
A Case Study of Interactive Development of Passive Tests

Daniel Flemström
RISE SICS Västerȧs AB

Västerȧs

daniel.flemstrom@ri.se

Thomas Gustafsson
Scania CV AB

Södertälje

thomas.gustafsson@scania.com

Avenir Kobetski
RISE SICS AB

Stockholm

avenir.kobetski@ri.se

ABSTRACT

Testing in the active sense is the most common way to perform

verification and validation of systems, but testing in the passive

sense has one compelling property: independence. Independence

from test stimuli and other passive tests opens up for parallel testing

and off-line analysis. However, the tests can be difficult to develop

since the complete testable state must be expressed using some

formalism. We argue that a carefully chosen language together

with an interactive work flow, providing immediate feedback, can

enable testers to approach passive testing.We have conducted a case

study in the automotive domain, interviewing experienced testers.

The testers have been introduced to, and had hands-on practice

with a tool. The tool is based on Easy Approach to Requirements

Syntax (EARS) and provides an interactive work flow for developing

and evaluating test results. The case study shows that i) the testers

believe passive testing is useful for many of their tests, ii) they see

benefits in parallelism and off-line analysis, iii) the interactive work

flow is necessary for writing the testable state expression, but iv)

when the testable state becomes too complex, then the proposed

language is a limitation. However, the language contributes to

concise tests, resembling executable requirements.

CCS CONCEPTS

• Software and its engineering → Domain specific languages;

Integrated and visual development environments; Application specific

development environments; Software testing and debugging;

KEYWORDS

passive testing, case study, content analysis, test language, test tool

ACM Reference Format:

Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski. 2018. A Case
Study of Interactive Development of Passive Tests. In RET’18: RET’18:IEEE/ACM
5th International Workshop on Requirements Engineering and Testing , June
2, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 8 pages.
https: //doi.org/10.1145/3195538.3195544

1 INTRODUCTION

Testing is a resource hungry undertakingwhere organizations strive

for improved efficiency. Most testing is active, in the sense that the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro t or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci c permission
and/or a fee. Request permissions from permissions@acm.org.
RET'18, June 2, 2018, Gothenburg, Sweden
© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5749-4/18/06…$15.00
https://doi.org/10.1145/3195538.3195544

system under test (SUT) is actively stimulated, while its response is

observed to form a test verdict. In passive testing, see e.g. [1], the SUT

behavior is observed without affecting the inputs. This allows tests

to be independent from each other and the test stimuli, opening up

for parallel test evaluation, off-line analysis, and automated input

generation. However, giving up control over inputs makes tests

more complex to develop, since testable states must be considered

in their completeness (and not only relying on specific pre-defined

input sequences) and encoded into some kind of formalism.

One such formalism is the Guarded Assertions (GA) approach [8],

where the test logic is split into a guard part, stating the testable

state of the SUT, and the assertion part, stating the expected re-

sponse of the SUT in the testable state. One way of modeling GA is

by using finite state automata [1, 17]. However, since such level of

formalism might be a limiting factor for practical usability, there is

a need for supporting methods and tools.

Building on experiences from the requirements engineering field,

pattern-based specification methods, see e.g. [9, 13, 16], seem neces-

sary as a link between the tester and GA models. Recently, the Easy

Approach to Requirements Syntax (EARS) [13] was extended with

realtime constructs allowing to capture GA logic in a user-friendly

way. In addition, a toolbox was developed, centered around an in-

teractive work flow where the test engineer, using the extended

EARS formalism, describes test logic on the GA format [5]. While

the test logic is edited, the toolbox shows plots of relevant guards

and assertions, based on a pre-loaded input-output trace of the SUT.

This paper strives to get an early industrial assessment of the

above mentioned concepts and tools for the development of passive

tests, focusing on qualitative feedback from a few experienced test

engineers. In order to investigate how the toolbox work flow and

the language affect the testers, we chose to conduct semi structured

interviews with testers from five different test groups at a heavy

truck manufacturing company. Each group is using Hardware-In-

the-Loop (HIL) as a means for performing the testing, and are thus

heavily using automated testing. Furthermore, these five groups

represent test levels ranging from Electronic Control Unit (ECU) to

integration testing of the complete vehicle electrical system.

The results of these interviews are presented in this paper. Sec-

tion 2 shortly presents the toolbox and the theory behind it. Sec-

tion 3 describes the design, realization, and validity of the case

study. Section 4 collects the results of the interviews, Section 5

discusses related work, while Section 6 concludes the paper.

2 BACKGROUND

This section contains a background of the toolbox mentioned above,

including a description of the guarded assertions approach, the

pattern-based language used by the toolbox.

13

2018 ACM/IEEE 5th International Workshop on Requirements Engineering and Testing

RET’2018, June 2018, Gothenburg, Sweden Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski

2.1 Guarded Assertions

A guarded assertion (GA) [8] is a logical construct, consisting of two

parts: i) the guard (G) specifying under which conditions the test

shall be evaluated, and ii) the expected responses, or assertions (A),

of the SUT when it is in a testable state. In its simplest form, a GA

can be quite intuitive, as in the following example:

G: When a reverse gear is engaged on a vehicle with a turned

on electrical system,

A: the rear lamp shall be enabled.

Note that GAs follow the passive testing principle and never change

the state of the SUT, but are rather acting as requirements, describ-

ing the expected system behavior in a given SUT state. However,

in order to be suitable for automated testing, they should be un-

ambiguous and executable. In practice, this typically means that

timing information needs to be added, e.g. "the rear lamp should

be enabled within 0.2 seconds". It also means that some kind of

modeling formalism is required. In this work, such a formalism is

based on a specification pattern, described in the next subsection.

