
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Lightweight Consistency Checking for
Agile Model-Based Development in

Practice
Robbert Jongelinga Federico Ciccozzia Antonio Cicchettia

Jan Carlsona

a. Mälardalen University; School of Innovation, Design and Engineering;
Västerås, Sweden

Abstract In model-based development projects, models at different ab-
straction levels capture different aspects of a software system, e.g., specifi-
cation or design. Inconsistencies between these models can cause inefficient
and incorrect development. A tool-based framework to assist developers
creating and maintaining models conforming to different languages (i.e.
heterogeneous models) and consistency between them is not only important
but also much needed in practice. In this work, we focus on assisting
developers bringing about multi-view consistency in the context of agile
model-based development, through frequent, lightweight consistency checks
across views and between heterogeneous models. The checks are lightweight
in the sense that they are easy to create, edit, use and maintain, and since
they find inconsistencies but do not attempt to automatically resolve
them. With respect to ease of use, we explicitly separate the two main
concerns in defining consistency checks, being (i) which modelling elements
across heterogeneous models should be consistent with each other and (ii)
what constitutes consistency between them. We assess the feasibility and
illustrate the potential usefulness of our consistency checking approach,
from an industrial agile model-based development point-of-view, through
a proof-of-concept implementation on a sample project leveraging models
expressed in SysML and Simulink. A continuous integration pipeline hosts
the initial definition and subsequent execution of consistency checks, it is
also the place where the user can view results of consistency checks and
reconfigure them.

Keywords Consistency checking; Agile model-based development; Multi-
view modelling.

Robbert Jongeling, Federico Ciccozzi, Antonio Cicchetti, Jan Carlson. Lightweight Consistency Checking
for Agile Model-Based Development in Practice. Licensed under Attribution 4.0 International (CC BY
4.0). In Journal of Object Technology, vol. 18, no. 2, 2019, pages 11:1–20.
doi:10.5381/jot.2019.18.2.a11

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2019.18.2.a11
http://dx.doi.org/10.5381/jot.2019.18.2.a11

2 · Robbert Jongeling et al.

1 Introduction

The Model-Based Development (MBD) paradigm holds the promise of improving pro-
ductivity of the development process by promoting models as core artifacts, particularly
in early development phases, i.e., specification and design [Sch06]. Further, models are
also used for advanced development activities such as simulation and code generation.
Besides, in industrial contexts, models as main project artifacts play an important role
in documentation and communication between different development teams [ST18].
Models are becoming critical assets for development of industrial systems and software,
not only within single projects but over several projects through model reuse. In
modern industrial MBD practice, software systems are modelled through multiple
views, using so-called multi-view modelling [CCP19].

Views are represented by heterogeneous models, i.e., models conforming to different
modelling languages (often created with different tools, which complicates consistency
checking). Usually, these views are exploited by different teams and for different
aspects of development. Consider the context shown in Figure 1, where a system
model, created by system designers to describe architectural matters, is refined into a
set of software models by the software designers. In many cases, models across different
views are closely related and they may partially overlap since they describe the same
parts of a system. The use of multiple (often partially overlapping) views requires a
careful checking and maintenance of consistency among them. Consistent models are
in fact essential to ensure a coherent design as well as efficiency and correctness in the
development process. While complete consistency (at any time in the development)
may not be achievable or desirable, lingering inconsistencies can snowball into serious
issues if not identified in early phases of development. A way to prevent this is to notify
the developer about inconsistencies between models soon after their introduction, by
means of consistency checking.

Consistency checking within a model (i.e. intra-model consistency), or between
models conforming to the same modelling language, is often available in modelling tools.
We focus on checking inter-model consistency between heterogeneous models, which is
a more complex endeavour for several reasons. Firstly, inter-model consistency often

System View

Software View Software model
(e.g. Simulink)

System Model
(e.g. SysML)

Developer

Commit changes
to VCS Build Consistency

Checking
Create new model

iterations

CI Pipeline Developer

Inspect
results Ignore checks

Repair
inconsistencies

Configure
consistency

checks

Software model
(e.g. UML)

Other possible consistency relations
Consistency investigated in our proof-of-concept

Figure 1 – Illustrating the scope of our approach, a tool performing inter-model consistency
checking between heterogeneous models and notifying the developer about inconsisten-
cies.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 3

requires the ability to interact with a set of different modelling tools and processes in
an industrial MBD context. Changes in this ecosystem are hard to make. Replacing a
modelling tool to be able to perform inter-model consistency checks is often not feasible
and any additional tool should not interfere with the existing ecosystem. Similarly,
existing development processes are not easily changed, additional actions would be
performed reluctantly in the best case, or skipped in the worst case, if they disrupt
existing processes. Secondly, when consistency checks require a steep learning curve
or excessive effort to create or maintain, the intended users may be discouraged from
using them in the first place. Existing approaches, e.g. those based on Triple Graph
Grammars [EEH08] or link-models [FWKVH16], are powerful but complex, hence
requiring considerable effort to define and maintain consistency checks.

The context of this research is represented by an academia-industry collaboration
called Software Center1 and composed of 12 large companies and 5 universities. Among
our industrial partners in Software Center, there is a clear trend of model-based
development going agile. Very short cycles, typical of agile development, complicate
consistency checking, especially if it requires a large effort in defining, maintaining and
executing consistency checks. A consequence is that there is a need for a lightweight
consistency checking approach. Lightweight means that it shall infringe minimally
on existing development processes and tools, but aid developers in easily monitoring
inter-model consistency. This kind of approach is currently lacking and much desired
by practitioners.

In this paper, we show an application of consistency checking between heteroge-
neous models. We motivate requirements for a lightweight approach in Section 2,
present a generic approach that satisfies these requirements in Section 3, and show an
implementation of this approach in Section 4. Limitations and potential extensions to
our approach are discussed in Section 5, a relevant portion of the extensive related
work about consistency management is discussed in Section 6, while conclusions and
some prospects of future work are included in Section 7.

2 Scope

We have already introduced the need for lightweight consistency checking. This section
describes further our target industrial MBD context. From it, we derive a set of
requirements for a lightweight consistency checking approach that is useful and usable
in practice.

