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Abstract—There is a growing interest in using the Blockchain
for resolving IoT security and trustworthiness issues existing in
today’s complex systems. Blockchain concerns trust in peer to
peer networks by providing a distributed tamper-resistant ledger.
However, the combination of these two emerging technologies
might create new problems and vulnerabilities that attackers
might abuse.

In this paper, we aim to investigate the trust mechanism of
Lightweight Scalable BlockChain (LSB), that is a Blockchain
specifically designed for Internet of Things networks, to show
that a malicious participant in a Blockchain architecture have
possibility to pursue an On-Off attack and downgrade the
integrity of the distributed ledger. We choose a remote software
update process as an instance to represent this violation. Finally,
using the actor-based language Rebeca, we provide a model of a
system under attack and verify the described attack scenario.

Index Terms—Blockchain, Distributed Trust, On-Off Attack,
IoT, Security.

I. INTRODUCTION

The concept of Internet of Things (IoT) has enabled an
interaction of various physical devices (i.e., sensors, actuators,
mobile phones, etc.) over Internet in order to reach a common
goal such as increased efficiency, scalability, user flexibility
and satisfaction, while potentially decreasing the cost of sys-
tem development and maintenance. It is expected that in the
near future, over 50 billion devices will be connected to the
Internet, supporting several different applications like smart
cities, smart houses, autonomous cars, precision agriculture,
etc., [1]. However, given the heterogeneity, complexity, and
possibility to be exposed to different threats, security becomes
one of the key concerns in such systems [2].

Blockchain is a cryptographic-based distributed ledger tech-
nology that utilises peer to peer (P2P) network communication
to enable trusted communication between untrusted communi-
cation participants [3]. All transactions within a Blockchain are
recorded as a chain of blocks and managed by all network par-
ticipants without central authority using a distributed cryptog-
raphy protocol. In such communication, all participants need
to validate the information to be appended to the Blockchain.
Over the recent years [4], [5], Blockchain technology has been
the focus of researches due to its attractive features including
trust and security characteristics, decentralisation, anonymity,
etc., making it appealing for use in different domains such as
banking, smart contracts, smart cities, as well as cybersecurity,
especially in the context of IoT [6]–[9].

Although, it can be seen as a promising approach to improve
security, information protection, and reliability of IoT devices,
it also introduces a new set of challenges such as a choice of

an appropriate consensus mechanisms in Blockchain to be ap-
plied. The consensus mechanism utilized in Blockchain makes
the new generated block difficult to tamper through the hash of
previous blocks. A consensus mechanism contains rules and
verification procedures to validate provided data and enable
participants in the network to put data into the Blockchain.
In regards to Blockchain requirements, various consensus
mechanisms such as Proof-of-Work (PoW) or Proof-of-Stake
(PoS) exist. PoW requires each participant node to provide
the proof that the work done and submitted by it qualifies
the node to get the right to add new transactions to the
Blockchain. The process is expensive and time-consuming as
it relies on a complex mathematical calculations, but once it is
done the solution can be easily verified by other participants.
On the other hand, PoS involves a process of allocation of
responsibility when maintaining the public ledger to each node
in proportion to the number of virtual currency tokens held by
it [10]. Since a consensus mechanism is the core component
in the design of Blockchain, the choice of it makes an impact
on the performance, scalability, as well as security.

Blockchain technology itself is computationally expensive
due to resource-intensive process related to the choice of
the consensus mechanism. Since it does not scale well, it
might introduce considerable bandwidth overheads and pos-
sible delays that are not acceptable for IoT, therefore a novel
Lightweight Scalable Blockchain (LSB) framework has been
proposed in [11]. In our paper we choose to evaluate the
suitability of this approach in context of IoT focusing on ex-
ploring potential vulnerabilities. Using Rebeca, an actor-based
modeling language, we provide a model of LSB algorithm
in an example of a Remote Software Update and introduce
a specific type of an attack, called an On-Off attack [12].
Furthermore, we use the supporting model checking tool to
verify the property of interest and show the possible violation
in LSB.

The paper is organized as follows. We first review some
relevant related work in Section II. Next, in Section III we
introduce necessary background and define concepts used in
this paper. The On-Off attack scenario applied to the LSB in
context of Remote Software Update example is described in
Section IV. Section V provides details of the Rebeca model
as well as results of the property verification. Finally, in
Section VI we conclude this paper and discuss potential future
directions.



II. RELATED WORK

In this section we provide an overview of the literature
with focus on how to utilize modeling approaches to verify
the security requirements of different Blockchain technology
platforms. We start with the review of some of the related
works with respect to the modeling Bitcoin protocol [3] where
the assessment approaches are similar to our work.

