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Abstract

Software Defined Networking (SDN) provides network significant reconfiguration capability to Wireless Sensor Networks (WSNs).
SDN is a promising technique for WSNs with high scalability and high reliability requirements. In SDN, a set of controller nodes
are integrated into the network to advertise routing rules dynamically based on network and link changes. Determining the number
and location of both sinks (are in charge of collecting the sensors data) and controller nodes in a WSN subject to both reliability
and performance constraints is an important research challenge. In this paper, to address this research challenge, we propose a
Quantum Annealing approach that improves the deployment cost of the system by minimizing the number of required sinks and
SDN controller nodes. The experiments show that our approach improves the deployment cost of the network against the state-of-
the-art by 10.7% on average.
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1. Introduction

Software Defined Networking (SDN) controllers are introduced to provide more flexible network architecture.
On-the-fly programming is the paradigm exploited by SDN to provide network reconfiguration. To realize SND,
controller nodes are deployed in the network. Having only a single SDN-controller not only makes a single point of
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failure but also may not be efficient for large scale networks in terms of network performance. Additionally, since
controllers are responsible for updating routing strategies, controller failure will result in performance degradation.
A multi-controller design is a promising solution to have a more reliable network that yields higher SDN availability
and system responsiveness. A similar idea has been widely discussed for sink nodes in WSNs. The sink nodes are in
charge of collecting sensors data and send them to the gateway or directly to the cloud. As demonstrated before [1],
using multiple sinks in a sensor network ensures better network performance by creating the opportunity of collecting
measurements at the sink(s) closer to sensors [2].

Besides both reliability and performance advantages of the multi-sink multi-controller WSN deployment, such a
network design leads to a higher deployment cost of the network. Sink and controller entities are considered as the
most costly elements of a network since they are equipped with high storage capacity to keep all measurements –
sinks – or with high processing capability that provides network brain – controllers. Thus, it is important to reduce the
cost of the network design by reducing the number of sinks and controllers.

Finding optimal sink/controller placement is an NP-hard problem, hence it cannot be addressed in polynomial time.
Heuristic and meta-heuristic algorithms are promising approaches to deal with the node placement problem. Although
multiple heuristic and meta-heuristic algorithms have been proposed in the literature to address the problem, new
techniques and algorithms are highly desirable to push forward the state of the art in this context.

Contributions. The main contributions of this paper is to propose a Quantum-Annealing-based algorithm to tackle
the multi-sink multi-controller node placement in WSNs. The performance of the proposed method has been compared
not only with the original Simulated Annealing (SA) but also with the state of the art algorithm in the context of node
placement in WSNs.

Paper structure. In Section 2 a brief review of related work is presented. The problem is described in detail and
assumptions are defined in Section 3. In Section 4, the proposed method is introduced. In Section 5 the performance
of the proposed solution is compared with the prior art. Finally, the main results are concisely summarized along with
directions for future work in Section 6.

2. Related Work

There are a huge number of studies focusing on node placement in WSNs. They concentrate on different types
of nodes (such as sensors, sinks, relays, and controllers) and different performance metrics in their node placement
strategies. For example, in [3], the authors targeted coverage and connectivity metrics by solving the sensor placement
problem. This work formulated the sensor placement problem as a constrained optimization problem.

In [4], a Joint Sink Deployment and Association (JSDA) in a multiple sink wireless camera network is formulated
as a mixed integer linear programming problem.

In [5], four algorithms are proposed, namely, GreedyMSP and GRASP-MSP to solve the problem of multiple
sink placement, and Greedy-MSRP and GRASP-MSRP for the problem of multi-sink and relay placement. In [6], a
Genetic Algorithm (GA) is proposed to deploy multiple sinks in order to minimize the worst-case delay in WSNs,
while in [7], a Particle Swarm Optimization (PSO) is employed to calculate the number of sinks and their locations
in order to reduce the path length between sensors and sinks. In the same context, in [8], a PSO-based algorithm is
proposed to prolong the network lifetime by considering the Euclidean distance and hop count. In [9], the placement
of multiple sinks in order to minimize worst-case delay is taken into account and an approximation algorithm called
GREEDY-k-SPP is proposed while [8] focuses on reducing energy consumption in WSNs in a random deployment of
a grid topology network.

The controller placement problem for wired networks has been addressed in [10]. The authors explore the trade-offs
when optimizing for minimum latency between nodes and controllers. [11] is an extension of [10] which is referred to
as Pareto-Optimal Controller placement (POCO) considering additional aspects other than network latency. In WSNs,
[12] presents a deployment strategy for multiple controller nodes that minimizes the transmission delay of the network
while satisfying different critical requirements such as deployment cost and reliability.