2.1 Industrial context of consistency checking

Multi-view modelling refers to a practice in which a system is designed using multiple
models (each of which representing a specific modelling view), potentially created in
different tools and described by means of different languages [BBCW17]. Different
models may describe the system under development, or just part of it, at different
levels of abstraction and from different stakeholder perspectives, such as requirements
engineer, system designer, or software developer. Yet, these models are commonly not
disjoint, since they describe (parts of) the same system. There is often an explicit
overlap, where multiple models describe, in the same or different levels of detail, the
same parts of the system.

1www.software-center.se

Journal of Object Technology, vol. 18, no. 2, 2019

www.software-center.se
http://dx.doi.org/10.5381/jot.2019.18.2.a11

4 · Robbert Jongeling et al.

Kolovos et al. [KPP08] classify the relationships between models that induce this
overlap, of these, the most relevant in industrial practice are “uses”, “refines”, “com-
plements”, “alternative for”, and “aspect of”. Due to the nature of these relationships,
they are highly correlated to the structure of the models. Kolovos et al. [KPP08] go
on to classify types of inconsistencies that can occur between overlapping models, the
ones relevant to us are “incompleteness”, “contradiction”, “misuse”, and “redundancy.”
Intuitively, a comparison of the structure of two overlapping heterogeneous models
would show these types of inconsistency at a glance. While these relationships can
occur between any pair of models, in our industrial context, we are primarily inter-
ested in consistency between models across different levels of abstraction, i.e., vertical
inter-model consistency [HKRS05].

For example, let us consider a system model containing a SysML block B with
two ports, P1 and P2. During system specification, the system designer might model
parts of the system as a “black box”, i.e., stop modelling at this level of abstraction
and only care about the interfaces between blocks. Software designers on the other
hand, as part of the system design, would model this as a “white-box”, down to a more
detailed level. They might, for instance, create a Simulink model S that describes
B in more detail, with input and output ports corresponding to P1 and P2, and
with additional details not included in B. This type of view relation between models
S and B is commonly called refinement from S to B, or abstraction from B to S,
respectively [PTQ+13]. Other examples of these refinement relations include the one
between a SysML model and an EPLAN2 model to capture hydraulic schematics and
between a SysML model and a Modelica model capturing the control system and
dynamic behaviour, as exemplified in [SKSP10].

Figure 1 shows an overview of an industrial MBD context for which our proposed
consistency checking is intended. Model inconsistencies across views, and thereby
across e.g. specification, design, and implementation, complicate the development and
evolution of systems. Inconsistencies shall never uncontrollably spread through the
system design and one way to avoid this issue is by introducing consistency checks
to support developers in identifying, at an early stage, possible inconsistencies in
the system under development. Therefore, as shown in Figure 1, the development
team is aided, during development and evolution of the architectural and software
models, in keeping these models consistent through lightweight checks that indicate
discrepancies in the structures of the created models. Note that in the different views,
several heterogeneous models could exist, for example UML models in the software
view (as shown in Figure 1). We highlight the generic applicability of our approach by
choosing different languages in the example shown in Section 4.

To summarize, usable consistency checking, to ensure that models express overlap-
ping concepts from different point of views without contradicting each other [PBO07],
is pivotal for multi-view modelling approaches to be efficient. For industrial adoption,
tool support is vital, too. Next, we elaborate on which requirements an industrial
application of such a consistency checking mechanism entails.

2.2 Requirements

Since models conforming to different languages are typically designed using different
tools and ensuring consistency is often a manual task, inconsistencies between them
could remain unnoticed for considerable time during development. This is particularly

2https://www.eplanusa.com/us/home/

Journal of Object Technology, vol. 18, no. 2, 2019

https://www.eplanusa.com/us/home/
http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 5

true when models are created in different views and for different aspects of the devel-
opment. Let us exemplify in the context shown in Figure 1. During the specification
and design of a car, a system model denotes the overall design of the car and more
detailed models are designed to describe software, electronics, braking system, etc. A
possible inconsistency could be introduced between the structural model, conforming
to SysML, and the refining functional model, conforming to Simulink, that fails to
refine a particular block of interest as defined in the structural model. We aim to
support the checking of vertical consistency between heterogeneous models in cases
where models are related by one of the aforementioned relations and a certain overlap
in the structure of the models exists. As already mentioned, notifying developers of
possible inconsistencies of this type is considered as very helpful in industrial practice,
given the complexity of the systems and the distribution of the development efforts.

Overlaps causing possible inconsistencies are, in most cases, not one-to-one relations
between entire models, nor between model elements at the same granularity level.
Rather, since different models describe the same parts of the system at different
levels of abstraction, the overlap is more likely to spread across the different levels of
granularity, e.g. an entire model refining a subsystem, or a package of multiple blocks
refining a model. For example, in the case of SysML and Simulink models describing
the same system, a Simulink subsystem might not map one-to-one to a SysML block,
but rather the SysML block might be refined via an entire Simulink model, containing
several subsystems. Our approach allows the definition of consistency checks between
related model elements across different languages and granularity levels. Since model
elements may represent complex sub-models (a model element being the container
root of a sub-tree of contained model elements), our approach should be able to
recursively execute consistency checks too, to account for hierarchical compositions
and containments across models.

The need for consistency checking becomes more pressing when companies adopt
agile multi-view modelling, in particular, when the development includes continuous
integration (CI). CI refers to the practice in which developers integrate their work
frequently, multiple times per day, in a shared repository [FF06]. In this context,
inconsistencies between heterogeneous models are easy to overlook but nevertheless
important to identify as soon as possible, to prevent them from rapidly spreading to
related artefacts. Agile development implies that models are developed in short itera-
tions and in parallel with other models. Consequently, any of the overlapping models
can be seen as anticipating changes in the others at any time during development, e.g.,
the system model may not yet contain concepts already described in software models
and vice versa. In these settings, inconsistencies are inevitable and almost required,
since forbidding them would hinder the concurrent and incremental nature of agile.
Automatic resolution is undesirable too, since in most cases it can not be determined
which of the involved models should be reconciled in a scenario where any can be
anticipating the others. Moreover, temporary inconsistencies are sometimes required
to allow for particular development activities [NEFE03]. Therefore, we want to allow
developers to choose if and how to act on detected inconsistencies. For this reason, we
propose a consistency checking approach that identifies and indicates inconsistencies
to the developers, without enforcing their resolution.