2.2 Timed Easy Approach to Requirements
Syntax (T-EARS)

Easy Approach to Requirements Syntax (EARS) [13] is a semi-formal

way of expressing requirements using a set of pre-defined keywords.

The keyword set, based on best practices from an industrial expe-

rience, is intentionally kept short and simple so as to reduce the

threshold needed to start using EARS. By imposing some other re-

strictions on the format, like using logical propositions and known

parameter names instead of natural text descriptions of them, EARS-

expressions can be converted into a machine readable format, sig-

nificantly enhancing the rigor of requirements, as compared to

natural language formulations [7]. The basic EARS templates are:

• ubiquitous: requirement is always active
• keyword when: required response to a triggering event
• keyword while: required response in a specified state
• keyword where: applicable only if a certain feature is in-

cluded

• keyword if... then: required response to an undesirable trig-
gering event

A limitation of EARS when it comes to testing real-time systems

is its lack of templates for describing timing information. For this

reason, EARS was extended into timed EARS (T-EARS) [5] using

the following keywords:

• keyword within: the time within which a condition must

hold

• keyword for : minimum time that a condition must hold

• keyword after : relative order of two events
In addition, T-EARS has some convenience constructs, such as

abs(sig) - the absolute value of a signal, and even(sig) - the time
intervals when sig has been high an even number of times. It is
rather straightforward to extend T-EARS with other constructs.

2.3 Toolbox

The SAGA toolbox [5] shall enable a test engineer to work effi-

ciently on three aspects of test development and test result analysis:

i) developing a GA, ii) analysis of a test result of a GA, and iii)

developing SUT stimuli. The toolbox has a web based interface

centered around an interactive work flow in the following way:

• loading a trace from the SUT,

• a listbox presenting available signals in the trace,
• a text editor supporting the T-EARS language with syntax
highlighting and auto-completion of signals,

• a set of plots representing guards, with visual highlighting
of the time intervals where the guard is valid, and

• plots of assertions, with visual highlighting of the time in-
tervals where the assertions pass or fail.

As soon as the T-EARS expression is changed, the plots are up-

dated to accurately represent the new GA. This gives an interactive

round-trip, where the test engineer can study the plots, zoom if

needed, and update the GA if needed. The tool can also be used as

a query language on the trace.

3 CASE STUDY DESIGN

This section contains the objective and research questions, as well

as a description of the context, preparation and data collection, the

analysis procedures and finally an analysis of the threats to validity

and the countermeasures undertaken.

3.1 Objective and Method Selection

We argue that tool support is important for enabling passive testing

to practitioners, thus, certain design decisions have been taken in

the SAGA toolbox presented in Section 2. The objective of this

study is to asses how well the GA approach, the T-EARS language,

and the interactive work flow enable passive testing in an industrial

setting. The objective is broken down into three research questions:

RQ1. What are the potential benefits and drawbacks of the GA

approach in an industrial testing setting?

RQ2. What are the potential benefits and drawbacks of using the

T-EARS language to model GAs?

RQ3. What are the potential benefits and requirements on an in-

teractive tool for the development of GAs?

To collect data for answering the research questions, we chose

to perform an exploratory case study, based on interviews with

software test practitioners within the context of automotive systems

testing. Since benefits and drawback are composed of a multitude of

aspects that may be intertwined and possibly expressed indirectly,

the interviews were subjected to a content analysis [6].

3.2 Context

The case study was carried out at Scania CV AB, one of the world’s

largest manufacturers of heavy trucks, buses, and engines.

3.2.1 Participants. The focus of this case study was on test

groups using either SIL or HIL environments, since these were

deemed to benefit the most from the toolbox and the GA approach

in the short term. Test scripts are developed in test automation

frameworks using Python and/or C#. One experienced test engineer

was chosen from each of these groups, resulting in five interviewees.

Moreover, one test-run interview was made with an experienced

test engineer from the complete-vehicle electrical system integra-

tion testing group, resulting in six interviews in total. Table 1 shows

a summary of the participants in the case study.

14

A Case Study of Interactive Development of Passive Tests RET’2018, June 2018, Gothenburg, Sweden

Table 1: Interviewee Summary

Interview Department Participant

Id Duration # Statements Id Test Level Roles Selected TC Size Years of Testing

1 1h50min 82 A ECUs Test SE1, T2, TL3 Fairly simple 16

2 1h13min 124 B Complete Vehicle Test T Fairly simple + simple 3

3 1h00min 109 C ECUs Test T Many small simple tests 4

4 1h48min 70 A Complete Vehicle Test T Fairly simple 12

5 1h09min 112 D ECUs Test SE, T, CGL4 Fairly simple 14

6 1h29min 106 E ECUs Test SE, T Fairly simple 8

1Senior Engineer, 2Tester, 3Test Leader, 4Competence Group Leader

3.3 Preparation and Data Collection

In this section, the preparation and data collection procedures of the

case study are presented, in accordance with the general guidelines

found in [18]. Figure 1 shows an overview of this process that

consists of preparation, trial, and finally the interview phases.

InterviewsTrialPrep.

t

Individual
Work

2W
Activity

Outcome

Phase

- Report- Design
- Guide

- Recordings

Figure 1: Data Collection Process

3.3.1 Preparation Phase. The preparation phase constitutes sev-

eral activities. An initial understanding of the case context was

achieved by studying available test cases (TC) and having informal

discussions with some of the testers about TC organization. This

phase was ongoing during a rather long period of time.

