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Abstract

Autonomous vehicles such as mobile driverless construction equipment bear
the promise of increased safety and industrial productivity by automating repet-
itive tasks and reducing manual labor costs. These systems are usually involved
in safety- or mission-critical scenarios, therefore they require thorough analysis
and verification. Traditional approaches such as simulation and prototype test-
ing are limited in their scope of verifying a system that interacts autonomously
with an unpredictable environment that assumes the presence of humans and
varying site conditions. Methods for formal verification could be more suitable
in providing guarantees of safe operation of autonomous vehicles within speci-
fied unpredictable environments. However, employing them entails addressing
two main challenges: (i) constructing the models of the systems and their envi-
ronment, and (ii) scaling the verification to the incurred model complexity. We
address these two challenges for two essential aspects of autonomous vehicle
design: mission planning and collision avoidance. Though inherently differ-
ent, communication between these two aspects is necessary, as the information
obtained from verifying collision avoidance can help to improve the mission
planning and vice versa. Finding a solution that addresses both mission plan-
ning and collision avoidance modeling and verification, while decoupling them
for solution maintainability is one crux of this study. Another one deals with
demonstrating the applicability and scalability of the proposed approach on
complex and industrial-level systems.

In this thesis, we propose a two-layer framework for mission planning
and verification of autonomous vehicles. The framework separates the mod-
eling and computing mission plans in a discrete environment, from the vehicle
movement within a continuous environment, in which collision avoidance al-
gorithms based on dipole fields are proven to ensure safe behavior. We call
the layer for mission planning, the static layer, and the other one the dynamic
layer. Due to the inherent difference between the layers, we use different mod-
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eling and verification approaches, namely: (i) the timed automata formalism
and the UPPAAL model checker to compute mission plans for the autonomous
vehicles, and (ii) hybrid automata and statistical model checking using UPPAAL
Statistical Model Checker to verify collision avoidance and safe operation. We
create model-generation algorithms, based on which we develop tool support
for the static layer, called TAMAA (Timed-Automata-Based Planner for Au-
tonomous Agents). The tool enables the designers to configure their systems
and environments in a graphical user interface, and utilize formal methods and
advanced path-planning algorithms to generate mission plans automatically.
TAMAA also integrates reinforcement learning with model checking to allevi-
ate the state-space explosion problem when the number of vehicles increases.
We create a hybrid model for the dynamic layer of the framework and pro-
pose a pattern-based modeling method for the embedded control systems of
the autonomous vehicles to ease the design and facilitate reuse. We validate
the proposed framework and design method on an industrial use case involving
autonomous wheel loaders, for which we verify invariance, reachability, and
liveness properties.



Sammanfattning

Autonoma fordon, exempelvis förarlösabyggfordon, lovar ökad säkerhet och
industriell produktivitet genom att automatisera upprepade uppgifter och min-
ska manuella arbetskraftskostnader. Dessa system är vanligtvis involverade
i säkerhets- eller uppdragskritiska scenarier, därför kräver de noggrann analys
och verifiering. Traditionella tillvägagångssätt som simulering och prototyptest-
ning är begränsade till verifiering av system som samverkar autonomt med
en oförutsägbar miljö som förutsätter närvaron av människor och olika plats-
förhållanden. Metoder för formell verifiering kan vara mer lämpade för att
garantera säker drift av autonoma fordon i specifierade oförutsägbara miljöer.
Att tillämpa dem innebär emellertid två huvudutmaningar: (i) konstruktion av
modellerna av systemen och deras miljö, och (ii) skalning av verifieringen till
den uppkomna modellkomplexiteten. Vi tar upp dessa två utmaningar inom ra-
men av två väsentliga aspekter viddesign av autonoma fordon: uppdragsplaner-
ing och undvikande av kollision. Trots att de två aspekterna skiljersig åt är
kommunikation mellan dessa två aspekter nödvändig, eftersom informationen
som erhålls för att verifiera kollisionsundvikande kan bidra till att förbättra up-
pdragsplaneringen och vice versa. Att hitta en lösning som hanterar både upp-
dragsplanering och modellering och verifiering av kollisionsundvikande, sam-
tidigt som den frikopplar delarna för att kunna underhålla dem är en svårighet
i dessa utmaningar. En annan handlar om att visa huruvida den föreslagna
metoden är tillämpbar och skalbar på komplexa och industriella system.

I den här avhandlingen föreslår vi ett ramverk i två lager för uppdrags-
planering och verifiering av autonoma fordon. Ramverket skiljer modellerin-
gen och uppdragsplaneringen i en diskret miljö, från fordonets rörelse i en
kontinuerlig miljö, där kollisionsundvikelsealgoritmer baserade på dipolfält är
bevisade för att säkerställa säkert beteende. Vi kallar lagret för uppdragsplaner-
ing, ”det statiska lagret” och det andra för ”det dynamiska lagret”. På grund av
den inneboende skillnaden mellan lagren använder vi olika modellerings- och
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verifieringsmetoder, nämligen: (i) till det tidsinställda lagret använder vi tid-
sautomateroch mjukvaran UPPAAL för att beräkna uppdragsplaner för de au-
tonoma fordonen, och (ii) hybridautomater och statistisk modellkontroll med
hjälp av UPPAAL Statistical Model Checker för att kontrollera undvikande av
kollision och säker drift. Vi skapar modellgenerationsalgoritmer som vi baserar
utvecklandet av verktygsstöd för det statiska skiktet på. Verktyget, TAMAA
(Timed-Automata-Based Planner for Autonomous Agents), gör det möjligt för
designers att konfigurera sina system och miljöer i ett grafiskt användargränss-
nitt och använda formella metoder och avancerade sökplaneringsalgoritmer för
att generera uppdragsplaner automatiskt. TAMAA integrerar också förstärkn-
ingslärande för att lindra problemet med exponentiell tillväxt av tillstånd när
antalet fordon ökar. Vi skapar en hybridmodell för ramens dynamiska lager
och föreslår en mönsterbaserad modelleringsmetod för de inbäddade styrsys-
temen i autonoma fordonen för att underlätta designen och återanvändning. Vi
validerar det föreslagna ramverket och konstruktionsmetoden för ett industriellt
användningsfall som involverar autonoma hjullastare, för vilket vi verifierar di-
verse relevant egenskaper.
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Chapter 1

Introduction

Autonomous vehicles are drawing an increased attention from both researchers
and practitioners. The benefits brought by autonomy compel industry and
academia to invest a large amount of resources to realize this concept. In-
dustrial machines such as wheel loaders and haulers used in construction sites
are equipped with autonomous driving functionality. These systems bear the
promise of increased safety and industrial productivity by automating repetitive
tasks and reducing labor costs. Such systems are complex, and most often sub-
jected to timing constraints for productivity reasons, hence a thorough verifica-
tion of their autonomous functionality is crucial, in order to obtain guarantees
of their dependable operation.

The environment in which autonomous construction vehicles operate is
hazardous, that is, possibly populated with static and dynamic obstacles that
need to be discovered and avoided by all means, even in harsh weather condi-
tions. On one hand, such vehicles are designed to perform predefined tasks,
and, unlike usual industrial robots, they operate in large construction sites,
alongside other machines and humans. On the other hand, the environment
is contained and controlled, thus the vehicle’s autonomy is bounded.

Traditional approaches such as simulation and prototype testing might not
be sufficient for verifying a system that interacts autonomously with an un-
predictable environment that assumes the presence of humans and varying site
conditions. These techniques are either applied later in the system’s devel-
opment cycle, or they simply cannot prove, exhaustively or statistically, the
satisfaction of properties related to autonomous behaviors such as path plan-
ning, path following, and collision avoidance. Formal verification [1] could be
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4 Chapter 1. Introduction

therefore applied on design models, to complement the traditional verification
techniques, yet being able to verify such complex systems is a big challenge.
The complexity of the system stems from the integrated intelligent algorithms,
such as those for collision avoidance, as well as the combination of the ve-
hicle’s control system and the continuous behavior of the vehicle in motion.
Several related studies on motion planning and verification of autonomous ve-
hicles propose a means of decoupling the discrete planning from the hybrid
control and demonstrate the applicability of utilizing formal methods in this
area [2, 3, 4, 5]. The authors’ efforts in motion planning strongly inspire us
to address this problem by using formal methods. However, few of them in
principle, consider timing requirements and finding a solution for scalable ver-
ification. If a model becomes too complex, for instance by assuming a large
number of autonomous robots or vehicles, its formal verification by exhaus-
tive model checking might not be feasible due to the well-known state-space
explosion problem.

Overall, in this thesis, we address the challenges mentioned above by pro-
viding solutions for scalable formal analysis (exhaustively when possible and
statistically in other cases) of autonomous vehicle behavior with respect to mis-
sion planning, path following, and collision avoidance. We also look into the
design of the embedded control system of the vehicles, which is a distributed
system consisting of several units. Additionally, our solutions provide a means
to automatically generate formal models amendable to formal analysis, from
high-level descriptions specified by designers in a GUI called MMT, and a
pattern-based modeling method for the hybrid model describing the continu-
ous movement of the vehicles, which aims at providing an ability of verification
in a realistic environment model.

We start our research by studying a use case provided by Volvo CE, a
leading manufacturer of construction equipment. The use case focuses on au-
tonomous wheel loaders (AWL) that are used in construction sites to perform
operations without human intervention. As an example, in Figure 1.1 we show
the case of an AWL that is utilized to transport materials in a quarry site. Ac-
cording to the requirements from Volvo CE, an AWL digs a given stone pile
and carries an amount of stones to a primary crusher that crushes the stones at
given fractions, after which the vehicle unloads the stones onto the conveyor
belt. Next, the AWL moves to the other end of the primary crusher and loads
the crushed stones. It then continues moving to the secondary crusher to un-
load the stones and finishes its one-round job. During this process, the AWL
carries out its tasks autonomously and moves to the charging point when its
battery level is low. The AWL has to also avoid static obstacles (e.g., holes and
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Figure 1.1: An example of a quarry for an autonomous wheel loader

rocks above a certain size, existing on the ground) as well as possible dynamic
obstacles (e.g., other mobile machines or humans). Hence, the design of AWL
involves mission planning, path following, and collision avoidance.

Designing such a system poses two main challenges, as it contains two as-
pects that are inherently different. The first challenge is about path planning
and task scheduling, and the other one is about the verification of the AWL
in a continuous environment. The former aspect does not concern the contin-
uous features of the AWL as it only focuses on making plans that guide the
AWL towards the destination, and on carrying out certain tasks, in a certain
order, at given positions called milestones, within prescribed amounts of time.
Therefore, we can describe the environment as a discrete Cartesian grid, which
facilitates modeling the path-planning algorithms [6]. However, verifying col-
lision avoidance requires a continuous environment, in which the kinematics
of an AWL can be captured. Since the mission planning phase considers only
static obstacles, the possibly unpredictable movement of existing dynamic ob-
stacles might cause the AWL to deviate too much from its originally planned
path in order to avoid them, triggering a re-plan. Once computed, the new
plan has to be verified again in the assumed continuous environment. The it-
eration continues until a verified safe and efficient mission plan is generated.
Therefore, in order to design a safe AWL, we need to propose a modeling and
verification solution that decouples the discrete part from the continuous part,
in order to facilitate reuse and ease of change, yet allow bi-directional com-
munication. This increases the complexity of the problem and leads to the
second challenge: applicability and scalability of our approach. Assuming the
approach is adopted in industrial systems, where the environment is large, or
the number of AWL or the missions of AWL increases, our method should be
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able to still find solutions in reasonable time.
To meet the above needs, in this thesis we propose a two-layer framework

consisting of a static and a dynamic layer, respectively, between which data is
exchanged according to a chosen communication protocol [7, 8]. The static
layer is responsible for path and mission planning for the autonomous vehi-
cles, according to possibly incomplete information of the environment. In this
layer, known static obstacles are assumed, together with milestones represent-
ing points of operation of the autonomous vehicles. A* [9] and Theta* [6]
algorithms for path planing are modeled and verified in this layer. The dy-
namic layer is dedicated to simulating and verifying the system that follows
autonomously the reference path from the starting point to destination, gener-
ated by the static layer, while considering continuous motion in an environment
that contains moving and unforeseen obstacles. Hence, a collision-avoidance
algorithm based on the dipole field [10] is encoded in the model used in this
layer. The structure of the framework relies on the well-known design princi-
ple of separation of concerns: it separates the static high-level path planning
that assumes an environment with a predefined sequence of milestones that
need to be reached, as well as static obstacles, from the dynamic functions like
collision avoidance, thus providing a separation of concerns for the system de-
sign, modeling, and verification. The specific contributions in each layer of the
framework are described as below:

i) Static Layer. We build the model of the static layer by using timed
automata and verify it exhaustively by employing the state-of-the-art model
checker called UPPAAL [11]. The main concepts at this level, such as vehicle
movement, tasks execution, and monitors for events are formally defined in
our work [12], where we also present the tool that supports the static layer
modeling and analysis. These definitions are the foundation of the model
generation algorithms, which are programmed in the tool of the static layer
called TAMAA (Timed-Automata-based planner for Multiple Autonomous
Agents). Furthermore, to solve the model checking scalability problem in-
curred by the increased number of agents, we propose an innovative method
that combines reinforcement learning [13] with the model-checking tech-
nique, namely MCRL.

ii) Dynamic Layer. As timed automata do not support modeling the con-
tinuous movement, we design the model of the linear movement and rotation of
the autonomous vehicles by using hybrid automata. Due to the undecidability
of verifying most properties of hybrid automata and the uncertainty of envi-
ronment events, we use UPPAAL Statistical Model Checker (UPPAAL SMC)
for verification. To facilitate the modeling of the complex embedded control
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software of the autonomous vehicles and reuse of the model, we propose a
pattern-based method to describe the processes and functions in the embed-
ded control software, formally, as timed automata with uniform distribution
of the discrete actions, and uniform or exponential distributions for the de-
lay actions. We adopt statistical model checking to verify the model of the
dynamic layer and discover several critical scenarios that bear the potential
to cause collisions, due to the limitation of the collision-avoidance algorithm,
which are reported in our paper [8]. The methods are evaluated in an industrial
use case: the autonomous wheel loader, provided by Volvo CE. In summary,
with the help of our solution, designers are able to synthesize mission plans
for autonomous vehicles by simply configuring the environment and tasks for
them in a GUI. The synthesized mission plans are formally verified against
various requirements, including timing constraints. The method also alleviates
the state-space-explosion problem when the number of vehicles raises so that
it is applicable and scalable for industrial use cases.

1.1 Thesis Overview
This thesis is divided into two parts. The first part is a summary of our research,
including the preliminaries of this thesis (Chapter 2), the problem formulation
and our research goals (Chapter 3), the research methods applied in this thesis
(Chapter 4), a brief overview of our contributions (Chapter 5), a discussion on
the related work (Chapter 6), as well as our conclusions, limitations and future
work directions (Chapter 7).

The second part is a collection of papers included in this thesis, listed as
follows:

Paper A Formal Verification of an Autonomous Wheel Loader by Model
Checking. Rong Gu, Raluca Marinescu, Cristina Seceleanu, Kristina Lundqvist.
In Proceedings of the 6th Conference on Formal Methods in Software Engineer-
ing (FormaliSE), ACM, 2018.

Abstract: In an attempt to increase productivity and the workers’ safety, the
construction industry is moving towards autonomous construction sites, where
various construction machines operate without human intervention. In order
to perform their tasks autonomously, the machines are equipped with differ-
ent features, such as position localization, human and obstacle detection, col-
lision avoidance, etc. Such systems are safety critical, and should operate
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autonomously with very high dependability (e.g., by meeting task deadlines,
avoiding (fatal) accidents at all costs, etc.). An Autonomous Wheel Loader
is a machine that transports materials within the construction site without a
human in the cab. To check the dependability of the loader, in this paper we
provide a timed automata description of the vehicle’s control system, including
the abstracted path planning and collision avoidance algorithms used to navi-
gate the loader, and we model check the encoding in UPPAAL, against various
functional, timing and safety requirements. The complex nature of the nav-
igation algorithms makes the loader’s abstract modeling and the verification
very challenging. Our work shows that exhaustive verification techniques can
be applied early in the development of autonomous systems, to enable finding
potential design errors that would incur increased costs if discovered later.

My contribution: I was the primary driver of the paper, developed the method,
wrote most of the text, and performed all the modeling and verification activi-
ties. The other authors contributed with valuable ideas and comments.

Paper B Towards a Two-Layer Framework for Verifying Autonomous Vehi-
cles. Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina Lundqvist.
In Proceedings of the 11th Annual NASA Formal Methods Symposium (NFM),
Springer, 2019.

