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1. INTRODUCTION

The idea of applying control to computing systems dates
back more or less to when networks were about to spread—
the TCP protocol was specified in Cerf et al. (1974),
where incidentally the term “Internet” was coined. As
an example of that pioneering research, Agnew (1976)
employed differential equations to model congestion and
to manage it through optimal control.

The boost of networks then led to more and more complex
services, and besides to manage traffic among servers and
clients (Gafni and Bertsekas, 1984; Altman et al., 1999; Ja-
gannathan and Talluri, 2002), the need for control emerged
in the servers themselves (Abdelzaher et al., 2003). Also,
computational power started migrating toward the edge
of networks (Murphy and Mapp, 1996; Raz and Shavitt,
2001), bringing about a more distributed need for resource
allocation and control (Li and Nahrstedt, 1999) and in
fact paving the way toward the present boost of “as a
service” frameworks, cloud computing (Barry, 2003), and
the corresponding control needs.

The white paper by IBM (2003) introduced “autonomic
computing” to collectively denote the subject, and a huge
research corpus started that we cannot review herein: the
interested reader may begin his/her navigation e.g. from
the books by Hellerstein et al. (2004); Janert (2013); Leva
et al. (2013) and their bibliographies.

With extremely sporadic exceptions, both the said re-
search corpus and the applications show a crisp separation
between the design of the computing system and of its
control. The former is created according to the principles of
hardware/software engineering, essentially without control
in mind. Then, if deemed necessary, control moves in.

Since over a decade, our group attempts to complement
and sometimes overcome this attitude. Instead of just clos-
ing loops around a computing system as is, often requiring
identification to unravel a posteriori the dynamics of a non

control-aware design, we concentrate on how to possibly
re-design parts of the computing system together with
their controls, or in some cases even just as controls.

As such, we have been asking ourselves the question in the
title many times. In this paper we summarise our findings,
and propose some ideas that we deem beneficial.

2. THE MAIN RESEARCH QUESTION

The Cyber-Physical (CP) paradigm applies to any system
where a C part (in our context, software running on some
computer) interacts with a P part, no matter its nature.
In the particular case where the P part is a plant and the
C one its control, we talk about “computers for control”.

We restrict the focus mainly to this case; in fact the P part
could even be for example the visitor of a web site, and
the following analysis would still apply. However, having
controls as the physical counterpart for general ideas is
easier for us, and helps streamlining the treatise.

To realise controls, one has to take the C part of a CP
model, which is by definition an abstract description of
the involved controllers, and turn it into software. Doing so
means taking asynchronous objects evolving in parallel –
e.g., block diagrams for modulating controls and automata
or Petri nets for logic ones – and casting them into some
imperative language suitable for a synchronous device
with limited parallelism like a set of processors. There
are established methodologies to do that, see e.g. Borges
et al. (2010). However these methodologies are based on
execution models (think of the operating “massive copy”
cycle of PLCs) that share a fundamental assumption: the
device running the C part is significantly faster than the
dynamics of the P part.

In addition to governing physics outside the computer,
no matter the nature of that physics and the actions to
carry out on it, the software has to manage things inside
the computer. This means that the C part above in fact



relies on another C part – think now for simplicity of the
operating system – that is in charge of providing the former
with the resources needed to carry out its duty according
to the requirements. This is “control for computers”—or, as
we are going to show, also and sometimes better “control
in computers”.

Apparently, managing the inside physics is necessary no
matter what the software has to do with respect to the
outside world. Control in computers is far more widespread
than computers for control. But since both are ultimately
about using software to govern some physical object, it
seems natural that the same theories and methods apply.

In fact, the research we present emerges from observing
that the last statement is not completely true. This is
due to historical reasons, see e.g. Chapter 1 in Leva et al.
(2013), but besides those, primarily to the fact that the
second C part we just spotted has its natural P counterpart
in the hardware. As a consequence, in this region of the
overall system, the above fundamental assumption for
realising a C part in software “the control engineer’s way”
very often does not apply. On the contrary, the P part is
much faster than the C one.

