
SoFA: A Spark-oriented Fog Architecture
Neda Maleki∗, Mohammad Loni∗, Masoud Daneshtalab∗, Mauro Conti†, and Hossein Fotouhi∗
∗School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

†Department of Mathematics, University of Padua, Padua, Italy
Email: ∗{neda.maleki, mohammad.loni, masoud.daneshtalab, hossein.fotouhi}@mdh.se, †conti@math.unipd.it

Abstract—Fog computing offers a wide range of service levels
including low bandwidth usage, low response time, support of
heterogeneous applications, and high energy efficiency. Therefore,
real-time embedded applications could potentially benefit from
Fog infrastructure. However, providing high system utilization
is an important challenge of Fog computing especially for
processing embedded applications. In addition, although Fog
computing extends cloud computing by providing more energy
efficiency, it still suffers from remarkable energy consumption,
which is a limitation for embedded systems.

To overcome the above limitations, in this paper, we propose
SoFA, a Spark-oriented Fog architecture that leverages Spark
functionalities to provide higher system utilization, energy effi-
ciency and scalability. Compared to the common Fog computing
platforms where edge devices are only responsible for processing
data received from their IoT nodes, SoFA leverages the remaining
processing capacity of all other edge devices. To attain this
purpose, SoFA provides a distributed processing paradigm by
the help of Spark to utilize the whole processing capacity of all
the available edge devices leading to increase energy efficiency
and system utilization. In other words, SoFA proposes a near-
sensor processing solution in which the edge devices act as the Fog
nodes. In addition, SoFA provides scalability by taking advantage
of Spark functionalities. According to the experimental results,
SoFA is a power-efficient and scalable solution desirable for
embedded platforms by providing up to 3.1x energy efficiency
for the Word-Count benchmark compared to the common Fog
processing platform.

Index Terms—Fog Computing, Distributed Processing, Spark
Programming, IoT, Energy Efficiency.

I. INTRODUCTION

Big Data and Internet-of-Things (IoT) have produced pro-
found impacts to our everyday life by providing smartness
in the whole life aspects such as communication and traf-
fic management, health-care, education, and energy manage-
ment systems [1]. IoT data analytic is performed in a high-
throughput cloud environment since large data processing is
still a bottleneck of IoT [2]. Although cloud provides extensive
processing capacity, still cloud-based solutions are faced with
some challenges. Cloud is not always a feasible solution for the
expansion of IoT devices and emerging big data applications
due to requiring fast response-time and guaranteeing worst-
case execution-time. Additionally, End-users are reluctant to
risk uploading their data into the cloud for privacy constraints.
Finally, cloud computing is a highly energy hungry solution
that restricts being a feasible platform for embedded applica-
tions. This problem will be more pronounced soon when more
than 30% of global datasphere will be generated by embedded
IoT nodes by 2025 [3].

Fig. 1. The Common Fog Architecture.

Fog computing [4], which was proposed by Cisco, is a
novel model for analyzing and acting on IoT data. Fog
computing makes the business more agile, improves safety,
and provides a higher service level. Fog has resolved the
cloud computing challenges such as low response-time and
low-bandwidth utilization [1]. Some Fog platforms such as
Cloudlet, Mobile Cloud, and Ubiquitous have been proposed
with different latencies, mobility, costs, and computation ca-
pacities [5]. Fig. 1 shows a common Fog architecture with
two Fog clusters (one Fog node in each cluster) where the
Fog nodes are local middle-throughput machines, compared
to high-throughput cloud servers, for processing tasks on the
data provided by the edge devices. Section II-A introduces the
common Fog architecture with more details.

Fog computing provides new functionalities, while bringing
the following challenges. 1© The original Fog computing
model does not support analyzing large scale data that are
produced by IoT applications. 2© Its network architecture and
service model are not clearly specified [1]. 3© When it comes
to data management i.e., data distribution and replication, there
is no proper solution in the Fog computing model.

The Fog nodes are expected to analyze and act on the
large volume of data generated by thousand of nodes across a
large geographic area [4], where continuous generated data are
merged into a big stream, which will be sent to the Fog nodes
for processing. These data are naturally distributed, therefore,
a natural solution to process the data is a distributed stream
processing platform.

To tackle the aforementioned limitations, we introduce

SoFA, a spark-oriented Fog architecture that leverages spark
[6] functionalities to provide scalability, and higher system
utilization. SoFA extends Fog functionalities to support dis-
tributed job processing on the available edge devices to utilize
the whole processing capacity of the system.