The frequency by which inconsistencies are presented to the developer, if not
on-demand, is a sensitive matter: if too frequent, it becomes annoying, if too seldom,
it becomes irrelevant. The CI pipeline provides a middle-ground, where inconsistencies
can and should be presented at the time of pushing changes to the shared repository.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

6 · Robbert Jongeling et al.

Table 1 – Industrial practice (left) and the corresponding requirements (with ID) they
entail (right).

During development, models are: So, consistency checks should:
Created in different languages and tools. R1. Check inter-language consistency.
Partly overlapping. R2. Compare the structure of models.
Related by refinement or equivalence at
between model elements.

R3. Allow consistency definition across
model elements at different granularity.

Purposefully, temporarily, inconsistent. R4. Not attempt automatic resolution.
Changed continuously. R5. Be executed frequently.
Created in complex environments. R6. Have a minimal impact to the ex-

isting environment.
Created in complex processes. R7. Be easy to create, use and maintain.

Furthermore, it provides an environment independent of any particular modelling tool,
where to configure consistency checks and view their results.

Industrial MBD practice typically involves many different tools, modelling lan-
guages, and development processes. Often, techniques fail because the process view is
not taken into account. For example, because for the introduction of consistency checks,
large changes to this environment, or to existing development process, are undesirable.
Therefore, our approach should have a small footprint, i.e., be a minimal addition
to existing MBD environment and a minimal added effort in existing development
processes and ways of working. We aim for the application of consistency checks in
an agile MBD process and in particular in a CI pipeline, so we must also minimize
their interference with the developer flow. Consistency checks should thus also be
lightweight with respect to the required effort to create, maintain, and use them. The
checks themselves should be frequently executed, applicable to multiple languages and
allowing for checking consistency across granularity and abstraction levels.

Table 1 summarizes the requirements described in this section and their motivation.
Our goal is to provide an approach, and tool support, for detection and notification of
inter-model inconsistencies, across heterogeneous models and in a CI pipeline for agile
MBD projects. We focus on structural equivalence between model elements or parts
of models, as well as for structural refinement between model elements and parts of
models.

3 Our consistency-checking approach

In this section we outline the constituents of our approach for checking consistency
between models expressed in different views and languages.

The types of consistency interesting for the developer depend on the involved
modelling languages and the system under development. Hence, the meaning of
consistency cannot be decided a priori, but should rather be specified by the person
defining the consistency checks. In some existing consistency checking approaches, the
meaning of consistency is captured in an intermediate translation, like a case by case
dictionary, formally defining how to compare model elements between different models
(and languages). An example of fixed medium to express these ‘dictionary entries’
is Triple Graph Grammars (TGGs) [EEH08]; this and other related mechanisms are
discussed in more detail in Section 6.

In these approaches, each dictionary entry (mapping) describes two types of

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 7

information. The first maps meta-model elements between different languages and
how to check consistency between them. The second denotes model elements, across
heterogeneous models, between which consistency should be checked. The user is
expected to define both for each entry. In our approach, we propose to simplify the
task of creating these entries by splitting the two information types as follows.

Mappings between meta-model elements across different languages and the defini-
tion of the various kinds of consistency that can be checked (e.g., name equivalence)
are described in language3 consistency mappings. Mappings of model elements, across
heterogeneous models, between which consistency should be checked and which specific
kind of consistency to check are described in model consistency mappings. The user is
only concerned with declaring and maintaining model consistency mappings, while
the labor invested in creating language consistency mappings is limited to a one-time
effort, unless the language undergoes changes. This makes the usage of our approach
lightweight. Since we are dealing with heterogeneous models, in order to be able to
compare them, and thereby check consistency, we need to represent them in a common
notation.

A consistency check CC is composed of one language consistency mapping LCmap

and one model consistency mapping MCmap . The remainder of this section presents
LCmap and MCmap in detail and shows an overview of all the steps required for the
definition and execution of consistency checks.

3.1 Language consistency mapping

A language consistency mapping LCmap consists of:

(1) a relation between different languages (at meta-element level), and

(2) the definition of consistency types.

As mentioned before, we aim at checking consistency by comparing models structure
and their hierarchical nature. To structurally compare two heterogeneous models, we
need to bring them to a common notation that highlights their structure. We opted
for a tree-based notation since it permits to capture structures, and hierarchies, in a
convenient and compact way. Furthermore, it is generic enough to represent models
conforming to, potentially, any modelling language that entails structural modelling in
a hierarchical fashion. Since we address in this case specifically comparisons of model
structures, a tree structure suffices. In more general cases, more generic structures
would be more appropriate. A tree is an abstract representation of a non-empty set of
model elements, which precisely reproduces the model hierarchical structure. Model
elements become nodes.

For example, in the case of Simulink models, blocks, subsystems and ports can
be mapped to tree nodes, together with their hierarchical structure, whereas the
operations inside blocks are not. Figure 2 shows an example of tree representation
of a Simulink model, where “distiller” contains a subsystem “Distiller”, which in turn
contains subsystems “Heat_Exchanger” and “Boiler”, which are in that hierarchy
mapped to nodes in the tree.

Nodes inherit names from respective model elements and they are assigned an
abstract type for comparison purposes (e.g., a Simulink inport and a SysML flowport
become nodes of type ‘port’). Types can be leveraged to check consistency in cases

3Note that in the paper we use ‘language’ and ‘modelling language’ interchangeably as synonyms.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

8 · Robbert Jongeling et al.

where name equivalence does not hold. For example, to check that two blocks, one in
a SysML model and another in a Simulink model, contain the same number of ‘ports’,
regardless of the names of these blocks and ports.

Figure 2 – Example of a transposition of a Simulink model to tree. Subsystems and ports
are mapped to nodes in the tree, but not the simulation blocks inside the subsys-
tems. The Simulink model is inspired by the well-known SysML Distiller example
model [Hau06].

A LCmap between language LA and language LB consists of:

(1) two separate transpositions, from LA and LB to a tree-based notation TN ,
and

(2) a set of comparison rules between LA and LB (e.g. name equivalence) done
at the TN level.

Figure 3 shows how a LCmap is used for comparing models. Technically, two modelsMA

conforming to LA, and MB conforming to LB , are transposed into two corresponding
trees TA and TB , conforming to TN , and comparisons are done between TA and TB .