There are corner cases and exceptions to the scenario
just sketched, no taxonomy can be perfect. However we
believe that these do not diminish the practical generality
of the analysis and the design approach we propose, thus
we defer their treatise to future more extensive works.
Summarising, therefore,

• software sits amid two physical worlds, one outside
and one inside the computing system;

• taking software as the C part of the overall system,
we have to split this C part into an “outbound” and
an “inbound” one;

• the outbound C and the outside P form a CP system,
subject to specifications such as response times, Ser-
vice Level Agreements (SLAs) like responding to the
user within a given time span, and so forth;

• the outbound C in general operates much faster than
the outside P evolves;

• in the particular case of control, we have well estab-
lished theories and methods to manage the CP system
above, and this is “computers for control”;

however, in addition,

• the inbound C has to govern an inside P to provide
adequate resources to the outbound C, thus being po-
tentially critical to its correct and efficient operation;

• the inbound C and the inside P form another system,
that we call “Physical-Cyber” (PC) and not CP

• to evidence that the inbound C in general operates
slower than the inside P functions;

• addressing this particular kind of systems is “control
in computers”.

The PC nature of the inside system is a fundamental
reason – others are discussed below – why computing
systems look unfamiliar, and quite often not so friendly,
to control specialists.

Our main research question, that we articulate and discuss
in the following sections, is therefore to what extent
and how we can extend CP-centred control design and

implementation methods to the PC case – ultimately
targeting the compound PCCP system we just defined –
and what to do if this is not possible, or not convenient,
or any combination thereof.

3. CONTROL IN COMPUTERS: GOOD & BAD NEWS

We start our analysis by pointing out and briefly comment-
ing some facts about control in computers, ending with the
major curses to be faced. We focus on the modulating side
of the matter, but should we analyse the logic side as well,
we would come to substantially analogous conclusions—
if not (possibly) for just a remark given later on in the
first part of Section 4. Needless to say, no exhaustiveness
is claimed.

3.1 The good news

No measurement errors. Quite often, controlled vari-
ables just coincide with their measurements. There is
no error in reading the length of a queue, the requests
processed in the last second, and so forth; these are just
numbers in memory. There is no error either in acquiring
quantities like the CPU (Central Processing Unit) time
consumed by a task, because the same entity (in the
example, the system timer) both prescribes the quantity
(e.g., by firing preemption interrupts) and provides its
reading after the prescribing action is exerted. The same
is apparently not true when dealing with variables that
require a real transducer, like the CPU temperature or
supply voltage.

Actuation immediacy. Once a command reaches an
actuator, it is applied and exerts its action immediately,
as there is nothing material to move. Once again this may
not totally apply to problems like frequency and voltage
control, but these are in fact more naturally viewed as
electronics, and the involved dynamics (think of a PLL
lock) are really almost negligible. In general there can be
delays for the command to reach the actuator, however.

Many measurable disturbances. Often, a disturbance
to a control loop comes from inside the system (e.g., a
controller to prescribe the frame rate of a video application
can suffer from a frequency reduction caused by the one
that governs the CPU temperature). As such, information
about that disturbance is readily available, and often –
see above – without measurement error either. There are
however exceptions, as shown later on.

3.2 The bad news

Ambiguously defined or complex quality indica-
tors. Besides the good news above about measurements,
we must notice that some quantities that one may want
to control, though easy to define, are in nature difficult to
measure unambiguously. For example, the load of a CPU
has no instantaneous value; it has to be defined over an
interval – typically as the fraction of that interval when the
CPU was not idle – and the length of that reference inter-
val has relevant consequences. The same applies e.g. to the
throughput of a server, and even more to high-level QoS
(Quality of Service) indicators. Also, such indicators are
frequently much more complicated than just a quadratic



tracking cost: brutalising for brevity, should one want to
achieve QoS directly via Model Predictive Control (MPC),
he/she would have to very often incur the difficulties of
economic MPC (Rawlings et al., 2012).

