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Abstract—In this paper we present AdaptiveFlow as a platform
for designing system of systems. A model-based development
approach is proposed and tools are provided for formal veri-
fication and performance evaluation. The actor-based language,
Timed Rebeca, is used for modelling, and the model checking
tool Afra is used for checking the safety properties and also
for performance evaluation. We investigate the efficiency of our
approach and the applicability of the developed platform by
conducting experiments on a case study based on the Electric
Site Research Project of Volvo Construction Equipment. In this
project, a fleet of autonomous haulers is utilised to transport
materials in a quarry site. We used three adaptive policies as
plugins to our platform and examined these policies in different
scenarios.

Index Terms—System-of-systems, Actor model, Track-based
flow management, Model checking, Performance evaluation

I. INTRODUCTION

System-of-systems (SoS), or collaborating systems, are

comprised of interdependent systems that collaborate to realise

a common goal. According to Fitzgerald, systems-of-systems

are formed by network-enabled synergistic collaborations be-

tween systems that are distributed, evolve dynamically and

exhibit emergence [1]. Maier emphasizes that a system-of-

systems, or alternatively collaborative system, should posses

two characteristics regardless of the complexity or geographic

distribution of its components: the components must have

operational and managerial independence [2]. One of Maier’s

conclusions is that a collaborative system is defined by its

interfaces because the interfaces are the primary points at

which the designer can exert control, and the architecture

should be largely defined by the communication model.

Some examples of collaborating systems are integrated

manufacturing systems, enterprise information systems, emer-

gency response collaborations and collaborative transportation

systems. Intelligent Transportation Systems (ITS) is a typical

example of collaborative systems [3]. The goals for a traf-

fic management system include improving safety, increasing

transportation system efficiency, enhance mobility, reduce fuel

consumption and environmental cost, and increase economic

productivity. Advanced Traffic Management Systems (ATMS)

are a group of services in ITS with the long-term goal of

coupling traffic management with route selection in individual

vehicles. Other traffic management systems, like air traffic

control or rail road scheduling, have similar goals.

In this work, we consider a generalised view to the traffic

management system as an example of collaborating systems.

Our focus includes a wide range of applications consisting

of collaborating systems that are distributed, operate inde-

pendently, and move around to accomplish a mission. We

look at these applications as flow management systems and

focus on flow management where the mobile systems move

on tracks. Air traffic control, railroad scheduling, unmanned

aerial vehicles (UAV) traffic management, smart transport hubs

in cities, automated warehouses, and autonomous transport

vehicles (ATVs) are examples where we have track-based

traffic and transportation [4].

In many different applications, flow management is needed

for a system of mobile systems that are traveling on pre-

specified tracks. We see similar patterns where we have

trains on rails, cars on roads, automated vehicles in aisles of

a warehouse, airplanes in predefined airspace-tracks. These

systems are mostly mission critical and we need to guarantee

safety. Moreover, we need optimisation in different angles.

According to Maier, in the field of collaborating systems, op-

timisation work must be refocused to get away from the point

optimisation typical of conventional research and embrace the

search for invariants and robust strategies that typify evolving

systems [3].

Based on Lee’s viewpoint [5], science and engineering are

both all about models. Model-based development together

with using formal verification and analysis help in building

dependable systems. In [6], it is argued that faithful models

generally increase the ease of use and flexibility, and often
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improve analysability. Faithfulness is about the similarity of

the model and the system, and decreasing the semantic gap,

where the structures and features of the model matches the

ones of the system.

In this paper, we propose AdaptiveFlow, a model-based

design platform that provides formal verification and perfor-

mance analysis for track-based flow management systems.

Using AdaptiveFlow, a designer can build a model of the

collaborating system by defining the necessary properties of

the network infrastructure, and the features and missions of

the mobile systems. AdaptiveFlow is an actor-based platform,

based on encapsulated actors with clear interfaces and asyn-

chronous communication. So, the design naturally reflects the

features of the collaborating system and provides a faithful

model.