Our proof-of-concept implementation provides two comparison rules, one for equiv-
alence and one for refinement, exemplified in Figure 4. Since we can do comparison
based on node names, types, and structure of their tree representations, we defined
three levels of consistency strictness:

• Strict: when comparisons are based on node names, types and structure;

• Intermediate: when comparisons are based on node types and structure;

• Loose: when comparisons are based on structure only.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 9

TA TB
Comparison

MA

LA

Conformance
Automated step

MB

LB

TN

Figure 3 – LCmap consists of separate transpositions from both languages to a tree-based
notation and a number of comparison rules. When executing a consistency check, auto-
mated model transformations transpose models into trees, between which automated
comparison is run.

Equivalence between nodes nA ∈ TA and nB ∈ TB is defined as follows, with
respect to the strictness levels:

• Strict: nA and nB have the same name and type and the same number of
children; in addition, each child of nA has a strict equivalence to a child in nB

and vice versa;

• Intermediate: nA and nB have the same type, the same number of children; in
addition each child of nA has an intermediate equivalence to a child in nB and
vice versa;

• Loose: nA and nB have the same number of children; in addition, each child of
nA has a loose equivalence to a child in nB and vice versa.

Refinement between nodes nA ∈ TA and nB ∈ TB, where nB refines nA, is a
directed relation defined as follows, with respect to the strictness levels:

• Strict: nB has at least the same number of children of nA and each child of nA

has a strict equivalence to a child in nB .

• Intermediate: nB has at least the same number of children of nA and each child
of nA has an intermediate equivalence to a child in nB .

Note that we do not define loose refinement, since its checking would not lead to
meaningful inconsistencies.

Comparison rules – equivalence or refinement – can be defined between any pair
of nodes nA ∈ TA and nB ∈ TB, also when placed at different hierarchical levels in
the respective trees. For two trees to be consistent (either through equivalence or
refinement), their root nodes should be consistent. This also means that, if comparison
rules are defined between roots of sub-trees, then all nodes above them would not be
considered for consistency checking.

3.2 Model consistency mapping

A consistency check CC requires, in addition to a LCmap , a model consistency mapping
MCmap , which consists of:

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

10 · Robbert Jongeling et al.

A

B

C D

E F

A

B

C D

E F G

TA TB

Equivalence

Refinement

Figure 4 – Examples of an equivalence relation and a refinement relation between TA and
TB . Node C in TA is strictly equivalent to node C in TB and node B in TB strictly
refines B in TA.

model A model B

p

q

r

X

Y

Figure 5 – Example of possible model consistency mappings between an abstract model
A, refined by a model B. The dashed lines indicate possible refinement relations at
different granularity levels.

• two model elements, between which consistency should be checked,

• the type of consistency to check, and

• the level of consistency strictness.

To define MCmap , the user only needs to configure these three parameters. Automated
mechanisms implementing LCmap , and the comparison rules defined in it, are then
responsible for generating and executing the consistency checks. Once defined, CC
can be executed at any time throughout the evolution of the entailed models, with the
possibility to adjust its configuration if needed. Future extensions of our approach will
reduce the effort of defining consistency checks by automated support, for instance by
suggesting model consistency mappings based on potential matches identified through
a similarity analysis between the heterogeneous models to be compared.

As mentioned in the explanation of language consistency mappings, the tree-
based notation allows to easily compare models and their elements, also when placed
at different hierarchical levels. Figure 5 illustrates examples of model consistency
mappings. For instance, model B could be a refinement of model A, or parts of it, such
as sub-model X or elements p or q. Similarly, parts of model B, for example sub-model
Y , could refine sub-model X or element q. Lower level mappings are possible too: for
example element r in model B refining element q in model A.

These model consistency mappings relate two model elements, but can be used to
check consistency between more than two model elements, by chaining consistency
checks. For example, to check that elements a, b, and c are equivalent, two consistency

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 11

checks can be defined, one checking that a is equivalent to b and the other checking
that b is equivalent to c. Future extensions of our approach will support grouping
these checks such that one result summarizes all of them. For instance, if in the above
example a is equivalent to b but b not to c, the grouped check would fail too.

3.3 Continuous integration pipeline

The execution of consistency checks is embedded in the CI pipeline, triggered by a
model change that is pushed to a common repository, and executed after a build.
A high-level description of the execution and configuration of a CC consists of the
following steps:

1. MCmap is evaluated. Consider a mapping between model element eA of model
MA in language LA and a model element eB of model MB in language LB

(a) LCmap between LA and LB is used to create trees TA and TB from models
MA and MB , respectively.

(b) In TA and TB, nodes corresponding to eA and eB are compared using
a comparison rule, corresponding to a combination of the type of check
(equivalence or refinement) and the strictness level (strict, intermediate,
or loose). Since comparison rules define a comparison between nodes by
including, recursively, their children, technically the subtrees with root
nodes represented by eA and eB are compared.

(c) The result of executing the CC is summarized as a binary outcome: pass or
fail. In case of a failed check, a summary of the reasons behind the failure
is shown to the user.

2. Configuration of existing model consistency mappings can be modified, including
options to mute or skip checks in future runs.

3. The user can also add or delete model consistency mappings.

4 Proof of concept

In this section we present a proof-of-concept implementation4 of our approach. The
approach is implemented as a plug-in for Jenkins5, a tool supporting automation of CI
pipelines. In such a pipeline where a CI server is already in place and used to monitor
the state of the development, including our consistency checks in both the process and
toolset requires only a minimal overhead.

In the remainder of this section, we show the process of defining and executing
consistency checks on the Distiller example [Hau06] and applying it to one model
consistency need that we identified exists in our industrial partners: a functional
Simulink model refining a structural SysML model. Two models are created, one
SysML model, shown in Figure 6, and one Simulink model which refines selected
subsystems of the SysML model, and which was shown earlier in Figure 2.

4For the interested reader, the implementation is available at: https://github.com/
RobbertJongeling/consistency-plugin. A demo video https://github.com/RobbertJongeling/
consistency-plugin/blob/master/Demo.mp4 showing the approach at work is available in the GitHub
repository too.