An interview guide was constructed using open-ended main

questions as well as follow-up questions. Where we could foresee

the need, a few probing questions, e.g., “why do you”, were added

to the questionnaire. The questions in the guide were divided into

three content areas (Approach, Language and Tool), reflecting the

scope of the research questions in Section 3.1. Further, as a warm up

section, the guide started with contextual questions regarding back-

ground information about the interviewee, such as experience and

current ways of working, meant to facilitate the result comparison.

This interview guide was tested in a test-run to allow adjust-

ments before the actual interviewswere performed. Since no changes

were necessary, the test-run was included in the final data set.

3.3.2 Trial Phase. The selected participants of the case study

received an invitation letter, describing the objectives of the study

as well as the data collection procedures and that the interviews

would be recorded and anonymized. Further, each participant was

asked to select test cases of varying complexity from their own

domain. The test cases should also have been automated in their

current test automation framework, to allow the participants to

make comparisons. The purpose of the trial phase was to allow

the participants to gain hands-on experience of the toolbox and its

underlying concepts, while working on their own test cases.

As shown in Figure 1, the trial phase startedwith a demonstration

session, when the concept of guarded assertions, T-EARS, as well as

basic tool handling skills, were presented. The demonstration was

carried out on one occasion, with all participants together. Next, the

participants were expected to work with their selected test cases

and the SAGA tool for a period of at least two weeks calendar time,

depending on when their interview was scheduled. The duration

was chosen to minimize conflicts with the testers normal work

tasks. The participants were encouraged to take notes during this

phase in an individual experience report.
3.3.3 Interview Phase. The participants were individually inter-

viewed in Swedish by two researchers, one performing the inter-

view and the other taking notes. The interviews were also recorded.

During the interview, the interview guide was the main instrument,

but the experience report was also discussed. The target time of the

interviews was set to 1-2 hours.

3.4 Analysis Procedures

This section describes the analysis procedures as illustrated in Fig-

ure 2. Content analysis, as described byGraneheim and Lundman[6],

was carried out on the interview material. They divide the analysis

into manifest content analysis that describes “what” the partici-

pants are telling, and latent content analysis, where an underlying

meaning is sought “between the lines”. Although the participants in

the study have vast experience in software testing, their experience

with the tool is limited in comparison. As a consequence, we strive

for keeping the analysis more manifest than latent.

Process Step Result

Create,
Adjust,
Move

Code-Category-Context-Validation

Final Result
Adjust,
Move

Transcription

Split

Categorization

Clusterization

Extraction

Familiarization

Units of Analysis

Raw Text

Condensed Meaning Units

Meaning Units

Codes
Categories / Sub Categories
Categorized Code-Map

Figure 2: Overview of the analysis process.

15

RET’2018, June 2018, Gothenburg, Sweden Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski

3.4.1 Transcription. The recordings were transcribed at a ver-

batim conversational level. Nuances in language or body language

were not considered. To anonymize the results, each interview was

assigned a random number (see Table 1). The outcome of this step

was one file with raw text for each interview.
3.4.2 Familiarization. The full transcript of each interview was

read several times to get an overview of thematerial. This resulted in

a main-takeaways section, added to each interview to communicate

the gist between researchers not taking direct part of the analysis.
3.4.3 Split. The transcripts were split into meaning units. A

meaning unit typically corresponds to one sentence. Each such

meaning unit was assigned a unique row-id in an Excel sheet.

Approximately 4800 such meaning units were extracted from the

transcript. The outcome of this step was an Excel sheet as:

<row-id,interviewee-id,text>, containg all meaning units.
3.4.4 Extraction. Not all meaning units contained useful infor-

mation, while others were excessively wordy or contained several

pieces of information. To mitigate this and to reach a manageable

level of analysis, the contained information was extracted from the

original list of meaning units into condensed meaning units. The

output of this stage was the same Excel sheet as in the Split step,

with the additional condensed meaning unit column.
3.4.5 Units of analysis. To form manageable units of analysis,

the condensed meaning units were sorted into content areas as

described in Section 3.3.1. Each content area was then analyzed

separately in the steps clusterization and categorization below.
3.4.6 Clusterization (coding). As depicted in Figure 2 cluster-

ization and categorization, were undertaken iteratively. During

the categorization of the condensed meaning units, units with the

same meaning were grouped together and tagged with a code. The

outcome of this step is a set of categorized codes.
3.4.7 Categorization. Categories and sub-categories were cre-

ated in an iterative bottom-up approach. The codes were moved

around between categories and sub-categories and new categories

emerged until no further new categories or movements could be

motivated. This step also included moving of codes that belong to

another content area. The result of this step was a tree like category-

code-map that served as a mind-map for the results section.
3.4.8 Validation. When splitting the content and rearranging

the pieces there is a risk that some of the pieces end up in a com-

pletely different context. To prevent such mistakes, each code-usage

needs to be validated against the original text. The categories and

contained codes were added to the results section of this paper,

and the row-ids of each code were expanded to <row-id,inter-
viewee-id, condensed meaning unit> and validated to the orig-
inal meaning units (typically in a window of 5 before and 5 after).

This produced a validated result list where misclassified codes and

out of context condensed meaning units had been addressed.

3.5 Validity

When performing a case study there are several threats to valid-

ity [18]. Construct validity is concerned with whether the method

and data sources are relevant to answering the research questions.