Abstract: Autonomous vehicles rely heavily on intelligent algorithms for path
planning and collision avoidance, and their functionality and dependability can
be ensured through formal verification. To facilitate the verification, it is bene-
ficial to decouple the static high-level planning from the dynamic functions like
collision avoidance. In this paper, we propose a conceptual two-layer frame-
work for verifying autonomous vehicles, which consists of a static layer and
a dynamic layer. We focus concretely on modeling and verifying the dynamic
layer using hybrid automata and UPPAAL SMC, where a continuous movement
of the vehicle as well as collision avoidance via a dipole flow field algorithm
are considered. In our framework, decoupling is achieved by separating the
verification of the vehicle’s autonomous path planning from that of the vehicle
autonomous operation in its continuous dynamic environment. To simplify the
modeling process, we propose a pattern-based design method, where patterns
are expressed as hybrid automata. We demonstrate the applicability of the dy-
namic layer of our framework on an industrial prototype of an autonomous
wheel loader.
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My contribution: I was the main driver of the paper, wrote most of the text
and implemented the model, and performed the case study. The other authors
contributed with valuable ideas and comments.

Paper C TAMAA: UPPAAL-based Mission Planning for Autonomous Agents.
Rong Gu, Eduard Enoiu, and Cristina Seceleanu. In Proceedings of the 35th
ACM/SIGAPP Symposium On Applied Computing (SAC), ACM, 2020.

Abstract: Autonomous vehicles, such as construction machines, operate in
hazardous environments, while being required to function at high productiv-
ity. To meet both safety and productivity, planning obstacle-avoiding routes
in an efficient and effective manner is of primary importance, especially when
relying on autonomous vehicles to safely perform their missions. This work
explores the use of model checking for the automatic generation of mission
plans for autonomous vehicles, which are guaranteed to meet certain func-
tional and extra-functional requirements (e.g., timing). We propose modeling
of autonomous vehicles as agents in timed automata together with monitors
for supervising their behavior in time (e.g., battery level). We automate this
approach by implementing it in a tool called TAMAA (Timed-Automata-based
Planner for Multiple Autonomous Agents) and integrating it with a mission-
configuration tool. We demonstrate the applicability of our approach on an
industrial autonomous wheel loader use case.

My contribution: I was the main driver of the paper, wrote most of the text,
built the model, and conducted the evaluation. The other two authors con-
tributed with valuable ideas and comments.

Paper D Combining Model Checking and Reinforcement Learning for Scal-
able Mission Planning of Autonomous Agents. Rong Gu, Eduard Enoiu, Cristina
Seceleanu, and Kristina Lundqvist. Technical report, Mälardalen Real-Time
Research Centre, Mälardalen University, MDH-MRTC-330/2020-1-SE, 2020.
Submitted to FMICS 2020.

Abstract:The problem of mission planning for multiple autonomous agents,
including path planning and task scheduling, is often complex, especially when
the number of agents grows or requirements include real-time constraints. In
this paper, we propose a novel approach called MCRL that integrates model
checking and reinforcement learning to overcome this difficulty. Our approach
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employs timed automata and timed computation tree logic to describe the au-
tonomous agents’ behavior and requirements, and trains the model by a rein-
forcement learning algorithm, namely Q-learning, to populate a table used to
restrict the state space of the model. Our method provides a means to syn-
thesize mission plans for autonomous systems whose complexity exceeds the
scalability boundaries of exhaustive model checking, but also to analyze and
verify synthesized mission plans to ensure given requirements. We evaluate the
proposed method on various scenarios involving autonomous agents, as well as
present comparisons with other methods and tools.

My contribution: I was the main driver of the paper, wrote most of the text,
implemented algorithms, built the model, and conducted the evaluation. The
other authors contributed with valuable ideas and comments.



Chapter 2

Preliminaries

In this section, we overview the background information needed for the rest of
the thesis: timed automata, hybrid automata, and UPPAAL (SMC), as well as
the Theta* and dipole flow field algorithms used for the automatic path gen-
eration, and collision avoidance, respectively. We also describe briefly the Q-
learning algorithm employed in our reinforcement-learning-aided formal veri-
fication.

2.1 Timed Automata and UPPAAL

In this thesis, we use the timed automata (TA) [14] to model the movement and
task execution of the autonomous vehicles in the static layer, and the UPPAAL
model checker [11] to verify the synthesized mission plans. Model checking
is the technique that we use in this thesis to traverse the state space of the
model and check if it satisfies some properties written in temporal logic. Our
choice is justified by the fact that timed automata is an expressive formalism in-
tended to describe the behavior of timed systems in a continuous-time domain.
Moreover, the framework is supported by the UPPAAL tool, the state-of-the-art
model checker for real-time systems. Timed automata (TA) [14] are finite-state
automata extended with real-valued clock variables that measure the elapse of
time. UPPAAL uses an extension of TA, called UPPAAL TA henceforth, as the
input modeling language; UPPAAL TA extends TA with discrete variables, as
well as other modeling features, like urgent and committed locations, synchro-
nization channels, etc. A TA consists of a finite set of locations (represented

11
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(a) TA of a traffic light (b) TA of a car

Figure 2.1: An example of TA in UPPAAL

graphically as circles), which are connected by directed lines called edges. A
pair with a location and a clock valuation is called a state of a TA. Multiple
UPPAAL TA can form a Network of Timed Automata (NTA) via parallel com-
position (“||”) [15], by which individual TA are allowed to carry out internal
actions (i.e., interleaving), while pairs of TA can communicate via channels, or
shared variables. The locations of all automata, together with the clock valua-
tions, define the state of a NTA.

We illustrate the basics of UPPAAL TA via an example. For more details,
we refer to the literature [11]. In Figure 2.1, we show an NTA that models
a simple “car-traffic light” scenario. Figure 2.1(a) models the behavior of the
traffic light, where x is a clock variable that measures the elapse of time and
progresses continuously. The traffic light TA has two locations, namely Red
and Green (out of which Red is the initial location), and an edge connecting
them. The car TA contains a special location named Start, which is a com-
mitted location. Locations in UPPAAL TA can be urgent or committed. When
an automaton reaches an urgent location, marked as “U”, it must take the next
transition without any delay in time. A committed location, marked as “C”,
indicates that no delay occurs on this location and the following transitions
from this location will be taken immediately. When an automaton is at a com-
mitted location, another automaton may not take any transitions, unless it is
also at a committed location. For a generic TA, at each location it may non-
deterministically choose to: (i) stay and let time elapse as long as the invariant,
which is a conjunction of clock constraints associated to the location, is satis-
fied; (ii) take a transition via an edge to another location, as long as the guard
on the edge, which is a conjunction of constrains on discrete variables or clock
variables, is satisfied. In Figure 2.1(a), the traffic light TA can stay at location
Red until x reaches 10, or transfer to location Green when x exceeds 5. When
moving from Red to Green, the traffic light TA synchronizes with the car TA
in Figure 2.1(b), via a channel called GO. An exclamation mark “!” follow-
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(a) HA of a bouncing ball (b) HA of the ground

Figure 2.2: An example of a hybrid automaton

ing the channel name denotes the sender, and a question mark “?” denotes
the receiver. Meanwhile, an assignment on the edge is performed to reset the
clock, e.g., from Red to Green, the traffic light TA sets the clock variable x to
0. The assignment can also be a function written in a subset of the C language,
updating clock variables as well as discrete variables.

The UPPAAL model checker supports the verification of queries written
in a decidable subset of Timed Computation Tree Logic (TCTL) [11]. The
syntax of a TCTL formula consists of quantifiers over paths and path-specific
temporal operators. There are two types of path quantifiers: the universal one,
“A” meaning “for all paths”, and the existential one, “E” denoting “there exists
a path”. We are interested in two path-specific temporal operators, that is,
“Always” (�) temporal operator meaning that a given formula is true in all
states of a path, and the “Eventually” (♦) operator meaning that a formula
becomes true in finite time, in some state along a path. The UPPAAL queries
that we verify in this thesis are properties of the form: (i) Invariance: A�p
means that for all paths, for all states in each path, p is satisfied, (ii) Liveness:
A♦p means that for all paths, p is satisfied by at least one state in each path,
(iii) Reachability: E♦p means that there exists a path where p is satisfied by
at least one state of the path, and (iv) Time-bounded Leads to: p  ≤t q,
which means that whenever p holds, q must hold within at most t time units
thereafter; it is equivalent to the property: A� (p⇒ A♦≤t q).

2.2 Hybrid Automata and UPPAAL SMC

UPPAAL SMC [16] is an extension of the tool UPPAAL, which supports statisti-
cal model checking of hybrid automata (HA). Instead of exhaustively exploring
the state space of the model, statistical model checking randomly executes the
model with respect to a given property and apply statistical analysis to estimate
the satisfaction of that property. HA in UPPAAL SMC are similar to UPPAAL
TA, and extend the latter with a set of continuous variables whose derivatives
are described by ordinary differential equations (ODE). Similarly, we illustrate
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the basics of HA via a simple example shown in Figure 2.2. For more de-
tails, we refer to the literature [17]. Figure 2.2(a) describes the behavior of a
bouncing ball via a HA with only one location. The HA uses two continuous
(real-valued) variables, v and p, denoting the velocity and the position of the
ball, respectively. Based on Newtonian laws of motion, the derivative of v is
−9.81, which is the minus of the acceleration of gravity, and the derivative of
p is the value of velocity. Hence, the invariant of the automaton’s location is
a conjunction of the ODE v′ == −9.81 and p′ == v. In Figure 2.2(b), the
HA of the ground is modeled, which synchronizes with the bouncing ball HA
via channel hit. The definition of channels in HA is the same as the ones in
TA. Hence, this example means that ground HA sends a signal hit to the ball
HA when the value of the clock variable t is less or equal to one, when the
assignment of the velocity in Figure 2.2(a) is also executed to change the value
and direction of the speed.

In UPPAAL SMC, the HA have a stochastic interpretation based on: (i) the
probabilistic choices between multiple enabled transitions, and (ii) the non-
deterministic time delays that can be refined based on probability distributions,
either uniform distributions for time-bounded delays or (user-defined) expo-
nential distributions for unbounded delays. For example, in Figure 2.2(b), the
transition along the self-loop edge is taken following a uniform distribution
within the time bound zero to one. In this thesis, only the default uniform
distributions for time-bounded delays are used. A model in UPPAAL SMC is
a network of HA that communicate via broadcast channels and global vari-
ables. Only broadcast channels are allowed for a clean semantics of purely
non-blocking automata (automata that are not blocked by synchronized tran-
sitions), since the participating HA repeatedly race against each other, that is,
they independently and stochastically decide on their own how much to de-
lay before delivering the output, with the “winner” being the automaton that
chooses the minimum delay.

UPPAAL SMC supports an extension of weighted metric temporal logic for
probability estimation, whose queries are formulated as follows: Pr[bound]
(ap), where bound is the simulation time, ap is the formula that supports
two temporal operators: “Eventually” (♦) and “Always” (�). Such queries
estimate the probability that ap is satisfied within the simulation time bound.
Probability comparison (Pr[bound](ψ1) ≥ Pr[bound](ψ2)) and hy-
pothesis testing (Pr[bound](ψ) ≥ p0) are also supported.
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Figure 2.3: A path calculated by Theta* algorithm [6]

2.3 Path-Planning Algorithms

In this thesis, we employ the A* and Theta* algorithms to generate an initial
path for our autonomous wheel loader.

The A* algorithm is a widely used algorithm for path finding and graph
traversal [9], and it was first introduced by Hart et al. [18]. It is an extension of
Dijkstra’s algorithm that uses a heuristic function to guide the graph traversal
in order to achieve better performance. The basic idea of the A* algorithm is
to find a lowest cost path from all possible paths to the destination, similar to
Dijkstra’s algorithm. While exploring the graph, the cost of the current node
is calculated by the following function: f(n) = g(n) + h(n), where n is the
current node, g(n) is the cost from the starting node to n, and h(n) is the
estimated lowest cost from n to the destination. Intuitively, the A* algorithm
aims to find the path that minimizes f(n).

The Theta* algorithm has been firstly proposed by Nash et al. [6] to gener-
ate smooth paths with few turns, from the starting position to the destination,
for a group of autonomous agents. A path calculated by Theta* that avoids
static obstacles and reaches the destination is shown in Figure 2.3. Similar to
A* algorithm, the Theta* algorithm explores the map and calculates the cost
of nodes also by the function f(n) = g(n) + h(n). In this thesis, we use
Manhattan distance [19] for h(n). In each search iteration, the node with the
lowest cost among the nodes that have been explored is selected, and its reach-
able neighbors are also explored by calculating their costs. The iteration is
eventually ended if the destination is found or all reachable nodes have been
explored. As an optimized version of A* algorithm, Theta* determines the
preceding node of a node to be any node in the searching space instead of only
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(a) Attractive force and repulsive force
generated by the dipole flow field

(b) Path planning and collision
avoidance using the forces

Figure 2.4: Demonstration of the dipole flow field algorithm [10]

neighbor nodes. In addition, Theta* adds a line-of-sight (LOS) detection to
each search iteration to find an any-angle path that is less zigzagged than those
generated by A* and its variants (see Figure 2.3). For the detailed description
of the algorithm, we refer the reader to the literature [6].

2.4 Dipole Flow Field Algorithm
Searching for a path from the starting point to the goal point, assuming a large
environment, is not an easy task and it is usually computationally intensive.
Hence, some studies have adopted methods to generate a small deviation from
the initial path, which is much easier to compute than an entirely new path,
while being able to avoid obstacles. To avoid collisions, Trinh et al. propose
an approach to calculate the static flow field for all objects, and the dynamic
dipole field for the moving objects in the environment [10], which we encode
in our formal model of the AWL. In the theory of dynamic dipole field, every
object is assumed to be a source of magnetic dipole field, in which the mag-
netic moment is aligned with the moving direction, and the magnitude of the
magnetic moment is proportional to the velocity. In this approach, the static
flow field is created within the neighborhood of the initial path generated by
the Theta* algorithm. The flow field force is a combination of the attractive
force drawing the autonomous wheel loader to the initial path, and the repul-
sive force pushing it away from obstacles. Unlike the dipole field force, the
flow field force always exists, regardless of whether the vehicle is moving or
not. As soon as the vehicle equipped with this algorithm gets close enough to
a moving obstacle, the magnetic moment around the objects keeps them away
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from each other.
Figure 2.4(a) illustrates the attractive force generated by the static flow

field, which draws the vehicle to the destination, and the repulsive force gener-
ated by the static flow field as well as the dynamic dipole field, which pushes
the vehicle away from static and moving obstacles. The combination of the
static flow field and the dynamic dipole field ensures that the vehicle moves
safely by avoiding all kinds of obstacles and that it eventually reaches the des-
tination, as long as a safe path exists. As it is depicted in Figure 2.4(b), once
the vehicle deviates from the initial path caused by the repulsive force of an
obstacle, the attractive force can always draw it back to the initial planned
path. Compared with other methods [20][21], this algorithm provides a novel
method for path planning of mobile agents, in the shared working environment
of humans and agents, which suits our requirements well. However, one needs
to verify that the algorithm is able to safely avoid all moving obstacles, in-
cluding unforeseen ones. We carry out this verification as part of our thesis
contribution [7, 8] that is described later.

2.5 Reinforcement Learning
Reinforcement learning is a branch of machine learning aiming to calculate
how agents should take actions in an environment, in order to maximize the
accumulated reward obtained from the environment [13]. In this thesis, we
use one of the model-free reinforcement learning algorithms called Q-learning
[22], which is usually adopted to learn policies that indicate agents the actions
to take at different states. A policy is associated with a state action value func-
tion called Q function, where “Q” stands for “quality”. The optimal Q function
satisfies the Bellman optimality equation:

q∗(s, a) = E[R(s, a) + γ max
a′

q∗(s′, a′)], (2.1)

where q∗(s, a) represents the expected reward of executing action a at state s,
E denotes the expected value function,R(s, a) is the reward obtained by taking
the action a at state s, γ is a discounting value, s′ is the new state resulting from
state s by taking action a, max

a′
q∗(s′, a′) represents the maximum reward that

can be achieved by any possible next state-action pair (s′, a′). The equation
means that the expected reward of the state-action pair (s, a) is the sum of the
current reward and the discounted maximum future reward. As the learning
process iterates, the Q-value of each state-action pair converges to the maxi-
mum Q-value, i.e., q∗, and the parameters are updated using gradient descent
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[23]. Although Q-learning is a model-free algorithm, the learning process of-
ten relies on a simulation environment that depends on the form of the model.
In this thesis, we utilize the simulation function in UPPAAL to gather the infor-
mation of state-action pairs of the model, and invoke the Q-learning algorithm
in Java code to populate the Q-table storing the rewards of state-action pairs
[24], as it is presented in Chapter 11.



Chapter 3

Research Problem

In this chapter, we formulate our research problem and research goals ad-
dressed in this thesis.