5https://jenkins.io/

Journal of Object Technology, vol. 18, no. 2, 2019

https://github.com/RobbertJongeling/consistency-plugin
https://github.com/RobbertJongeling/consistency-plugin
https://github.com/RobbertJongeling/consistency-plugin/blob/master/Demo.mp4
https://github.com/RobbertJongeling/consistency-plugin/blob/master/Demo.mp4
https://jenkins.io/
http://dx.doi.org/10.5381/jot.2019.18.2.a11

12 · Robbert Jongeling et al.

Figure 6 – Simplified block definition diagram of the SysML distiller example [Hau06].

Next, we briefly present the LCmap between the two entailed modelling languages
and illustrate the implemented plug-in at work through an example of a consistency
check definition and execution.

4.1 Language consistency mapping

To transform the structure of Simulink and SysML models to trees, we defined two
model transformations, which map concepts from the respective modelling languages
to a tree-based notation. Both transformations are implemented in Xtend6, to allow
seamless integration with the Java implementation of the Jenkins plug-in. Transfor-
mations take in input the model files as they persist in the file system rather than
requiring multiple interfacing with modelling tools. The models are then parsed and
model elements of interest, as defined in the language consistency mappings, are added
as nodes to a tree. In the current implementation, LCmap is embodied in the model
to tree transformations. We are currently working on a more flexible implementation,
where we will separate the definition of LCmap from the model transformation imple-
mentation. Once LCmap is defined, a set of higher-order model transformations will
generate specific model to tree transformations based on LCmap .

SysML. A subset of SysML diagrams is represented by structural diagrams, i.e.,
block definition diagrams and internal block diagrams. In this work, we focus on
SysML models described in terms of these diagrams. In our tree-based notation,
the root node represents the entire SysML model and the tree hierarchy reflects the
structural hierarchy of the model. The root’s children are packages or blocks. Packages
can contain other packages and blocks, while blocks can contain other blocks and

6https://www.eclipse.org/xtend/

Journal of Object Technology, vol. 18, no. 2, 2019

https://www.eclipse.org/xtend/
http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 13

ports. The SysML model in the running example was created using Eclipse Papyrus7.
The translation of the model to a tree is performed taking in input the .uml file,
which contains the model definition (without diagrammatic information). In our
transformations, we leverage the EMF Ecore Resource facilities to programmatically
access the contents of this type of file.

Simulink. To parse Simulink models, from binary .slx or serialized .mdl format,
we rely on CQSE’s Simulink Library for Java8. As for the SysML model, the root
node of the tree represents the Simulink model. The children nodes are then the
SubSystems, Inports, and Outports contained in the models. SubSystems can contain
other SubSystem, Inports and Outports. Note that we choose to omit certain types of
blocks used to specifically implement Simulink simulations, such as logic operations
and data conversions, since they do not affect the model structure.

4.2 A consistency checking tool

In this section we detail the approach steps enumerated in Section 3.

Defining model consistency mappings. Model consistency mappings are defined
inside the Jenkins plug-in, by selecting the model elements between which consistency
should be checked as well as the type and strictness of those checks. Figure 7 shows
an example of consistency check definition. In our example, the type of model
can be Simulink or SysML, but this can be extended to any language for which a
transformation to the tree-based notation is implemented. When a modelling language
is selected, the next drop-down box is populated with all model files of that language
in the Jenkins workspace. When a file is selected, the next drop-down box is populated
with all fully qualified names (FQNs) of model elements in the model, as represented
in the related tree. Eventually, the strictness and type of check are selected. Note
that, after checks are executed, the user can select to mute or skip them in future
runs. Before executing the check, its result is set to NYE (Not Yet Executed), and no
further comments are available.

Post-build: run consistency checks. We have implemented the execution of our
consistency checks as a post-build action in Jenkins. After the build step, the execution
of the consistency checks is triggered and results are shown.

Comparing trees. The first step in executing a consistency check is to transform
the models to trees. Resulting trees for our running example are shown in Figure 8,
where the black nodes represent the model elements to be compared (their selection
in the MCmap can be seen in Figure 7. The refinement relation is now checked, not
between the complete trees, but between the subtrees starting at the black nodes.

View results and manage configuration. In this case, the consistency check
fails, since the model element in model A is not a refinement of the model element
in model B. The Valve is in fact missing in the Simulink model as compared to the
SysML model. This short explanation is shown in the result field of the MCmap

definition, as shown in Figure 9. More detailed logs are available in the console output
in Jenkins. A whole cycle of definition and execution of consistency checks is now

7https://www.eclipse.org/papyrus/
8https://www.cqse.eu/en/products/simulink-library-for-java/overview/

Journal of Object Technology, vol. 18, no. 2, 2019

https://www.eclipse.org/papyrus/
https://www.cqse.eu/en/products/simulink-library-for-java/overview/
http://dx.doi.org/10.5381/jot.2019.18.2.a11

14 · Robbert Jongeling et al.

Figure 7 – Example definition of a model consistency mapping in the Jenkins plug-in. Here,
the element Distiller of the Simulink model distiller_refined is said to strictly refine
the element Distiller in package DistillerPackage in the SysML DistillerExample model.

distiller_refined

Distiller

heat_in dirty_in Boiler Heat_Exchanger pure_out residue_out

qIn fIn f1Out f2Out cIn hIn hOut cOut

(a) Tree representation of the Simulink model, only including SubSystems and Ports.
distiller_example

DistillerPackage

Distiller

heat_in dirty_in Boiler Heat_Exchanger Valve pure_out residue_out

qIn fIn f1Out f2Out cIn hIn hOut cOut vIn vOut

(b) Tree representation of the SysML model, only including Blocks and Ports.

Figure 8 – Tree representations of the Simulink and SysML models; the subtrees with root
nodes indicated in black are compared.

completed. New consistency checks can be defined and existing ones edited or deleted.
Model consistency mappings can also be left unaltered to be run again in future builds,
or set to be skipped or muted. When a check is skipped, it is not executed in future
builds, until the user enables it again. When muted, a check is executed but its results
are hidden, unless they are different to previous results in its previous execution. This
allows the user to mute reports on inconsistencies that are relevant but temporarily
tolerated, for example when modifying a model and before propagating the changes to
other related models.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 15

Figure 9 – Result message of the failed strict refinement check.