There is a risk that the result is biased by the choice of interviewees.

As a countermeasure, the interviewees were selected from different

departments. To mitigate the risk of researcher bias in the interview

answers, the questionnaire was carefully designed to not reveal

any pre-assumptions or expectations. However, there is always a

risk when demonstrating the tool and concept, that certain features

are given more attention than others. Since one of the researchers

is employed at the case organization, there is a potential risk that

this could influence the testers answers. To mitigate this, the two

researchers not employed at the case organization, performed the

questioning. Another risk is that the researcher finds the answers

he expects. To mitigate this, the transcripts were checked against

the recording by another researcher.

One threat to internal validity is that the interviewees have long

experience of their current testing framework compared to the GA

approach. Another threat is that the SAGA tool is being developed

and is not as mature as their current tools. While these threats

seem unavoidable during early assessment, a follow-up study is

recommended when the tools (and their users) have matured.

As in all case studies, there are several threats to external validity.

Since we have studied only one organization, there is a risk that the

results are not generalizable. To mitigate this risk we have selected

the interviewees from different departments with a vast experience

from different organizations. Further, the context, for which the

study is valid, has been described as thoroughly as possible. Since

the study is exploratory, using content analysis as a primary analy-

sis method, there are several threats to reliability. One risk is that

another researcher would have coded the transcripts differently.

This was mitigated by having a second researcher validating a ran-

dom set of the encoded meaning units. Another threat is that the

categorization is dependent on the researchers pre-assumptions. As

countermeasure, the category maps and encoding were presented

to and discussed with the other researchers.

4 CASE STUDY RESULTS

The results of the interviews are structured along the content areas.

Within each content area, the results are presented following iden-

tified categories of meaning units, and underlined with quotations,

where appropriate. Note that these quotations refer to generalized

translations of key findings and are thus not direct quotations from

the interviewees. Still they capture the gist of the original statement

in the raw data, e.g., “T-EARS can be used for avoiding misunder-

standings.” [i3] , where [i3] refers to the id column of Table 1.

4.1 GA Approach

The collective results of this content area serves the purpose of an-

swering RQ1. - “What are the potential benefits and drawbacks of the

GA approach in an industrial testing setting?” Two of the identified

categories (Potential and Risk) directly contributes to answering

the question. However, the analysis also revealed the category Ap-

plicability and limitations, with subcategories describing when and

why the potential or risks can be expected.

4.1.1 Potential. This category contains the properties that con-

tribute to the potential of the GA approach, with each property

represented by a subcategory.

Efficiency: The passive approach to testing leads to increased paral-

lelism in the sense that it allows several requirements to be verified

at the same time. This is perceived as more efficient by the inter-

viewees. “It will be more efficient if I can run my state machine once

and run all tests [in parallel] instead of running it once, checking

this, running again, checking that, and so on.” [i6] In addition, a

16

A Case Study of Interactive Development of Passive Tests RET’2018, June 2018, Gothenburg, Sweden

GA is evaluated as soon, and as often, as the system has reached a

testable state. According to the testers, this often happened sooner

than expected, which indicates that the required test sequence may

be shortened. “Another benefit we discovered with our present test

automation framework was that we shortened our HIL execution time.

Because, often, the expected system state occurs earlier than the tester

guessed. Sometime this could mean several hours on a test suit.” [i3]

Effectiveness: As a consequence of the continuous execution of GAs,

a requirement may be tested several times, which is an advantage

compared to current testing where tests are executed once. “If we

had some overall tests during the entire test session, we might catch

more than today.” [i6] Improvements with respect to regression

testing were mentioned: “For regression test purposes, it may be very

useful to have a set of selected test cases waiting for their active state

in the background while you test other things at depth.” [i1]

Diversity: The ability of running tests off-line on a great variety

of log-files was mentioned as a great potential of the approach.

Examples given were old logs, logs from other test cases, other

people’s logs and field vehicle logs. This enables running a modified

test without having to re-run a HIL execution, which could be used

for deep-analysis leading to an increased effectiveness. “Extremely

good if you can test off-line [on different input data] when you have

changed a test.” [i4]

Realism: The possibility to analyze logs from field tests directly leads

to more realistic tests. Altogether this contributes to an increased

confidence in the test results and that more bugs are believed to be

found. “Given that we can analyze logs from field tests we get more

reliable and realistic tests.” [i5]

Clarity: Another positive effect of the way tests are specified in

the approach, is that the tests are perceived as more “clear”. One

reason is that the stimuli sequence is not mixed into the test case.

Another reason is that the guard thoroughly describes the testable

state of the system and is clearly separated from the assertion part.

Finally, evaluating test cases in parallel opens up for having smaller

test cases, ideally covering one requirement at a time, which also

contributes to increased clarity. “It is much more clear when you have

the actual system state together with what you want to compare.” [i2]

Robustness: Having smaller test cases, as mentioned in Clarity, also

contributes to increased robustness: “I think that, just the fact that

we are forced to write smaller tests with fewer inputs and a well

defined scope for one thing at a time, instead of testing many things

at the same time would help us to get more robust testing.” [i6]

Reuse: The testers considered it beneficial to reuse the GA logic

from lower integration levels, even though the test automation

frameworks usually differ and the logic would have to be combined

when moving up in the integration chain.