According to the common fog architecture (see Fig. 1), the
edge devices only work on the data generated by IoT nodes
connected to them. However, in the SoFA architecture, the
edge devices contribute in the processing of data generated by
the other edge devices. Therefore, edge devices can store and
replicate the data efficiently, by benefiting from Spark, and run
analytic applications, while data is generated at the same time.
This paradigm consumes less energy and improves system
utilization since if an edge device cannot afford in providing
enough processing capacity, SoFA utilizes other edge devices
instead of using the local Fog node. We should mention that
SoFA is not going to entirely get rid of Fog nodes, but it tries to
increase the utilization of system by balancing the processing
on the edge devices. In addition, SoFA is only applicable on
the edge devices that support Spark platform. Autonomous
robots, camera based surveillance systems and health-care T-
shirts with embedded sensors connected to a mobile phone
-as the edge device- for monitoring body signals are among
popular applications that can benefit from SoFA.

Spark is a general-purpose cluster computing system for
real-time large-scale streaming data processing with an opti-
mized engine supporting Map-Reduce execution model. When
it comes to data management and real-time analytic, the
cluster computing play an important role. By using Spark,
data could be efficiently managed and replicated across the
cluster. Furthermore, some critical security issues such as
authentication and access control have been handled in these
frameworks through built-in Kerberos [7] framework.

Contribution. In a nutshell, our main contributions are
summarized below:

• Analyzing the limitations and requirements of current Fog
architectures to support future IoT applications.

• Proposing a distributed Fog platform, called SoFA, that
utilizes the available edge devices to both generate and
process data. Therefore, common processing on the Fog
nodes will be replaced by distributed processing on the
edge devices.

• Implementing SoFA on a commodity embedded device
over the benchmarks with/without data parallel patterns
to evaluate the proposed architecture.

• According to the implementation results, SoFA provides
3.1x more energy efficiency in comparison to the tradi-
tional Fog architecture with one Fog node and three edge
devices on Word-Count benchmark (See Section 4).

Paper Organization. This paper is organized as follows. In
Section 2, we introduce the Apache Spark and its main func-
tionalities used in the SoFA architecture. Section 3 represents
the related work in this scope. We delineate the proposed Fog
computing architecture and its characteristics in Section 4, and
substantiate our argument in favor of Spark as the appropriate
distributed system for IoT applications. In Section 5, we show

our experimental results in terms of scalability and energy
efficiency. Finally, we conclude with how mature would be a
Spark-based Fog computing and discussion of future work.

II. BACKGROUND

In this section, we first introduce the definition of the
common Fog architecture used in this paper. Then, Spark
processing platform and its major modules will be presented.

A. Common Fog Architecture

Fog computing is considered as an extension of cloud
computing which provides the cloud services to the edge of the
network with lower latency [8]. In addition, all the cloud com-
puting benefits are preserved in the Fog, including resource
efficiency, orchestration, manageability, and virtualization. Ac-
cording to [9], we define the Fog computing in this paper
as a model to complement the cloud for decentralizing the
concentration of computing resources in data centers towards
users for improving the quality of service. According to this
definition, our Fog is a three-tier model of cloud resources
including Fog nodes,and edge devices. Fig. 1 illustrates the
common Fog architecture which contains:

• Cloud: Cloud is the remote high-performance computing
unit.

• Fog Nodes: In general, Fog node could be any device
with a processing capability located in the local area
network, excluding the IoT devices that are generating
the data. In other words, the highest layer in the Fog
hierarchy is the Fog node (micro data center), with more
computing capacity because it should provide capacity
for a larger set of users downwards the hierarchy.

• Edge Devices: The processing nodes immediately after
IoT nodes in the network which usually have smaller
processing capacity compared to Fog nodes. Edge devices
are responsible for data processing of their own IoT nodes
(mobile smart devices, low-power embedded devices in-
stalled on robots, and so on). Edge devices are usually
resource-limited (in energy consumption and processing
capabilities) embedded devices.

• IoT Nodes: The lowest in the hierarchy is IoT nodes
which are closer to the edge devices. IoT nodes do not
provide any processing capability and only generate data
(e.g., end-user devices, IoT sensors and actuators, and so
on).