The actor-based modelling language, Timed Rebeca [7],

that is used to build AdaptiveFlow is provided by formal

semantics and is supported by model checking tools [8], [9].

Using model checking, we are able to verify the correctness of

models and check the safety and progress properties [10]. The

model checking tool of Timed Rebeca automatically checks

deadlock freedom and deadline misses for a given Timed

Rebeca model. Moreover, using assertions in the model, we

can check more model-specific properties. In AdaptiveFlow we

are for example interested in checking properties like collision

avoidance, being on the correct track for the mission, and

running out of resources or fuel.

In AdaptiveFlow, we also use Timed Rebeca Model Check-

ing tool for performance evaluation and optimisation. We

provide a usable interface for changing the parameters and ex-

plore the design space by checking different configurations for

arrangement of collaborating systems. Possibility of dynamic

changes both in the behaviour of each moving system and in

the configuration of the network infrastructure are considered

in the design platform. The moving systems can use different

policies for adapting to possible changes in the environment.

Sudden changes like blocking of a track, or change of a point

of interest like a charging station being out of order can be

modelled.

We use the case study of the Electric Site Research Project

of Volvo Construction Equipment (VCE) [11] to show the

applicability of AdaptiveFlow for designing a system of col-

laborating systems. In the Electric Site project, a fleet of

self-driving autonomous electrified vehicles (haulers) transport

materials in the quarry site. Since vehicles are electrified and

equipped with batteries they need to be charged at chargers

in the site. There are two loading points which are each

independent systems, and an unloading point. The missions

are currently supervised by a central unit. The plan is to move

towards a more distributed control. We used AdaptiveFlow

to explore the deign space and check different configurations

where we can have the optimum transportation paths for

haulers which for example reduces power consumption, and

at the same time guarantee the safety of each vehicle and the

overall system safety.

In Section II we introduce Timed Rebeca, and in Section III

we explain the VCE Electric Site example. In Section IV the

AdaptiveFlow platform is described. In Section V, we present

outcomes of experiments, showing comparative experiments

with different configurations that helps the designer to make

a decision. In Section VII, we conclude the paper and discuss

the future work.

II. REBECA AND TIMED REBECA LANGUAGES

Rebeca (Reactive Object Language) [12]–[14] is an actor-

based language. Actors are introduced by Hewitt [15] and

promoted as a concurrent object-based functional language

by Agha [16]. Rebeca is designed to be a bridge between

the formal methods community and software engineers, it is

designed as an imperative language, with Java-like syntax, and

is supported by a model checking toolset.

Actors are units of concurrency, with no shared variables,

communicating by asynchronous messages. There is no ex-

plicit receive statement, and send statements are non-blocking.

There is only one single thread of execution in each actor and

one message queue. The actor takes a message from top of

its message queue, and executes the corresponding method

(called message server) non-preemptively.

In Timed Rebeca (the real-time extension of Rebeca) [7],

[17], [18], instead of a message queue we have a message bag

where messages are tagged with their time-stamps. There is

a concept of synchronized local clocks throughout the model

for all the actors (which can be considered as a global time).

The sender tags a message with its own local time, at the time

of sending.

A Rebeca model consists of a number of reactive classes,
each describing the type of a certain number of actors (called

rebecs. Each reactive class declares the size of its message

buffer, a set of state variables, and the messages to which it

can respond. The local state of each actor is defined by the

values of its state variables and the contents of its message

buffer. Each actor has a set of known rebecs to which it

can send messages. Reactive classes have constructors, with

the same name as their reactive class. They are responsible

for initializing the actor’s state variables and putting initially

needed messages in the message buffer of that actor. See

Figure 1 for an abstract syntax of Timed Rebeca.

The way an actor responds to a message is specified in

a message server. The state of an actor can change during

the executing of its message servers through assignment

statements. An actor makes decisions through conditional

statements, communicates with other actors by sending mes-

sages, and performs periodic behavior by sending messages

to itself. Since communication is asynchronous, each actor

has a message buffer from which it takes the next incoming

message. An actor takes the first message from its message

buffer, executes its corresponding message server in an isolated

environment, takes the next message (or waits for the next

message to arrive) and so on. A message server may have

a nondeterministic assignment statement which is used to

model the nondeterminism in the behavior of a message server.
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Finally, the main block is used to instantiate the actors of the

model.