System understanding: The ability of fine tuning expressions by

applying them on an off-line log was also considered as a means

of gaining understanding of both the requirements and the system

behavior. This is further emphasized by the observation that in

order to thoroughly describe the testable state, the testers are forced

to widen their view of the system state. This would lead to an

increased understanding of the relevant states as well as the possible

transitions between them. If the tester succeeds in this, false failures

due to running tests under the wrong system state may decrease.
4.1.2 Risks. Generality: Although the need to better understand

system states has been presented as a strength of the approach, this

was also perceived as an increased burden when writing the GAs.

This is due to the specification of the guard becoming much more

general: “You cannot assume anything [about the stimuli sequence],

so you need to specify when to test and when not to test.” [i2]

Coverage: Without direct control over the stimuli, there is a risk

that some GAs never get triggered and it is thus important to keep

track of which GAs have been covered. “For the stimuli part, it will

be difficult to know if I have covered all states i have to cover” [i6]

False results: The inherent generality of GA expressions contains

the risk of getting false results, e.g., due to missed signals in the

guard specification, or side effects from another function that was

overlooked by the tester. In summary, this could lead to a lot of

analysis whether a fault reported by an GA is a real fault or not.

“There is a risk that a lot of analysis is required to check whether

reported faults from the GA are real faults or not.” [i2]

4.1.3 Applicability and Limitations. In total, the applicability of

the approach was guessed by the interviewees to be within 40% to

80% of the test cases that they have today. In detail the following

categories were formed from the data:

Integration level: In general, the approach seems to be applicable on

different levels of integration, even though the answers varied. One

participant thought that, although technically possible, it would

not be motivating enough for the lowest test levels to adopt the

GA approach, while another considered it a perfect fit for unit tests.

On the ECU level, everything depended on the complexity of the

underlying functions and physical processes, but again not on the

approach per se. Finally, all interviewees agreed that the benefints

of the approach increase when climbing up the integration chain.

“The approach works better on a higher level with many ECUs” [i1].

More applicable: In the discussions, there were four kinds of tests

that were mentioned as particularly applicable for the approach.

These are simple tests, non functional tests with long duration, posi-

tive testing, and ubiquitous requirements. “The approach is good for

analyzing vehicle logs for simple faults that must never occur.” [i5]

Type of faults: There are also some types of faults that are believed

to be easier to find with the approach. One example is when signals

propagate between different ECUs and there are specific require-

ments on, e.g., timing. Another type of faults where the approach

seems particularly promising is glitches that occurs only occasion-

ally or faults that occur in unexpected parts of the system that you

are not currently focusing on.

Less applicable: Examples of where the approach is less applicable

are tests of diagnosis functions and fault injection. In such cases, the

fail states were perceived as difficult to model and the expressions

tend to be very lengthy. “1 out of 5 is fault injection related and not

suitable for the approach.” [i4] Tests with a lot of special cases or

exceptions also fall under this category. Another example is test

cases where the result cannot be automatically encoded, such as

testing visual output on the instrument cluster. The most discussed

barrier for using the approach is the complexity of the test case.

Complexity: Several different sources of complexity were identified

during the interviews, such as: number of inputs / signals, com-

plexity of the tested function / requirement, amount of intentional

functional interaction, number of exceptions / special cases, length

of state sequences, and number of possible state transitions.

17

RET’2018, June 2018, Gothenburg, Sweden Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski

4.2 Language

The collective results of this content area serves the purpose of

answering RQ2. -What are the potential benefits and drawbacks of

using the T-EARS language to model GAs?” The analysis resulted in

two categories directly contributing to the research question: Adop-

tion and Ease-of-use. Aside from answering the research question,

the analysis also revealed a number of suggestions on how to im-

prove the language. This is presented in the category Suggestions.

Lastly, we present a summary of a discussion with the participants

on different, more specific, aspects of a test case written in T-EARS.

4.2.1 Adoption. This category describes the participants’ expe-

rience when starting to use the language. Four of the participants

were used to the way of thinking, since the format of their require-

ments were pretty similar, or were even written in the EARS format.

For them, starting to use T-EARS was not a big step. At least not

for the simple cases. When things got more complex, e.g., handling

special cases, they experienced it as more difficult, mainly due to

the lack of user defined functions. The remaining two participants

had more difficulties than the others to start using the T-EARS lan-

guage. The main reasons were problems with log compatibility to

the SAGA tool and that they needed more example expressions to

study. The overall impression of the language was that it is mature

enough for simple expressions, but not yet mature enough for more

complex tests. More examples of T-EARS expressions and visual

support from the tool while experimenting, were mentioned as

important things to quickly get up to speed with the language.

4.2.2 Ease of use. One of the most important aspects of T-EARS

is how easy it is to use. Three sub categories were identified, rep-

resenting factors that the participants thought contributed to or

hindered ease of use: Facilitators, Barriers and Complexity.

Facilitators: The small set of keywords and the simplicity of the

syntax were perceived to give a clear and easy to understand test

code. “... it is more clear how you reach a testable system state than

our current Python code.” [i5] The resemblance with the requirement

syntax, especially the case when the requirements are written in

EARS was also appreciated. “The requirements we have in the EARS

format can probably be used directly in T-EARS.” [i3]

Barriers: The simplicity of the language also became a limiting factor,

e.g., when expressing series of states, or long complex expressions.

The semantic distinction between T-EARS keywords while (state)
and when (event), especially in combination with timing, was a bit
difficult to understand. “I do not know how long “when” is valid. For

example if I momentarily press a button to activate something, in

reality it is still activated after the button has been released” [i2].