Multi-sink multi-controller node placement in WSNs is already addressed by a few research works such as [1, 13]
where, similar to our paper, they focus on the deployment cost of the network. Indeed, our proposed method extends
these works by proposing a novel method.
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3. Problem Modeling

In this section, the problem is modeled as an optimization problem, while we introduce the main assumptions.
A WSN is represented by an undirected graph, where vertices are partitioned into a set of sensors T , sinks S and

controllers C. An edge of the graph indicates a wireless connection between a pair of nodes. The total number of
sensors is N; i.e., N = |T |. A pair of nodes connected with an edge are called, neighbor. Furthermore, to represent
the placement problem, we define AS and AC , denoting a set of candidate sinks and a set of candidate controllers
respectively. Hence, S ⊆ AS and C ⊆ AC .

A sensor is k-sink-covered if and only if it has at least k paths of length ≤ lmax to k sinks in S (k is an integer
number ≥ 1). We define a WSN as k-sink-covered if each sensor v ∈ T is k-sink-covered. A similar definition can be
applied to indicate the relation between the sensors and controllers, meaning that a sensor is k′-controller-covered if
and only if it has at least k′ paths of length ≤ lmax to k′ controllers in C.

Besides the k-covered constraints, to satisfy timing requirements in WSNs, the amount of data coming from sensors
to a particular sink should be restricted to avoid too much workload on a sink. We define the load of sensor i as the rate
of data which is sent to sinks per second, denoted by ωi. If a sensor covered by n sinks (i.e., the distance between those
n sinks and the sensor is shorter than lmax), the load of the ith sensor on the jth sink covering the sensor is denoted by
wi, j, which is equal to ωi/n (load balancing).

Assuming a heterogeneous WSN, where sensors generate data with different periods. A similar constraint can be
applied to controllers to manage the maximum workload on each controller, which is called controller load constraint.
ω′i implies the rate of data exchange between a sensor and controllers per second. Here again, w′i, j denotes the load of
ith sensor on the jth controller.

3.1. Optimization problem

First of all, we introduce the notations used in the problem formulation. The binary array X determines if a candi-
date sink is chosen or not. If the candidate sink i is chosen, Xi = 1, otherwise, it is equal to zero. Furthermore, in order
to represent the k-sink-covered constraint, we define the binary matrix Y that determines if the shortest distance be-
tween the ith sensor and the jth candidate sink is shorter than lmax or not. To calculate the shortest path between node
vi and sink s j, the Dijkstra algorithm is used. Accordingly, the k-sink-covered network constraint can be formulated
by ∑

∀s j∈AS

Yi, jX j ≥ K ∀vi ∈ T (1)

Let us assume that W shows the maximum workload that can be handled by each sink within an acceptable time, then
the workload constraint can be reflected by∑

∀vi∈T

Yi, jX j
ωi∑

∀st∈AS
Yi,tXt

≤ W ∀s j ∈ AS (2)

where
∑
∀st∈AS

Yi,tXt returns the number of selected sinks covering the ith sensor. Similarly, the aforementioned con-
straints for sink nodes are defined for controller nodes. Indeed, the binary array X′ determines whether a candidate
controller has been selected or not. Here, we use binary matrix Y ′ to show whether the sensor vi is covered by the
controller c j, or not. ∑

∀c j∈AC

Y ′i, jX
′
i ≥ K′ ∀vi ∈ T (3)

The controller load constraint is formulated as follows:∑
∀vi∈T

Y ′i, jX
′
j

ω′i∑
∀ct∈AC

Y ′i,tX
′
t
≤ W ′ ∀c j ∈ AC (4)

where W ′ shows the maximum workload that can be handled by a controller within an acceptable time.
We define the cost of deployment of such a WSN as follows:

ζsi,c j =

cost(si, c j) loc(si) = loc(cj)
cost(si) + cost(c j) else

(5)
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where cost(si) and cost(c j) is the cost of purchasing, installation and maintenance of the ith sink and the jth controller
respectively. Additionally, cost(si, c j) indicates the cost of one single chip (possibly a multi-core chip) including both
the ith sink and the jth controller. We apparently expect that cost(si, c j) is less than cost(si) + cost(c j), since we merge
two functions into a single chip. Thus, cost(si, c j) = α(cost(si) + cost(c j)), where α is a real number between 0 and
one.