5 Discussion

In this work, we have focused on lightweight consistency checking to help developers
discover structural inconsistencies between heterogeneous models. In particular,
we have considered the requirements (Rx) summarized in Table 1. R1-R2-R3 are
satisfied by choosing to construct an abstract tree representation from models. Indeed,
this allows checking between models in different languages, since we compare their
representations in a common format, but more importantly, this format represents
the structural characteristics of the models, enabling their comparison. Comparison
rules are defined between tree nodes, regardless of their position in the tree, so they
enable consistency checking between model elements at different levels of granularity,
for example an entire Simulink model can be compared to a single SysML block. R4
is fulfilled by providing detailed feedback on detected inconsistencies to the user, but
not automatically resolving inconsistencies. R5-R6, regarding frequent execution and
minimal impact on the existing ecosystem of consistency checks, are satisfied by the
implementation of our approach in a CI pipeline. This provides a natural environment
for executing the defined checks frequently, while not requiring a particular modelling
tool nor notable changes to the development process. R7 states that our approach
should consist of consistency checks that are easy to create, use, and maintain. This
is satisfied by separating language consistency mappings from model consistency
mappings, requiring the user to only input a small amount of information to generate
and execute consistency checks. These checks are defined once and executed at each
integration, unless they are skipped, muted, or deleted by the user.

Evidently, the proof-of-concept implementation only focuses on a limited industrial
context characterized by multi-view modelling and consistency checking, but we have
argued its applicability in broader context. We exemplify our approach by applying
it to check consistency between a SysML and a Simulink model, but the approach is
generic enough to deal with many different situations from industrial practice. For
example, to check consistency between EAST-ADL models and AUTOSAR models,
UML models and Modellica models, or even between architectural models and code.
One of the powers of our approach and implementation is that it can be easily extended
to accommodate such checks, requiring few extra things than a language consistency
mapping for those languages.

Applying the approach in those different scenarios requires generalizing it beyond
its main limitation, i.e., its entailed type of only structural consistency. Such gen-
eralizations can be supported by opting for a different intermediate notation than
the current tree structure. When we consider a different metamodel in this place,
also the comparison algorithms can be extended to detect more different types of
inconsistencies. For example, when we consider not just the structure of models but
also values of variables, the intermediate notation should also contain this information
and then a comparison algorithm can be devised that utilizes that information for
inconsistency detection.

A smaller limitation, intrinsic to our approach, is a decreased level of control over

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

16 · Robbert Jongeling et al.

the case-by-case semantics of consistency checks. Instead, this has been for ease of
use: the user relies on a global language consistency mapping created once and only
specifies for each consistency check in a minimal way what elements are to be checked
for consistency and what type of consistency should exist between them. The latter
definition is reused throughout the evolution of the models, the consistency check is
executed whenever the models are changed. The very limited effort required to use
it together with the relevance of the entailed spectrum of identifiable inconsistencies
and its non-disruptive nature, with regards to the development process to which it is
applied, make our approach promising for use in industrial contexts.

In the current implementation, we have focused on a specific example relevant to
industrial practice. To perform a full-scale industrial evaluation however, requires the
implementation to be enhanced with additional language consistency mappings and
capabilities to check other types of inconsistencies.

6 Related work

Consistency among and within views is pivotal to ensure efficiency and correctness
in the development process [ISO11]. This work provides an approach to lightweight
consistency checking between heterogeneous models in a multi-view modelling context.
In particular, we study an industrial multi-view modelling environment [ST18] in
combination with agile development practices.

Dajsuren et al. [DGS+14], also consider consistency between different views. Simi-
larly to our approach, the authors prototype a tool for SysML structural diagrams
aimed at the automotive industry, but the underlying approach is applicable to other
languages as well. To enable comparison between models, both are first expressed
at the same level of abstraction. The resulting models are compared as graphs to
detect inconsistencies based on missing model elements or relations in one model that
are declared in the other model. In their approach, model elements are annotated
directly in the modelling tool to denote consistency between model elements at the
same granularity level. Similarly, our approach aims to compare consistency between
two different views with some structural overlap, but in addition it allows for checks
across heterogeneous models and model elements at different granularity levels.

In this work, we create an abstract tree representation of models to enable com-
parisons between them. Other works employ other formalisms to achieve the same
goal of being able to compare models in different languages. An often used mechanism
is Triple Graph Grammars (TGGs), which allow a formal definition of the mapping
of model concepts across different languages [EEH08], for instance between SysML
and Modelica as done by Johnson et al. [JKPB12]. As opposed to our approach, these
approaches require a high effort in declaring and maintaining the consistency checks.

The consistency checking approach proposed by Egyed allows for the creation of
consistency rules in any formalism [Egy10]. Notably, in this approach, consistency
checks are only executed when model elements they cover are changed, thus improving
over approaches in which batches of checks are executed periodically. It can be a
valuable future enhancement of our approach to similarly only execute those checks
that relate model elements that have changed since the last execution.

Another means capturing the specific way of comparing particular model elements
are link-models [FWKVH16]. These link-models declare the relation between parts of
models, and constraints on that relation, by relating model elements through particular
types of links, equivalence, refinement or satisfies. The link-models are then used to

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 17

derive validation rules that can be automatically executed. The applicability of this
approach is limited to MOF-based models, whereas our approach is meta-metamodel
independent.

Similar to our approach, also graph structures have been proposed as an inter-
mediate representation of models as well as the starting point for detecting inconsis-
tencies [HQP14]. There, the graphs represent logical facts contained in the model,
such that inconsistencies between graphs mean inconsistencies in the models. In our
approach, the tree denotes not such logical facts, but rather focuses on the model
structure.

In addition to approaches based on intermediate representations of models, others
have proposed different means of comparison between models. For example, by
declaring statements based on first-order logic to express facts that should be true
about models [GFN02]. Later, these ideas were more matured and generalized, for
example in the Epsilon Object Language [KPP06]. The advantage of our approach
relative to these approaches is that the developer is not tasked with declaring such
statements, since the meaning of consistency is captured in the language consistency
mapping and the developer just specifies which model elements should be consistent.