Beukema et al. [13] present a formalized model of Bitcoin
protocol in the language mCRL2 as a transition system be-
tween agents. The analyzed model contains the behavior of the
network, and shows how the consensus protocol behaves when
a message corruption and a double-spending attack occurs.
Later, Bastiaan et al. [14] propose a stochastic analysis of the
Bitcoin protocol, and provide a model through continuous-
time Markov chains. The main contributions of their work are
analysis of mining algorithms and on a solution to prevent
51% attack.

Ellervee et al. [15] propose a comprehensive model to
describe Blockchain by using properties like actors, roles, ser-
vices, processes and data model. They build a model to guide
the business analysts and help them to communicate with the
developers. Their comparison between four Blockchain tech-
nology platforms include Bitcoin, MultiChain, Ethereum and
Chain Core results in explicit understanding of the technology
and thei work processes.

A model checking approach that allows reasoning about
networks of complex real-timed systems with a stochastic
semantic, called UPPAAL SMC [16] also enables some anal-
ysis on Bitcoin protocol. Chaudhary et al. [17] investigate the
correctness of the Bitcoin protocol by UPPAAL SMC. They
calculate the success probability of a double spending attack
that is related to the computational power of the attacker.
The work examines the Bitcoin protocol and provides its
formalization as an UPPAAL model. They conclude that the
probability where a fake transaction is inserted in the longest
chain, depends on the number of confirmations. Moreover,
Fehnker et al. [18] analyze how long does it take for an
attacker to succeed in creating a fork and splitting the main
chain in a Blockchain. Their work indicates that twenty percent
of network miners hash-rate is enough for an attacker to
achieve the goal within a few days.

Further work on verifying smart contracts can be found in
[19]–[21]. Kosba et. al. [19] verify privacy properties using
formal methods and present a programming language Hawk
for writing smart contracts. Hawk is a framework for building
privacy preserving smart contracts where a programmer can
easily write a Hawk program without having to implement
any cryptography. Luu et. al. [20] focus on the language for
smart contracts and analyze vulnerabilities. They show differ-
ent smart contracts stored on the Blockchain are potentially
vulnerable and may lead to financial losses. Bhargavan et.
al. [21] propose a framework to convert smart contracts in
Ethereum to a subset of Solidity code and analyze to find the
flaws.

III. BACKGROUND

In this section we introduce the necessary background
needed to understand the remainder of the paper. We start
with presenting an overview on Blockchain with focus on
Lightweight Scalable Blockchain (LSB) [11], [22] as a
Blockchain solution for IoT security. We proceed with a brief
description of the Rebeca modeling language, used in this
paper to model and verify an example of On-Off attack on
LSB.

A. Lightweight Scalable Blockchain (LSB)

Blockchain is a ledger distributed among several nodes
organized in a P2P setting. Each node has a copy of the ledger
and updates it independently [23]. The ledger content consists
of a set of blocks, chained together by a cryptography hash
value. Each block records a set of transactions. In order to
make sure that the order of transactions is the same in all
the ledger instances, a consensus mechanism is used by the
network participants. Generally, only few nodes have enough
processing and storage capacity to enforce the consensus
mechanism. These nodes are called miners [24].

LSB is a Blockchain designed specifically for IoT networks.
Since typical Blockchain consensus mechanisms require high
computational power that makes them difficult to use in IoT.
To tackle this problem, Dorri et al. [11] have proposed a
time-based block generation algorithm. In this algorithm, each
miner is not allowed to add more than one block to the
ledger in a given period of time. Further, to reduce overhead,
IoT nodes are clustered, and the cluster heads (CHs) are
put responsible for verifying transactions and mining blocks.
CHs decrease the computation time needed for verifying
transactions by using a distributed trust algorithm.

The proposed algorithm relies on direct and indirect ev-
idences to assess the trustworthiness of miners. These ev-
idences are gathered by studying the previous behavior of
each miner. If the previous behavior indicates that a miner
can be trusted to some degree, then other miners can skip
verifying some of the transactions verified by that miner. The
exact number of the skipped transactions is recorded in a table
maintained by all miners.

For illustration, let us assume that a CH node A verifies a
block generated by a CH node B. At this moment, the node A
has a direct evidence about the node B, and depending on the
verification result, it might increase or decrease its trust on the
node B. Now, suppose that before verification, the node A is
informed that some other CH nodes have signed the block as
valid. Based on this, the node A uses this information as an
indirect evidence about the node B. Table I shows an example
trust table that maps the number of positive evidences to the
percentage of transactions that should be verified.