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName (〈rebecName〉∗)

: (〈literal〉∗);
Class ::= reactiveclass className {

KnownRebecs Vars MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }
VarDcl ::= type 〈v〉+;

MsgSrv ::= msgsrv methodName(〈type v〉∗)
{ Stmt∗ }

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; |
if (e) { Stmt∗ } [else { Stmt∗ }]; |
delay(t);

Call ::= rebecName.methodName(〈e〉∗)
[after(t)][deadline(t)]

Figure 1. Abstract syntax of Timed Rebeca (from [19]). Angled brackets
〈...〉 are used as meta parenthesis, superscript + for repetition at least once,
superscript ∗ for repetition zero or more times, whereas using 〈...〉 with
repetition denotes a comma separated list. Brackets [...] indicates that the
text within the brackets is optional. Identifiers className, rebecName,
methodName, v, literal, and type denote class name, rebec name, method
name, variable, literal, and type, respectively; and e denotes an (arithmetic,
boolean or nondetermistic choice) expression.

Timed Rebeca adds three primitives to Rebeca to address

timing issues: delay, deadline and after [7]. Each primitive is

used as follows:

• Delay: delay(t) models the passage of time for an actor

during execution of a message server, it increases the

value of the local clock of the respective rebec by the

amount t. Note that all other statements of Timed Rebeca

are assumed to execute instantaneously.

• After: The keywords after is used in conjunction with a

method call and indicates that it takes n units of time for

a message to be delivered to its receiver.

• Deadline: The keywords deadline is used in conjunction

with a method call and expresses that if the message is

not taken in n units of time, it will be purged from the

receiver’s message bag automatically (timeout).

These primitives provide the syntax to cover timing features

that a modeler might need to address in a message-based, asyn-

chronous and distributed setting, including computation time

(delay), message delivery time (after), periods of occurrences

of events (after), and message expiration (deadline).

III. VOLVO CONSTRUCTION EQUIPMENT ELECTRIC SITE

As an industrial case study, we consider the Volvo CE

electric quarry site, where gravel of different granularity is

Figure 2. Volvo Construction Equipment Electric Site

Figure 3. Schema of the Volvo Construction Equipment Electric Site

produced, typical used for building construction, road work

or railway beds, see Figure 2 . The rocks are blasted in one

area of the quarry and the big blocks are crushed into smaller

transportable rocks using a movable crusher (primary crusher).

The crushed material is then transported to a stationary crusher

(secondary crusher) where the material is crushed into the tar-

geted granularity. In the electric site research project at Volvo

Construction Equipment the material transportation from the

primary crusher to the secondary crusher is done by a fleet of

autonomous haulers (called HX).

In Figure 3 tracks for the autonomous haulers are shown.

The HX are loaded at the Primary Crusher (PCR) or by a

human operated wheel loader (WL). The primary crusher is

fed by a human operated excavator (EXC). Once the HX

are loaded, they are traveling to the secondary crusher (SCR)

where they dump the load. Since the HX are electrified and

equipped with batteries they need to be charged at the chargers

(CH). The missions in this site are set by a central site control

unit, which is supervising all activities. So, different queuing

points are necessary where the HX receive their next mission.

In order to make decisions for optimal production, the HX are

queuing at the main decision point (MDP) and once a loading

mission is assigned the HX will move to the assigned loading

position. The fleet of HX can be parked or maintained at the

parking area (PA).

Compared to automated guided vehicle (AGV) applications

in predefined environments like warehouses, the AGVs in

the quarry site scenario are exposed to harsh environmental

conditions, which can change rapidly. Therefore, the site

control system must be able to adjust the fleet of HX based

on the new changed conditions.
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IV. ADAPTIVEFLOW DESIGN PLATFORM

AdaptiveFlow is built based on the actor-based modelling

language Timed Rebeca and its model checking tool, Afra

(see [20]). In Timed Rebeca, each independent system can be

represented as an actor. The model has to be designed using

encapsulated actors with no shared variables among them.