Layering-induced variable delays. Getting some mea-
surements, even if inherently exact in the sense above, may
require invoking hardware/software layers that were not
designed to provide any certainty about the time they will
take to respond. This is true e.g. for many operating sys-
tem modules that were originally conceived for monitoring
purposes, not to operate in a control loop.

Actuator quantisation. Several actuators are heavily
quantised. In some cases this is inherent to their structure
– for example, a GPU (Graphic Processing Unit) is not
preemptable – and in practice cannot be relaxed. In some
other cases however this stems from design choices dictated
e.g. by architectural simplification, in fact relaxable, but
extremely detrimental to control. For example, some PLLs
limit the possible frequencies of a CPU to only three or
four values while there is no conceptual reason to do so.

Over-actuation with heterogeneous dynamics and
interaction. In general, a controlled variable is influenced
by several actuators. For example, one can increase the
throughput of a server by augmenting its CPU quota in
the active VMs (Virtual Machines), or adding new VMs,
or both. However the first action can take milliseconds,
the second even a minute. In this case there is also a time
asymmetry, because from the control viewpoint a VM is
removed right from the moment when the purpose-specific
processes aboard it are stopped, which is a fast operation.
Such asymmetries are not so common, but the interaction
and superposition of actuators with very different natures
and time scales, is encountered quite frequently.

Time-varying interaction. Constraints may cause con-
trol loops to sometimes couple with one another and
sometimes not. A trivial example is resource allocation:
as long as the sum of all the requests does not exceed the
total availability, any loop allotting resource for a given
goal does not perceive the presence of the others, while
this ceases to hold when the total hits the maximum. In-
cidentally, the continuous variability of the playing actors’
set – cardinality included, think e.g. of the task pool for
a scheduler – hampers the use of otherwise quite natural
solutions (if not for possible memory footprint issues) like
explicit MPC.

Data-originated perturbations. The request of re-
sources (in the broadest sense of the term) heavily depends
not only on the running applications, on which for example
a scheduler with admission policy has some authority, but
also on the data that they are processing (e,g., encoding
the video of a conference or a football match are very
different burdens). As such, there are non measurable and
practically unpredictable perturbations, that can possibly
be bounded in amplitude by profiling the addressed sys-
tem, but not in frequency because forthcoming data, let
alone a quantification of their computational weight, are
ultimately unknown.

Practical upredictability. An application may transi-
tion abruptly and unexpectedly from a certain resource
utilisation pattern to another (e.g., from CPU-bound to

communication-bound). Of course a well designed predic-
tor (for example, of power consumption) will eventually
recover such an event, but the point is that “eventually”
may be too far in the future for an effective control.
Sticking to the example, it may be feasible to predict CPU
power consumption well on say a one second horizon, but
it is practically impossible to do the same reliably on a
millisecond-scale one, which is what one needs for thermal
management.

3.3 The three major curses

The variable physics curse. Very often, the sensing
and actuation points made available by present computing
systems do not touch the real physics directly. One can
change priorities and time quanta for a scheduler but not
force a context switch to some chosen task exactly when
desired, one can enqueue a network transmission but not
take over the transceiver and send immediately, and many
other examples could be given. A strong motivation for
this, simplifying for brevity, is found in the concept of
driver to encapsulate the details e.g. of a peripheral toward
upper software layers. But no doubt, cascaded to the real
physics of the peripheral, a controller sees the “virtual”
one of drivers. This virtual physics can be inefficient for
control, as already suggested when mentioning layering-
induced delays, but there is more. If it is not designed
and maintained in coordination with control, it can change
– for example owing to some new hardware functionality
that software people decide to exploit – in such a way to
make a previously well performing control unusable.