B. Spark Processing Platform

Among all the computing platforms, Spark is a prevalent
distributed computing engine since it performs the best in
comparison to its competitors; i.e. Hadoop, GraphLab and
Flink [1], [10]–[12] in a very large scale distributed environ-
ments and for processing real-time streaming data. In addition,
Spark has been evaluated and mainly used in large centrally
controlled computer clusters [1]. In the following sections, we
introduce Spark and its capabilities and then reasons which
motivated us to prepare this study.

Fig. 2. The Spark Software Stack.

Apache Spark is a fast and general-purpose framework
for real-time large-scale data processing in a distributed en-
vironment. To accelerate the operations, Spark exploits the
in-memory computations [6]. Two key components of Spark
are Resilient Distributed Dataset (RDD) and cluster manager
[13]. RDD is programming abstraction of Spark which is an
immutable and fault-tolerant distributed collection of objects
across the cluster nodes and can be operated in parallel [6].
Cluster manager distributes the code, controls the manage-
ment, distribution and interaction with RDDs, and manages
fault-tolerant execution [13]. Spark architecture comprises of
a Driver as a Master node and many Executors as Worker
nodes. Spark stack consists of the following components that
are depicted in Fig. 2 [6]:

• Spark core is responsible for memory management, fault
recovery, scheduling, jobs distribution and monitoring
across the cluster, and interacting with storage systems.

• Spark SQL integrates relational processing with func-
tional programming APIs of Spark. It supports querying
data either via SQL or Hive Query Language (HiveQL).

• Hive Query Language (HiveQL) is an open-source data
warehousing method that supports queries expressed in a
SQL. Hive is compiled into map-reduce jobs executed on
Hadoop.

• Spark Streaming is used to process real-time streaming
data. It enables high-throughput and fault-tolerant pro-
cessing of data streaming.

• MLlib is Spark API to perform machine learning algo-
rithms.

• GraphX is used for graph processing.
• SparkR is an R package that provides a light-weight

front-end to use Spark from R.

Spark can be deployed in a standalone mode i.e., it uses
standalone resource manager. It can also benefit the Hadoop
YARN [14], Apache Mesos [15], or Kubernetes [16] resource
managers. The standalone resource manager does not support
fine-grained access control in a way that other resource man-
agers do so, it would be an important consideration in terms
of security issues [6]. Spark can run against Kerberos enabled
Hadoop clusters and use secure authentication between its
processes [17]. Spark fault-tolerance is provided by two high
availability approaches; (i) Standby Masters with ZooKeeper
and (ii) Single-Node Recovery with Local File System. In
the first approach, Masters in the cluster connect to the

same ZooKeeper instance and one of them is elected as a
leader and the others will remain in standby mode. If the
leader dies, another Master will be elected and the previous
Master state will be recovered to resume scheduling. Second
approach is used to restart the Master if it goes down. In
this case, FILESYSTEM mode can take care of it. Spark
coherently manages resources of the system in such a way that
application level Quality-of-Service (QoS) constraints are met
and resource wastage is minimized [18]. In addition, Spark is
polyglot i.e., it supports multiple languages.

III. RELATED WORK

In [1], He et al. have proposed a multi-tier Fog architecture
and scalable analytics service to mitigate the problem of huge
initial Fog infrastructure investment and give prompt response
to fast change of circumstances of smart cities. In this model,
Fog nodes divide into two groups: (i) opportunistic computing
resources, that consist devices such as smart phones, tablets
and vehicles, and (ii) dedicated computing resources, consist-
ing of devices such as small base stations, home hot spots, and
macro cellular base stations. Authors have defined each Fog
as a cluster of computers with a pool of computing resources.
They have considered two types of Fogs in opportunistic tier
according to the Spark architecture i.e., many Fog Masters to
provide reliability and many Fog Workers.

In [5], authors have proposed an architecture of Fog com-
puting in both computing and network aspects. In addition,
they have proposed a framework for resource allocation and
latency reduction by considering fault-tolerance and privacy
with the possible solutions or optimization methods. Finally,
they have evaluated the framework under a given application
scenario and Genetic Algorithm combined with a Dirichlet
distribution sampling approach.