3.1 Problem Description

The broad focus of this thesis is on formal verification of autonomous vehi-
cles, as well as the automatic generation of formal models for verification.
Concretely, we target two aspects, that is, computing missions for the vehicles,
and ensuring collision avoidance of all obstacles, static or dynamic ones. The
former aspect only aims at making plans that guide the autonomous vehicles
towards the destination and execute various tasks complying with some cer-
tain rules, such as execution order and timing requirements, whereas the latter
aspect focuses on the kinematics of the autonomous vehicles and moving ob-
stacles. Therefore, when making mission plans, one can consider the discrete
feature of the environment and the systems. More specifically, only some im-
portant positions, a.k.a. milestones, where tasks are carried out, are extracted
from the environment and modeled. Tasks are also interpreted as discrete en-
tities rather than continuous operations. Though the number of states of the
discrete model is countable, the computation time of synthesizing a mission
plan increases exponentially as the number of vehicles increases, because the
mission scheduling problem is NP-hard [25].

In summary, the mission planning problem is formulated as: how to cal-
culate path plans to guide multiple autonomous vehicles to reach all the mile-
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stones in the environment, and schedule the execution of tasks so that the vehi-
cles obey the execution order of tasks and timing requirements when carrying
out their missions? Given the complexity of computation, finding a scalable
method is a related research problem in our focus.

The other aspect of the problem deals with collision avoidance, where we
take into account the continuous behavior and unforeseen moving obstacles.
The most important factor considered in this sub-problem is the modeling and
verification of the hybrid model of the vehicles as well as their embedded con-
trol systems. Therefore, how comprehensively and faithfully the model reflects
the real scenarios is one important factor in this sub-problem, whereas the abil-
ity of verification must still be preserved by the solution as we focus on gen-
erating a correctness- and safety-guaranteed design of autonomous vehicles.
In summary, this aspect of the problem is related to finding means to verify
the autonomous vehicles’ functionalities of following the reference paths and
avoiding moving obstacles while they are executing the missions.

The overall problem is the combination of the two aspects and is pre-
sented as follows: how to model and verify the mission-planning and collision-
avoidance functionalities of multiple autonomous vehicles so that the design of
the vehicles is correct and safety-guaranteed, and scalability tamed as the num-
ber of vehicles increases?

3.2 Research Goals
To solve the research problem of the thesis as formulated in Section 3.1, we
formulate the main research goal of the thesis as follows:

Overall goal. Facilitate the assured design of the embedded control software
of autonomous vehicles, with respect to mission planning, as well as path fol-
lowing and collision avoidance functions, by employing formal methods.

A key principle of facilitating the design of software in general is the no-
tion of separation of concerns [26]. The key idea is that one should avoid co-
locating different concerns within the design. In our research problem, mission
planning does not concern the autonomous vehicles’ operations in a continuous
dynamic environment, and thus the environment can be abstracted as a discrete
model at this level. Therefore achieving the separation of concerns of mission
planning and continuous movement including collision avoidance of dynamic
obstacles, while backing them by formal verification techniques, could be ben-
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eficial. Consequently, the first subgoal that contributes to achieving the broader
overall goal is as follows:

Subgoal 1. Provide a means that decouples the design of mission planning
from the vehicle’s autonomous operation in a continuous dynamic environ-
ment, supported by model checking techniques.

The path-planning algorithms employed in this thesis are A* [9] and Theta*
[6], and the collision-avoidance algorithm relies on the dipole field concept
[10]. When applied in the context of the autonomous system’s design, their
correctness (meeting provided requirements) needs to be demonstrated. To
achieve this, we formulate the second subgoal as below:

Subgoal 2. Ensure the correctness of path-planning and collision-avoidance
algorithms, within the context of autonomous wheel loaders.

Mission planning for multiple autonomous vehicles is an NP-hard problem
[25] and our problem also involves path planning and uncertainties of tasks
execution times, etc. The third subgoal aims to provide a scalable method
for mission planning, including path planning and mission scheduling. The
subgoal is formulated as follows:

Subgoal 3. Provide scalable synthesis of collision-free static mission plans
guaranteed to satisfy given temporal requirements among tasks.

As the synthesized mission plans only consider a part of the environment,
such as the identified static obstacles, when the vehicles start to execute the
mission plans, they might not only encounter some unforeseen static obstacles
but also moving obstacles. Moreover, the dynamics of the motion of the vehi-
cles can also cause uncertainties that have not been considered in the mission-
planning phase. Based on these issues, the fourth subgoal is presented as fol-
lows:

Subgoal 4. Ensure that the model execution of the vehicle’s movement in a
dynamic environment fulfills the specified functional, precedence, and timing
requirements.
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Our solutions need to be validated on industrial use cases, in order to show
their applicability in real scenarios. Hence, our fifth subgoal is:

Subgoal 5. Assess the applicability of the proposed synthesis and verification
methods on an industrial use case.

In summary, the five subgoals concern different aspects of the research
problem, and addressing them enables meeting the overall goal of the thesis.
If addressed, subgoal 1 facilitates the design of the embedded control software
for autonomous vehicles, by decoupling the two aspects of the problem clearly
and initializing the idea of a two-layer framework. Subgoals 2, 3, and 4 focus
on different layers and algorithms of the framework and transform the initial
high-level idea into a concrete solution. Subgoal 5 serves as an evaluation of
the method on an industrial prototype. Altogether, the five subgoals provide a
detailed decomposition of the overall goal and clarify the scope and focus of
this study.



Chapter 4

Research Methods

In this chapter we introduce the methods that we use to conduct our research in
order to address the research goals. We first describe the general process that
we follow in our research, after which we explain the concrete methods used
in this thesis.

Our research process is shown in Figure 4.1. This research is initiated by
industrial problems that have not been solved by industrial solutions nor thor-
oughly studied by academic researchers. Through a number of visits and dis-
cussions with our industrial partner Volvo CE, and thorough analysis of their
design artifacts, the outstanding industrial problems are accurately identified.
Based on them and also on our analysis of the relevant state-of-the-art, we
formulate the research goals, as presented in Section 3.2. The process of iden-
tifying and defining research goals is iterative, that is, they are gradually refined
throughout the entire study.

To address the formulated research goals, we start by investigating the for-
mal methods and their applications on autonomous vehicles that have been
studied by industry and academia. Although we have not yet published the re-
sults of our analysis as a standalone paper, we have gotten a general picture of
the research area that focuses on applying formal methods in the development
of autonomous vehicles.

As a next step, we propose a systematic approach, and design algorithms
to facilitate the approach, which address our research goals and are applicable
to industrial systems. To implement and evaluate the proposed approach, a set
of established research methods are used and reported in the papers included
in this thesis as listed in Section 1.1. In Paper A [7], which is also presented in
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Figure 4.1: Research Process

Chapter 8, and Paper B [8], which is also presented in Chapter 9, we use case
study research method [27, 28] to demonstrate the correctness and applicability
of the proposed methods and identify shortcomings of the path-planning and
collision-avoidance algorithms. These studies follow the principle of the proof
of concepts method [29] to ensure the feasibility of the methods. In Paper C
[12], which is also presented in Chapter 10, and Paper D [24], which is included
in this thesis as Chapter 11, methods TAMAA and MCRL are implemented as
a tool. We conduct experiments to evaluate the methods in different scenarios
and make a comparison with other methods. In these studies, we apply the
proof by demonstration method [29] by developing a tool that supports our
TAMAA approach, and evaluate it in an industrial setting. Thanks to the close
cooperation with our industrial partner, throughout the entire research process,
we perform validation of the research results in experimental settings extracted
from real-world scenarios. Such validation brings us the following benefits: i)
real-time feedback of whether the methods can solve the identified industrial
problems, and ii) assessment of the scalability of the methods conducted on the
actual industrial systems.

In the evaluation phase, whenever the results match what we expect in our
research goal, we conclude that the goal is achieved, or else we use the ob-
tained experience to propose a new and improved solution to the same problem.
Whenever the results differ from our expectations, either for better or worse,
we analyze the reasons behind the deviation. After that, if the results are good,
we move on to new research goals, whereas if the results are worse than ex-
pected, we go back to study literature and propose a new solution, sometimes
we also survey, refine, and narrow the research problems and goals.



Chapter 5

Thesis Contributions

In this chapter, we present the contributions of this thesis, which address the
aforementioned research goals. We first introduce a two-layer framework for
modeling and verifying autonomous vehicles, which acts as our assured de-
sign methodology that addresses the overall research goal. Next, we present a
development process that support the proposed methodology, and address the
subgoals, respectively.

5.1 A Two-Layer Framework for Modeling and
Verification of Autonomous Vehicles

In this thesis, we consider two main functionalities of the autonomous vehi-
cles, which have to be realized: mission planning and executing missions au-
tonomously and safely. They involve two levels of concerns, planning and ex-
ecuting. The former includes path planning and task scheduling, which we call
mission planning in all. When computing mission plans, the system focuses on
generating the paths and the order of executing tasks. Autonomous vehicles are
designed to synthesize mission plans that satisfy various requirements, e.g., au-
tonomous wheel loaders should carry all the stones to the primary crusher that
outputs crushed stones at given fractions, before carrying the crushed stones to
the secondary crusher, all within 15 hours. At this level of design, the system
model should not include the concrete movement and operation of the vehicles.
The vehicles only need to know what to do or where to go at certain time points
and positions in the environment.
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At the lower level of design, when the vehicles start to execute the synthe-
sized plans, their behaviors have to be modeled in a continuous manner so that
the models are as realistic as possible. Hence, behaviors like accelerating, uni-
form movement, decelerating, and specific motions, e.g., digging, loading, etc.
have to be considered and modeled at this level. Therefore, mission planing
and the autonomous operation in a continuous environment can be decoupled
to reduce the complexity of the design and provide a separation of concerns.

In Paper B [8], which is also included as Chapter 9 in this thesis, we pro-
pose an initial design of a two-layer framework consisting of a static layer and
a dynamic layer, which is depicted in Figure 5.1. The communication proto-
col supports data exchange between the layers. The static layer is responsible
for path and mission planning, based on the information of the environment
detected by the dynamic layer. The static layer includes static obstacles and
milestones where the tasks should be carried out. Moving obstacles that are
unforeseen by the autonomous vehicles are considered in the dynamic layer,
which is designed to simulate and verify the systems to guarantee that they
follow the reference path generated by the static layer and avoid dynamic ob-
stacles. These two layers support the modeling of mission planning and mod-
eling of the continuous behavior separately, such that the desired decoupling is
achieved.

Figure 5.1: A two-layer framework for planning and verifying autonomous
vehicles
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5.2 Formal Modeling and Verification of Path-
Planning and Collision-Avoidance Algorithms

The path-planning and collision-avoidance algorithms are adopted in safety-
and mission-critical systems, thus it is crucial to ensure the correctness of these
algorithms in the context of autonomous vehicles. Two types of path-planning
algorithms are considered in this thesis, one is A* algorithm that is an exten-
sion of Dijkstra’s algorithm and uses a heuristic function to guide the graph
traversal [9]. The other one is the Theta* algorithm that calculates smooth
paths with fewer turning points of any angles. When the paths are calculated,
the autonomous vehicles need to be able to follow the path, while avoiding all
kinds of obstacles on the path. The algorithm for collision avoidance that is
adopted in our model is proposed by Trinh et al. [10], and relies on the concept
of dipole flow field, which consists of static flow field and dynamic dipole field.
The former is calculated for all objects in the environment so that the vehicles
can navigate themselves following the reference path and avoiding static ob-
stacles. The latter assumes all moving objects to be sources of magnetic dipole
fields and calculates the magnetic moment around them. As soon as the ve-
hicles equipped with this algorithm get close enough to moving obstacles, the
magnetic moment keeps repulsing them away from the obstacles. Therefore,
the combination of the static flow field and the dynamic dipole field enables
autonomous vehicles to follow the pre-calculated paths and avoid unforeseen
obstacles. Nevertheless, there is no research that verifies the algorithms within
the context of autonomous vehicles, which is crucial before deploying them in
concrete systems.

Modeling and Exhaustive Verification of the Algorithms. In this thesis,
we encode the algorithms in the TA model of the embedded control software
of the AWL and verify them in a discrete environment model by exhaustive
model checking. The contribution is three-fold.

First, we model the functionalities of processes in the embedded control
software by mapping the elements in the activity diagrams into the components
of TA models. As depicted in Figure 5.2, the decision nodes, action nodes, and
connections in Figure 5.2(a) are mapped to the locations, edges, and functions
in the TA model in Figure 5.2(b). In addition, A* algorithm is programmed
as a C-code function on the edge from location Init to Configuration in Fig-
ure 5.2(b). Second, we formalize the natural-language written requirements,
such as “The AWL must go to the primary crusher from the stone pile within
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(a) Activity diagram describing the function of a process

(b) TA of the process

Figure 5.2: Modeling the TA of a process from its activity diagram

Figure 5.3: A livelock scenario

5 minutes”, into TCTL queries so that they can be verified. For instance, the
corresponding TCTL query of the requirement above-mentioned is formed as
following:

(currentPos==pile and goal==crusher) −− >
(currentPos==pile and goal==pile and gClock <= 5 × 60)

Last but not least, by conducting exhaustive verification, we unveil a live-lock
situation where two vehicles encounter each other on the same line but move to
opposite directions forever, as it is shown in Figure 5.3. The reason that causes
this undesired behavior is the limitation of the dipole flow field algorithm for
collision avoidance, that is, the directions of the repulsive force generated by
moving objects in this scenario are opposite to the directions of their veloci-
ties, and the attractive force always follows the planned path and pointing to
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the destination. When they are getting close, the repulsive force pushes them
away from each other. As their distance increases, the repulsive force becomes
weaker and weaker until it is less than the attractive force, which is in the same
line but towards the opposite direction of the repulsive force, and thus the au-
tonomous vehicle and moving object are drawn by their destinations and move
towards each other again. This leads to a forever live-lock situation.

By model checking, we are able to capture the phenomenon, hence provid-
ing valuable and our discovery provides valuable feedback to the algorithm’s
developers for further improvement. This work is reported in Paper A [7],
which is also included as Chapter 8 in this thesis.

Statistical Verification of the Algorithms. Collision avoidance relies strongly
on the vehicles’ dynamics and kinematics strongly, hence a discrete model does
not suffice, as it cannot capture the continuous vehicle behavior. Such difficul-
ties in adopting formal verification in realistic industrial scenarios have risen a
wide interest in the academia [30, 31]. In this thesis, we apply hybrid automata
and statistical model checking for modeling and verification of the collision-
avoidance algorithm in a continuous environment model, where unforeseen
moving obstacles are considered. The hybrid model is verified in UPPAAL
SMC [16] and the results show that even in a dynamic environment with un-
foreseen moving obstacles that appear unexpectedly, the autonomous vehicle
model is capable of avoiding the obstacles with a probability higher than 0.9.
A more comprehensive description of the evaluation of the approach on in-
dustrial use cases is provided in Section 5.5. The simulation and verification
results demonstrate that the dipole flow field algorithm can generate reason-
able motions for the vehicles to avoid most of the moving obstacles. However,
it may force the vehicles to move in cycles rather than stopping or detouring,
to avoid collisions. These observations provide valuable feedback to the devel-
opers of the algorithm. Details of our contribution are reported in our Paper B
[8] (included as Chapter 9 in this thesis).

5.3 Scalable Synthesis of Collision-Free Mission
Plans Via Model Checking and Reinforcement
Learning

Mission planning includes path planning and task scheduling. Classic path-
planning algorithms provide means of calculating static paths between two po-
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sitions in the environment. Let us assume that the requirement of the mission
plans of some autonomous wheel loaders is of the form: “Dig stones at the
stone pile. Carry and unload them into a primary crusher 500 meters away.
Avoid static obstacles and keep repeating these tasks until the stone pile is
empty or the vehicle needs to charge. Accomplish the job within 1 hour.” In
such a case, one needs to employ path-planning algorithms and formal verifi-
cation techniques in order to synthesize a mission plan that fulfills the complex
requirement.