The optimization problem is formulated as follows:

Minimize: TotalCost(X, X′) =
∑
∀si∈AS

∑
∀ci∈AC

ζsi,c j Xsi X
′
c j
, (6a)

Subject to: (1), (2), (3), (4). (6b)

4. Solution Framework

4.1. Simulated Annealing

Simulated annealing is a meta-heuristic algorithm used to approximate the global optimum of a function in a large
and often discrete search space. It is based on principles of statistical mechanics but its application in optimization
problems emerges from [14]. It is a memory-less and iterative algorithm. In SA, first, an initial solution is generated.
Then, in each iteration, a random neighbor is generated. If a solution is better in terms of energy or cost than the
current state of the system, it is called an improving solution. Otherwise, it is called a non-improving solution. An
improving generated neighbor is always accepted. But a non-improving generated neighbor is accepted with a given
probability. This probability depends on both the current temperature of the system and the difference between the
current solution and the generated neighbor energy. At the end of each iteration, when the system has reached an
equilibrium state, the temperature will be decreased based on a particular cooling schedule. The cooling schedule has
a great impact on the performance of the algorithm. In other words, there is always a compromise between the quality
of the final solution and the cooling rate. This process will continue until the system reaches the final temperature.
[15]

4.2. SA Disadvantages

As mentioned, in SA the probability to accept a non-improving solution depends on the current temperature and
the difference between the energy of the current solution and that of the generated neighbor. Consequently, if the
target function contains several high barriers, it is likely to get stuck in local optimum since the thermal transition
in SA depends on the height of barriers. To overcome this problem, as shown in fig.1, we can use an alternative
approach called Quantum Annealing which uses quantum tunneling (quantum jumps) to pass through high and thin
barriers [16].

Fig. 1. Thermal Transition vs Quantum Tunneling [16]
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4.3. Quantum Annealing

Quantum annealing is a meta-heuristic algorithm used to approximate global optimum of a function. It is based on
principles of quantum mechanics. In quantum annealing the cost function to be minimized is: Hq = Hpotential + Hkinetic

So Hq is composed of two components:

• Hpotential: potential energy which is the same as cost function in SA.
• Hkinetic: kinetic energy which is used to take advantage of quantum fluctuation in order to escape from local

minima. So Hpotential is minimized as a side effect of minimizing Hq.

One of the implementations of quantum annealing is Path Integral Monte Carlo Quantum Annealing (PIMC-QA). This
implementation has been successfully used in solving several optimization problems e.g. graph coloring [17, 18] and
traveling salesman problem (TSP) [19]. In this implementation there are P replicas of problem configuration called
{ρ1, ρ2, ..., ρP} and kinetic energy of system depends on the interactions between these replicas.

4.4. Applying QA to the Problem

As the problem described in [1] is NP-complete, we use PIMC-QA to solve it. To define Hpotential, Hkinetic and use
QA algorithm we should first encode the problem and its solution using Ising model. Then we can formulate Hpotential

and Hkinetic and finally seek to minimize Hq.

4.4.1. Ising Model
In an Ising model, the system configuration is represented by a set of spin variables which can have only two states

(Boolean variables). In our considered problem, we can divide our spin variables into two groups: problem space spin
variables and solution spin variables. To define problem space spin variables, we use Y and Y

′

. Thus:

Problem S pin Variables =

{
S Y distance(sensori, sink j) < lmax

S Y ′ distance(sensori, controller j) < l
′

max
(7)

To define solution spin variables, we use X and X
′

. Thus:

S olution S pin Variables =

{
S X sinki is selected or not
S X′ controlleri is selected or not (8)

Therefore, each configuration of system consists of a complete set of spin variables
(
S X , S X′ , S Y , S Y ′

)
which will be

represented by {S i} or $.

4.4.2. Potential Hamiltonian
In our considered problem, Hpotential consists of three parts: Hreliability, Hload balancing and Hcost:

Hreliability =

k |T | − ∑
∀vi ∈ T

min

k,
∑
∀s j ∈ As

S X j S Yi j


 +

k′ |T | − ∑
∀vi ∈ T

min

k,
∑
∀c j ∈ Ac

S X′j
S Y ′i j


 (9)

Hload balancing =

 ∑
∀s j ∈ As

max

0,

 ∑
∀vi ∈ T

S X j S Yi j

wi∑
∀st ∈ As

S Xt S Yit

−
W

k − 1





+

 ∑
∀c j ∈ Ac

max

0,

 ∑
∀vi ∈ T

S X′j
S Y ′i j

w
′

i∑
∀ct ∈ Ac

S X′t
S Y ′it

−
W
′

k′ − 1





(10)

Hcost =
∑
∀si ∈ As

∑
∀c j ∈ Ac

ζsi,c j S Xsi
S X′c j

(11)

Hence, for each replica: Hpotential = Hreliability + Hload balancing + Hcost.
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4.5. Kinetic Hamiltonian

In [20] a formula is given to calculate Hkinetic in the 3SAT problem. As our considered problem is NP-complete and
based on Cook-Levin theorem, any NP-complete problem can be reduced to SAT in polynomial time. Thus, we can
use the same formula here to calculate Hkinetic:

Hkinetic = −JΓ

∑
i

S i,ρS i,ρ+1 : ∀ρ ∈ P (12)

JΓ = −
Tq

2
ln tanh(

Γ

PTq
) (13)

Total solution energy is:

H =
1
P

P∑
ρ=1

Hpotential ({S i}) − JΓ

P∑
ρ=1

∑
i

S i,ρS i,ρ+1 (14)

The pseudo-code of the proposed algorithm is presented in Algorithm 1.