The hidden inefficiency curse. In a paper titled “The
Linux scheduler: a decade of wasted cores” that we warmly
suggest to the reader, Lozi et al. (2016) evidenced that the
CFS (Completely Fair Scheduler) was unable to enforce
the apparently simple invariant “no core without tasks
to run while at least another core has more than one in
its runqueue” and showed that curing this can sometimes
lead to over 100× (sic) speedups (ibidem, Table 3). We
do not discuss their solution here, but rather strongly
point out that in a definitely fundamental component
of the operating system as the scheduler, so simple an
invariant was violated, hence so far was the system from its
achievable performance, and for years nobody ever noticed.
In other control domains we have methods to quantify
how far a system is from its theoretical optimum. In
computers this is in general not the case, and inefficiencies
can stay unnoticed unless their symptoms become evident:
an inefficient scheduler does not hang the machine, who
knows how fast that machine could optimally run its
applications? As the authors of the quoted paper point
out, who keeps profiling tools active all the time, and
also on the operating system? More in general, care has
to be taken – and it may be difficult – to not fight the
wrong enemy, and also to not complicate the system for
an ultimately inadequate payback.

The stolen time curse. Last but not least at all,
in the end control in computers is there to make a
system more efficient at running its applications, but
the time to compute the control signals is stolen from
that available to those applications. For example, when
requests are processed differently in a web server to fulfill



latency requirements (Klein et al., 2014) the time spent to
determine how a request is handled is subtracted from the
computation of the response. The achieved improvement
must be worth the stolen time, and unless controllers are
really efficient and lightweight, this can be far from trivial
to achieve—for example, but not only, when the remarks
made above about MPC apply.

3.4 Wrap-up

When applying control in computers as these are presently
designed and maintained, one has frequently to deal with
over-actuated systems with time-varying and hardly pre-
dictable interactions, subject to abrupt and practically
unpredictable perturbations, containing variable measure-
ment delays and crudely quantised actuation, with the goal
of enforcing quality constraints often not easy to trans-
late into set point tracking and/or disturbance rejection
problems, and with very little time available to possibly
apply some optimisation-based approach, or anything else
requiring a non negligible computational effort.

Summing up, despite the good news above, the systems to
address contain by design a collection of the least desirable
characteristics a control engineer may happen to come
across. And to top, from time to time a new generation
of hardware, operating systems and so forth, may come
along and revolutionise the scenario very rapidly.

Definitely, not so friendly a setting. However through years
of experience at least we now have a characterisation of the
issues to face, and most important, the evidence that many
of them really came into the arena only by design. Hence
we believe that computing systems could be made much
more control-friendly than they are to date, by adopting
a PCCP viewpoint and focusing on a control-grounded
design of the inbound C part.

4. AN ALTERNATIVE VIEWPOINT

The key to the perspective shift we propose, is to carry out
any design having in mind what is physically inevitable
and what is not, as in the computing domain thisis in
general less obvious than in others. In a nutshell, our
experience in this respect led us to conclude that

(1) the PCCP abstraction fits the “control in computers”
context;

(2) the outer CP part can do control in the most clas-
sical sense, but also carry out some “computer only”
task like computing a batch job within a deadline—
conceptually there is no difference;

(3) no matter the specific purpose of the computing
system, “governing it to do its (CP) job properly”
ultimately means controlling the inner P part with a
well designed inbound C;

(4) the inner PC part originates most of the difficulties in
applying the control design techniques we are familiar
with, and that we here denoted as “CP-centred”;

(5) this is because in the PC part as presently designed
and maintained
(a) P is often faster than C, as already said,
(b) contrary to practically any other control context,

the physical/cyber and the process/control par-

titions normally do not coincide because of the
evidenced “virtual physics”,

(c) and the bad news and curses we pointed out are
there;

(6) a control-grounded (re-)design of the inbound C is
therefore necessary, and the considerations made so
far prove this necessity, because in the absence of such
a design
(a) the system as seen by the outbound C tends to

elude any first-principle modelling, if not to ap-
pear “not governed by any laws of nature” (Årzén
et al., 2006, p. 11) 1 ,

(b) crudely, one ends up tackling – e.g., by identifica-
tion – modelling errors and uncertainties that are
in fact but the result of somebody else’s previous
design.