Complexity: The sources of complexity in a T-EARS expression

comes mainly from using the approach, see Section 4.1. “The com-

plexity lies in the required domain knowledge, signals, system states

and transitions, rather than writing the test case.” [i2] Nevertheless,

a few ideas for reducing the complexity are presented below.

4.2.3 Suggestions. The last category was the participants sug-

gestions on how to make the language easier to use. The main

theme here was the ability to deal with more complex tests.

User-defined functions: The most discussed feature was the ability

to create user defined functions. Either for grouping or encapsulate

long expressions or extend the available convenience functions, e.g.

for simplified signal processing.

Higher-level state variables: This is a variant of the user defined

function that was discussed. In practice, this means that it would be

possible to use information on another GA (guard activated, passed,

fail) as input to another GA.

GA-scoping: Scripted activation and deactivation of groups of GAs

was suggested, using different mechanisms: i) Triggered if another

GA has been triggered (one usage of higher level state variables as

discussed above); ii) Implementing the where keyword from EARS.

This would allow the inclusion of GAs, relevant to a specific con-

figuration only: “...there are certain functions that do not exist in all

vehicles, and those you need to consider...” [i2]

Save / restore signal values: The last suggestion was to include a

save / load mechanism, e.g., to be able to store a signal value when

a certain guard is activated. The stored signal should be possible to

use as an input to another GA. This is sometimes useful in more

complex functions, such as cruise control, where a signal needs to

maintain its value during a period of time.

4.2.4 Detailed impressions. The following is a summary of the

discussions regarding specific aspects of the T-EARS language. The

interviewees were asked to compare T-EARS with their current

test specification language, to see if using T-EARS for specification

increases or decreases, e.g., complexity.

Ambiquity: Test caseswritten in T-EARSwould be less ambiguous.“T-

EARS can be used for avoiding misunderstandings.” [i3] If the require-

ments are written in EARS, it will be less ambiguous since virtually

no translation is required.

Correctness: Same or better. “Since everybody will be forced to write

the same way, it will be harder to do it wrong. At least for short and

simple expressions.” [i6]

Understandability: At the same level or better for not too complex

tests. If the requirements are expressed in EARS, it will be substan-

tially easier for a broader range of people to understand the resulting

test case, especially for other testers and non-programmers. In the

case of more complex test cases, one of the participants believed

that the current language (Python) would result in a test that is

easier to understand.

Consistency:Whether the usage of T-EARS would give more or less

consistent test cases than using, e.g., Python, differed depending on

what the participants included in the language. If considering only

the T-EARS core language, and not support functions, the answer

was that the tests would be more consistent, since the T-EARS code

would look the same for all test cases. Some participants had higher

level functions in their test frameworks, effectively standardizing

the test code to be consistent. Finally, the time specification feature

of T-EARS was emphasized as an important factor:“...these timing

expressions, we think this is the whole difference and it really helps

us in getting the test cases consistent.” [i3]

Conciseness: Conciseness depends on the system under test and ulti-

mately the complexity of the requirement. For simple requirements

it should be more concise, but for more complex it might get less

concise, since it is not evident how to encapsulate expressions into

functions, as in, e.g., Python.

Design / Level Independence: The participants did not se any techni-

cal limitations for using the language at different test levels.

Stability: The choice of specification language is not considered to

affect stability, at least in any dominant way. However, for some

groups, being able to specify timing in the tests were a synonym

18

A Case Study of Interactive Development of Passive Tests RET’2018, June 2018, Gothenburg, Sweden

for stability. Even though some of the interviewees had this feature

in their testing framework, the participants appreciated the built-in

temporal aspects of T-EARS.

Complexity: The complexity of the test cases written in T-EARS de-

pends to a great deal on the complexity of the tested functions.

For simple functions the resulting test cases are less complex, but

due to the simplicity of the language, e.g., lacking user function or

other encapsulation mechanisms, the complexity is expected to be

greater when testing more complex functions.

4.3 Tool

The results of this content area, divided into categories Potential

and Challenges, serve the purpose of answering RQ3. - What are

the potential benefits and requirements on an interactive tool for the

development of GAs?”. In addition, suggestions from the case study

participants on how a tool should meet the challenges are included.

4.3.1 Potential. Interaction: The strength of the plots in the

graphical signal view is that the relevant signals, as well as the

intermediate evaluation results, are shown as the GA expression

is being typed in, giving an immediate feedback on the current

expression to the tester. “It becomes pretty obvious when certain

signals will be evaluated” [i2].

Tool integration: The participants found a great potential in writing

GA expressions, not only due to the T-EARS language, but also due

to the integration between the GA editor, recorded signal logs, and

the graphical signal and test evaluation view.