To utilize formal verification techniques on industrial systems, one has to
build formal models of their behavior [32, 33]. This applies also to autonomous
vehicles, which is our focus. An autonomous vehicle can be considered as an
autonomous agent that is situated within an environment, can sense the envi-
ronment and act on it, over time, in pursuit of its own goals [34]. In the work of
solving the mission-planning problem of autonomous agents, whose movement
and tasks are simply abstracted as time duration without considering any real-
time feedback from the environment. Therefore, autonomous agents can be
considered automated agents at this level of abstraction and defined as follows:
An automated agent is a system that receives instructions from its mission plan
and executes its instructions with no human control and no interaction with its
environment. There are many definitions of automated agents in different fields
of research [34]. In this thesis, we assume the definition above and formalize
an automated agent as follows:

Definition (Automated Agent). An automated agent (AA) is defined as a tu-
ple:

AA ,< S,M, T >, (5.1)
where:

• S is the speed of the moving agent,

• M is a set of motion primitives that make the agent move and execute
tasks,

• T is a set of tasks that the agent has to accomplish. �

Similarly, to lay out the foundation for generating formal models, we first
contribute with defining the relevant concepts, such as autonomous agents,
movement, and tasks. For example, the task execution is defined as a follows:

Definition (Task Execution). For an automated agent (S,M, T ), the execu-
tion of tasks in T is defined as a timed automaton in a restricted form:

Taa , (N, l0, xe, Ae, Ve, Ee, Ie,Me) (5.2)
where,
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• N is a set of locations representing the tasks in T ,

• l0 ∈ N is the initial location representing the no-op task T0,
• xe is a clock that is reset whenever a task finishes,

• Ae = {move, done0, ..., donen} ∪ τ is a set of actions,

• Ve is a set of variables containing variables of all the tasks in T , i.e.,
Ve =

⋃S
i=1 Ti.V , S = |T |,

• Ee ⊆ l0 ×Ae ×Be(xe, T )× 2C × 2T ×N is a set of edges connecting
l0 and l ∈ N with a set of actions and guards, where C = {xe},

• Ie : N \ l0 7→ Bi(xe) is a function assigning invariants to locations
except l0,

• Me : N 7→ T is a function assigning tasks to locations. �

Based on these formal definitions, we design model-generation algorithms
to automatically generate the formal models needed for mission planning. The
algorithms are implemented in a tool called TAMAA (Timed-Automata-based
planner for Multiple Autonomous Agents), which is connected to an graphic
user interface called MMT (Mission Management Tool) [35]. After generat-
ing the formal model as a network of TA, TAMAA invokes the tool UPPAAL
to verify the model and generate execution traces that satisfy or violate the
desired properties, which are further leveraged to generate mission plans or
counter examples that violate a specific formalized property, deeming generat-
ing a mission plan infeasible.

The contribution of TAMAA is to facilitate the mission plan synthesis pro-
cess, by automating the model generation and integrating the tool for formal
verification (UPPAAL) and the GUI for visualizing mission plans (MMT) in one
framework. This tool allows designers to enjoy the benefits of formal methods
without the need of becoming experts in the framework’s theoretical underpin-
nings. As shown in Figure 5.4(a), in a reasonable environment where at least
one path that goes through all milestones and reaches the destination exists,
TAMAA outputs an execution trace as a witness, the mission plan being de-
picted in MMT. In the opposite case, a counter example representing an invalid
mission plan is shown in MMT, where a collision occurs at the highlighted
obstacle (See Figure 5.4(b)).

We also investigate the similarities and differences between our mission-
planning problem and the classic job-shop problem so that we can leverage
existing studies [25] and promote our algorithms. Our algorithms to generate
mission plans for multiple autonomous agents consider not only the constraints
of task execution but also timing requirements. The algorithms, contained in
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(a) A mission plan generated in a
reasonable environment

(b) A counter example generated
in an unreasonable environment

Figure 5.4: Two screenshots of the MMT user interface

our proposed MCRL approach, combine a reinforcement learning algorithm,
i.e., Q-learning, with model checking to handle the state-space explosion prob-
lem when facing multiple agents. Uncertainties in this problem include the
times of task execution and movement, which are time intervals following a
uniform distribution. This makes the problem very complex and impossible to
handle using traditional methods. The difficulties motivate the use of a com-
bination of techniques, namely exhaustive model checking and reinforcement
learning, which has the potential of reducing the state space to be explored by
UPPAAL. Model checking provides the rigor and high assurance level, by for-
mally encoding and analyzing the system that uses the described algorithms,
whereas reinforcement learning compensates the method with respect to scal-
ability and the handling of uncertainties.

The formal definitions, model-generation algorithms, and the TAMAA tool
are described in Paper C [12], which is also included as Chapter 10 in this the-
sis. We apply model checking alone, the combined analysis approach, namely
MCRL, and UPPAAL STRATEGO [36] on an industrial use case that includes a
number of autonomous wheel loaders and trucks working in a construction site.
By applying our original approach involving model checking alone, we find
that if the number of vehicles increases. e.g., to 5, the tool, i.e., TAMAA, fails
to generate a mission. UPPAAL STRATEGO manages up to 2 agents, when syn-
thesizing strategies based on the model generated by TAMAA. Our improved
approach MCRL is proposed and evaluated in Paper D, which is also included
as Chapter 11 in this thesis, with the promising result of a linear increase of
the synthesis time of mission plans, with the number of agents. The result of
this study is overviewed in Section 5.5
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5.4 Formal Modeling and Verification of the Em-
bedded Control System and Dynamics of Au-
tonomous Vehicles

Once mission plans are synthesized, we want to verify if they are correct (that
is, meet the requirements) in the context of the embedded control software of
the autonomous vehicles. To apply formal verification on a realistic model
of autonomous vehicles, hence increasing the assurance via convincing verifi-
cation results, we conduct the verification in a continuous and dynamic envi-
ronment model and verify various requirements, like functional, precedence,
and timing ones. For instance, the requirements of autonomous wheel loaders
(AWL) are elaborated as following:

1) Initial path computation: during initialization, the autonomous vehicle
must compute an initial path to the destination, which must avoid all the
identified static obstacles;

2) Obstacle avoidance and path recalculation: the autonomous vehicle
must avoid static and dynamic objects around it in due time before re-
turning to the initial path;

3) End-to-end deadline: To guarantee a certain productivity, the autonomous
vehicle must reach the destination within 30 minutes after having com-
pleted the entire mission.

To achieve this, we adopt hybrid-automata-based patterns to model the linear
motion and rotation of the vehicles and statistical model checking in UPPAAL
SMC [16] to verify the model against these requirements. Hybrid automata
(HA) formalism is usually used to model systems in which digital computa-
tional processes interact with analog physical processes [17]. Based on New-
tonian laws of motion, the HA of the linear motion of autonomous vehicles are
modeled as depicted in Figure 5.5. In Figure 5.5(b), the derivatives of veloc-
ity, as well as the positions on x and y axis, are described by ODE, which are
replaceable as shown in the pattern skeleton of Figure 5.5(a). Similarly, the
rotation of vehicles is also modeled as well as the embedded control software.

As UPPAAL SMC does not support hierarchical or recursive modeling, the
model tends to be extremely complex. All the elements of the systems at dif-
ferent levels, e.g., units, processes, threads, and functions, are constructed at
the same level of the model. Therefore, we propose a pattern-based method
for rapidly constructing complex models by reusing the common components
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(a) The skeleton of the pattern (b) The hybrid automaton of the pattern

Figure 5.5: The pattern of the linear motion component of the autonomous
vehicle

as shown in Figure 5.5. This approach facilities especially the modeling of
the embedded control software. We refer to our Paper B [8], which is also
included as Chapter 9 in this thesis, for details and the evaluation on the use
case of autonomous wheel loaders. The result proves that the method is capa-
ble of providing statistical verification of mission plan execution, considering
the vehicles’ movement in a dynamic environment.

5.5 Validating Our Solution on an Industrial Use
Case: Autonomous Wheel Loaders

To validate the usability and scalability of our proposed approaches, we apply
them on an industrial use case: an autonomous wheel loader (AWL), proposed
by Volvo Construction Equipment, Sweden. The exhaustive verification of the
AWL equipped with the A* algorithm for path planning, and dipole flow field
algorithm for collision avoidance is reported in Paper A [7], which is also in-
cluded as Chapter 8. Table 5.1 presents the TCTL queries and the verification
results, from which we can conclude that the timed-automata-based method is
able to provide a means of verification for the AWL within reasonable time, pro-
vided that the system complies with a set of assumptions, such as discretized
environment and vehicle motions.

To inspect the continuous movement of the AWL and verify the system in
a more realistic environment model, we simulate the hybrid-automata model
created by using the pattern-based modeling method, by executing the simu-
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Table 5.1: Verification queries and results of the AWL model equipped with A*
and dipole flow field algorithms

Requirement Query Result
States

explored
Time
(ms)

Initial

path

computation

Q1.0: E <> mainTask.Wait Pass 2 110

Q1.1: A <> mainTask.Wait imply lenOfPath-
Stack > 0

Pass 8780 484

Q1.2: E <> currentPosition == pile and desti-
nation == crusher

Pass 1 0

Q1.3: (currentPosition == pile and destination
== crusher) −− > currentPosition == crusher

Pass 14191 1125

Q1.4: E <> currentPosition == crusher and
destination == pile

Pass 2339 297

Q1.5: (currentPosition == crusher and destina-
tion == pile) −− > currentPosition == pile

Pass 14204 782

Q1.6: A[] forall(i:int[0,9]) currentPosition !=
staticObstacle[i]

Pass 8780 485

Obstacle

avoidance

Q2.0: A[] currentPosition != currentObstacle Pass 125941 6297

Q1.3: (currentPosition == pile and destination
== crusher) −− > currentPosition == crusher

Pass 227646 13969

Q1.4: E <> currentPosition == crusher and
destination == pile

Pass 2678 375

Q1.5: (currentPosition == crusher and destina-
tion == pile) −− > currentPosition == pile

Pass 192406 10656

Mode switch:

error A

Q3.1: E <> errorStart == true Pass 30 234

Q3.2: error_start==true −− > (SYS-
TEM_ERROR==true and reaction_time<=20)

Pass 91 250

Mode switch:

error B

Q3.1: E <> errorStart == true Pass 29 234

Q3.2: error_start==true −− > (SYS-
TEM_ERROR==true and reaction_time<=15)

Pass 320 266

End-to-end
deadline

Q4.0: (currentPosition==pile and destina-
tion==crusher) −− > (currentPosition==pile
and destination==pile and gClock <= 2200)

Pass 590326 36641

lation query (5.3) in UPPAAL SMC, to obtain the changing coordinates of the
autonomous vehicle:

simulate 1[<=110] {pcx,pcy} (5.3)
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Figure 5.6: The trajectory of the AWL in a map with three moving obstacles

The trajectory is shown in Figure 5.6, where “A” and “B” are two prede-
fined moving obstacles and “C” is a dynamically-generated obstacle that moves
“recklessly” towards the AWL. The AWL is capable of avoiding the predefined
moving obstacles “A” and “B” and the trajectory does not deviate much from
the initial path plan, whereas when encountering the unforeseen moving ob-
stacle “C”, the AWL has to turn around to avoid collision. Besides the simula-
tion, we also conduct statistical model checking on the hybrid-automata model
against queries like the following:

Pr[<=70](<> arrived && counter<=60) (5.4)

Pr[<=110]([] followedPath), (5.5)

where in query (5.4), arrived is a boolean variable denoting if the AWL
has arrived at destination, and counter is a clock used to encode the associ-
ated timing constraint. In query (5.5), the boolean variable followedPath
models the fact that the AWL has reached the destination and has returned to
the start by visiting all the required milestones orderly. The probability inter-
val of satisfying these queries is [0.902606, 1] with 95% confidence obtained
based on 36 runs. The verification results demonstrate that the path-planning
algorithms work correctly, whereas the dipole flow field algorithm needs to be
improved to cope with some special scenarios. This work is documented in
Paper B [8] (included as Chapter 9).

The algorithms and tool for mission planning, namely TAMAA and MCRL,
are evaluated on the same industrial use case to demonstrate the usefulness and
scalability of proposed verification solutions. The experiment is conducted
on a machine running an Intel Core i5 processor with 16 GB of RAM and a
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Table 5.2: Scalability evaluation results of TAMAA with different number of
milestones and tasks and 1 vehicle.

Query
Numer of
Milstones

Numer of
Tasks

Numer of
Explored States

Time

Reachability
30 30 20,363 0.2 s
60 60 157,033 2.2 s

100 100 712,721 14 s

Invariance
30 30 41,193 0.3 s
60 60 317,703 4.5 s

100 100 1,429,903 29 s

Table 5.3: Scalability evaluation results of TAMAA with different number of
vehicles running 3 tasks among 3 milestones.

Query
Numer of
Vehicles

Numer of
Explored States

Time

Reachability

2 1,661 0.01 s
3 159,632 2.0 s
4 2,058,132 20160 s
5 Out of Memory Out of Memory

Invariance
2 3,533 0.03 s
3 344,701 4.0 s
4 Out of Memory Out of Memory

64-bit Windows OS. As shown in Table 5.2, when the numbers of milestones
and tasks increase, the computation time of TAMAA increases acceptably. In
contrast, when the number of vehicles increases to 5, TAMAA encounters state-
space explosion problem, and fails to terminate with a result, as shown in Table
5.3. This work is reported in Paper C [12], which is also included as Chapter
10 in this thesis.

Our new approach of scalable mission planning for multiple vehicles, namely
MCRL, is developed based on TAMAA and reported in Paper D [24] (Chapter
11 in this thesis). This approach utilizes reinforcement learning to restrict the
behavior of agents, and thus the state-space of the model is contained. The
new agent model obtained from MCRL is able to find the desired states faster
and cope with uncertain movement time and task execution time. Experiments
aiming at comparing this new approach with the original TAMAA, and another
benchmark, namely UPPAAL STRATEGO [36] is also conducted in this study.
Figure 5.7 shows the computation time of running the three methods to syn-
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Figure 5.7: The time consumption of different methods running different num-
ber of agents

Table 5.4: Contribution of included papers with respect to research goals

SG 1 SG 2 SG 3 SG 4 SG 5
Paper A X X
Paper B X X X
Paper C X X
Paper D X X

thesize mission plans for 2 to 6 autonomous agents in the same scenario. The
values in the black region reflect the times when the physical memory assigned
to the process is exhausted, due to the model’s state-space explosion. The result
of this study shows that the computation time when employing MCRL increases
linearly with the number of agents, whereas TAMAA and UPPAAL STRATEGO
show an exponential increase of the computation time, hence they fail to output
a result, for 5 agents, and 3 agents problem size, respectively.

5.6 Research Goals Revisited
In this section, we present the technical contributions of this thesis and the
relationship between the included papers and the research goals. Each research
goal is addressed by one or more papers, as illustrated in Table 5.4.

• Paper B [8] proposes a two-layer framework for the formal modeling
and verification of autonomous vehicles, such that designers can utilize
formal methods to analyze and design autonomous vehicles via a sys-
tematic approach that is founded on rigorous design elements based on



5.6 Research Goals Revisited 39

formal models. This contribution addresses Subgoal 1 (SG1): Provide a
means that decouples the design of mission planning from the vehicle’s
autonomous operation in a continuous dynamic environment, supported
by model checking techniques.

• Paper A [7] applies exhaustive model checking to verify the design of
an autonomous wheel loader prototype, equipped with path-planning
and collision-avoidance algorithms, such as A* and dipole flow field,
respectively. This contribution addresses Subgoal 2 (SG2): Ensure the
correctness of path-planning and collision-avoidance algorithms, within
the context of autonomous wheel loaders.

• Paper C [12] proposes the TAMAA approach that provides a rigorous
theoretical foundation of mission-plan synthesis, based on formal mod-
els, and a graphical user interface for environment and vehicle configu-
ration. Paper D [24] improves TAMAA by combining it with reinforce-
ment learning. The new approach can alleviate the state-space explosion
problem and manage to handle cases with more than 5 agents in different
scenarios. These contributions address Subgoal 3 (SG3): Provide scal-
able synthesis of collision-free static mission plans guaranteed to satisfy
given temporal requirements among tasks.

• Paper B [8] proposes a pattern-based approach for the formal modeling
of the behavior of an AWL by using hybrid automata, and applies statis-
tical model checking to verify the resulting model. These contributions
address Subgoal 4 (SG4): Ensure that the model execution of the vehi-
cle’s movement in a dynamic environment fulfills the specified functional,
precedence, and timing requirements.

• By applying our proposed methods to the industrial use case of an AWL
prototype, papers A [7], B [8], C [12] and D [24] address Subgoal 5
(SG5): Assess the applicability of the proposed synthesis and verification
methods on an industrial use case.

These contributions together provide a solution for designing the embed-
ded control software of autonomous vehicles and ensuring its correctness, with
respect to mission planning, as well as path following and collision avoidance
functions, which addresses our overall research goal (see Section 3.2).





Chapter 6

Related Work

In this chapter, we present some of the related work in mission planning of
autonomous vehicles, and verification of autonomous vehicles in a dynamic,
continuous environment model. These previous studies pave the way towards
facilitating the mission planning and verification of autonomous agents. Our
work is also inspired by some of the related work mentioned below. However,
the fact that these related studies either consider only one aspect of the prob-
lem, i.e., discrete mission planning or verification of hybrid models, or fail to
provide a scalable solution for multiple agents in one framework motivates us
to extend the study and fill the research.