Table I: An example for trust table [22].
# Successfully verified blocks 10 20 30 40 50
#% Transaction should be verified 80% 60% 40% 30% 20%



B. Rebeca Modelling Language

Rebeca [25]–[27] is an actor-based modeling language with
formal foundation used for modeling concurrent and reactive
systems with asynchronous message passing. A Rebeca model
consists of the definition of reactive classes and the instantia-
tion part which is called main. The main part defines instances
of reactive classes, called rebecs. The behavior of a rebec is
determined by its message servers.

In Rebeca, computation is event-driven with messages that
can be seen as events. Each rebec takes a message from
its message queue and executes the corresponding message
server. Communication takes place by asynchronous message
passing, which is non-blocking for both sender and receiver.
The behavior of a Rebeca model is defined as the parallel
execution of the released messages of the rebecs. Rebeca
comes with a formal semantics that makes it suitable for model
checking purposes. Additionally, the language uses different
abstraction techniques to preserve a behavioral specification in
temporal logic, while reducing the state space of the model,
and verifying desired properties.

IV. ON-OFF ATTACK SCENARIO

In an On-Off attack, it is assumed that a malicious node
first behaves honestly to earn the trust from other nodes, and
afterwards launches an attack. Since most of the trust models
focus on the current node behavior rather than examining
past and recent node activities, they are vulnerable to On-Off
attacks [28]. As a result, a malicious node can easily hide the
misbehavior history by appearing as an honest node or staying
idle for some time periods to increase its trust value. In this
section, we elaborate an On-Off attack against the distributed
trust algorithm proposed by Dorri et al. [22].

Note that the current behavior of a node is considered, while
a node can frequently change its behavior from good behavior
to bad behavior and vice versa. Suppose a malicious node
behaves in the following three phases.

1) Good Behaviour: a malicious node generates new valid
blocks normally to earn a high level of trust.

2) Bad Behaviour: the trust rate of a malicious node achieves
the highest value after the period of honest behavior.
Afterwards a malicious node abuses the trust rate to insert
a fake transaction while building a new block.

3) Waiting Period: the malicious node does nothing if the
fake transaction was successfully inserted.

Whenever the bad behavior is detected by other nodes during
the waiting period, the malicious node again starts behaving
well to gain their trust. The probability of detection can be
determined based on the mapping provided in the trust table.
Considering the mapping in Table I, let us assume that the
malicious node generates 50 blocks in the first phase. Based
on this only 20% of the transactions generated by this node
will be verified by other nodes.

Due to this vulnerability, few malicious nodes can carry
out a massive attack on the system by following the above

described scenario periodically until the fake transactions are
placed in the distributed ledger.

The commonly used mitigation techniques that address an
On-Off attack, introducing a factor which considers a weight
for nodes performing actions during the times. In other terms,
only weight of measured misbehavior is considered rather than
periodicity of the misbehavior. In [29] and [12], the authors
define an adaptive forgetting scheme and a penalty policy
where these components takes both long-time interaction and
consistent good behaviors to build up the trust.

In the following, with a simple example, we show how
a malicious node among three honest nodes can disturb the
integrity of an IoT system. Here, we take a Remote Software
Update (RSU) process as an instance. This process utilizes
the security and scalability advantages of LSB to ensure the
integrity of the software binary hash stored in a distributed
ledger [30]. We assume the following constituent systems
to be involved in such a scenario: smart vehicles, Original
Equipment Manufacturers (OEMs), and a service provider
(SP). Together, they form a structure of a distributed ledger
over a P2P network, enabling them to communicate with each
other.

Among the four nodes shown in Figure 1, the dishonest
service provider acts as a malicious peer and runs the On-
Off attack scenario. The node changes its behavior when
the trust rate reaches the highest value, and broadcasts a
generated block with a fake transaction to the network. The
fake transaction includes hash of a harmful binary code that
already has been maintained in the cloud storage as a freshly
updated package.

Figure 1: On-Off attack over the RSU process.

The cloud storage is a spot where the Blockchain manages
the changes and authenticity of the data, enabling smart cars to
directly download the updated software versions. As illustrated
in Figure 1, the attack is executed as follows:

1) Node1 behaves honestly and increase the trust rate.
2) Node1 uploads a harmful update to the cloud storage.
3) Node1 inserts the hash value of the harmful code as a

transaction into a block and broadcasts the infected block
to other nodes.