Bonomi et al. [19] proposed a two-layer Fog software
architecture. The first layer which is called abstraction layer
corresponds to Openstack that virtualizes the heterogeneous
resources with cloud structure. The second layer i.e., orches-
tration layer is responsible for searching, analyzing, planning
and running a job, and can be implemented in a big data
platform like Hadoop or Spark. For instance, Openstack is
deployed upon the ARM core and use Hadoop, Spark or
more specific engines can work via APIs. The API design
must consider flexibility, latency, sensitivity and heterogeneity.
In [20], authors have presented a multi-tier Fog architecture
based on software defined network (SDN) paradigm, which
enables service migration to deliver videos with adequate
QoE for mobile users. They have considered the operational
impacts and benefits associated with such cloud-to-multi-
tier Fog migration for video distribution with QoE support.
Besides, they have performed the evaluation of the service
migration to minimize the traffic in the core network.

Naranjo [21] proposed Fog Computing Architecture Net-
work (FOCAN), a Fog-assisted smart city network architec-
ture. FOCAN has a multi-tier structure in which the applica-
tions are running on nodes with simultaneously computation,
communication and routing with the other nodes via the smart
city environment. FOCAN improves energy provisioning and

Fig. 3. The Proposed Architecture with SoFA Software Processing Stack installed on the Workers.

the efficiency of provided services while decreasing latency
among things with different capabilities. Generally, FOCAN
supports three types of communications between devices in-
cluding interprimary, primary, and secondary communication,
for providing required quality of service standards for the
Internet of Everything. The main advantages of FOCAN is
that the devices can efficiently provide the services with low
energy usage.

Yang [22] proposed a Spark-based IoT stream processing for
Fog applications. The authors also analyzed the design space
of Fog streaming by considering three essential dimensions
including human, system, data, and optimization. However, the
Fog node is needed since the processing is based on common
Fog architecture meaning that Fog nodes act as Spark Master
and/or slave nodes .

IV. SOFA DESCRIPTION

We have proposed a Spark-enabled Fog architecture, dubbed
as SoFA, in which the edge devices play the role of Fog nodes
and the whole Fog functionalities will be embedded into the
edge devices. Fig. 3 shows our proposed architecture. In this
architecture, edge Master physically co-locates with the other
edge Workers and the architecture provides advanced large
scale analytic service over edge devices. The overall structure
of SoFA and the connections between different modules are
illustrated in Fig. 3. The proposed architecture in Fig. 3 con-
tains one Master node known as single tier architecture. SoFA
also supports multi-tier architectures by leveraging hierarchical
Master topology.

Fig. 4 represents a multi-tier topology where in tier1,
non- or less time-sensitive analysis and big data analytic are
performed, while tier 2 has been designed to support time-
sensitive data processing tasks. As shown in Fig. 4, SoFA
has more heterogeneous infrastructure than cloud data centers,
although both have similar hierarchical network architecture.

Top
master

Sub
master #1

Sub
master #2

Sub
master #n

Worker

Worker

Worker

Switch

Switch

Switch

1

1

1

2
n

2

2
n

n

Tier 1

Tier n

HDFS
Storage

Tier 2

Master

Fig. 4. The Multi-tier Architecture of SoFA Platform.

The key feature of using Spark is utilizing the whole pro-
cessing capacity by processing data where they are generated
to provide a distributed Fog platform. The Resource Manager
is placed on Master and the Spark Core, and HDFS are placed
on both Master and Workers to store and process the data.
The data generated in the edge device will be saved in HDFS
file system. Spark manages Workers and dynamic resource

allocation based on the available resources. If one of the
Workers are overloaded, Spark migrates the job on a Worker
with required data on it.

SoFA processing stack is shown in Fig. 3, which contains
four functional layers including (i) Application Layer, (ii)
Processing Layer, (iii) Data Management Layer, (iv) Resource
Management Layer.

A. Application Layer

This section overviews typical Fog streaming applications
[22], shown in Fig. 3.

a) Stream Query and Analytics: A big category of ap-
plications for data query and analytics over large data streams
can benefit from Fog infrastructure. Gigasight [23] is a typical
example of these applications that uses Fog architecture, where
it explicitly exploits the Internet edge. Gigasight is a repository
of crowd-sourced video streams generated by various cameras
where video processing jobs such as video segmentation are
carried out locally at a virtual machine (VM)-based cloudlet,
and only video metadata is transferred to the cloud for the
SQL searches. TinyDB [24] is a database system developed
for wireless sensor networks (WSNs) [25]. TinyDB implicitly
leverages Fog architecture since the low-power sensor nodes
and gateways at the network edge jointly process generated
data streams by the sensors.