6.1 Mission Planning for Autonomous Agents

In recent decades, there has been a growing interest in formal modeling and
verification of autonomous systems, especially for mission planning problems
with complex goals. Belta et al. [37] present a hierarchical structure, and
based on a three-level process they propose a method for the verification of
mobile robots using Linear Temporal Logic (LTL). This is evaluated in several
case studies [38, 39]. Bhatia et al. [40, 3] propose a multi-layered synergistic
approach for solving motion planning problems for mobile robots involving
temporal goals. This approach addresses two key issues: the construction of
the discrete abstraction of the robots and its efficient exploration in the high-
level layer. Dimarogonas et al. [5, 41] propose their method for motion plan-
ning of multiple-agent systems using various temporal logics. Saddem et al.

41



42 Chapter 6. Related Work

[42] use UPPAAL and Computation Tree Logic (CTL) to verify reachability
properties of autonomous functionalities, including path finding. The authors
propose an environment decomposition method to reduce the memory require-
ment and execution time of model checking. Koo et al. [4] propose a frame-
work for the coordination of a network of mobile robots with respect to formal
requirement specifications in temporal logics, in which hybrid automata and
Cadence’s SMV model checker are used.

As different from these studies, our approach is focusing on integrating a
state-of-the-art path-planning algorithm with temporal logic, to leverage the
heuristics and efficiency of the former and the rigorousness and expressiveness
of the latter. In addition, our approach combines the model checking tech-
nique with reinforcement learning to alleviate the state-space explosion prob-
lem, hence being able to handle larger problem sizes than those handled by the
mentioned related approaches (e.g., involving a larger number of autonomous
agents, or milestones and tasks).

The combination of formal methods and learning algorithms is a recent
trend that attracts a large body of research work. Li et al. [43] utilize the expres-
siveness of formal specification languages to capture complex requirements of
robotic systems, and construct reward functions of reinforcement learning so
that they become interpretable. Bouton et al. [44] propose a generic approach
to enforce probabilistic guarantees on agents trained by reinforcement learn-
ing. Mason et al. [45] present an assured reinforcement learning algorithm,
using abstract Markov decision processes, and probabilistic model checking
to establish abstract policies for autonomous agents that are formally verified.
UPPAAL STRATEGO as a new branch of UPPAAL is designed by David et al.
[36], and adopts reinforcement learning algorithms to refine the synthesized
strategies for winning priced timed games.

In comparison to the above work, our approach focuses on using reinforce-
ment learning as a way of taming the scalability of exhaustive model checking,
for mission-plan synthesis of multi-agents, so that the state-space explosion
is alleviated. The model-checking technique compensates the reinforcement
learning algorithms by providing formal guarantees of satisfying requirements
that are not expressed in the reward functions of the learning algorithms.

We also integrate the mission plan synthesis method with a GUI, namely
MMT [35], which allows the easy configuration of the system and its environ-
ment. We aslo apply the approach on an industrial case involving autonomous
wheel loaders, to demonstrate the applicability and to some extent also the
scalability of this approach in realistic scenarios. Instead of using LTL, as in
some of the related work [37], for requirements specification, we explore the
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use of Timed Computation Tree Logic (TCTL) for expressing different types
of requirements like requirements with timing constraints.

6.2 Verification of Autonomous Agents

Automata-based methods [38, 46, 47, 48] have been used for path or motion
planning fow a while now. Different from our work, which utilizes and verifies
path-planning algorithms, these studies aim to solve the vehicle-routing prob-
lem by exploring the environment model using model checking. In the related
papers, the authors study agents that carry out autonomous tasks like searching
for an object, avoiding an obstacle, and missions sequencing. However, un-
certainties, like unforeseen obstacles, which are hard to predict, have not been
considered.

Runtime verification that monitors the behavior of autonomous systems
addresses the above-mentioned shortage to some extent [49, 50, 51, 52]. This
technique extracts information from a running system, based on which the be-
havior of the system is verified. The runtime overhead caused by the monitor
is the most common problem introduced by this method.

The agent-based paradigm is another widely studied approach for the de-
sign and analysis of autonomous systems [53, 54, 54, 55, 56]. Since the pre-
dominant form of rational agents architecture is that provided by the Beliefs,
Desires, and Intentions approach, these studies aim to translate the agent-based
language to a formal notation, in order to be able to verify the behavior of the
agents. However, this method usually does not consider the continuous dy-
namics of the vehicle, which we model and analyze in the dynamic layer of
our two-layer framework.

There are also some studies providing frameworks for verification of au-
tonomous vehicles or robots. Sirigineedi et al. [57], capture the behavior
of an unmanned aerial vehicle performing cooperative search mission into a
Kripke model to verify it against the temporal properties expressed in CTL. The
model used in the paper contains a decision-making layer and a path-planing
layer. Quilbeuf et al. [58] propose a generic method based on Statistical Model
Checking (SMC) to evaluate complex automotive-oriented systems. They use
specifically defined Key Performance Indicators (KPIs) as temporal properties
and evaluate the probability of the systems to meet the KPIs. Desai et al. [59]
propose an approach that combines model checking with runtime verification
to bridge the gap between software verification (discrete) and the actual execu-
tion of the software on a real robotic platform in the physical world. However,
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it does not model and verify the vehicles’ behaviors that are governed by the
generated paths and their dynamics in a continuous environment model.



Chapter 7

Conclusions and Future
Work

In this thesis, we first propose a two-layer framework for the mission planning
and verification of autonomous vehicles. Following the well-known princi-
ple of separation of concerns, the framework decouples the discrete mission
planning from the verification of concrete execution and collision avoidance
in continuous environments. The framework consists of a static layer that is
responsible for mission planning, and adopts a combination of model check-
ing and reinforcement learning, and the dynamic layer that is intended for the
verification of the mission plans’ execution, and considers the dynamics and
kinematics of the autonomous vehicles and unforeseen moving obstacles.

To facilitate mission planning, we support the framework by a tool called
TAMAA (Timed-Automata-based planner for Multiple Autonomous Agents),
which implements our model-generation algorithms and connects to UPPAAL
and a GUI for mission management, called MMT. The TAMAA approach pro-
vides rigorous formal definitions of important concepts in the mission-planning
problem, e.g., agent movement and task execution. These definitions establish
the foundation for the automatic model-generation algorithms that serve as an-
other contribution of this thesis. TAMAA implements these algorithms and
integrates MMT, so that designers need not use or be experts in the underlying
formal notations and methods, instead they can focus solely on the environment
configuration and requirements specification. Nevertheless, mission plans are
guaranteed to be correct thanks to the formal modeling and verification tech-
niques that are employed in TAMAA.

45
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To improve TAMAA’s ability of handling multiple agents, we combine
the model checking technique with reinforcement learning (MCRL), and con-
duct a series of experiments to compare our new approach with the origi-
nal TAMAA, and UPPAAL STRATEGO, respectively. The experimental results
show that MCRL is able to handle more than 5 agents in different scenarios,
whereas the original TAMAA can only deal with a maximum of 4 agents,
and UPPAAL STRATEGO with maximum 2. This novel approach alleviates
the widely-known state-space-explosion problem of model checking, in the
mission-planning domain for multiple autonomous agents. Moreover, it also
provides a means of synthesizing mission plans with guaranteed correctness,
which bests original reinforcement learning algorithms.

For the dynamic layer of the framework, we propose a model in the frame-
work of hybrid automata, to describe the discrete state transition of the systems,
as well as kinematics of autonomous vehicles and unforeseen obstacles. As the
embedded control software is complex, we propose a pattern-based modeling
method to facilitate the modeling process and enable reuse. We have demon-
strated the feasibility of the approach, by building models in UPPAAL SMC and
conducting a series of statistical analysis of a real-world industrial properties,
namely the autonomous wheel loader use case, provided by Volvo Construc-
tion Equipment, in Sweden. This use case serves as our main source of research
problems, and motivates the progress of our work, by providing problem sce-
narios and valuable materials, such as system requirements and initial designs.
The result of applying our framework of design and verification on this use case
demonstrates the applicability and, to some extent, scalability of our method
and tool.

7.1 Limitations

Although promising, the TAMAA approach, which focuses on the static layer of
the framework, and the pattern-based modeling method of the dynamic layer
have not been integrated as one complete framework, in the sense that they
do not communicate in real-time and automatically. This shortage limits the
autonomous agents’ ability of re-planning in case of meeting anomalies, i.e.,
temporal obstacles, or forbidden areas. As the environment is uncertain, a large
inaccessible area or obstacle may appear while the agent is traveling, such as a
big hole on the ground in a construction site, or an area of wet floor in an indoor
environment where robotic wheel chairs are helping the disabled to move. In
these scenarios, collision-avoidance algorithms may cause the agents to deviate
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too much from the original path, and a re-planning is strongly needed to achieve
the long-term goals, such as guaranteeing productivity, or reaching restrooms
in time.

Secondly, the MCRL approach initiates a direction of solving the state-
space-explosion problem of model checking, and the initial experiment shows
a promising result when assuming large numbers of agents. However, the al-
gorithm still separates the iteration of simulation and reinforcement learning
in different phases, namely the data gathering phase and model training phase.
This limits the effect of learning while the state space of the model is being
explored during the simulation. In other words, if in each round or even step of
the simulation reinforcement learning could take place, the entire exploration
steps should be much decreased when checking reachability properties. This
heuristic approach of state-space exploration can benefit the reduction of the
effort of building up the state space of a formal model, and reaching the de-
sired states with less meaningless exploration.

7.2 Future Work

The future work has several possible directions. One is to integrate the two
layers of the framework so that they communicate in a real-time manner, and
the mission planning and verification are both optimized in this way. In theory,
this work needs effective interaction between the discrete and continuous areas
of the system. In practice, it requires a competent and elegant design mix of
hybrid automata, timed automata, and communication between them. The two-
layer framework provides a separation of concerns of system design, while the
integration of the two layers offers a flexible and realistic means of verification.
Altogether they can bring the advantages of adopting formal methods during
the design of a real-world system (like the AWL) closer to industrial end-users’
attention.

Another direction concerns improving the MCRL approach by embedding
the reinforcement learning into the state-space exploration of the model when
running verification. This can be achieved by leveraging the calling of exter-
nal functions in UPPAAL STRATEGO, or by implementing a customized model
checker by leveraging existing libraries and frameworks, such as Plasma [60],
and Storm [61].

Investigating new methods to solve the outstanding problems that cannot
be addressed by the current methods can be another interesting direction. A
systematic study will be finished, to provide an overview of the research area of
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applying formal methods in the design of autonomous vehicles. Problems such
as the design of heterogeneous autonomous vehicles that cooperate in the sites,
and defining “a deployment model” with respect to the possible heterogeneous
architecture that the AWL use case could be implemented on probably need
new methods to solve.
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Abstract

In an attempt to increase productivity and the workers’ safety, the construc-
tion industry is moving towards autonomous construction sites, where various
construction machines operate without human intervention. In order to perform
their tasks autonomously, the machines are equipped with different features,
such as position localization, human and obstacle detection, collision avoid-
ance, etc. Such systems are safety critical, and should operate autonomously
with very high dependability (e.g., by meeting task deadlines, avoiding (fatal)
accidents at all costs, etc.). An Autonomous Wheel Loader is a machine that
transports materials within the construction site without a human in the cab. To
check the dependability of the loader, in this paper we provide a timed automata
description of the vehicle’s control system, including the abstracted path plan-
ning and collision avoidance algorithms used to navigate the loader, and we
model check the encoding in UPPAAL, against various functional, timing and
safety requirements. The complex nature of the navigation algorithms makes
the loader’s abstract modeling and the verification very challenging. Our work
shows that exhaustive verification techniques can be applied early in the devel-
opment of autonomous systems, to enable finding potential design errors that
would incur increased costs if discovered later.
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8.1 Introduction

Industrial robots are used in modern manufacturing sites to automate repetitive
tasks and reduce labor costs. Advances in self-driving vehicles have propelled
similar developments in the construction industry, by the outset of autonomous
construction equipment, which are heavy vehicles that operate without human
intervention.

The environment where the autonomous construction equipment operates
is hazardous, that is, dusty, with possibly harsh weather conditions, and popu-
lated with static and dynamic obstacles that need to be discovered and avoided
by all means. These vehicles are designed to perform predefined tasks, and, un-
like industrial robots, they operate in large construction sites, alongside other
vehicles and humans. On the one hand, their environment is contained and
controlled, thus their autonomy is bounded. On the other hand, being complex
safety-critical systems, the autonomous construction equipment’s dependabil-
ity is crucial for ensuring safety and increased productivity, hence verifying
formally an abstraction of the system’s behavior could be highly beneficial. In
this paper, we take upon such a task and formally model and verify an industrial
prototype of an autonomous wheel loader against functional, timing, and safety
requirements. The complexity of the system stems from the integrated intelli-
gent algorithms, such as path planning, obstacle detection, and collision avoid-
ance, etc. The crux of our work is the formalization of an abstraction of the
vehicle’s motions, control system, path-planning and collision-avoidance algo-
rithms, such that resulting model is analyzable via exhaustive model checking.
We use the timed automata (TA) [1] framework for modeling, and the UPPAAL
[2] model checker for verification.

In comparison to related efforts of verifying autonomous vehicles [3, 4,
5, 6], our approach encodes the A* algorithm [7] for initial path planning, as
well as the dipole flow field algorithm [8] used for avoiding static and dynamic
obstacles, which are two algorithms that resolve many issues of implement-
ing reliable collision avoidance effectively. Both algorithms are encoded as C
functions in UPPAAL. To create the model of the machine’s control system, we
map the activity diagrams of components to TA representations. The system
requirements, initially described in natural language, are formalized in Timed
Computation Tree Logic (TCTL), as UPPAAL queries that the formal model
needs to satisfy for any possible behavior. We show that under the mentioned
abstractions, the exhaustive verification of the autonomous loader is possible,
and we also discuss some identified issues of verifying a more faithful model.

This paper is organized as follows. In Section 8.2, we present the architec-
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Figure 8.1: The AWL in its working environment

ture of the autonomous wheel loader, as well as its natural language require-
ments. Section 8.3 overviews the preliminaries, that is, timed automata and
UPPAAL, as well as the A* algorithm for the loader’s initial path planning,
and the dipole flow field algorithm for collision avoidance. In Section 8.4, we
show the TA model of the loader’s control tasks and algorithms, the verification
queries and model checking results. A short discussion and lessons learned are
provided in Section 8.5, after which we compare to related work in Section 8.6.
Finally, Section 8.7 concludes the paper.

8.2 Autonomous Wheel Loader: Architecture and
Requirements

In this section, we introduce the Autonomous Wheel Loader (AWL), which is
an industrial prototype and serves as our use case. The AWL is a heavy vehicle
used in the construction site to transport materials (e.g., blasted rocks), which
works independently, without any manual intervention. The AWL operates in
a quarry (see Figure 8.1), where it transports rocks between a stone pile and a
crusher. To be able to operate autonomously, the AWL is equipped with a path
planning system that computes the initial path from the stone pile to crusher
and back, which the AWL should follow. We assume that there are various ob-
stacles in the quarry, such as humans, other machines, holes, signs, etc. Other
functions like autonomous digging, unloading etc. are not considered here.
To ensure safety, the AWL is equipped with a collision avoidance system that
identifies nearby objects, and deviates from the planned path (i.e., changes the
direction and possibly the speed of the AWL), if needed, to avoid collision.
This mechanism should cope with different light conditions (from bright sun-
light to complete darkness), possibly bad weather (heavy rain or snow), dust,
etc. To ensure it perceives its surroundings accurately, the AWL has a set of
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Figure 8.2: The architecture of the AWL’s control system

sensors, including GPS and IMU (Inertial Measurement Unit) for localization,
and LIDAR, radar and camera for obstacles capture and identification.

The architecture of the AWL’s control system, presented in Figure 8.2, con-
sists of three main units: the vision unit, the control unit, and the execution unit,
which are connected via Ethernet. The roles of these units are as follows:

• The vision unit is connected to the LIDAR and camera, and is responsible
for detecting obstacles within the vision range.

• The control unit collects data (e.g., position of the AWL, obstacles, system
status, etc.) from other units, plans the path, schedules the tasks, and sends
commands to the execution unit.

• The execution unit controls the actuators, the steering and the brakes, based
on the commands received from the control unit. It also collects data from
the GPS and IMU, and sends them to the control unit.

AWL’s Functionality. The functionality of the system is implemented through
a set of tasks that are assigned and executed on the three units respectively, as
depicted in Figure 8.3.

The obstacle detection relies on the Do Obstacle Task in the Vision Unit.
This task is responsible for: (i) acquiring data from the sensors (e.g., LIDAR,
camera), and (ii) executing the recognition algorithms to determine the pres-
ence and the type of the obstacles (e.g., human, other machines, holes).