4) Node2, Node3 and Node4 receive the block and randomly
verify a part of the block. If the nodes do not realize the
fraudulent behaviour, the block will be stored.

5) The infected block is stored in the Blockchain, the nodes
inform the smart cars about the new update. After that,
the smart cars begin downloading the harmful package.

V. MODELING DISTRIBUTED LEDGER COMPONENTS

In this section, we describe the Rebeca model of the On-Off
attack scenario, explained in Section IV. The designed Rebeca
model can detect malicious behaviors in LSB. This model
includes the behavior of CH nodes involved in the remote
software update process.

Listing 1 contains a summarized Rebeca model that consists
of two actors: OEM and MalSp. The actor OEM is a CH node
of LSB and responsible to build a block and broadcast the
block to other OEMs. The actor MalSp is a CH node of LSB,
as well, and builds blocks properly to find the opportunity
to insert a fake transaction. Both OEM and MalSp store
transactions in a pending pool, and build a block when the
size of the pool is equal to the determined size. In our case
we assume to be equal to three.

The model declares instances of the actors with message
servers. The collaboration between actors makes possible to
store transactions by passing messages to the message servers.
We define buildblk(), addtoBC() and ack() message servers
for both OEM and MalSp actors. The buildblk() of OEM
properly follows the consensus and trust algorithm, takes
transactions from the pending pool and builds a new block.
However, the buildblk() of MalSp examines the trust rate while
building a new block to find opportunity for exploiting the
distributed trust algorithm and transmits the infected block to
the Blockchain (i.e., a block with at least one fake transaction).
We consider the numbers from 0 to 2 for low, high and highest
degree of trust rate, respectively. The MalSp behaves the same
as a OEM behaviour until its trust rate becomes high enough.
Both OEM and MalSp have a addtoBC() message server to
verify transactions in a block. This message server receives
broadcast blocks and operates block verification process. If
the block verification finishes successfully, the valid block can
be stored in the Blockchain. The block generator must be in-
formed of the block verification status through a message. The
ack() is defined for both OEM and MalSp. This message server
notifies the block generator by sending an acknowledgement
message to show the confirmation for appending the block to
the Blockchain.

In order to model check the Rebeca model, we need to
define the property that we want to verify. The result of a
property check tells us whether the property was satisfied
or not. We aim at checking whether all the transactions
inserted into the Blockchain are valid. In our Rebeca model,
a Blockchain is defined as a list of blocks where each block
is recorded as an 8-tuple (MinerID,BlockID, GenID1,
TxID1, GenID2, TxID2, GenID3, TxID3), where:

• MinerID specifies the ID of the miner that has gener-
ated the block.

// OEM (Miner) actor
reactiveclass OEM(150) {

knownrebecs {
OEM oem1;
OEM oem2;
MalSp m;}

OEM(int myId) {}
msgsrv buildblk(int BlockID) {
// Checks its pending pool to build a new block

if (txsNum == 3) {
//Appends to the BC and broadcasts

oem1.addtoBC(B);
oem2.addtoBC(B);
m.addtoBC(B);}

}
msgsrv addtoBC(int B) {
//Checks trust rate and validates trxs }
msgsrv ack(int BlockID){}

}
----------------------------------------------------
// Malicious Sp (Miner)
reactiveclass MalSp(150) {

knownrebecs {
OEM oem1;
OEM oem2;
OEM oem3;}

MalSp(int myId) {}
msgsrv buildblk(int BlockID) {

//Checks its pending pool and trust rate
//Build an infected block
if ((txsNum == 2)&&(trustRate == 2)) {
//Appends to the BC and broadcasts

oem1.addtoBC(B);
oem2.addtoBC(B);
oem3.addtoBC(B);}

}
msgsrv addtoBC(int B) {
//Checks trust rate and validates trxs}
msgsrv ack(int BlockID){}

}

Listing 1: The summarized Rebeca model.

• BlockID is the ID of the block in the Blockchain.
• GenID1 is the ID of the first transaction generator.
• TxID1 is the ID of the first transaction.
• GenID2 is the ID of the second transaction generator.
• TxID2 is the ID of the second transaction.
• GenID3 is the ID of the third transaction generator.
• TxID3 is the ID of the third transaction.

As an instance, in the Rebeca model the block
[3, 4, 2, 3, 2, 4, 2, 5, ] includes identification numbers of
the block, the transactions, and the generators. The CH node
with identification number 3 ([3, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ]), takes
transactions with identification numbers 3 to 5 from the
pending pool and builds the block([∗, ∗, ∗, 3, ∗, 4, ∗, 5, ]). The
number 4 shows that this block is located in the second
chain of Blockchain ([∗, 4, ∗, ∗, ∗, ∗, ∗, ∗, ]). These transaction
are generated by the node with identification number 2
([∗, ∗, 2, ∗, 2, ∗, 2, ∗, ]).