In addition, as we shall see in this section,

(1) many inbound C design problems lend themselves
to being designed as controls, typically as cascade
controls, admitting however to replace (not control)
part of the virtual physics;

(2) however this does not solve the problem completely
when the “P faster than C” characteristic plays a
relevant role, and in that case
(a) either the affected control functions can be moved

to hardware, circumventing the issue and allow-
ing one to continue using CP-centred control de-
sign in the sense of Section 2,

(b) or some new control design paradigm needs de-
vising.

We would like to stress once again the importance of re-
design. There are many works, also on CP systems control,
that evidence the need for some resource management
coordinated with the control task, see e.g. Lindberg and
Årzén (2010). However they generally tend to preserve
the virtual physics in the non control-grounded inner C
(e.g., the paper just quoted considers acting on scheduling
parameters instead of replacing the scheduler) and do not
appear to aim at a systematic, problem-agnostic approach
to the said re-design.

We finally conjecture that the “faster P” issue mainly
involves logic controls, for example when the need is to
govern a peripheral that is itself designed (and often also
specified in the documentation) as a state machine. Should
our conjecture be verified, the need for new paradigms
would substantially – or at least, to a large extent –
amount to devising controller execution models not based
on the PLC massive copy cycle approach. The matter is
at present under investigation.

5. APPLICABILITY AND GENERALITY

A very natural question, at this point, is how general the
proposed design viewpoint is. In this respect to date we
have no exhaustive answer, but we are definitely confident.

1 For the sake of completeness, the quoted sentence continues with
“at least not on the macroscopic level”. We consider this to support
our approach based on a control-grounded inbound C, viewed in this
case as a means to conveniently act at a somehow “micro” scale with
respect to the outer CP system.



First, we learnt that in some cases setting up a well
designed inbound C is simply a control problem in nature:
one has just to isolate and model the controlled phe-
nomenon in a way that is convenient for feedback control
design. In these cases there is no need to re-formulate
anything, and the only reason why the present inbound
C layer is not a controller is that the people who designed
it do not know control, or did not apply it properly.

This first category of cases clearly comprehends “physical”
controls like the CPU temperature, where the design
deficiency just noticed is evident: compare for example
the simple solution by Leva et al. (2017) with the non
control-based alternatives in Kong et al. (2012), or with
not so simple proposals like Wang et al. (2009), or focusing
on applications, with the Linux Thermal Daemon (Intel
Corporation, 2014). But quite interestingly, very similar
considerations apply also to not so “physical” controls. A
notable such example is time synchronisation: Terraneo
et al. (2014) showed that with a proper modelling, the
problem is nothing but a disturbance rejection one for a
discrete-time LTI plant.

Other cases – the majority, we have to admit – are
not so straightforward to address as controls. For these,
a certainly indirect but reasonable way to answer the
question of this section, is to see how abstracted a problem
can be made, while preserving contact with some concrete
instance, for the viewpoint and its consequences on design
to still apply. We now attempt such an exercise.

A vast category of control problems in computers either
ultimately reduce to controlling some processing rate, or
in fact sit atop controlling such a rate. The former case
occurs when the main requirement is meeting stipulated
deadlines, transferring data at a required speed, keeping
the pace of some input/output device or application (Hoff-
mann et al., 2010), processing samples timely, and so
forth—all variations over one theme, see for example Klein
et al. (2014). The latter case occurs when the requirement
is more articulated, for example abiding by a deadline
that needs splitting into intermediate ones for parts of
the overall task (Baresi et al., 2016), or guaranteeing
maximum average response times on some horizons, both
depending on the contract with the client who originates
the request requests, and so forth; in such situations there
will most likely be some high-level intelligence to manage
the problem, but this will need to rely on something to
be as fast as expected, hence will more or less explicitly
compute speed set points. We do not treat this entity and
its possible natures herein, but once it has accomplished
its task, the obtained subproblems fall in the first category.