Actors have a clear interface with the surrounding systems,

and their model of communication is based on asynchronous

messages. A collaborative system is a network of independent

systems, and Timed Rebeca model captures the communica-

tion pattern and protocol among these systems. This is align

with the principle mentioned by Maier [2], [3] that in a

collaborative system the intersystem communications is the

architecture. Afra is used to formally verify the properties

specified as assertions or temporal logic formulas. While

performing model checking, Afra generates the state space.

In AdaptiveFlow, we explore the generated state space and

provide the designer with performance metrics that can be used

for design space exploration and optimisation purposes. We

developed a set of tools surrounding Afra, we provide a user-

friendly interface for the designer to input the configuration,

then we use Afra to check the properties and generate the state

space, and finally we explore the state space for performance

analysis.

A. Timed Rebeca Models in AdaptiveFlow

The Timed Rebeca Model of the collaborating system is

built based on the features of interest in the system. Here we

explain the problem domain which is the basis for building

the model.

The infrastructure (or the environment) is as a collection of

segments characterised by a unique identifier and a coordinate.

Each segment (cell) is linked with its neighbour cells and

may differ from others in terms of length, allowed speed, and

capacity. The cells can be either available, in case they can be

traversed, or unavailable, in case there is an obstacles blocking

them. A segment knows its adjacent cells. The maximum

number of neighbours is eight, one for each cardinal position

(i.e. north, north-east, east, south-east, south, south-west, west,

north-west). The topology shows the positions within the en-

vironment in which the machines can perform their tasks (e.g.

pick up passengers at a bus station, loading stones in a quarry,

charging fuel, etc.), namely Points of Interest (PoI). Each PoI

is characterised by its unique identifier (i.e. id), its position

on the map (i.e. x and y), its type and its operating time. The

operating time represents the time needed for performing the

specific task at the current PoI. For example, for the VCE

Electric Site, we have the following PoIs: the Parking Station
where the fleet of machines are parked when they are not

operating, the Charging Station where machines can recharge,

and the Loading-Unloading Point where machines can either

load or unload materials.

In addition to the environment and the topology we need

information regarding the machines, and the configuration of

the system. For the Electric Site case study, each machine

has its own identifier, its own mission, and its own type. The

mission specifies the initial location of the machine, and the

path it has to take. The type of the machine declares several

features like capacity of the fuel tank, fuel consumption rate,

average speed, CO2 emission, and load capacity.

For the configuration we can set different parameters in-

cluding the number of operating machines, the safety dis-

tance between machines, and the level of fuel that should

be reserved. As the model is representing the asynchrony of

the system and communication among different systems, we

model the request to enter to the adjacent cell by sending a

message. This message can represent a query from the central

control unit which is supervising all activities like in the VCE

site, or represent a query from the adjacent cell if the cells

are considered as smart units, or alternatively it can model a

periodic checking of the surroundings by the machine itself.

The request may get rejected because the adjacent cell may be

occupied by another machine, or blocked due to some problem

like an obstacle or a hole created by rain. So, the request need

to be resent periodically. The period for resending the request

if the first request gets rejected is an important parameter

that can be set. During the analysis phase this period can be

changed to find a safe and also more efficient configuration.

Another important feature is configuring the adaptation

policies, we can set the parameters to show which adaptation

policy to use, and when to switch to another policy. More

details follow.

Adaptive Policies. Dynamic behaviour and adaptability are

among the main features of collaborating systems. In our

Timed Rebeca model we can have event handlers (or message

servers) that handle adaptation. In the current version, the

model has been equipped with three algorithms (i.e. policies)

to manage the situation where some segments are temporary

unavailable. The policies are different based on the different

decisions: wait for the blocked segment to be available again,

by-pass the blocked segment and continue on the predefined

route, run a routing algorithm and continue based on a

complete new route. More policies can be added to the model.