Effectiveness: The possibility to load another persons log while fine-

tuning the test case and immediately get the graphical feedback of

the result, was perceived as a great help for increasing the confidence

in the correctness of the test case, as well as a great tool for fault

finding. “It is super useful to directly see where it went wrong, and

HOW wrong it went, for example timing problems or that a signal

never reaches a value.” [i4]

Efficiency: Off-line analysis of log data also saves a substantial

amount of rig execution time, since tests do not require re-execution

on the rig, but can rather be analyzed on a personal computer. “You

can run it on your own machine and get direct response on what you

write. Instead of waiting a week to get rig time.” [i5]

4.3.2 Challenges. Increased-data-complexity: As discussed in

Section 4.1.1, the approach may lead to an increased number of test

cases in the form of GAs. To reach the full potential of the approach,

it should be possible to apply a GA on several log files: “You would

like to run a GA on many, maybe 1000 different log files to see that

it really works.” [i2] It must also be possible to apply several GAs

on a single log file: “It would be good to be able to run all logs to see

if the fault repeats.” [i1] This poses some requirement on the test

management system and requirement handling tools: “The whole

chain should be automated, e.g analysis of data when it is produced,

creating reports and logging into results data base.” [i5]

Complex cases: In general the interviewees considered the tool

to be rather easy to use for testing simple functions. Due to a

certain immaturity of the tool, more complex test cases were more

challenging. One example is that long expressions resulted in many

plots. “These [the tested GAs] were pretty short GAs, still, it required

a lot of scrolling to see relevant signal states in the plots.” [i2]

Missing signals: The testers that encountered problems due to log

data incompatibility or missing signals in the log file, experienced

more difficulties in expressing the guards. “Without recorded data,

it may be difficult to understand the state you need to be in.” [i2]

This emphasizes the importance of supporting a wide range of

log-formats e.g, CANAlyzer and VISION log formats.

Huge signal spaces: Further, in order to make the expressions more

readable, short names are shown in the current version of the editor.

In systems that have the same short-names in different contexts,

e.g. different CAN buses, it can be hard for the tester to tell which

one is used in an expression. Also difficulties finding the signals in

the current signal list was mentioned. “Many signals have the same

[short] name in different contexts, that is a problem.” [i2] Filtering,

sorting and grouping of signals were discussed as solutions to the

challenge. Other suggestions were drag and drop support from the

signal list and improved auto-completion of the complete signal

paths. Further, means of evaluating temporary expressions, not part

of the current GA, were requested: “Some times, when something

has gone wrong, you want to inspect variables that is not part of the

[GA] expression.” [i5]

Visualization:While useful for one tester, another tester may find

the number of plots a bit daunting, especially for a long expression,

and if the signals are plotted in separate graphs. “It was a bit diffi-

cult to understand the many graphs that showed up.” [i2] Another

challenge was the sample points, that some times are needed, but

sometimes are overloading the plots. The challenge of visualizing

missing cyclic signals and GA coverage was also discussed.

Navigation: In some cases, interesting sections in a plot are spread

out in time and difficult to find, e.g., spikes in a signal which are hard

to see if not zoomed in. In response to such navigation challenges,

different search features of the plot were suggested, e.g., go to next

spike and moving the timeline while in zoom mode.

Performance: Since the current log files are mainly ASCII, the testers

suspected performance problems as the log files grow large, since

the startup time and responsiveness of the tool degraded for very

large log files.

Realtime: Several interviewees expressed a wish to be able to run

the tool in the same way, performing the same analysis, while

providing input data in realtime. This requires that the toolbox

observes and keeps track of the SUT’s current state, which is an

additional challenge, not least due to the risk of such an observer

growing exponentially.

5 RELATEDWORK

Bjarnasson [2] et al address the problem of aligning requirements

with verification and validation. These challenges have influenced

the design of the T-EARS language and its toolbox.

Brzeziński discusses the distinction between active and passive

testing in [3]. We address their identified discrepancy between the

mental model of testing and the notion of passive testing with 1) the

interactive round-trip in our toolbox, and 2) the T-EARS language.

EARS has been available since 2009 [13] with an increasing indus-

trial adoption [12, 14]. It has been formalized for, e.g., deriving use

cases from requirements [11]. Our T-EARS language is an extension

to EARS with respect to temporal specification and evaluation.

While runtime verification is based on monitoring a system’s

execution and checking it against properties described in some

formal logic [10], our intention with the interactive work flow has

19

RET’2018, June 2018, Gothenburg, Sweden Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski

been to provide testers with a means to develop concise and correct

tests without needing to know any hard to learn temporal logics.

Property-based testing, first popularized with the Haskell Quick-

Check tool [4], aims at capturing properties of a program and

then testing this property on a large number of inputs. While

QuickCheck is built around the possibility to inject a large number

of test stimuli that test the properties, our toolbox aims at develop-

ing tests without the need to have access to the SUT.

There are examples of usages of passive testing and runtime

verification in the automotive domain [15, 19], as well as commer-

cial tools like EmbeddedSpecifier and Montimage Monitoring Tool

(MMT). To the best of our knowledge, these examples and tools

are not using an interactive tool for test/monitor development, nor

has it been scientifically evaluated in the context of our research

questions. Thus, there is no documented knowledge how easy/hard

users find it to express passive tests and monitors in these tools.

Our findings are that an interactive work flow and a well chosen

language can make passive testing approachable.

6 CONCLUSIONS AND FUTUREWORK

The aim behind the presented work was to make an early assess-

ment of whether passive testing realized using the GA approach,

its tool realization, as well as the T-EARS language could be used

advantageously in the industrial practice. And conversely, what

is missing in order for the method and the tool chain to take off.

For this sake, a qualitative exploratory case study was performed,

based on semi-structured interviews with experienced test engi-

neers within the automotive domain.

The case study confirmed that it is rather easy to understand

the approach, learn the T-EARS syntax, and start using the tool.

Once the learning threshold is overcome, the idea behind passive

testing, and particularly the GA approach, seems quite attractive to

the practitioners, resulting in tests that read almost as executable

requirements. The approach was perceived to result in more clear,

realistic, and robust tests, at least when the test complexity was not

too high. This was estimated to hold in 40-80% of legacy test cases.