The existing literature on consistency management in general is extensive [CCP19],
so necessarily, the included works cover only a small portion of it. Notably, Feldmann et
al. categorize existing approaches as proof theory-based, rule-based, or synchronization-
based [FHK+15]. Our approach can be categorized as synchronization-based, where
the language consistency mappings define how model elements should be compared
between languages, albeit not by a direct comparison but through an intermediary tree
structure. Moreover, a plethora of approaches exists for consistency checking between
UML models [LMT09]. Even though there are numerous approaches presented, we are
not aware of any approach satisfying the requirements with respect to lightweightness
as listed in Section 2.

7 Conclusions and future work

In this work, we argued for inter-model consistency checks that are lightweight, i.e.
easy to use and non-intrusive as they identify inconsistencies but do not strictly
enforce consistency. The creation and maintenance of consistency checks is simplified
by separating their definition in a globally reusable part, the language consistency
mapping, and a simple specific definition, the model consistency mapping. The model
consistency mapping can be used to notify the user throughout the (possibly parallel)
evolution of involved models. We provided a proof of concept implementation and
showed how the approach works on a simple example of inter-model consistency
between models conforming to different languages.

While our approach is applicable to MBD in general, we showed its feasibility
in agile MBD settings, by leveraging CI and related tools to implement consistency
checks. Through our proof-of-concept, we showed the ease by which a user can define
checks at different granularity levels and between heterogeneous models. Moreover,
we showed the usefulness of lightweight checks for inter-model consistency in a CI
pipeline, as well as possible interactions between a CI server, modelling tools and
version control systems. In agile MBD settings, this approach allows simple explicit
checking of consistency between a large number of model elements, thereby highlighting
at a glance, and soon after their introduction, structural inconsistencies that may be
costly to fix if detected at a later stage.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a11

18 · Robbert Jongeling et al.

In our future work we plan to build upon the approach presented in this paper
to enable the detection of additional and more complex inter-model inconsistencies,
while maintaining its lightweight nature. Moreover, we will provide features to further
simplify the manual definition of model consistency mappings, e.g. by having the tool
to automatically suggest likely candidates. An evaluation of our approach in terms of
an industrial case-study or controlled experiment will follow once the implementation
will be more mature (and including the future enhancements listed in this paper).

References

[BBCW17] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. A
feature-based survey of model view approaches. Software & Systems
Modeling, Sep 2017. doi:10.1007/s10270-017-0622-9.

[CCP19] Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio. Multi-
view approaches for software and system modelling: a systematic
literature review. Software & Systems Modeling, pages 1–27, 2019.
doi:10.1007/s10270-018-00713-w.

[DGS+14] Yanja Dajsuren, Christine Gerpheide, Alexander Serebrenik, An-
ton Wijs, Bogdan Vasilescu, and Mark van den Brand. Formal-
izing Correspondence Rules for Automotive Architecture Views.
In Proceedings of the 10th international ACM Sigsoft conference
on Quality of software architectures, pages 129–138. ACM, 2014.
doi:10.1145/2602576.2602588.

[EEH08] Hartmut Ehrig, Karsten Ehrig, and Frank Hermann. From Model
Transformation to Model Integration based on the Algebraic Ap-
proach to Triple Graph Grammars. Electronic Communications of
the EASST, 10, 2008.

[Egy10] Alexander Egyed. Automatically Detecting and Tracking Inconsis-
tencies in Software Design Models. IEEE Transactions on Software
Engineering, 37(2):188–204, 2010. doi:10.1109/tse.2010.38.

[FF06] Martin Fowler and Matthew Foemmel. Continuous integra-
tion. 2006. URL: https://martinfowler.com/articles/
continuousIntegration.html.

[FHK+15] Stefan Feldmann, Sebastian Herzig, Konstantin Kernschmidt, Thomas
Wolfenstetter, Daniel Kammerl, Ahsan Qamar, Udo Lindemann, Hel-
mut Krcmar, Christiaan Paredis, and Birgit Vogel-Heuser. A Compar-
ison of Inconsistency Management Approaches Using a Mechatronic
Manufacturing System Design Case Study. In 2015 IEEE International
Conference on Automation Science and Engineering (CASE), pages
158–165. IEEE, 2015. doi:10.1109/coase.2015.7294055.

[FWKVH16] Stefan Feldmann, Manuel Wimmer, Konstantin Kernschmidt, and
Birgit Vogel-Heuser. A Comprehensive Approach for Managing Inter-
Model Inconsistencies in Automated Production Systems Engineering.
In 2016 IEEE International Conference on Automation Science and
Engineering (CASE), pages 1120–1127. IEEE, 2016. doi:10.1109/
coase.2016.7743530.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1007/s10270-017-0622-9
http://dx.doi.org/10.1007/s10270-018-00713-w
http://dx.doi.org/10.1145/2602576.2602588
http://dx.doi.org/10.1109/tse.2010.38
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
http://dx.doi.org/10.1109/coase.2015.7294055
http://dx.doi.org/10.1109/coase.2016.7743530
http://dx.doi.org/10.1109/coase.2016.7743530
http://dx.doi.org/10.5381/jot.2019.18.2.a11

Lightweight Consistency Checking for Agile MBD in Practice · 19

[GFN02] Clare Gryce, Anthony Finkelstein, and Christian Nentwich. Lightweight
Checking for UML Based Software Development. In Workshop on
Consistency Problems in UML-based Software Development., Dresden,
Germany, 2002.

[Hau06] Matthew Hause. The SysML Modelling Language. In Fifteenth Euro-
pean Systems Engineering Conference, volume 9, pages 1–12. Citeseer,
2006.

[HKRS05] Zbigniew Huzar, Ludwik Kuzniarz, Gianna Reggio, and Jean Louis
Sourrouille. Consistency Problems in UML-Based Software Devel-
opment. In UML Modeling Languages and Applications, pages 1–12.
Springer, 2005. doi:10.1007/978-3-540-31797-5_1.

[HQP14] Sebastian Herzig, Ahsan Qamar, and Christiaan Paredis. An approach
to Identifying Inconsistencies in Model-Based Systems Engineering.
Procedia Computer Science, 28:354–362, 2014. doi:10.1016/j.procs.
2014.03.044.

[ISO11] ISO/IEC/IEEE Systems and software engineering – Architecture
description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pages 1–46, Dec 2011. doi:
10.1109/IEEESTD.2011.6129467.

[JKPB12] Thomas Johnson, Aleksandr Kerzhner, Christiaan Paredis, and Roger
Burkhart. Integrating Models and Simulations of Continuous Dynam-
ics into SysML. Journal of Computing and Information Science in
Engineering, 12(1):011002, 2012. doi:10.1115/1.4005452.