More detailed explanation is the following.

Policy 1 (postpone) allows the machine to postpone its

planned movement by an amount of time that is equal to the

resending period value given in the configuration input. In case

the Segment is unavailable for a number of attempts greater

than the max attempts value, the re-route policy is applied.

Policy 2 (overpass), lets the machine to bypass the segment

that is occupied, allowing it to overpass that position according

with the current environment and obstacles, and then continue

on the pre-specified route in the mission plan.

Policy 3 (re-route) uses the Dijkstra shortest path algorithm

[21] to calculate an alternative path from the current position

to the destination PoI, taking into consideration the current

situation of the environment including both static and dynamic

obstacles.

In Section V we compare the above policies from different

viewpoints, but note that the main purpose here is not to prove

the effectiveness of an algorithm against the others, but to

show that in AdaptiveFlow it is possible to design, implement
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and analyse different adaptive policies according to the context

or user’s needs.
Lagrangian and Eulerian Rebeca Models. Based on the

properties of interest, we may use two design patterns in

building the Timed Rebeca model in AdaptiveFlow. One

pattern is modelling each mobile system as an actor, and

the other is modelling each track of the infrastructure as an

actor. These two patterns reflect the two general views for

analysing a flow, inspired from fluid mechanics [4]. In fluid

mechanics, two well-known alternative ways to model fluid

flow are Lagrangian and Eulerian models [22]. In a Lagrangian

model of a fluid, the observer follows an individual fluid parcel

as it moves through space and time. In the Eulerian view,

the observer fixes on a region of space and observes fluid

mass passing through that space. For example, in studying the

flow of a river, the Lagrangian view is like sitting in a boat

and floating down the river, whereas the Eulerian view is like

sitting on the bank and watching the boats float by.
The Eulerian model, where each track of the infrastructure

is modelled as an actor, seems less faithful to the collaborating

system we are modelling. In this model, the mobile systems are

modelled as messages or packets passing through the tracks.

For the Electric Site case study, each packet represents a

hauler, and has its own identifier, its own mission, and its own

type. The request resending period may represent the same

phenomena in both patterns. So, we still may model the main

features of the independent machines in the Eulerian approach.

More in-depth discussion on this topic is outside the scope of

this paper.

B. AdaptiveFlow Modules and Analysis Process
AdaptiveFlow consists of three modules for (1) pre-

processing and building the Timed Rebeca model from a more

friendly input, (2) running Afra and do the formal verification

and generating the state space, and (3) post-processing and

perform the analysis on the state space. The architecture used

for AdaptiveFlow is based on [23] and can be seen in Figure

4.

Figure 4. AdaptiveFlow Modules and Processes

Pre-processing is for model generation. In the pre-

processing phase, AdaptiveFlow generates the Timed Rebeca

model that depicts the one provided by the user by means of

the input files. The user provides three input files into Extensi-

ble Markup Language (XML) format, namely the environment,
the topology, and the configuration. A Python script processes

their content and generates the input for the next module (i.e.

the TRebeca model).
Listing 1 illustrates a sketch of the Timed rebeca code

generated for the VCE Electric Site (the full code can be

accessed from AdaptiveFlow Web page [24]). This model

includes only one reactive class, which defines an environment

segment. The definition of the knownrebecs section indicates

that each segment knows and interacts with its eight surround-

ing segments. The statevars section includes declaration of

the segment id, its position on the map, its capacity at each

moment, and its type. Listing 1 includes the declaration of

the most important message servers of the segment actor.

However, their internal behavior is eliminated due to space

limitation.

The Timed Rebeca model generated from the pre-processing

phase, is model checked using Afra (the Eclipse integrated

tool) or Rebeca Model Checker (RMC), a tool for direct model

checking of Rebeca models (see [20]). RMC is used to convert

the Timed Rebeca model to a set of C++ files. These files are

then compiled to an executable file. Running the executable

file applies the model checking algorithm and generates the

verification result. RMC automatically verify if the model is

deadlock free.