Furthermore, it is obvious that if we had an infinitely fast
computing system with infinite resources, we would not
experience any of the problems mentioned so far, and as
a consequence, that for each of those problems we could
in principle figure out a progress rate (hence implicitly
a resource management to permit it) above which the
problem disappears. Therefore, if we could control progress
rates reliably, the task of the intelligence just mentioned
would be greatly simplified no matter its nature.

This said, for space reasons, we illustrate our viewpoint
with reference to an abstract case which we generically
name just “progress” control.

The speed of progress dynamically depends on the applied
“thrust”, possibly on its present value, and on disturbances
not related to “resources”, like e.g. the variable computa-
tional weight of data. In turn, thrust depends on some
“command”, but also on the available resources, and in
practice this relationship is almost invariantly instanta-
neous, hence algebraic. Finally, the availability of resources
varies – in general dynamically – according possibly to
their present state, to all the commands that turn into
their utilisation, and to other exogenous disturbances such
as the temporary unavailability or the reduced power of
some computing unit. Summarising the above in abstracto,
we can represent the controlled “plant” as
d progress

dt
= fP

(
progress, thrust, disturbances

)
thrust = fT

(
command, resources

)
d resources

dt
= fR

(
resources, commands, disturbances

)
(1)

and depict its role in the overall control system, according
to present design practice, as in Figure 1.

Dynamics of task

to accomplish

fT (·, ·) Task controller requirement

progress

Non control-aware
resource mgmt

No communication here

Physics of resources effect of other commands

command

thrust

resource

availability

Outside
P

Non
control
layered

C

Inside
P

Figure 1. PCCP system without control-grounded layering
of the C part.

Observing the so obtained control system evidences what
we consider – at least as long as applications based on
processing rate control are addressed – a crucial problem:
either there is nothing to smooth out the effect of competing
resource requests so as to ensure that the commanded
thrust is actually exerted, or if such an entity exist, it is
designed in such a way that obtaining a dynamic model for
it is extremely cumbersome.

As a consequence, both the task of deciding how much
thrust to command, and that of ensuring that the issued
command really results in that thrust, are left with the
same entity, labelled “task controller”. Said otherwise, we
have some virtual physics (the dashed grey box) aboard
what (the C layer) we would like to be just control—that
is, the design of the C layer starts out with constraints
that one would probably not introduce if allowed to apply
control to just the real physics (that of the resources).
We can therefore confirm that the problem is not distin-
guishing the inbound and the outbound C parts, i.e., not
enforcing a control-grounded layering of the system.

The proposed viewpoint ultimately amounts to enforcing
such a control-based C layering by viewing the inbound
C as the inner loop of a cascade structure, as suggested
in Figure 2. The idea is in fact very intuitive. There is a
goal (that of the applications) and a controller (the task



Dynamics of task

to accomplish

fT (·, ·) Task controller requirement

progress

Resource
controller

Physics of resources effect of other control-based requests

command

thrust

resource

control-based requestprovision

resource demand

Outside
P

Outbound
C

Inbound
C

Inside
P

Figure 2. PCCP system with control-grounded layering of
the C part.

one) targeted to achieving that goal; this controller emits
commands whose effect depends on resources; these are in
fact requested and not necessarily allocated as desired, but
this is measurable, hence there is some variable responding
to the controller command in advance with respect to
the ultimate goal, and subject to disturbances. All the
ingredients of cascade control are there, and extending the
system to reflect the scheme of Figure 2 is natural.

There is not the space here for discussing any exam-
ple in enough detail, however not even mentioning the
possible applications of the proposed idea would be an
unacceptable incompleteness. As such, in Table 1 we list
just a few declinations of our general proposal to particular
examples, broadly ordered by abstraction level. Despite
applying the approach to the particular components men-
tioned could require technologically different operations,
the structure of the underlying control problems is essen-
tially the same.