[KPP06] Dimitrios Kolovos, Richard Paige, and Fiona Polack. The Epsilon
Object Language (EOL). In European Conference on Model Driven
Architecture-Foundations and Applications, pages 128–142. Springer,
2006. doi:10.1007/11787044_11.

[KPP08] Dimitrios Kolovos, Richard Paige, and Fiona Polack. Detecting and
Repairing Inconsistencies Across Heterogeneous Models. In 2008
1st International Conference on Software Testing, Verification, and
Validation, pages 356–364. IEEE, 2008. doi:10.1109/icst.2008.23.

[LMT09] Francisco Lucas, Fernando Molina, and Ambrosio Toval. A systematic
review of UML model consistency management. Information and
Software Technology, 51(12):1631–1645, 2009. doi:10.1016/j.infsof.
2009.04.009.

[NEFE03] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and
Ernst Ellmer. Flexible Consistency Checking. ACM Transactions on
Software Engineering and Methodology (TOSEM), 12(1):28–63, 2003.
doi:10.1145/839268.839271.

[PBO07] Richard Paige, Phillip Brooke, and Jonathan Ostroff. Metamodel-Based
Model Conformance and Multi-view Consistency Checking. ACM
Transactions on Software Engineering and Methodology (TOSEM),
16(3):11, 2007. doi:10.1145/1243987.1243989.

[PTQ+13] Magnus Persson, Martin Torngren, Ahsan Qamar, Jonas Westman,
Matthias Biehl, Stavros Tripakis, Hans Vangheluwe, and Joachim De-
nil. A Characterization of Integrated Multi-View Modeling in the

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1007/978-3-540-31797-5_1
http://dx.doi.org/10.1016/j.procs.2014.03.044
http://dx.doi.org/10.1016/j.procs.2014.03.044
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1115/1.4005452
http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1109/icst.2008.23
http://dx.doi.org/10.1016/j.infsof.2009.04.009
http://dx.doi.org/10.1016/j.infsof.2009.04.009
http://dx.doi.org/10.1145/839268.839271
http://dx.doi.org/10.1145/1243987.1243989
http://dx.doi.org/10.5381/jot.2019.18.2.a11

20 · Robbert Jongeling et al.

Context of Embedded and Cyber-Physical Systems. In Embedded Soft-
ware (EMSOFT), 2013 Proceedings of the International Conference
on, pages 1–10. IEEE, 2013. doi:10.1109/emsoft.2013.6658588.

[Sch06] Douglas C Schmidt. Model-driven engineering. IEEE Computer,
39(2):25, 2006.

[SKSP10] Aditya Shah, Aleksandr Kerzhner, Dirk Schaefer, and Christiaan Pare-
dis. Multi-view Modeling to Support Embedded Systems Engineering
in SysML. In Graph transformations and model-driven engineering,
pages 580–601. Springer, 2010. doi:10.1007/978-3-642-17322-6_25.

[ST18] Jagadish Suryadevara and Saurabh Tiwari. Adopting MBSE in
Construction Equipment Industry: An Experience Report. In
25th Asia-Pacific Software Engineering Conference APSEC, 2018.
doi:10.1109/apsec.2018.00066.

About the authors

Robbert Jongeling is a doctoral student focusing on industrial application of model-
based development. His research interests include industrial adoption of agile MBD,
consistency checking, and model evolution. Contact him at robbert.jongeling@mdh.
se, or visit https://www.es.mdh.se/staff/3731-Robbert_Jongeling.

Federico Ciccozzi is an associate professor in Computer Science at Mälardalen
University, department of Innovation, Design and Engineering in Västerås – Sweden.
His research interests cover many aspects of automated software engineering, with focus
on model-driven and component-based software engineering for real-time embedded
systems. Contact him at federico.ciccozzi@mdh.se, or visit https://www.es.mdh.
se/staff/266-Federico_Ciccozzi.

Antonio Cicchetti is an associate professor at Mälardalen Univesity. His research
interests target component-based and model-driven software engineering in industrial
settings, including model versioning, metamodeling, model transformations and multi-
view/distributed development. Contact him at antonio.cicchetti@mdh.se, or visit
https://www.es.mdh.se/staff/198-Antonio_Cicchetti.

Jan Carlson is a professor in computer science, specializing in software engineering,
at Mälardalen University. His current research focuses on component- and model-based
development of embedded systems, addressing areas such as optimized allocation,
model-level timing analysis and code generation, and the combination of MBD and
continuous integration practices. Contact him at jan.carlson@mdh.se, or visit https:
//www.es.mdh.se/staff/40-Jan_Carlson.

Acknowledgments This work is partially supported by Software Center9 and by
the Knowledge Foundation in Sweden through the MINEStrA project. The authors
would like to thank Jagadish Suryadevara from Volvo Construction Equipment for
his input in discussions about the work and his comments on early versions of the
manuscript.

9www.software-center.se

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1109/emsoft.2013.6658588
http://dx.doi.org/10.1007/978-3-642-17322-6_25
http://dx.doi.org/10.1109/apsec.2018.00066
mailto:robbert.jongeling@mdh.se
mailto:robbert.jongeling@mdh.se
https://www.es.mdh.se/staff/3731-Robbert_Jongeling
mailto:federico.ciccozzi@mdh.se
https://www.es.mdh.se/staff/266-Federico_Ciccozzi
https://www.es.mdh.se/staff/266-Federico_Ciccozzi
mailto:antonio.cicchetti@mdh.se
https://www.es.mdh.se/staff/198-Antonio_Cicchetti
mailto:jan.carlson@mdh.se
https://www.es.mdh.se/staff/40-Jan_Carlson
https://www.es.mdh.se/staff/40-Jan_Carlson
www.software-center.se
http://dx.doi.org/10.5381/jot.2019.18.2.a11

	Introduction
	Scope
	Industrial context of consistency checking
	Requirements

	Our consistency-checking approach
	Language consistency mapping
	Model consistency mapping
	Continuous integration pipeline

	Proof of concept
	Language consistency mapping
	A consistency checking tool

	Discussion
	Related work
	Conclusions and future work
	Bibliography
	About the authors