In addition, we also check the following properties:

• if the machines are out of fuel,

• if the machines are moving correctly on the predefined

path,

• if the machines crash into each other or obstacles,

• if the current configuration may led to a deadlock situa-

tion.

Moreover, running RMC results in the generation of the whole

state-space of the model, as input for the next module.

In the post-processing phase, the state-space generated from

the previous module is evaluated with a Python script. In

particular each state of the system is analysed and those

variables that are meaningful for the analysis of the system are

extracted. Once these values are collected, they are organised

such that the useful data can be extracted for machines and

the system, for example: fuel consumed, material moved,

operating time and CO2 emitted.

V. EXPERIMENTAL RESULTS

In order to demonstrate the applicability of AdaptiveFlow,

we describe the experimental results for the VCE Electric Site

case study in the following. Figure 5 shows the graphical

representation of the scenario we are interested to model

and analyse. In this scenario, the environment is composed

of 100 segments in 10 rows, and 10 columns. There are

six PoIs, including one parking station (PS, id: 0), four

loading/unloading points (LUP with id: 2, 3, 4 and 5), and one

fuel charging station (CS, id: 1). The input files that define the

environment, the topology, and the system configurations are

available on the AdaptiveFlow web page [24].

We perform two sets of experiments in this scenario. In

the first set, the goal is to evaluate how the PoI positions,

as well as the adaptive policies, affect the performance of

the machines. In the second set of experiments, we consider

two types of machines working in the quarry with different

speed, fuel consumption, load capacity, fuel capacity, and CO2
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reactiveclass Segment(6) {
knownrebecs{

Segment N, E, S, W, NE, ES, SW, WN; //the eight surrounding segments
}

statevars{
int id;
int currCapacity; // current capacity
int[2] coord; //(x, y) coordinates
boolean isParkingStation, isChargingStation, isLoadUnloadLocation;

}

Segment(int sid, int x, int y){
id = sid;
coord[0] = x;
coord[1] = y;

}

msgsrv startMovingVehicles(...){...} //Starts moving the vehicles
msgsrv initRouteWithDijkstra((...){...} //Creates the route from a PoI to the next one
msgsrv givePermisionForVehicle(...){...} //The preceding segment asks this segment to allow

the vehicle to enter it
msgsrv getPermision (...){...} //the next segment grants permission to the vehicle
msgsrv segmentNotFree(...){...} //The segment denies the vehicle to enter it
msgsrv startSendingToNext(...){...} //The segment selects the next segment for the vehicle
msgsrv vehicleEntered(...){...} //The preceding segment informs the segment that the

vehicle has entered
msgsrv changeRouteWithPolicy2(...){...} //overpasses the obstacle
msgsrv changeRouteWithPolicy3(...){...} //finds a new route using Dijkstra

}
main{

Segment sg11(..., sg12, ...):(1, 4, 5);
Segment sg12(..., sg11, ...):(2, 6, 3);
...

}

Listing 1. A sketch of Timed Rebeca model in AdaptiveFlow

Figure 5. The environment used in experiments

emissions. The aim is to evaluate how replacing machines of

type A with machines of type B affect the throughput.

Here, we discuss the results of the two sets of experiments.

Values shown in the figures refer to the consumed fuel, the

emitted CO2 and the time needed for executing all the given

tasks. Moreover, the configurations are compared with respect

to the adaptive policies. The results related to each policy are

presented with a different colour.

For what concerns model checking, in all the experiments

the properties mentioned in Section 4 are satisfied, confirming

that the models with the given configurations did not violate

the requirements. It is worth saying that the first three prop-

erties were satisfied by model design, i.e. the behavior of the

Segment rebec was defined such that these crucial needs were

respected. Regarding the last property, (i.e. deadlock freedom),

the current design of the model does not support configurations

in which two PoIs are adjacent, unless each PoI can provide

service to more than one machine simultaneously.