To end this brief dicsussion, it is important to notice
that the design approach of Figure 1, which we suggest
to abandon given its proven shortcomings – in fact cor-
responds to the mainstream way of introducing software
organisation layers, where the allocation of resources is
managed by some operating system modules with the task
of coordinating requests from the applications (most fre-
quently to enforce some “fairness” no matter how defined).
However in general these modules “manage the machine”
with no awareness of the needs of the applications, as
drawn in Figure 1, and when some way is provided to the
applications for talking to resource managers, this is not
done the way one properly designs a cascade structure.
Even the simplest consequence of this – i.e., not taking
care of making resource management (inner loops) faster
enough than the dynamics of requests (outer loops) – often
suffices to generate undesired behaviours.

As such, strange as it may seem, given the present de-
sign practices for computing system components, the in-
troduction of control-based C layering would be a true
revolution—whence the questions that we are going to
address in the following.

6. FEASIBILITY, COST, IMPACT

We start with feasibility and cost. According to expe-
rience, turning our ideas into software (and sometimes
hardware) design is normally quite straightforward. The
main problems come from plugging the result into the
existing system, and can be broadly divided in two main

groups—in the end two further “bad news” in the sense of
Section 3.2, but better evidenced at this point.

Poor component isolation. We found no better way to
explain this than reporting two sentences by Lozi et al.
(2016), who in the “Lessons learned” section wrote

The bugs we described resulted from developers want-
ing to put more and more optimisations into the
scheduler, whose purpose was mostly to cater to com-
plexity of modern hardware. As a result, the scheduler,
that once used to be a simple isolated part of the
kernel, grew into a complex monster whose tentacles
reached into many other parts of the system, such as
power and memory management.

Apologising for the crude metaphor, the typical result of
such situations – most frequently encountered in low-level
components – is that sometimes the surgery turns out to be
more invasive than expected. We had such an experience
with a control-based scheduler (Leva and Maggio, 2010),
that works very well in a POSIX-compliant embedded
kernel for microcontrollers (Terraneo, 2008) but we did
not yet port into Linux.

An important topic on this front is whether or not “ex-
tending the tentacles” was necessary. Here we have to
notice that computer people tend to disregard the fact
that controllers communicate with one another not only
by exchanging signals, but also – and often primarily –
through the physics of the controlled process. As such, if
phenomenon A influences phenomenon B, this does not
necessarily imply that the controllers for A and B must
communicate with each other. We do not claim generality,
but to date this was by far the most frequent reason for
the “unnecessary tentacles” we found.

Unduly stateful layers. When control- and software-
grounded layering conflict, co-existence is in principle
possible, but can be complicated if the pre-existing layers
keep memory of their state and possibly also of the state
of the neighbouring ones, or said otherwise, if the set of
layers assume that any action on the system occurs only
through them. This case is often found at high levels
in software hierarchies, but sometimes also involves low
ones—we had an experience with synchronisation, see
again Terraneo et al. (2014). Here too, avoiding details for
brevity, the result is substantially that one has to extend
the intervention further than strictly necessary for the
originally intended purpose.

Summing up, in general we do not foresee blocking fea-
sibility problems, but sometimes the effort can be un-
expectedly significant, and some preliminary cost/benefit
analysis should be carried out. Of course things can be
totally different when hardware is involved, but to date
we only have experience on custom embedded systems
where there is enough freedom to make the situation not
so different from the software-only case, thus honestly
we cannot draw general conclusions; this matter will be
further investigated in the future.

Coming to impact – meaning basically on the applications
– we have to point out just a single fact. According
again to experience, the one (but sometimes not small)
difficulty is to take specifications in computer engineering



High-level task to accomplish Resource to manage Component(s) requiring
a control-based inbound C

Big data applications, Containers, virtual machines Container manager, hypervisor
web service composition
Website response time control CPU, memory, disk Web server, database server
Multimedia streaming CPU, network bandwidth Resource manager, network stack
Quality of Service enforcement Network bandwidth Network stack
Load balancing Cross-CPU quotas Scheduler, resource manager
Real-time control Single CPU quotas Scheduler
Virtual memory management Memory, disk MMU, Virtual memory and swap
Peripheral bus (e.g.,USB) Bus, pipelines Bus transaction scheduler, drivers
management

Table 1. A few specialisations of the proposed general design viewpoint.

terms, and translate them into control-compatible ones.
One possibility is to preserve the application interface
entirely, by adding a translation layer if this is small
and agile enough. For example, the scheduler in Leva
and Maggio (2010) does not work with priorities, nice
numbers and the like, but rather with CPU quotas and
round duration set points; it is however possible to create
a minimal layer to accept e.g. priorities as inputs. Another
possibility is to create a new interface, and managing the
co-existence if deemed convenient. Here too, apparently,
some preliminary analysis is often advisable.