b) Real-Time Event Monitoring: Event detection appli-
cations are based on real-time mining and/or classification
of IoT data streams [26]. In these systems, the high-level
event detection job contains different low-level mining and/or
classification tasks. The processing flow of the event detection
job is based on a reversed binary tree topology with the
root as the data stream source (i.e., sensors), vertices are
miners and/or classifiers, and leaves detect results. These
miners and/or classifiers are located in different Fog nodes in
a distributed way regarding the available processing resources
of these servers.

c) Networked Control Systems for Industrial Automation:
The Networked Control System (NCS) is a popular IoT ap-
plication [27] significantly promoting many critical industrial
automation applications. The NCS controlling loop includes
controllers, sensors, and actuators that continuously produces
real-time data streams including sensor control signals and
data flows. Utilizing the fog architecture to process such infor-
mation provides high-quality communication by minimizing
distance between all control units in the Fog architecture.
In addition, Fog architecture provides higher-level computing
resources that is not supported by the embedded controllers
hosted in the limited resource budget embedded devices.

B. Processing Layer

The processing layer is responsible for application-specific
processing jobs which is carried out by the Spark core.
Recently, many different real-time processing engines have
been proposed, such as Flink [12], Apache Storm [28], and
Apache Spark Streaming [6]. These stream processing engines
are inherently designed for the cloud and/or large-scale data
centers, however, they support small cluster of Fog nodes.In

this paper, Apache Spark streaming is utilized as the spark
core.

C. Data Management Layer

Data management layer is in charge of managing distributed
data storage including file systems, data caches, databases, data
warehouses, and etc. There has been many data management
systems working together with stream processing engines in
the cloud, such as Hadoop Distributed File System (HDFS)
[29], Apache Cassandra [30] as a NoSQL database, and
Apache Kafka [31]. All these data management systems can
be applied in the small-scale Fog platforms. By helping the
data management layer, edge devices can easily transfer data
among each others.

D. Resource Management Layer

This layer mainly focuses on the task scheduling and
utilizing system resources, including network and disk I/O
bandwidths, processing units (CPUs, GPUs), storage, and
managing energy consumption for battery-powered embedded
devices [32]. By the help of resource management layer, we
can utilize the remain processing capacity of the other edge
devices if needed.

All in all, Fog application requirements and the SoFa’s
response to the Fog requirements are summarized in Table I.
SoFA is highly suitable for processing distributed data stream
at the edge devices by efficiently managing data replication,
job scheduling, and energy consumption.

V. PRACTICAL EVALUATION

This section presents the evaluation results of SoFA
architecture. Job completion time, scalability, and
power consumption of the analytics jobs over Spark are
recorded as the evaluation metrics. We compared SoFA with
a COTS concentrated Fog architecture. The characteristics
of the studied Fog architectures in this paper are shown in
Table III.

For the evaluations, we have launched a very small setup
of Spark cluster with four single-board computers (SBC). The
SBCs are connected wireless to a network switch. One of the
SBCs acts as a Fog Master, while the rest act as Fog Workers.
Spark with the latest version 2.0 is installed in the SBCs, plus
we used the standalone Spark manager service in the cluster-
mode. Analytics job requests are sent from one of the Fog
nodes to the Master node, which dispatches the jobs to the Fog
Worker nodes. The nodes are assigned consecutive static IP
addresses and the Fog Workers are accessible via pass-word-
less SSH from the Master node. In addition, we considered
the default block size of the Hadoop configuration equal to
64 MB in all experiments and all the applications has been
implemented using Java.

We evaluated the SoFA with three real-world applications
including Word-Count, Multilayer Perceptron neural network
(MLP), and Pi estimator. Processing streaming data is a key
requirement of modern Fog platforms. SoFA is a stream-
processing architecture that enables data to be processed
when they are generated. In addition, we evaluate the online

TABLE I
SUMMARIZING APPLICATION REQUIREMENTS OF THE FOG PLATFORM AND HOW SOFA ADDRESSES THESE REQUIREMENTS.

Requirement Detail SoFA
Scalability improving the ability of the SoFA is a in-memory computing platform that uses

processing platform by increasing the size of data RDD and its parallel operations to provide a scalable solution
Low Latency Providing the processing result with low Removing the data transfer time from edge devices to the Common Fog nodes

latency after data are generated by the sensors by local processing of data at the edge Devices (sensor nodes) to decrease latency
High Reliability Providing a highly reliable system ensure Spark is designed to support the loss of any set of Worker nodes. It will rerun any

the dependability of the services tasks those nodes were executing, and recompute any data it had cached on them.
Energy Efficiency Modern Fog applications require low-energy SoFA provides a near-sensor processing method which utilizes edge devices

consumption especially for embedded mobile applications to both generate and process data at the same time

TABLE II
THE SPECIFICATION OF STUDIED BENCHMARKS.