The Control Unit executes three parallel tasks, described below:

• Read Position Task that reads the loader’s position from the Execution Unit,

• Main Task that is responsible for generating the initial path, analyzing the
environment, and devising control strategies to avoid different obstacles,
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Figure 8.3: Task allocation in the control system

• Calculate Path Task that calculates a new path when the AWL encounters an
obstacle and deviates from the initial path.

Three parallel tasks are assigned to the Execution Unit, namely Receive Com-
mand Task, Do Command Task, and Calculate Position Task. The tasks are
responsible for getting commands from the Control Unit, executing the com-
mands to move or brake the AWL, and calculating the position of the AWL and
sending it to the Control Unit, respectively.

The communication among these tasks is asynchronous, that is, the tasks do
not await response after they send out data. The tasks interact and cooperate
with each other to accomplish specific missions of the control system, e.g.,
perceiving information from the environment, formulating an efficient (or close
to optimal) path to avoid a dynamic obstacle, etc. Figure 8.4 depicts the partial
interaction between tasks. Main Task takes one path segment of the initial path
from Path Stack 1, which stores the initial path in the control unit. Next, it calls
the Valid Path Function to check if the path segment leads to any collision.
If the validation passes, the path segment is sent to Receive Command Task
in the execution unit. Otherwise, the AWL might encounter an obstacle or
malfunction, in which case Calculate Path Task will receive a new path request
from the Main Task. Consequently, the corresponding algorithm employed
for collision avoidance, called the dipole field algorithm [8], is executed in
Calculate Path Task before a new path segment is sent to Receive Command
Task, if it exists. If the calculation does not return any new path segment,
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Figure 8.4: Sequence diagram of tasks in the control system

Calculate Path Task will send a braking command to Receive Command Task,
which then stores the path segment into Path Stack 2 where Do Command Task
gets path segments. In the end, Do Command Task generates an output to the
actuator, based on the commands.
System Requirements. The AWL has a large set of functional and extra-
functional requirements. Below, we present some of these requirements, which
are formally verified in this paper.

1) Initial path computation: during initialization, the AWL must compute
an initial path to the destination, which must avoid all the static obstacles
identified in the quarry;

2) Obstacle avoidance and path recalculation: the AWL must avoid static
and dynamic objects around it in due time before returning to the initial
path;
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3) Mode switch: when a critical error occurs (e.g., an obstacle cannot be
safely avoided or be reported to the control unit), the AWL must switch
to the safety mode in order to freeze all motions within a certain time
limit, to avoid further damage. In this case, the reaction time limits are
error-specific;

4) End-to-end deadline: To guarantee a certain productivity, the AWL
must reach the destination within 2200 milliseconds.

8.3 Preliminaries
In this section, we overview the background information needed for the rest of
the paper: timed automata and UPPAAL, as well as the A* and dipole flow field
algorithms.

8.3.1 Timed Automata and UPPAAL
UPPAAL [9, 1] is a tool suite for modeling, simulation, and model checking
of real-time systems. The modeling formalism of UPPAAL is an extension of
timed automata (TA) [10], which is defined as the following tuple:

< L, l0, A, V, C,E, I > (8.1)
where: L is a finite set of locations, l0 ∈ L is the initial location, A = Σ ∪ τ
is a set of actions, where Σ is a finite set of synchronizing actions and τ /∈ Σ
denotes internal or empty actions without synchronization, V is a set of data
variables,C is a set of clocks,E ⊆ L×B(C, V )×A×2C×L is the set of edges,
whereB(C, V ) is the set of guards over C and V , that is, conjunctive formulas
of clock constraints (B(C)), of the form x ./ n or x− y ./ n, where x, y ∈ C,
n ∈ N, ./∈ {<,≤,=,≥, >}, and non-clock constraints over V (B(V )), and
I : L −→ Bdc(C) is a function that assigns invariants to locations, where
Bdc(C) ⊆ B(C) is the set of downward-closed clock constraints with ./∈ {<
,≤,=}. The invariants bound the time that can be spent in locations, hence
ensuring progress of TA’s execution. An edge from location l to location l′ is
denoted by l

g,a,r−−−→ l′, where g is the guard of the edge, a is an update action,
and r is the clock reset set, that is, the clocks that are set to 0 over the edge.

In UPPAAL, locations are marked as urgent (denoted by encircled u) or
committed (denoted by encircled c), indicating that time cannot progress in
such locations. Committed locations are more restrictive, requiring that the
next edge to be traversed needs to start from a committed location. Variables
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and clocks can be set to certain values by the updates along the edges. In
UPPAAL, an update can be a comma-separated list of expressions, or a C-code
style function that is implemented in the declaration of TA.

The semantics of TA is a labeled transition system. The states of the labeled
transition system are pairs (l, u), where l ∈ L is the current location, and
u ∈ RC

≥0 is the clock valuation in location l. The initial state is denoted by
(l0, u0), where ∀x ∈ C, u0(x) = 0. Let u � g denote that clock value u
satisfies guard g. We use u + d to denote the time elapse where all the clock
values have increased by d, for d ∈ R≥0. There are two kinds of transitions
→:

(i) Delay transitions: < l, u >
d−→< l, u + d > if u � I(l) and (u + d′) �

I(l), for 0 ≤ d′ ≤ d, and

(ii) Action transitions: < l, u >
a−→< l′, u′ > if l

g,a,r−−−→ l′, a ∈ Σ, u � g,
clock valuation u′ in the target state (l′, u′) is derived from u by resetting all
clocks in the reset set r of the edge, such that u′ � I(l′).

TA are composed into a network of TA over a common set of clocks and
actions [2]. In this paper, we model the communication between TA via syn-
chronization channels (e.g., a! and a?) with rendezvous semantics: a sender
(a!) synchronizes with a receiver (a?), provided that the sending and receiv-
ing edges are enabled, that is, their guards are satisfied. The UPPAAL model
checker supports the verification of queries written in a decidable subset of
Timed Computation Tree Logic (TCTL) [2]. The syntax of a TCTL formula
consists of quantifiers over paths and path-specific temporal operators. There
are two types of path quantifiers: the universal one, “A” meaning “for all
paths”, and the existential one, “E” denoting “there exists a path”. We are
interested in two path-specific temporal operators, that is, “Always” (�) tem-
poral operator meaning that a given formula is true in all states of a path, and
the “Eventually” (♦) operator meaning that a formula becomes true in finite
time, in some state along a path. The UPPAAL queries that we verify in this
paper are properties of the form: (i) Invariance: A�p means that for all paths,
for all states in each path, p is satisfied, (ii) Liveness: A♦p means that for all
paths, p is satisfied by at least one state in each path, (iii) Reachability: E♦p
means that there exists a path where p is satisfied by at least one state of the
path, and (iv) Time-bounded Leads to: p ≤t q, which means that whenever
p holds, q must hold within at most t time units thereafter; it is equivalent to
the property: A� (p⇒ A♦≤t q).
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Algorithm 1: A* Algorithm
Input: Node start, Node destination
Output: If the path is found or not

1 closed := open := ∅
2 parent(start) := start
3 g(start) := 0
4 open.Insert(start, g(start) + h(start))
5 while open 6= ∅ do
6 current := open.top() /*return and remove the node with the

minimum cost in open*/
7 if current = destination then
8 return "arrived"
9 end

10 closed.Insert(current)
11 foreach n ∈ neighbors(current) do
12 if n /∈ closed then
13 if n /∈ open then
14 g(n) :=∞
15 parent(n) := NULL

16 end
17 gold := g(n)
18 if g(current) + c(current, n) < g(n) then
19 parent(n) = current
20 g(n) = g(current) + c(current, n)

21 end
22 if g(n) < gold then
23 if n ∈ open then
24 open.Remove(n)
25 end
26 open.Insert(n, g(n) + h(n))

27 end
28 end
29 end
30 return "no path found"
31 end



8.3 Preliminaries 69

8.3.2 A* Algorithm

The A* algorithm is a widely used algorithm for path finding and graph traver-
sal [7], and it was first introduced by Hart et al. [11]. In this paper, we use it
to compute the initial path for AWL. It is an extension of Dijkstra’s algorithm
that uses a heuristic function to guide the graph traversal in order to achieve
better performance. The basic idea of the A* algorithm is to find a lowest cost
path from all possible paths to the destination, similar to Dijkstra’s algorithm.
While exploring the graph, the cost of the current node is calculated by the
following function: f(n) = g(n) + h(n), where n is the current node, g(n)
is the cost from the starting node to n, and h(n) is the estimated cheapest cost
from n to the destination. Intuitively, the A* algorithm aims to find the path
that minimizes f(n).

The pseudo code of the A* algorithm [12] is shown by Algorithm 1. It
works in weighted graphs and constructs a tree of paths starting from a specific
node of the graph, which is defined as the input. From line 1 to line 4, two
arrays are initialized, that is, open: the set of currently discovered nodes that
are not evaluated yet, and closed: the set of nodes that have been evaluated
already. From lines 5 to 16, the main loop starts, in which the node with the
minimum cost in open is selected. If this node is the destination, the calculation
ends. Otherwise, the neighbors of this node and denoted by n, which are one-
cell distance away around the node, are considered one by one as candidates
to the open set, and evaluated in the rest of the code. From lines 17 to 21,
the cost of node n is updated to the minimum and its parent node is changed
accordingly. And between lines 22 to 26, the open set either updates the cost
of node n, or inserts a new node n and its cost into the set.

8.3.3 Dipole Flow Field for Collision Avoidance

Modeling the paths of moving vehicles or other dynamic objects is not an easy
task. Some studies have adopted the so-called static flow field and dynamic
dipole field algorithms to represent the interactions of such moving objects
[8]. In such scenarios, a vehicle moves within a certain area, called the map,
and travels along a preset path that avoids the static obstacles, and approaches
the destination. As soon as it discovers a moving obstacle within its vision
range, the vehicle runs the collision avoidance algorithm to stay away from the
obstacle as well as move towards the destination.

In this case, the static flow field force attracts the vehicle to its goal, ensur-
ing that the vehicle avoids the static obstacles on the map. Meanwhile, as soon
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as a dynamic obstacle is encountered (be it another moving vehicle or a hu-
man), the dynamic dipole field algorithm generates forces that push the vehicle
away from the dynamic obstacle, based on the latter’s respective moving di-
rection and velocity when within a close range from the original vehicle. The
static flow field force is calculated by the following equation: Fa = kaq0Q

D2 ,
Fr = krq0q1

d2 , and Fflow = Fa +Fr, where Fa is the attractive force that draws
the vehicle back to its initial path, Fr is the repulsive force from the nearby
static obstacles, ka, kr, q0, q1, Q are coefficients whose values are problem spe-
cific, whereas D and d are the distances between the vehicle and its goal, and
between the vehicle and the static obstacle, respectively. Unlike the dipole field
forces, the attraction and repulsive forces always exist, regardless of whether
the vehicle is moving or not.

In the theory of dipole field, every object is assumed to be a source of mag-
netic dipole field, in which the magnetic moment is aligned with the moving
direction, and the magnitude of the magnetic moment is proportional to the
velocity. Concretely, the repulsive force of a moving obstacle acting on the
vehicle can be formulated as follows:

~m = km~v (8.2)

~Fd =
kd
d5

[( ~m0 · ~r)× ~mi + ( ~mi · ~r)× ~m0 + ( ~m0 · ~mi)× ~r]−

5 · ( ~m0 · ~r) · ( ~mi · ~r)
d2

× ~r],
(8.3)

where ~r is the distance vector between the two objects (km, kd ∈ R+). The
combination of the static flow field and the dynamic dipole field (F = Fflow +
Fd) guarantees that the vehicle moves safely by avoiding all detected obstacles,
and reaches the destination eventually as long as the path is safe.

8.4 AWL’s Modeling and Verification
In this section, we present the formal model of the AWL, as a network of TA,
and the verification results after employing UPPAAL on the formal model. The
model consists of three parts: the map, the AWL’s movements, and the AWL’s
control system. Figure 8.5 depicts the verification methodology proposed in
this paper. First, the map is modeled as a data structure. Next, the movements
of dynamic obstacles and AWL, which include straight moving, turning and
braking, are designed, assuming the actors are functionally correct in the given
map. Then, we model the AWL’s control system as a network of timed au-
tomata, in which tasks are TA that communicate via shared global variables
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Figure 8.5: AWL’s modeling and verification process

and synchronize via channels. The UPPAAL model checker is then applied
to verify whether the timed automata network satisfies the AWL requirements
that are formalized as TCTL properties.

8.4.1 Map Abstraction

The loader’s working environment consists of a map and several obstacles.
The map is abstracted into a 2-dimensional Cartesian grid of disjoint cells with
resolution ε ∈ R+. As Figure 8.6 shows, the location of an object on the map
is denoted by (x, y), with x, y ∈ R≥0.

The grid is encoded as (zx, zy), with zx, zy ∈ Z≥0. The mapping from
reals to integers on two axes is given by the following:

f1 : R2
+ → Z2

+ f(x, y) = (zx, zy)

if x− ε

2
6 zx 6 x+

ε

2
, and y − ε

2
6 zy 6 y +

ε

2

(8.4)

If an object (static or dynamic) is located at the intersection of x and y axes,
the object’s position is marked by × as shown in Figure 8.6. If the intersection
is occupied, no other object can move to that point anymore. In our model,
each intersection point is assigned 0 or 1, denoting that the point is empty
or occupied, respectively. Furthermore, we assume that a dynamic obstacle
occupies one point only, whereas a static obstacle can occupy more than one
point as one can see in Figure 8.6. Based on this abstraction, the map is defined
as a 2-dimensional array in UPPAAL, where each element represents a point
on the map, and is assigned 0 or 1. A vertex is defined as a structure Vertex
with two elements, integers x and y, representing the coordinates on x and y
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Figure 8.6: Abstraction of the map

axes, respectively; the static obstacle is defined as a constant array of Vertex,
representing the coordinates of each of its vertices (see Code 8.1).

Code 8.1: Vertex and static obstacle definitions
const int N = 15;
typedef struct
{

int[0, N] x;
int[0, N] y;

}Vertex;
const Vertex staticObstacle[10] =

{{3,0},{3,1},{3,2},{3,3},{3,4},{4,4},{4,3},{4,2},{4,1},{4,0}};

8.4.2 Movements Abstraction

As the objects’ locations are mapped onto the line intersections in the map,
their movements are then restricted to the edges or the diagonals of the cells,
as depicted in Figure 8.6. In our model, we separate the path into several path
segments that are defined as pairs of vertices. A vertex is denoted by (zx, zy)
as in formula (8.4), whereas v denotes the velocity of the AWL. Consequently,
the path is defined as a sequence of path segments:

p = (zx0
, zy0

)(zx1
, zy1

) · · · (zxn−1
, zyn−1

)(zxn
, zyn

) (8.5)
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Figure 8.7: Three types of forbidden movements{
zxi = zxi−1 ± v, where xi ≥ 1

zyi = zyi−1 ± v, where yi ≥ 1
(8.6)

As mentioned previously, the AWL cannot occupy the vertices of a static ob-
stacle, as shown in Figure 8.7.

When the loader starts to move, it accelerates from the minimum velocity
(modeled as 0) to the maximum velocity (modeled as 2). The AWL stays at the
current position for 2 time units at speed 0, then the duration decreases by 1 as
the speed increases by 1, until it reaches the maximum velocity. The time unit
is the execution period of Main Task in the control unit of the AWL.

We model the dynamic obstacle as a TA in UPPAAL, with a self-looping
location that encodes the movements of the obstacle. The changing position of
the obstacle is implemented by a function executed when the self-loop edge is
traversed.

8.4.3 Formal Model of AWL’s Control System
As shown in Figure 8.2, the control system consists of three units: vision unit,
execution unit, and control unit. The vision unit acquires data from LIDAR
and executes the recognition algorithms to identify the shapes, types, moving
directions, etc., of the obstacles. However, in our model, we do not include

Figure 8.8: Detection range of the AWL
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(a) Activity diagram of Main Task

(b) Main Task TA

Figure 8.9: Modeling Main Task from the activity diagram
this algorithm per se. Instead, our model checks the values of the map’s points
(0 or 1) to detect the obstacles present in the vicinity of the AWL, assumed as
an area of maximum 3-cells distance from the AWL. In Figure 8.8, we see that
object A cannot be detected as it is out of range, but object B is reported as an
obstacle.

To model the AWL’s control system, we create a TA for each task and
function presented in Figure 8.3, whose procedures are captured by activity di-
agrams (e.g., Figure 8.9(a)) and sequence diagrams (e.g., Figure 8.4). We map
the elements of such diagrams (e.g., decision nodes and action nodes in the
activity diagrams) to our model, so that each TA’s structure is respectively con-
structed. Even if the TA are manually created, we have used a 1-to-1 mapping
in this process, described as follows:

1. For each action node of the activity diagram (except for those that call
other functions), we create functions and corresponding locations and
edges to ensure the same order of execution of the respective task, as in
the original diagram.

