and is
reduced to 52s in the other case. A PN to synchronise the
movements of two robots created by SNAKES in the later
case is visualised in Fig. 5.

TABLE I
TRAVELLING PATH LENGTHS (IN METERS) OF TWO ROBOTS.

Robot 1 Robot 2
No PN Planning 8.12 10.77

PN Planning 7.45 10.47
Percentage Change 8.25 % 2.79%

C. Crossing Scenario of Three Robots

A similar experiment to the one presented in Section IV-
B is performed below with the presences of three robots(6).
With PN planning, the travelling paths of the robots are
shorter as given by Table II, demonstrating the effective-
ness of the proposed approach. Also, with PN the overall

Fig. 5. Generated PN to control the movements of two robots. The
places are represented by ovals while the transitions are with rectangles.
P1 {cell index}, P2 {cell index}, and C {cell index} are of Robot
1, Robot 2, and of control places respectively.

travelling time of all robots is 54s, smaller than that of two
robots, 60s, when PN is not used. A part of the PN control
(in Fig. 7) consists of the control places to synchronise the
movements of two robots and of three robots to pass through
an intersection region.

TABLE II
TRAVELLING PATH LENGTHS (IN METERS) AND TIME (IN SECONDS) OF

THREE ROBOTS .

Robot 1 Robot 2 Robot 3
No PN Planning 12.60 10.63 15.61

PN Planning 12.41 10.60 14.49
Percentage Change 1.59 % 0.28% 7.17%

D. Scenario of Robots and Humans Sharing Working Space.

Different to the two previous experiments, in this section,
two human actors are added in to the Gazebo world (Fig.
3). The trajectories of three robots are depicted in Fig. 8.
Only one robot, green trajectory, stops to wait for the robots
to cross the intersection. The other two robots, red and blue
trajectories, need to turn to avoid collisions with humans and
other robots. Due to the obstacle avoidance with dipole field
and DWA, there are no collisions between human and robots
nor among robots in the whole experiment.

(A) (B)
Fig. 6. The crossing scenario of three robots, (A) the PN planning is not
applied, (B) the PN planning is used. The moving trajectories of Robot 1,
Robot 2, and Robot 3 are presented by red, green, and blue respectively.
The green colored robots indicate the target locations.

Fig. 7. Generated PN to control the movements of three robots. Only a
small part of the full PN is shown here with the same notations as given in
Fig. 5.

V. CONCLUSIONS

This paper has introduced a novel path planning algorithm
for multiple robots using PN in combination with obstacle
avoidance with dipole field and DWA. The experimental
results with Gazebo simulator have revealed that the PN
control is able to synchronise the movements of multiple
robots passing through the intersection, which helps shorten
the travelling paths of the robots. Meanwhile, the dipole
field implemented on DWA is able to advance the local
path planning with an ability to avoid moving humans
and other robots in the shared workspace. Using a grid to
divide working space as presented in this paper leads to
sparse PN with many places to present the moving path
of a robot. Meanwhile, only few important places close to
the crossing areas of robots should be taken into account.
Therefore, future work will focus on the optimisation of the
PN presented in this approach.

ACKNOWLEDGMENT

The research leading to the presented results has been
undertaken within the research profile DPAC - Dependable
Platform for Autonomous Systems and Control project,
funded by the Swedish Knowledge Foundation.

Fig. 8. Moving trajectories of three robots to reach their goals and to avoid
collisions with humans and each other.

REFERENCES

[1] E. W. Dijkstra, A note on two problems in connexion with graphs,
Numerische Mathematik, vol. 1: pp. 269271, 1959.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the
heuristic determination of minimum cost paths, IEEE Transactions on
Systems Science and Cybernetics SSC4, vol. 4, no. 2, pp. 100107,
1968.

[3] G.-Z. Yang et al., The grand challenges of Science Robotics, Science
Robotics, vol. 3, eaar7650, 2018.

[4] T. LanAnh, E. Mikael, and C. Baran, Toward shared working space
of human and robotic agents through dipole flow field for dependable
path planning, Frontiers in Neurorobotics, vol. 12, 2018.

[5] B. Samanta, and B. Sarkar, Application of Petri nets for systems
modeling and analysis, OPSEARCH, 2012.

[6] G. Yasuda, Discrete event behavior-based distributed architecture
design for autonomous intelligent control of mobile robots with em-
bedded Petri nets, Advances in Chaos Theory and Intelligent Control,
Springer, vol. 37, 2016.

[7] L. Iocchi, M. T. Lazaro, L. Jeanpierre, A-I. Mouaddib, and H. Sahli,
COACHES-Cooperative autonomous robots in complex and human
populated environments, LNCS Springer, 2015.

[8] P. E. Miyagi, and L. A. M, Riascos, Modeling and analysis of fault-
tolerant systems for machining operations based on Petri nets, Journal
of Control Engineering Practice, vol. 14, 2006.

[9] B. Lussier, A. Lampe, R. Chatila, F. Ingrand, M. O. Killijian, and
D. Powell, Fault tolerant planning: towards dependable autonomous
robots, Research Report, LAAS-CNRS, 2015.

[10] J-C. Fabre, M. Lauer, M. Rot, M. Amy, W. Excoffon, and M.
Stoicescu, Towards resilient computing on ROS for embedded ap-
plications, 8th European Congress on Embedded Real Time Software
and Systems (ERTS), 2016.

[11] R. Lill, and F. Saglietti, Model-based testing of cooperating robotic
systems using coloured Petri nets, ERCIM/EWICS Workshop on
Dependable Embedded and Cyber-physical Systems, 2013.

[12] D. Fox, W. Burgard, and S. Thrun, The dynamic window approach
to collision avoidance, IEEE Robotics and Automation Magazine, pp.
23-33, 1997.

[13] A. Nash, K. Danial, S. Koening, and A. Felner, Theta*: Any angle
path planning on grids, Journal of Intelligent Robot System, vol. 39,
pp. 533-579, 2010.

[14] P. Fiorini and Z. Shiller, Motion planning in dynamic environments us-
ing velocity obstacles, The International Journal of Robotics Research,
vol. 17, no. 7, pp. 760772, 1998.

[15] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A. Y. Ng, ROS: An open-source robot operating system.
In Proceedings of the open-source software workshop, 2009.

[16] https://github.com/HusqvarnaResearch/hrp.
[17] T. Linder, S. Breuers, B. Leibe, and K. O. Arras, On multi-modal

people tracking from mobile platform in very crowded and dynamic
environments. In Proceedings of the IEEE international conference on
robotics and automation, pp. 5512-5519, 2016.

[18] Franck Pommereau, SNAKES: a flexible high-level Petri nets library,
Proceedings of PETRI NETS’15, LNCS 9115, Springer 2015.