Figure 2 shows a diagram depicting one possible way
of interaction between actors leading to the attack scenario
described in Section IV. According to this diagram, MalSp
abuses the highest trust rate and calls buildblk(B) to build
the infected block B (1). The MalSp asks OEM1 to verify



Figure 2: An actor-diagram of the On-Off attack scenario.

the block B and append it to the Blockchain through ad-
dtoBC(B) message server (2). The OEM3 is linked to the
MalSp indirectly and needs to verify the block B. Therefore,
the OEM3 gets the message addtoBC(B) from OEM1 to do the
verification (3). Based on the trust rate associated to MalSp,
OEM1 and OEM3 randomly choose a part of the block B
for verification and notify MalSp by sending ack(B) to show
the block successfully verified (4, 5). The OEM2 receives
addtoBC(B) (6) and transfers the message to OEM3(7). Both
OEM3 and OEM2 response back via ack(B) (8, 9).

Assuming that the trust rate is at the highest value, most
of the transactions in the block B would be ignored while
the OEMs verify the block. In the situation where none of
OEM1, OEM2 and OEM3 have detected the fake transaction,
MalSp is informed the infected block (block B) appended to
the Blockchain by receiving the last ack(B).

The assertion in Listing 2 is defined as a property to
check which transactions are ignored in the block verification
process. Whenever all OEMs ignore the fake transaction,
the assertion is failed and indicates this event as a counter-
example.

Assertion:
!(OEM1.ignoreTx && OEM2.ignoreTx && OEM3.ignoreTx);

Listing 2: The property to indicate the fake transaction.

In case where at least one fake transaction is inserted in
the Blockchain, it is expected that the Rebeca model checker
generates a counter-example indicating the situation in which
the described property is violated. Figure 3 shows the chain of
blocks with and without fake transaction. Figure 3(a) presents
the Blockchain without fake transaction and Figure 3(b) shows
a counter-example for the Rebeca model discussed above. The
BC is an 8-tuple list which is defined for the Blockchain. The
Blockchain must store the same valid blocks in each OEM.
We only present OEM1.BC as an example and the BC of
OEM2 and OEM3 are similar to this BC. Accordingly, the

transaction number 10 in block 5, which is inserted by MalSp
with number 3 is a fake transaction. Given this, the Rebeca
model demonstrates the situation where a vulnerability in LSB
leads to a successful On-Off attack. The detials of the designed
Rebeca model are uploaded and available at GitHub [31].

(a) Before injecting the fake
transaction.

(b) After injecting the fake
transaction.

Figure 3: OEM Blockchain before and after injecting a fake transac-
tion.

VI. CONCLUSION AND FUTURE WORK

There is a large number of existing industrial systems that
are exploring the possibilities to extend towards the IoT. One
of the major concerns in such systems is ensuring security
and trust that could be seen as a difficult task, due to resource
constrained devices, standards that do not support such shift, or
absence of suitable software and hardware solutions applicable
in such a setup. Moreover, one has to also account for the
dynamic nature of security where changes in the environment
and interactions in such complex systems might introduce
possibly not expected security-critical situations. One of the
ways to mitigate such challenges can be seen in lightweight
Blockchain-based solutions for resource constrained IoT de-
vices, such as LSB. LSB focuses on increasing security by
using the distributed trust management and at the same time
decrease the bandwidth, processing time, and enable services
without delays.

In this paper, we study the proposed approach in context of
an IoT architecture and example coming from the vehicular
domain. We model the approach using the actor based lan-
guage Rebeca. Our intention with such a model is to explore
the suitability of LSB in context of possible attacks, with focus
on the On-Off attack. We show how we can use Rebeca as
an appropriate testing tool for evaluating security properties
in distributed environments and provide a fruitful analysis. It
can easily be used to model complex scenarios that involve
different agents, as well.

As future work, we plan to model different policies in
building the trust over distributed networks and show how
the modeling can be useful to check different mitigation
techniques to decrease the probability of attacks occurring.
Moreover, our aim is to find out the probability of attacks
in different configurations when there should be a trade-off



between trustworthiness and improving performance. Also,
we look forward extending our work towards examining the
security terms and features of the infrastructure that is being
used by the Blockchain. In that case our focus will shift
towards examples of applications that focus on the Internet
of Objects and Cyber-Physical Systems.
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