2. Decision nodes of the activity diagram are represented as locations with
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multiple outgoing edges, with edges enabled based on the associated
guards.

3. For action nodes that call other functions, we use synchronization among
TA to model the invoking relation. This step is elaborated in the follow-
ing examples.

4. After the structure of the TA is constructed, we implement the A* and
dipole field algorithms as C-code functions in the TA, respectively.

The final model contains 12 TA (i.e., 11 TA for the tasks and functions, 1 for
the dynamic obstacle), and 61 C-code functions. Due to space limitation, we
select to describe the respective behaviors and communication among Main
Task, Calculate Path Task, and Get Path Function TA.

According to Main Task’s activity diagram of Figure 8.9(a), the first two
action nodes aim to initialize the system, check its surroundings, and run the
A* algorithm. Hence, two locations, namely Init and Configuration, and the
edge connecting them are created in the Main Task automaton shown in Figure
8.9(b). Along the edge, two functions, namely initialize() and checkSurround-
ing(), initialize the system’s variables and check for obstacles around AWL,
when executed. The A* algorithm is also executed in initialize() to generate
the initial path. Next, two mutually exclusive outgoing edges from location
Configuration are added, corresponding to the decision node in Figure 8.9(a)
that follows the action node Check Surrounding, and indicating that if some
error occurs during the initialization, the system moves to location Error to
freeze the AWL. In case of no error, it moves to location Wait, where the task
waits to be invoked. The other TA (e.g., Figure 8.10 and 8.11) are constructed
by following similar steps.

After representing each individual task by a corresponding TA, the com-
munication and scheduling of tasks need to be modeled. Every task has an
execution period and is scheduled in a certain order. To achieve this, we add
extra locations and invariants in the model, which are not corresponding to the
action nodes and decision nodes of the activity diagram, such that some TA are
executed periodically. The tasks for detecting obstacles and acquiring positions
must be started earlier and executed more frequently than other tasks, such that
the control system always makes decisions on the latest information. Hence,
as it is shown in Figure 8.9(b), the automaton of Main Task, which awaits po-
sition information from other tasks, stays at location Wait until clock t reaches
the value of taskDelay, which is 7 in this case. This delay enables Main Task
to start later than the tasks using the system clock. To model the period of the
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Figure 8.10: Timed automaton of Execution function

task, after it moves to location Sleep, the automaton waits again until clock t
reaches its task period, i.e., constant integer w_main_period, when it can be
executed.

According to the sequence diagram of Figure 8.4, Main Task calls sub-
functions. Hence, the automaton of Main Task is synchronized with Execution
Function, via channel exe that decorates the edge connecting locations Wait
and Exe. Then Main Task delays in location Exe until it synchronizes again
with Execution Function via channel finish or error, indicating that the work is
done or some error occurs.

The automaton Execution Function is also synchronized with other au-
tomata for the same reason. For instance, as shown in Figures 8.10 and 8.11,
on channel task[0], the automaton Get Path Function is synchronized with
Execution Function, indicating that Get Path Function is called by Execution
Function. In addition, waiting for data from another task is modeled by lo-
cations and invariants added to Get Path Function automaton. For example,
Figure 8.11 depicts that Get Path Function automaton waits for position data
(global_position), in location Wait until clock w_task1_trigger reaches its limit
w_task1_ threshold, when both w_task1_trigger is set to w_task1_threshold
and variable global_position is set to true by other TA, indicating that the
AWL’s position has been acquired, or the variable global _position remains
false until the invariant is violated; if the latter, the automaton moves back
to the initial location Start, meaning that a time-out event occurs in Get Path
Function.
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Figure 8.11: Timed automaton of Get-Path function

The dipole field algorithm is implemented as C functions in the automaton
Calculate Path Task, as shown in Figure 8.12. The task is executed in case an
obstacle is detected, or AWL deviates from the initial path, so in the task’s au-
tomaton, the first function being executed after initialize() is findNextPosition(),
where the grid point in the initial path closest to the current position is returned
as the new next position, which cannot be ensured to be safe. Hence, the forces
applied on the AWL are computed in function calculateForces() based on the
new position and equations described in Section 8.3.3. After that, a new path
segment, if it exists, is calculated in function calculateNewPath() according to
the field forces, which guarantees the safety of the AWL. The implementation
is explained in detail in Section 8.5. If the new path segment does not exist
(newPathCorrect==false), the automaton moves to location Error and sends
out the brake command (brake_request_udp := true).
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Figure 8.12: Timed automaton of Calculate Path task

8.4.4 AWL’s Model Verification

By applying the modeling process described in Sections 8.4.1, 8.4.2, and 8.4.3,
we create the formal model of the AWL and its environment as a network of
TA. As mentioned, the formal model consists of 12 TA (11 TA for the tasks
and functions presented in Figure 8.3, plus one TA for the dynamic obstacle),
four data structures (one for the map, two for the A* algorithm, and one for
the path stack, which is used to store the path segments), 23 clocks, 49 global
variables, 61 C-code functions, etc. To verify whether this model satisfies the
informal requirements given in Section 8.2, we formalize the latter as TCTL
queries that we check with UPPAAL. Two versions of the map are used in the
verification. As depicted in Figure 8.13, we use a map with a static obstacle
that occupies 10 grid points, and where the stone pile and crusher are located
at (1,1) and (14,6), respectively. Next, as shown in Figure 8.14, we add one
dynamic obstacle to this map, which starts at point (9,8) and moves along a
predefined path.

Table 8.1 presents the TCTL queries and the verification results. In the rest
of this section, we describe these results.

Initial path computation. To verify that the AWL cruises between the
stone pile and the crusher, and avoids the static obstacle, we use the map of
Figure 8.13. Seven queries are specified to verify this requirement.

Queries Q1.0 and Q1.1 require that the initial path is calculated after the
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Figure 8.13: The AWL’s trajectory on the map with a static obstacle

Figure 8.14: The AWL’s trajectory on the map with a static and a dynamic
obstacle

automaton mainTask moves to location Wait (mainTask.Wait). The integer
variable lenOfPathStack, whose initial value is 0, is assigned by the length
of the path stack, where the initial path is stored. Once the variable becomes
greater than 0, the initial path is generated. Query Q1.3 states that, if the AWL
is at the stone pile (currentPosition == pile) and its destination is the crusher
(destination == crusher), the AWL will indeed eventually reach the crusher
(currentPosition == crusher). Since UPPAAL’s "leads to" operator (p  q) is
equivalent to A� (p ⇒ A♦ q), we first check in query Q1.2 if the antecedent
of Q1.3, that is, (currentPosition == pile and destination == crusher) is reach-
able. In our scenario, the AWL’s initial location is the stone pile and the target
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Table 8.1: Verification queries and results

Requirement Query Result
States

explored
Time
(ms)

Initial

path

computation

Q1.0: E <> mainTask.Wait Pass 2 110

Q1.1: A <> mainTask.Wait imply lenOfPath-
Stack > 0

Pass 8780 484

Q1.2: E <> currentPosition == pile and desti-
nation == crusher

Pass 1 0

Q1.3: (currentPosition == pile and destination
== crusher) −− > currentPosition == crusher

Pass 14191 1125

Q1.4: E <> currentPosition == crusher and
destination == pile

Pass 2339 297

Q1.5: (currentPosition == crusher and destina-
tion == pile) −− > currentPosition == pile

Pass 14204 782

Q1.6: A[] forall(i:int[0,9]) currentPosition !=
staticObstacle[i]

Pass 8780 485

Obstacle

avoidance

Q2.0: A[] currentPosition != currentObstacle Pass 125941 6297

Q1.3: (currentPosition == pile and destination
== crusher) −− > currentPosition == crusher

Pass 227646 13969

Q1.4: E <> currentPosition == crusher and
destination == pile

Pass 2678 375

Q1.5: (currentPosition == crusher and destina-
tion == pile) −− > currentPosition == pile

Pass 192406 10656

Mode switch:

error A

Q3.1: E <> errorStart == true Pass 30 234

Q3.2: error_start==true −− > (SYS-
TEM_ERROR==true and reaction_time<=20)

Pass 91 250

Mode switch:

error B

Q3.1: E <> errorStart == true Pass 29 234

Q3.2: error_start==true −− > (SYS-
TEM_ERROR==true and reaction_time<=15)

Pass 320 266

End-to-end
deadline

Q4.0: (currentPosition==pile and destina-
tion==crusher) −− > (currentPosition==pile
and destination==pile and gClock <= 2200)

Pass 590326 36641

is the crusher, thus query Q1.2 is satisfied by the initial state of the model and
the verification explores only one state, the initial state. Similarly, in queries
Q1.4 and Q1.5 we verify whether the AWL moves back from the crusher to
the stone pile, whereas in query Q1.6 we check that the autonomous loader
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avoids the static obstacle. Concretely, query Q1.6 requires that the AWL must
never occupy one of the grid points of the static obstacle (A� forall(i:int[0,9])
currentPosition != staticObstacle[i]).

The combination of the first seven queries of Table 8.1 verifies that the
autonomous loader cruises safely between the stone pile and crusher and back,
without colliding with the static obstacle, thus showing that the AWL has the
ability to compute a safe initial path. Furthermore, in order to visualize this
path, we use the following queries:

E ♦ currentPosition == pile and destination == pile
E ♦ currentPosition == crusher and destination == crusher

These queries require that there exists at least one execution path in which the
AWL eventually reaches the stone pile and the crusher, respectively. They are
weaker than queries Q1.3 and Q1.5, but for these queries, the model checker
generates a witness trace, which represents the initial path. The path presented
in Figure 8.13 is generated in this way.

Obstacle avoidance and path recalculation. To verify this requirement,
one dynamic obstacle (e.g., another vehicle) is added to the map, as shown
in Figure 8.14. We assume that this object is not equipped with an obstacle
avoidance feature, thus it does not change its path when it approaches the AWL.
To verify this requirement, we need to check again that the AWL can reach the
crusher and the stone pile, respectively, that is, queries Q1.2 to Q1.4, assuming
the updated map. In query Q2.0, we check that AWL does not collide with
the dynamic obstacle (A� currentPosition != currentObstacle) for all possible
execution paths of the model. As presented in Table 8.1, the number of states
explored and the verification time for queries Q1.3, Q1.4 and Q1.5, in this case,
are drastically increased as compared to the initial path computation case, since
the dynamic obstacle increases the complexity of the model. As previously, we
generate the path followed by AWL, which is depicted in Figure 8.14. The
solid arrows represent the path to the crusher, the dashed arrows represent the
way back to the stone pile, and the double-line arrows represent the preset path
of the dynamic obstacle.

Mode switch. This requirement is verified on the map that contains the
dynamic obstacle. To verify that AWL switches to safety mode and freezes
its motion whenever it malfunctions, we introduce a global boolean variable
SYSTEM_ERROR that "injects" errors into the model. For instance, in Figure
8.10, the TA moves to location Error whenever SYSTEM_ERROR becomes
true. To check that this variable never evaluates to true, we use the following
query:
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A � !SYSTEM_ERROR

As expected, this query is satisfied unless we inject faults into the model. In
this paper, we model two faults that mimic real malfunctions:

• Error A: we set the boolean variable do_obstacle_heartbeat in the Do
Obstacle Task to false, when it is sending a message and is resetting the
clock reaction_time to zero at the same time, indicating that the infor-
mation on obstacles cannot be reported to the control unit, which can be
very dangerous.

• Error B: we set the boolean variable position_udp in the Position Task to
false when it is sending the position information through the Ethernet,
implying that the information is lost during the transmission.

For both these errors, two queries (Q3.1 and Q3.2) are formulated for verifica-
tion. Query Q3.1 checks that there exists at least one execution path in which
the error eventually happens (E ♦ errorStart == true). Formula Q3.2 requires
that once an error occurs (SYSTEM_ERROR == true), the system must detect
and react to the error within a certain time bound. This time bound is 20 time
units for error A (reaction_time <= 20 in Q3.2 A), and 15 times units for error
B (reaction_time <= 15 in Q3.2 B). The verification results show that, when
error A or error B occur, the system moves to the SYSTEM_ERROR mode
within the required time bound.

End-to-end deadline. The autonomous wheel loader must not only be
able to travel to the crusher and then return to the stone pile position, but it also
needs to accomplish this task within a certain time bound, which is its end-to-
end deadline of 2200 time units. This requirement is verified by query Q4.0,
which is a time-bounded leads to property, whose antecedent (that is, current-
Position == pile and destination == crusher) is the initial state of the model,
and the consequent requires AWL to return to the stone pile before the dead-
line (currentPosition == pile and destination == pile and gClock <= 2200).
Since Q4.0 is a leads-to property, we also need to verify that its antecedent is
reachable, by proving Q1.2. Furthermore, by checking the query:

E♦ currentPosition==pile and destination==pile,

we can request the model checker to generate the fastest diagnostic trace, which
gives us the fastest time (1620 ms) to complete one cruise.



8.5 Discussion 83

8.5 Discussion

The issue with our abstraction of movements is that the shortest path that A*
algorithm generates in the discrete area is not equivalent to the shortest path in
the continuous area, because it constrains paths to be formed by the edges or
diagonals of the cells. Some other path-planning algorithms, e.g., Theta* algo-
rithm, overcome this drawback by changing the path to an any-angle path that
does not necessarily follow the edges of the cells[12]. However, as traditional
UPPAAL only supports integers, it is very difficult to implement algorithms
like Theta* or dipole field as such, therefore they must be simplified. Hence,
in our model, the forces in the dipole field algorithm that is employed by AWL
for collision avoidance, are calculated using integers, based on the formulas
in Section 8.3.3. Moreover, instead of using Newton’s law of motion, which
involves real numbers to calculate the loader’s position, we use the sign of the
combination of forces to decide the next position. Formula 8.7 shows the rela-
tion between the signs of forces and the AWL position, where (x’,y’) models
the next position of AWL, (x,y) represents the current coordinates of AWL,
Fx, Fy model the combination of attractive and repulsive forces on x axis and
y axis, respectively, and T is the threshold for movements. This formula re-
stricts the AWL to move only along the edges or diagonals of the cells, which
is exactly our abstraction for movements.

(x′, y′) =


(x+ 1, y + 1), if Fx ≥ T, Fy ≥ T
(x+ 1, y), if Fx ≥ T, Fy < T

(x, y + 1), if Fx < T,Fy ≥ T
(x, y), if Fx < T,Fy < T

T ∈ Z+ (8.7)

To fully implement the dipole field algorithm, a tool that fully supports float-
ing point numbers is desirable. UPPAAL SMC (Statistical Model Checker)
satisfies this requirement while still enjoying most of the useful features of
UPPAAL [13]. With UPPAAL SMC, we can also model stochastic behaviors,
e.g., the occurrence of dynamic obstacles, the reliability problem of Ethernet,
etc. However, UPPAAL SMC does not provide exhaustive model checking, for
it provides the probability of satisfying the queries.

We have also verified the AWL model in different scenarios, e.g., by letting
the dynamic obstacle move arbitrarily within the map rather than along a preset
path. It turns out to be very difficult to satisfy the requirements of reaching
the destination while avoiding the obstacle under such circumstances. Two
scenarios are generated by UPPAAL, where the AWL either collides with the
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Figure 8.15: A livelock scenario

dynamic obstacle or is stuck into a "livelock". As depicted in Figure 8.15, the
AWL and the obstacle move back and forth on the same axis because there
is no force on the other axis that turns the AWL at an angle to the obstacle.
Therefore, the AWL consistently moves back and forth on this axis but never
gets to the destination.

In another scenario the obstacle keeps “pushing” the AWL until both of
them reach the edge of the map and stop, on grounds of our assumption that the
dynamic obstacle does not avoid the AWL even though they come close to each
other. One possible solution is to optimize the implementation of the dipole
field algorithm so that the AWL can actively and angularly move towards the
obstacle’s moving direction, such that the AWL will bypass the obstacle from
behind instead of being pushed away by the obstacle.

8.6 Related work

A number of formal methods have been applied to the verification of autonomous
vehicles. Saberi et al. [6] propose using high-level languages, namely mCRL2
and Modal µ-calculus, for specifying and verifying multi-robot systems. Smith
et al. [14] propose a method, based on weighted transition systems and Buchi
automata, to find the optimal trajectory for the robot, which satisfies the re-
quirements described in LTL. Koo et al. [15] propose a framework for the
coordination of a network of autonomous robots with respect to formal re-
quirements specifications in temporal logics, in which hybrid automata and
Cadence’s SMV model checker are used. Quottrup et al. [16] [3] design a high
level abstraction of a multi-robot system using timed automata. Their model
consider 4-directions movements of autonomous robots. Moreover, they also
generate the shortest path with UPPAAL. Our research is inspired by such stud-
ies and provides modeling and verification of a complex control system of an
autonomous wheel loader. However, instead of using a model checker to gen-
erate paths, we employ intelligent algorithms for path planning and collision
avoidance (via dipole field) that we formally verify together with the control
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system.