Benchmark Input Size Description
Word-Count {50, 500, 900} MB Counts the occurrence of

each word in a text file
PiSpark # Points: {100, 1000, 10000} Estimating Pi value (Π)

using Monte Carlo
Arch. #1: {4,5,5,3}

4-Layer MLP Arch. #2: {4,50,50,3} Multilayer neural network
Arch. #3: {4,500,500,3}

TABLE III
THE HARDWARE SPECIFICATION USED IN THE IMPLEMENTATION

PLATFORM.

Configuration SoFA: Master/Worker Common Fog
nodes (ODROID-XU4) Configuration

Processor ARM A15 Intel Core i5-520M
Core/Thread 4/4 2/4

Memory 2 GB 4 GB
Frequency 2 GHz 2933 MHz
Idle Power 4.2 15.1

Max Network B.W. 1000 Mbps 1000 Mbps
Operating System Ubuntu Mate 16.04 Ubuntu 16.04

processing ability of SoFA by varying the size of processing
data. Table II explains the specification of studied benchmarks.

Fig. 5 illustrates the benchmarking framework of SoFA.
In the Infrastructure layer, we have the processing re-
sources including wireless-connected SBCs. Spark is used
as a distributed processing engine avoiding manual data
copy/partitioning to the individual Workers. Moreover, Spark
is aware of data distribution and providing efficient data
management i.e., we benefit from HDFS for data distribution
and replication over the cluster.

ODROID-XU4 is a single-board computer equipped with
ARM big-LITTLE architecture [33]. ODROID-XU4 is a cost
efficient, low power consumption board while providing good
computing power. It has been used for many cost-effective
entertainment, surveillance, mobile, and IoT applications. In
addition, computing power and storage of SBC ODROID-
XU4 have similar features of smart phones and tablets, but has
a better user-friendly programming environment. In addition,
Hadoop, Spark and Openstack are all announced to be run on
ARM processors leading to transplant big data applications
to embedded computing platforms [19]. Therefore, SBC is
selected in our benchmark as an embedded edge devices.

A. Job Completion Time

Fig. 5 to Fig. 7 represent the total Workers’ job execution
time for PiSpark, Word-Count, and MLP, respectively. The
total Workers initialization overhead is not sensitive to the data
input size and on-average is equal to: PiSpark= 12 seconds,
Word-Count= 14 seconds, and MLP= 21 seconds.

a) PiSpark: According to the Fig. 5, SoFA provides
worse execution time by increasing the number of Workers
in the PiSpark with 100 estimation points. The reason is
that the overhead of the data communication and Workers
initializations are more than execution time itself. In other
words, SoFA can gain more performance by increasing the
number of Workers if we have huge amount of input data
sizes. The performance gain of three Workers compared to
one Worker with 100 estimation points and 10000 estimation
points are equal to -0.35X and +2.0X, respectively.

b) Word-Count: According to the Fig. 6, SoFA provides
less execution time by increasing the number of Workers in the
Word-Count application for all different input sizes. SoFA also
achieves more performance for big amount of input data sizes
by increasing the number of Workers. The performance gain
of three Workers compared to one Worker with 50 MB and
900 MB input size are equal to +2.2X and +5.6X, respectively.

c) MLP: MLP is a machine learning model with intrinsic
data dependency. We evaluate the MLP with three different
architectures and the same input size to evaluate the impact of
SoFA on the applications data dependency. According to the
results of Fig. 7, by increasing the number of Workers, for all
different architectures, the execution time of SoFA increases.
The reason is that Spark benefits from data parallelism for job
distribution, while MLP has an intrinsic data dependency and
cannot benefit from increasing the number of Workers.