An example of this situation is shown in Figure 6. The

red machine has just finished charging fuel at (0, 0) and it

is approaching the loading point at (1, 1). The blue machine

needs to reach the charging station, since it almost ran out

of fuel after having loaded materials at (1, 1). These two

machines want to move to the other PoI simultaneously, and

the first adaptation policy (i.e. postpone) is applied by both of

them. Therefore, they will wait until the PoI becomes available

again, which will never happen and we will have deadlock.

Experiment 1: Changing the position of different Points
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Figure 6. Example of a configuration which leads to starvation

of Interest. Here, the goal is to evaluate how the PoI positions,

as well as the adaptive policies, affect the performance of the

machines. We change the positions of the charging and parking

stations, while all the other parameters remain unchanged.

Dynamic obstacles are generated randomly during the pre-

processing phase, and the model is executed 45 times. The

output of the post-processing module helps the designer to

select the configuration most suitable for her needs (e.g. min-

imising operational times, reducing fuel consumption, etc.).
Figures 7, 8, and 9 show the outcomes of the first set of

experiments. Accordingly, the positions that optimise all the

evaluated measures are those located in the center of the site

(i.e. x and y are between 4 and 5). Considering the role played

by the adaptation policies, the one that minimizes the operating

time is the third policy. With this policy, a machine’s route

is re-computed whenever it reaches an obstacle. This means

that it will follow the shortest path from the current position

to the PoI, while avoiding the obstacle. As expected, the

first policy (i.e. postpone) imposes the highest operating time.

However, the fuel consumption is the lowest for this policy,

since machines do not consume fuel when they are waiting.

This is not the case for CO2 emissions, since we assume that

waiting machines produce a little amount of pollution. It is

worth saying that these assumptions can be changed without

much effort and in accordance with the system to be simulated.

Figure 7. Exp.1-Fuel consumption comparison

Figure 8. Exp.1-CO2 emission comparison

Experiment 2: Using different types of machines. In

the second set of experiments, we consider two types of

Figure 9. Exp.1-Operating time comparison

Table I
CHARACTERISTICS OF HAULERS A AND B

Type Fuel Capacity Fuel Consumption CO2 Emission Speed Load Capacity
A 7000 W 1 W/m 60 g/km 6 m/s 100 ql.
B 10000 W 2 W/m 120 g/km 8 m/s 150 ql.

machines working in the quarry. They differ in terms of speed,

fuel consumption rate, load capacity, fuel capacity, and CO2

emissions. Table I shows the characteristics of these types

of machines. The aim is to evaluate how replacing machines

of type A with machines of type B affect the throughput of

the VCE quarry site. Moreover, we gradually increased the

permitted traversing speed on segments from 6m/s up to 8 m/s,

so that machines of type B could exploit their higher velocity.

All these configurations were evaluated with the three adaptive

policies and the model was executed 54 times.

In the second set of experiments, considering the results

shown in Figures 10, 11, and 12, we notice that replacing

machines of type A with type B increases both fuel consump-

tion and CO2 emissions. On the other hand, the operating

time decreases with the increase in the number of machines

of type B. This is true only when the maximum speed for

each segment is greater than 6 m/s allowing machines of type

B to exploit their higher velocity. It is also worth remarking

that in contrast to the first set of experiments in which all the

runs ended with a total amount of transported material that

is equal to 1500 quintals, employing machines with higher

transportation capacity led the system to be more productive.

Indeed, the more is the number of type B machines, the higher

is the amount of moved material, i.e., 1500, 1650, 1800, 1950,

2100, and 2250 quintals for configurations with 0, 1, 2, 3, 4,

and 5 machines of type B, respectively.

From the adaptive policy point of view, the results indicate

that fuel consumption is almost the same for all the three

policies, and using either policy 2 or 3 instead of policy 1

would significantly reduce both CO2 emissions and operating

time.