Algorithm 1: Path Integral Monte Carlo Quantum Annealing
Result: Return a configuration with low cost

1 Initialize T = T0, Γ = Γ0;
2 Generate P configurations: {S i} or $;
3 do
4 foreach replica ρ ∈ P do
5 repeat
6 $

′

= Generate neighbor of configuration $;
7 Hpotential = Calculate potential energy of configuration $

′

;
8 Hkinetic = Calculate kinetic energy of configuration $

′

;
9 H = Hpotential + Hkinetic;

10 ∆Hpotential = Hpotential − H
′

potential;
11 ∆H = H − H

′

;
12 if ∆Hpotential < 0 or ∆H < 0 then
13 $ = $

′

;
14 else
15 With probability e

−∆H
T : $ = $

′

;
16 end
17 until Number of iterations < NQA;
18 end
19 Update quantum tunneling field: Γ = Γ × σ;
20 Update temperature: T = T × µ;
21 while Γ > Γ f ;

5. Performance Evaluation

To conduct the experiments, we investigate three different sizes of the system where the first benchmark includes
50 sensors, the second benchmark 100 sensors, and the last benchmark includes 150 sensors. To evaluate the proposed
algorithm, we not only implemented quantum annealing, but also classic SA and the recently proposed method in the
literature (dubbed as PACSA) published in 2018 by Faragardi et. al. [13] were implemented.

For each size of the network (50 sensors, 100 sensors, and 150 sensors), all the three methods (QA, SA, and
PACSA) were run 20 times to reach a 95% confidence interval. All algorithms are implemented in Java and running
on a laptop with Mac OS, Core i5 2.9 GHz, and 8GB memory. The source code is publicly available on Github [21].
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Table 1. Algorithm Parameters
Parameter Description Value Parameter Description Value

Cost(S i) Cost of Sinks [1,6] $ T0 Initial Temperature 100
Cost(Ci) Cost of Controllers [3,10] $ T f Final Temperature 1

α Cost Reduction Factor 0.75 µ Temperature Cooling Rate 0.9
W Workload Capacity of Sinks 30 Bytes/sec NS A SA Monte Carlo Steps 50
W ′ Workload Capacity of Controllers 30 Bytes/sec tr QA Trotter Replicas 50

lmax Maximum Length of Sinks 3 Γ0 QA Initial Tunneling Field 1
l′max Maximum Length of Controllers 2 Γ f QA Final Tunneling Field 0.5

k k Sink Covered 6 σ Tunneling Field Decreasing Rate 0.95
k′ k Controller Covered 6 NQA QA Monte Carlo Steps 100

Table 2. Average execution time of the algorithms in 20 runs

Sensors Candidate
Controllers

Candidate
Sinks

SA
Execution Time

PACSA
Execution Time

QA
Execution Time

50 5 10 48 Sec 14.22 Sec 72 Sec
100 10 20 150 Sec 108.3 Sec 225 Sec
150 15 30 216 Sec 676.5 Sec 324 Sec
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Fig. 2. Total deployment cost of the network for the considered benchmarks.

Table 3. Cost improvement percentage against QA
Sensors Candidate controllers Candidate sinks SA PACSA

50 5 10 16% 8%
100 10 20 11% 6%
150 15 30 23% 18%

The algorithm parameters have a substantial impact on the performance of meta-heuristic algorithms. To select
the best value for the parameters, we checked all possible values in a reasonable range for each parameter. The
algorithm parameters are listed in Table 1. The results achieved by all three methods in terms of the total deployment
cost of the network for the considered benchmarks are illustrated in Fig. 2. Furthermore, to clearly demonstrate the
performance enhancement of our proposed method against other baselines (i.e., SA and PACSA), we present Table 3
listing the percentage of improvement in the deployment cost of the network achieved by our method against SA and
PACSA for the considered benchmarks. For example, for the first benchmark (i.e., the benchmark with 50 sensors),
QA outperforms SA by 16% while outperforms PACSA by 8%. The execution time of the algorithms are listed in
Table 2.
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6. Conclusion

In this paper, we have looked into the placement problem for both multiple sinks and multiple controllers in WSNs
to reduce deployment cost, subject to both reliability and timeliness. We formulated the problem as an optimization
problem. A Quantum-Annealing-based algorithm was proposed to address the problem. The results indicated that on
average, the proposed method outperforms the classic SA and PACSA by 17.7% and 10.7% respectively. For future
work, we plan to investigate the use of multiple mobile sink nodes to collect the sensors data.
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