B. Power Efficiency

For measuring energy efficiency, we consider Word-Count
as a most representative benchmark with data size of 50MB.
We used the kill-a-watt P4400 device to measure the power
consumption of Odroid-XU4 board by subtracting the average
of idle power from the measured power during benchmark
execution (Equations (1)). The power consumption, energy
consumption and power efficiency of SoFA is calculated based
on the Equations (2) to (4). In Equation (2), α is equal to
the number of processing Workers. Equation (3) represents
SoFA power consumption which is equal to the addition of
Master energy consumption by the Workers energy consump-
tion. Workers Init T ime is the spent time that Master

Fig. 5. PiSpark Job Execution Time with Different Sample Sizes on Different
Number of Workers.

Fig. 6. Word-Count Job Execution Time with Different Input Sizes on
Different Nodes.

Fig. 7. MLP Job Execution Time with Different MLP Architectures.

TABLE IV
THE CHARACTERISTICS OF EVALUATED PROCESSING PLATFORMS IN

SOFA AND THE COMMON FOG ARCHITECTURE.

Parameter SoFA: Master/Worker Common Fog
Workers nodes Configuration

Total Completion Time * 40/15 Sec. 22 Sec.
1 Power Consumption † 5.6/2.4 Watt 26 Watt

Energy Consumption ‡ 224/36 J 572 J
Total Completion Time * 26/15 Sec. 22 Sec.

2 Power Consumption † 4/2.5 Watt 26 Watt
Energy Consumption ‡ 104/38 J 572 J

Total Completion Time * 18/15 Sec. 22 Sec.
3 Power Consumption † 2.9/2.7 Watt 26 Watt

Energy Consumption ‡ 52.2/26 J 572 J
* Workers Exec. T ime / Workers Init T ime

† Worker Power Consumption / Master Power Consumption
‡ Worker Energy Consumption / Master Energy Consumption

initialize the Workers, and Workers Exec. T ime is the total
job processing time in Workers. In Equation (4), the energy
efficiency of SoFA (SoFA Energy Eff.) is equal to SoFA
energy consumption divided by total energy consumption of
the common Fog architecture. Table IV compares the energy
consumption of SoFA and the common Fog architecture. Fig. 8
presents the comparison of the Energy efficiency of SoFA and
the common Fog architecture.

Power Cons. = AveragePower − IdlePower (1)

SoFA Power = (Master Power) + α× (Worker Power)
(2)

SoFA Energy = (Master Power ×Workers Init T ime)

+ (α×Worker Power ×Workers Exec. T ime)
(3)

SoFA Energy Eff. =
(
Common Fog Energy

SoFA Energy

)
(4)

Fig. 8. The Energy Efficiency of SoFA compared to the Common Fog
Architecture.

According to the results of Table IV and Fig. 8, although
SoFA takes more time to complete the job, it provides more
energy efficiency even with one Worker node. In addition, the
SoFA job completion time will be decreased by using more
Workers leading to gain more energy efficiency up to 3.1x with
three Workers compared to the common Fog architecture.

C. Scalability
According to the results of studied benchmarks, SoFA

present a scalable solution for the applications without intrinsic
data dependency. In other words, total execution time and the
energy consumption of Workers are decreased by adding more
Workers to the system. The achieved performance and energy
efficiency are more significant by increasing the amount of
input data.

VI. CONCLUSION

We envision an Spark-enabled Fog architecture, named
SoFA, to be a unified platform for accelerating the IoT
applications by using a proper data replication, scheduling and
distribution. SoFA is able to run both data distribution and job
processing on the edge devices. SoFA distributes jobs among
available edge devices to benefit from the low processing
capacity of the available edge devices. Therefore, SoFA pro-
vides a highly energy efficient solution by maximizing system
efficiency suitable for embedded IoT applications. According
to the results, SoFA provides up to 3.1x energy efficiency
for the Network-intensive and IO-intensive applications like
Wordcount compared to the common processing platform.

In the future, we intend to make more experiments, with
more number of workers and various types of applications for
obtaining a mathematical model to analyze the correlation of
performance and scalability in SoFA platform.

VII. ACKNOWLEDGEMENT

The authors would like to thank Leo Hatvani and Hamid
Reza Faragardi for their helpful discussions and key tips to
realize the work. This work was supported by the Swedish
Foundation for Strategic Research via the FiC project, and
by the Swedish Research Council (Vetenskapsrådet), through
the MobiFog starting grant, and by the Swedish Knowledge
Foundation (KKS) through the DeepMaker and FlexiHealth
Prospekt, and the EU Celtic Plus/Vinnova project, Health5G
(Future eHealth powered by5G).

REFERENCES

[1] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, “Multitier
Fog Computing With Large-Scale IoT Data Analytics for Smart Cities,”
IEEE Internet of Things Journal, 2018.