On the downside, most interviewees agreed that, due to limita-

tions of the T-EARS language, more complex tests could lead to

unmanageable logical expressions. Also, in order to write a good

GA, general enough to handle any kind of test input correctly, it is

important to understand precisely which parts of the system that

can affect the testable state. Given that test stimuli are not con-

trolled, concerns were raised about the requirement coverage and

the diversity of inputs. Various log formats should be supported.

Ideas about the future work flow naturally from the conclusions

of this case study. Besides direct actions on improving the tool in

response to the comments from the interviewees, there is a need to

look into more challenging questions. One such is how to manage

rising test logic complexity. Would it be possible to adapt T-EARS to

manage more complex cases, e.g. through encapsulation of T-EARS

logic into more complex expressions, or would the user-friendliness

of the approach get lost? Besides supporting different input formats,

it would be interesting to consider the generation of test stimuli

in more depth. Ideally, it should be possible to choose some cri-

teria, e.g. requirement coverage, functional interference, or input

diversity, and generate realistic inputs automatically. The toolbox
should be able to scale with the rising amount of GA logic, input

data, as well as auxiliary information, both when it comes to re-

sponsiveness and visualization properties. Also, it will be important

to algorithmically detect non-feasible inconsistencies, either in GAs

or in generated stimuli, that lead to incorrect results. Finally, to

improve the generalizability of results, it is important to follow up

this study, both in a quantitative sense and at other companies.

REFERENCES
[1] César Andrés, Mercedes G Merayo, and Manuel Núñez. 2008. Passive Testing of

Timed Systems.. In ATVA. Springer, 418–427.
[2] Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalmsteiner,

Emelie Engström, Björn Regnell, Giedre Sabaliauskaite, Annabella Loconsole,
Tony Gorschek, and Robert Feldt. 2014. Challenges and practices in aligning
requirements with verification and validation: a case study of six companies.
Empirical Software Engineering 19, 6 (2014), 1809–1855.

[3] Krzysztof M Brzeziński. 2011. Active-passive: On Preconceptions of Testing.
Journal of Telecommunications and Information Technology (2011), 63 – 73.

[4] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). ACM, New York,
NY, USA, 268–279. https://doi.org/10.1145/351240.351266

[5] Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski. 2017. SAGA Tool-
box: Interactive Testing of Guarded Assertions. In Software Testing, Verification
and Validation (ICST), 2017 IEEE International Conference on. IEEE, 516–523.

[6] Ulla H Graneheim and Berit Lundman. 2004. Qualitative content analysis in
nursing research: concepts, procedures and measures to achieve trustworthiness.
Nurse education today 24, 2 (2004), 105–112.

[7] Sarah Gregory. 2011. Easy EARS: Rapid application of the easy approach to
requirements syntax. In 19th IEEE International Requirements Engineering Confer-
ence (RE’11).

[8] T. Gustafsson, M. Skoglund, A. Kobetski, and D. Sundmark. 2015. Automotive
system testing by independent guarded assertions. In Proceedings of the 8th IEEE
International Conference on Software Testing, Verification and ValidationWorkshops
(ICSTW’15). 1–7.

[9] Elizabeth Hull, Ken Jackson, and Jeremy Dick. 2010. Requirements engineering.
Springer Science & Business Media.

[10] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime
verification. The Journal of Logic and Algebraic Programming (2009), 293–303.

[11] Dipankar Majumdar, Sabnam Sengupta, Ananya Kanjilal, and Swapan Bhat-
tacharya. 2011. Adv-EARS: A Formal Requirements Syntax for Derivation of Use
Case Models. Springer Berlin Heidelberg, Berlin, Heidelberg, 40–48.

[12] A. Mavin and P. Wilkinson. 2010. Big Ears (The Return of "Easy Approach
to Requirements Engineering"). In 2010 18th IEEE International Requirements
Engineering Conference. 277–282. https://doi.org/10.1109/RE.2010.39

[13] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. 2009. Easy
approach to requirements syntax (EARS). In 17th IEEE International Requirements
Engineering Conference, RE’09. IEEE, 317–322.

[14] A. Mavin, P. Wilksinson, S. Gregory, and E. Uusitalo. 2016. Listens Learned (8
Lessons Learned Applying EARS). In 2016 IEEE 24th International Requirements
Engineering Conference (RE). 276–282. https://doi.org/10.1109/RE.2016.38

[15] P. Mouttappa, S. Maag, and A. Cavalli. 2013. Monitoring Based on IOSTS for
Testing Functional and Security Properties: Application to an Automotive Case
Study. In 2013 IEEE 37th Annual Computer Software and Applications Conference.
1–10. https://doi.org/10.1109/COMPSAC.2013.5

[16] Amalinda Post, Igor Menzel, Jochen Hoenicke, and Andreas Podelski. 2012. Au-
tomotive behavioral requirements expressed in a specification pattern system: a
case study at BOSCH. Requirements Engineering 17, 1 (2012), 19–33.

[17] Guillermo Rodriguez-Navas, Avenir Kobetski, Daniel Sundmark, and Thomas
Gustafsson. 2015. Offline Analysis of Independent Guarded Assertions in Automo-
tive Integration Testing. In The 12th IEEE International Conference on Embedded
Software and Systems (ICESS).

[18] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14, 2
(2009), 131–164.

[19] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu. 2016. Apply-
ing Runtime Monitoring for Automotive Electronic Development. Springer Interna-
tional Publishing, Cham, 462–469. https://doi.org/10.1007/978-3-319-46982-9_30

20