7. A FEW DESIGN GUIDELINES

Still focusing on modulating control, we can distil some
clues for addressing the proposed control-layered design.

(1) Identify the border between inbound and outbound
C as precisely as possible.

(2) Relate the result to the existing software layering if
there is one, and design interfaces accordingly.

(3) When addressing the inbound C, do not put in the
model of the controlled system anything that is not
true physics: anything but that model must be con-
trol, and (re-)designed as control.

(4) When, prior to re-design, some component is con-
nected to some other that from a control viewpoint
does not seem to be part of the problem, check if the
designers of either or both just disregarded through-
process controller intercommunication in the sense
above; with a physics-conscious design, the problem
very often disappears.

(5) Never mix specifications for the two C layers. The
outbound relies on the inbound, but each specification
must pertain to one of the two: mixing things up
easily leads to poor design.

(6) In the design phase, separate core control functions
from sensing and actuation ones; not doing this is an
open door to “catering to the complexity of hardware”
with the consequences discussed above.

(7) Always assess the designed core control functions in
simulation (a matter that we cannot address herein);
this helps understanding whether a problem is con-
ceptual – hence appears also with idealised sensing
and actuation – or technological. Doing so is another
protection against catering to the hardware.

(8) Pay attention to making control-related specifica-
tions, parameters and I/O signals clear for the appli-
cations atop the designed controls where applicable.

(9) When the stolen time curse is relevant, consider
applying event-based control.

(10) Consider hardware/software partitioning of the found
solution when, notwithstanding the above, the “faster
P” problem persists: it may not be possible at the mo-
ment, but it may be possible to emulate it somehow,
generally reducing expectations, so as to convince of
the usefulness of making it realisable. On this front
it is worth noticing that the subject of moving logic
controllers written in IEC languages to hardware is
receiving interest by research in embedded systems:
a recent example concerning very fast and low-power
realisations of SFC controllers with FPGAs is Milik
and Hrynkiewicz (2019).

These clues do not cure all problems, of course, but we
can state that they are not so widely applied, and based
on years of experience, that they are surely beneficial.

8. CONCLUSIONS

The growth of control for/in computers is certainly good
news. However we bear to gently advise the control com-
munity to not consider this subject only as addressing a
new application domain, “fascinating because unfamiliar”.

Experience convinced us that approaching the matter only
that way is not likely to unleash all the potential of the
control theory, and which is worse, it could deepen the
trench between the computer and the control communities.
Brutalising a bit, the result can be that computer people
carry on designing their systems their usual way – which
incidentally seems to entail huge complexity increases in
the future – and then control people come in and approach
the system with non domain-specific techniques – as spe-
cific ones are to date in fact largely to be developed – and
more or less as a black box. Doing so, no matter what is ob-
tained, neither of the two involved professionals/scientists
learns about the other’s culture.

This is not to diminish approaches alternative to ours,
of course, but rather to stress that ours should receive
attention as well, also and particularly to provide the
foundations for tackling more articulated problems. Said



simply and restricting the focus to one example – optimi-
sation – dynamic programming and the like can be fine for
the outbound C, but their task is greatly simplified, and
their efficacy enhanced, by a control-grounded inbound C.

In addition, we suggest to more in general view control
in computers as a process/control co-design and cultural
cross-fertilisation arena. The former aspect is just obvious.
The second would lead to a very effective convergence:
computer people learn some control, control people learn
about the operation of computers, and all learn together
how to design computing systems with control in mind
– together with how to create computer-specific control
techniques – when this is convenient.
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