Figure 10. Exp.2-Fuel consumption comparison
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Figure 11. Exp.2-CO2 emission comparison

Figure 12. Exp.2-Operating time comparison

VI. RELATED WORK

Bagheri et al. proposed a coordinated actor model in [25]

that can be used to model track-based traffic control systems

in which the traffic flows through pre-specified sub-tracks

and is coordinated by a traffic controller. In comparison to

[25], AdaptiveFlow supports the decentralised implementation

of control systems and there is no need for a centralised

coordinator. Moreover, we provide model checking facilities

while the coordinated actor model is supported by Ptolemy II

[26] simulator.

There are some work on using formal methods for anal-

ysis of path-finding in AGVs (Automated Guided Vehicles).

Authors in [27] propose an approach for AGVs to explore

an unknown grid-based environment and find a path to a

destination. They modelled the problem using timed automata

and analysed it using UPPAAL. To make the analysis possible,

they showed that how the grid-based environment can be

decomposed to a smaller area while the analysis result is

valid for the original model. Smith et al. in [28] addressed

the motion of the robot in the environment using weighted

transition systems for the model specification and generalised

LTL formula for the goal specification. Their approach shows

that how in every environment model, and for every for-

mula, a robot trajectory which minimises the cost function

is computed. Modelling in this approach is at a lower level

of abstraction comparing to the work of [27]. Authors in [29]

have a similar approach for analysing of A∗ algorithm, using Z

modelling language and its corresponding toolset. Authors in

[30] modelled a vehicle and consider different features, such as

position localisation, human and obstacle detection, collision

avoidance and analyse the model to avoid fatal accidents. They

provide a timed automata description of the vehicle’s control

system, including the abstracted path planning and collision

avoidance algorithms used to navigate a vehicle, and model

checked it using UPPAAL. All the above mentioned works are

focused on path-finding in one machine while we consider a

a set of collaborating machines and address the interference

of activities of different machines.

Authors in [31] addressed the safe path planning problem

in the multi-robot configuration. They used mCRL2 to specify

robots and the environment, and check if the collective be-

haviour of a group of robots satisfies certain desired properties.

They illustrate the applicability of their approach using a

simple path planning algorithm which conducts a set of robots

from their initial positions to their destinations on a planar

surface. Moving objects in [31] look into their neighbouring

cells in each step and proceed one step and they do not

have specific missions or plans to reach their destinations. In

addition, based on what they mentioned in the experimental

results, they couldn’t check models with many robots and

big environments. This problem is tackled using the same

approach and facing the same shortages with timed automata

in [32] and with hybrid automata in [33]. For the latter, they

showed how the generated hybrid automata can be embedded

into automata which can be model checked using SMV. They

discussed that such an embedding does not change the result

of verification for reachability properties.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we present AdaptiveFlow, a design platform

for modelling and analysing collaborating systems, in the

domain of traffic management systems and track-based flow

management. The model can capture independently operat-

ing and autonomous mobile systems that transport assets

(e.g. passenger, material, etc.) among a number of systems

at dedicated locations (e.g. train stations, airports, loading

stations, etc.). Each system may have different features, like

capacity and speed limit, and mobile systems need to refuel

at some charging stations. The models are written in Timed

Rebeca, and the Rebeca model checking tools are used both

for checking property violations and also for performance

evaluation. AdaptiveFlow allows users to easily customise the

system by means of user-friendly input files, and to evaluate

how their decisions can affect the throughput of the simulated

system. Moreover, the model is designed in such a way that the

movements of machines can adapt to the unexpected changes

of the environment. The platform also supports modelling and

analysis of cost parameters, like fuel consumptions and CO2

emissions. This is done automatically by AdaptiveFlow thanks

to the chain of modules explained in Section IV.

As future work, we plan to enrich AdaptiveFlow with more

adaptation policies to handle other unexpected changes in

the environment. In particular, we will add a policy that

avoid machines to stuck in situations like the one explained

in Section V. Moreover, we will implement the adaptive

algorithm named Dipole flow field described in [34] and used

by [30]. We are also working on generating ROS (Robot

Operating System) code from the Timed Rebeca models of

AdaptiveFlow.
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