[2] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: Architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, 2013.

[3] D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: The evolution of
data to life-critical,” Dont Focus on Big Data, 2017.

[4] Cisco Systems, “Fog Computing and the Internet of Things: Extend the
Cloud to Where the Things Are,” Www.Cisco.Com, 2016.

[5] Y. Liu, J. E. Fieldsend, and G. Min, “A framework of fog computing:
Architecture, challenges, and optimization,” IEEE Access, 2017.

[6] M. Zaharia, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I. Stoica,
R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
and S. Venkataraman, “Apache Spark,” Communications of the ACM,
2016.

[7] J. Garman, Kerberos: The Definitive Guide: The Definitive Guide. ”
O’Reilly Media, Inc.”, 2003.

[8] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. da Silva, C. Lee, and O. Rana, “The internet of
things, fog and cloud continuum: Integration and challenges,” Internet
of Things, 2018.

[9] H. R. Faragardi, “Optimizing timing-critical cloud resources in a smart
factory,” Ph.D. dissertation, Mälardalen University, 2018.

[10] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.
[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

[12] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[13] H. Karau, Fast data processing with Spark. Packt Publishing Ltd, 2013.
[14] V. Kumar Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O
’malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet Another Resource Negotiator,” SOCC ’13 Proceedings of
the 4th annual Symposium on Cloud Computing, 2013.

[15] D. Kakadia, Apache Mesos Essentials. Packt Publishing Ltd, 2015.
[16] K. Hightower, B. Burns, and J. Beda, Kubernetes: up and running: dive

into the future of infrastructure. ” O’Reilly Media, Inc.”, 2017.
[17] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for

computer networks,” IEEE Communications magazine, vol. 32, no. 9,
pp. 33–38, 1994.

[18] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[19] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Big data and internet
of things: A roadmap for smart environments. Springer, 2014, pp.
169–186.

[20] D. Rosário, M. Schimuneck, J. Camargo, J. Nobre, C. Both, J. Rochol,
and M. Gerla, “Service migration from cloud to multi-tier fog nodes for
multimedia dissemination with qoe support,” Sensors, vol. 18, no. 2, p.
329, 2018.

[21] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya,
“Focan: A fog-supported smart city network architecture for manage-
ment of applications in the internet of everything environments,” Journal
of Parallel and Distributed Computing, 2018.

[22] S. Yang, “Iot stream processing and analytics in the fog,” IEEE Com-
munications Magazine, vol. 55, no. 8, pp. 21–27, 2017.

[23] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24–31, 2015.

[24] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Transactions on database systems (TODS), vol. 30, no. 1, pp. 122–173,
2005.

[25] O. Diallo, J. J. Rodrigues, M. Sene, and J. Lloret, “Distributed database
management techniques for wireless sensor networks,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 26, no. 2, pp. 604–620,
2013.

[26] L. Canzian and M. Van Der Schaar, “Real-time stream mining: online
knowledge extraction using classifier networks.” IEEE Network, vol. 29,
no. 5, pp. 10–16, 2015.

[27] R. A. Gupta and M.-Y. Chow, “Networked control system: Overview and
research trends,” IEEE transactions on industrial electronics, vol. 57,
no. 7, pp. 2527–2535, 2009.

[28] M. H. Iqbal and T. R. Soomro, “Big data analysis: Apache storm
perspective,” International journal of computer trends and technology,
vol. 19, no. 1, pp. 9–14, 2015.

[29] K. Shvachko, H. Kuang, S. Radia, R. Chansler et al., “The hadoop
distributed file system.” in MSST, vol. 10, 2010, pp. 1–10.

[30] A. Cassandra, “Apache cassandra,” Website. Available online at
http://planetcassandra. org/what-is-apache-cassandra, p. 13, 2014.

[31] N. Garg, Apache Kafka. Packt Publishing Ltd, 2013.
[32] S. Yang, Y. Tahir, P.-y. Chen, A. Marshall, and J. McCann, “Distributed

optimization in energy harvesting sensor networks with dynamic in-
network data processing,” in IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communications. IEEE,
2016, pp. 1–9.

[33] J. Ivković, A. Veljović, B. Ranelović, and V. Veljović, “Odroid-xu4 as
a desktop pc and microcontroller development boards alternative,” in
Proc. 6th Int. Conf.(TIO), 2016.