There are also different approaches for modeling and analyzing the path-
planning algorithms of autonomous vehicles. Fainekos et al. [17] apply tempo-
ral logic and model checking tools to generate discrete path plans that are later
translated to continuous trajectories using hybrid control. The approach that
they propose is built upon an existing framework [18] and proves that discrete
plans and continuous trajectories are bisimilar, so that the satisfaction of LTL
properties on the former is preserved by the latter. Kripke models and model
checking techniques have been employed by Jeyaraman et al. in their study
of modeling and verification of cooperative unmanned aerial vehicle (UAV)
teams [19]. Rabiah et al. [20] use the Z specification language to formally
specify the A* path planning algorithm, and verify the correctness of the algo-
rithm by theorem proving. Saddem et al. [21] also use UPPAAL and CTL to
verify reachability properties of autonomous behavior, including path finding.
They propose a decomposition methodology to reduce the memory require-
ment and execution time of model checking. What makes our work different
from the above studies is that we carry out a more extensive verification of the
autonomous vehicle against a rich set of complex and realistic safety proper-
ties expressed in TCTL, e.g., whether the system can react to an error within
a certain time limit. In addition, our formal model is more detailed, includ-
ing the tasks in the control system and their communication, the algorithms,
acceleration and deceleration of the vehicle. The conjunction of all these el-
ements increases the size of model’s state space dramatically, and hence the
complexity of verification.

Some studies focus on the formal modeling and verification of the control
logic or internal architecture of the automation system. Chouali et al. [22]
propose an approach to model and ensure formally the reliability of automotive
applications. They use SYSML to model the system before verifying the model
described using interface automata. Hanisch et al. [23] [24] adopt the Net
Condition/Event Systems (a modular extension of Petri nets) in their modeling
and verification of several automated systems in intelligent manufacturing area.
In comparison to these studies, our model includes not only the components in
the control system but also the behaviors of the AWL and its environment,
which allows us to simulate the model in a reactive mode, and our verification
includes properties that are crucial for real-time automotive systems (e.g., end-
to-end deadlines).
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8.7 Conclusions
In this paper, we have presented the formal modeling and verification of an in-
dustrial prototype of an Autonomous Wheel Loader equipped with path plan-
ning and intelligent obstacle avoidance. Our modeling process maps the ele-
ments in activity diagrams to timed automata and implements the algorithms
as C-code functions of the model, such that the model represents the entire
control system of AWL. The (T)CTL queries used for verification completely
express the informal requirements written in natural language, and provided
by industry. The counter-examples that we have found during verification are
helpful for the future optimization of the control system and the design of al-
gorithms. Our model is the abstraction of the actual system, which serves to
check correctness of the system at design level. Future work includes prov-
ing the correctness of the transformation from activity diagrams to UPPAAL
TA and automating this process, modeling the dynamics of the AWL, injecting
probabilistic events in the model in order to construct and verify a model that
is closer to reality, etc.
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tonomous Systems and Control project, funded by the Swedish Knowledge
Foundation, grant number: 20150022.
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Abstract

Autonomous vehicles rely heavily on intelligent algorithms for path planning
and collision avoidance, and their functionality and dependability can be en-
sured through formal verification. To facilitate the verification, it is benefi-
cial to decouple the static high-level planning from the dynamic functions like
collision avoidance. In this paper, we propose a conceptual two-layer frame-
work for verifying autonomous vehicles, which consists of a static layer and
a dynamic layer. We focus concretely on modeling and verifying the dynamic
layer using hybrid automata and UPPAAL SMC, where a continuous movement
of the vehicle as well as collision avoidance via a dipole flow field algorithm
are considered. In our framework, decoupling is achieved by separating the
verification of the vehicle’s autonomous path planning from that of the vehicle
autonomous operation in its continuous dynamic environment. To simplify the
modeling process, we propose a pattern-based design method, where patterns
are expressed as hybrid automata. We demonstrate the applicability of the dy-
namic layer of our framework on an industrial prototype of an autonomous
wheel loader.
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9.1 Introduction

Autonomous vehicles such as driverless construction equipment bear the promise
of increased safety and industrial productivity by automating repetitive tasks
and reducing labor costs. These systems are being used in safety- or mission-
critical scenarios, which require thorough analysis and verification. Traditional
approaches such as simulation and prototype testing are limited in their scope
of verifying a system that interacts autonomously with an unpredictable en-
vironment that assumes the presence of humans and varying site conditions.
These techniques are either applied later in the system’s development cycle
(testing), or they simply cannot prove, exhaustively or statistically, the satisfac-
tion of properties related to autonomous behaviors such as path planning, path
following, and collision avoidance (simulation). Formal verification is usually
adopted to compensate such shortage, yet verifying such a complex system in a
continuous and dynamic environment is still considered a big challenge [1][2].

In this paper, we approach this challenge by proposing a two-layer frame-
work consisting of a static and a dynamic layer, which facilitates verifying
autonomous vehicles. The structure of the framework separates the static high-
level path planning that assumes an environment with a predefined sequence of
milestones that need to be reached, as well as static obstacles, from the dynamic
functions like collision avoidance, thus providing a separation of concerns for
the system’s design, modeling, and verification. To improve on existing formal
models of vehicle movement [3][4], in the dynamic layer, we propose a contin-
uous model of the vehicle’s motion, together with a model of the environment,
where moving obstacles are either predefined or dynamically generated. The
resulting models are hybrid automata, as accepted by the input language of UP-
PAAL Statistical Model Checker (SMC). The vehicle’s dynamics is modeled
as ordinary differential equations assigned to locations in the hybrid automata.
In this paper, the hybrid automata only have non-deterministic time-bounded
delays that are encoded based on the default uniform distributions assigned
by UPPAAL SMC. We also consider the embedded control system of the au-
tonomous vehicle including the involved processes, as well as the scheduling
and communication among them. The path planning is following the Theta*
algorithm [5], and the collision avoidance relies on the dipole flow field one [6].
Both algorithms are encoded as C-code functions in UPPAAL SMC, within the
dynamic layer of our framework. Once this is accomplished, we can statis-
tically model check the resulting network of hybrid automata, against proba-
bilistic invariance properties expressed in weighted metric temporal logic [7].
To simplify the modeling process, we propose a pattern-based design method
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to provide reusable templates for various components of the framework. We
demonstrate the applicability of our approach for modeling and analyzing the
dynamic layer on an industrial autonomous wheel loader prototype that should
meet certain safety-critical requirements.

This paper is organized as follows. In Section 9.2, we overview hybrid au-
tomata and UPPAAL SMC, as well as the Theta* algorithm for path planning,
and the dipole flow field algorithm for collision avoidance. Section 9.3 de-
scribes the function of the autonomous wheel loader and its architecture. In
Section 9.4, we present the conceptual two-layer framework, and in Section
9.5 we propose the pattern-based modeling of the components (of the dynamic
layer) and their formal encoding. Next, we demonstrate the applicability of
the framework on the autonomous wheel loader, and we present the verifica-
tion results in Section 9.6. We compare to related work in Section 9.7, before
concluding and outlining future lines of research in Section 9.8.

9.2 Preliminaries
In this section, we overview the background information needed for the rest of
the paper, that is, hybrid automata and UPPAAL SMC, as well as the Theta* and
dipole flow field algorithms.

9.2.1 Hybrid Automata and UPPAAL SMC
UPPAAL SMC [8] is an extension of the tool UPPAAL[9], which supports statis-
tical model checking of hybrid automata (HA). A HA is defined as the follow-
ing tuple:

HA =< L, l0, X,Σ, E, F, I >, (9.1)

where: L is a finite set of locations, l0 ∈ L is the initial location, X is a finite
set of continuous variables, Σ = Σi ] Σo is a finite set of actions that are
partitioned into inputs (Σi) and outputs (Σo), E is a finite set of edges of the
form (l, g, a, ϕ, l′), where l and l′ are locations, g is a predicate on RX , a ∈ Σ
is an action label, and ϕ is a binary relation on RX , F (l) is a delay function
for the location l ∈ L, and I assigns an invariant predicate I(l) in/of L, which
bounds the delay time in the respective location. In UPPAAL SMC, locations are
marked as urgent (denoted by encircled u) or committed (denoted by encircled
c), indicating that time cannot progress in such locations. Committed locations
are more restrictive, requiring that the next edge to be traversed needs to start
from a committed location. The delay function F (l) for a simple clock variable
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x, which is used in (priced) timed automata, is encoded as the linear differential
equation x′ = 1 or x′ = e appearing in the invariant of l.

The semantics of the HA is defined over a timed transition system, whose
states are pairs (l, u) ∈ L × RX , with u � I(l), and transitions defined as: (i)
delay transitions (< l, u >

d−→< l, u + d > if u � I(l) and (u + d′) � I(l),
for 0 ≤ d′ ≤ d), and (ii) discrete transitions (< l, u >

a−→< l′, u′ > if edge
l

g,a,r−−−→ l′ exists such that a ∈ Σ, u � g, clock valuation u′ in the target state
(l′, u′) is derived from u by resetting all clocks in the reset set r of the edge,
such that u′ � I(l′)).

In UPPAAL SMC, the automata have a stochastic interpretation based on: (i)
the probabilistic choices between multiple enabled transitions, and (ii) the non-
deterministic time delays that can be refined based on probability distributions,
either uniform distributions for time-bounded delays or user-defined exponen-
tial distributions for unbounded delays. In this paper, only the default uniform
distributions for time-bounded delays are used. Moreover, the UPPAAL SMC
model is a network of HA that communicate via broadcast channels and global
variables. Only broadcast channels are allowed for a clean semantics of purely
non-blocking automata, since the participating HA repeatedly race against each
other, that is, they independently and stochastically decide on their own how
much to delay before delivering the output, with the “winner” being the au-
tomaton that chooses the minimum delay.

UPPAAL SMC supports an extension of weighted metric temporal logic for
probability estimation, whose queries are formulated as follows: Pr[bound]
(ap), where bound is the simulation time, ap is the statement that sup-
ports two temporal operators: “Eventually” (♦) and “Always” (�). Such
queries estimate the probability that ap is satisfied within the simulation time
bound. Hypothesis testing (Pr[bound](ψ) ≥ p0) and probability compari-
son (Pr[bound](ψ1) ≥ Pr[bound](ψ2)) are also supported.

9.2.2 Theta* Algorithm

In this paper, we employ the Theta* algorithm to generate an initial path for
our autonomous wheel loader. The Theta* algorithm has been firstly proposed
by Nash et al. [5] to generate smooth paths with few turns, from the start-
ing position to the destination, for a group of autonomous agents. Similar
to the A* algorithm that we have used in our previous study [3], the Theta*
algorithm explores the map and calculates the cost of nodes by the function
f(n) = g(n) + h(n), where n is the current node being explored, g(n) is
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the Euclidean distance from the starting node to n, and h(n) is the estimated
cheapest cost from n to the destination. In this paper, we use Manhattan dis-
tance [10] for h(n). In each search iteration, the node with the lowest cost
among the nodes that have been explored is selected, and its reachable neigh-
bors are also explored by calculating their costs. The iteration is eventually
ended if the destination is found or all reachable nodes have been explored. As
an optimized version of A*, Theta* determines the preceding node of a node
to be any node in the searching space instead of only neighbor nodes. In ad-
dition, Theta* adds a line-of-sight (LOS) detection to each search iteration to
find an any-angle path that is less zigzagged than those generated by A* and
its variants. For the detailed description of the algorithm, we refer the reader
to the literature [5].

9.2.3 Dipole Flow Field for Collision Avoidance

Searching for a path from the starting point to the goal point, assuming a large
map, is not an easy task and it is usually computationally intensive. Hence,
some studies have adopted methods to generate a small deviation from the
initial path, which is much easier to compute than an entirely new path, while
being able to avoid obstacles. To avoid collisions, Trinh et al.[6] propose an
approach to calculate the static flow field for all objects, and the dynamic dipole
field for the moving objects in the map. In the theory of dynamic dipole field,
every object is assumed to be a source of magnetic dipole field, in which the
magnetic moment is aligned with the moving direction, and the magnitude of
the magnetic moment is proportional to the velocity. In this approach, the
static flow field is created within the neighborhood of the initial path generated
by the Theta* algorithm. The flow field force is a combination of the attractive
force drawing the autonomous wheel loader to the initial path, and the repulsive
force pushing it away from obstacles. Unlike the dipole field force, the flow
field force always exists, regardless of whether the vehicle is moving or not. As
soon as the vehicle equipped with this algorithm gets close enough to a moving
obstacle, the magnetic moment around the objects keeps them away from each
other. The combination of the static flow field and the dynamic dipole field
ensures that the vehicle moves safely by avoiding all kinds of obstacles and that
it eventually reaches the destination, as long as a safe path exists. Compared
with other methods [11][12], this algorithm provides a novel method for path
planning of mobile agents, in the shared working environment of humans and
agents, which suits our requirements well. For details, we refer the reader to
the literature [6].
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Figure 9.1: The architecture of the AWL’s embedded control system

9.3 Use Case: Autonomous Wheel Loader
In this section, we introduce our use case, which is an industrial prototype of
an autonomous wheel loader (AWL) that is used in construction sites to per-
form operations without human intervention [3]. On one hand, like other au-
tonomous vehicles, autonomous wheel loaders need to be equipped with path-
planning and collision-avoidance capabilities. On the other hand, they also
ought to accomplish several special missions, e.g., autonomous digging, load-
ing and unloading, often in a predefined sequence. Furthermore, autonomous
wheel loaders usually work in unpredictable environments – dust and various
sunlight conditions (from dim to extremely bright) that might cause inaccuracy
or even errors in image recognition and obstacle detection. Moving entities,
e.g., humans, animals, and other machines, might also behave unpredictably,
for there are no traffic lights and lanes. Despite such disadvantages, the AWL’s
movements are less restricted if compared to, for instance, self-driving cars, as
there are only a few traffic rules in sites. They can also stop and wait as long
as they need without influencing the vehicles behind them. All these character-
istics make our path-planning (Theta*) and collision-avoidance (Dipole Flow
Field) algorithms applicable.

The architecture of the AWL’s control system, presented in Figure 9.1, con-
sists of three main units: a vision unit, a control unit, and an execution unit,
which are connected by CAN buses. In this paper, we mainly focus on the con-
trol unit that consists of three parallel processes, namely ReadSensor, Main,
and CalculateNewPath, as depicted in Figure 9.2. These three processes
are executed in parallel on independent cores. The process ReadSensor ac-
quires data from sensors (e.g., LIDAR, GPS, angle and speed sensors, etc.)
and sends them to the shared memory before they are accessed by process
Main that runs the path-planning algorithm and invokes a function called
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Figure 9.2: Process allocation in the control system

Execution Function, in which three sub-functions are called. The func-
tion AdjustAngle adjusts the moving angle of the AWL, based on its own
and the obstacles’ positions. Function Turn judges if the AWL arrives at one
of the milestones on its initial path calculated by the path-planning algorithm,
and changes its direction based on the result. Function Arrive judges if the
AWL reaches the destination and sends the corresponding commands. Basi-
cally, the processes Main and ReadSensor are responsible for the AWL’s
regular routine. However, when an unforeseen obstacle suddenly appears in its
vision, the process Main sends a request to process CalculateNewPath,
in which the collision-avoidance algorithm is executed and a new and safe path
segment is generated if it exists. Note that, although the AWL has more func-
tionality, e.g., digging and loading, we focus only on the path planning and
collision avoidance in this paper.

The loader’s architecture (Figures 9.1, 9.2), including the parallel pro-
cesses and functions, is hierarchical. Moreover, the distributed nature of the
AWL’s components, and the dynamic nature of its movement (including col-
lision avoidance) call for a separation of concerns along the static and the dy-
namic dimensions of the system. Hence, in the following, we propose a two-
layer framework to model and verify autonomous vehicles on different levels.

9.4 A Two-level Framework for Planning and Ver-
ifying Autonomous Vehicles

As it is shown in Figure 9.3, our two-level framework consists of a static layer
and a dynamic layer, between which data is exchanged according to a defined/-
chosen communication protocol. The static layer is responsible for path and
mission planning for the AWL, according to possibly incomplete information
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Figure 9.3: Two-layer framework for planning and verifying autonomous ve-
hicles

of the environment. In this layer, known static obstacles are assumed, together
with milestones representing points of operation of the loader. The dynamic
layer is dedicated to simulating and verifying the system following the refer-
ence path given by the static layer, while considering continuous dynamics in
an environment containing moving and unforeseen obstacles.
Static layer. The static layer is defined as a tuple < Es, Ss,Ms >, where Es

denotes a discrete environment, Ss is a set of known static obstacles, and Ms

is a set of milestones associated to missions (e.g., digging, loading, unloading,
charging), including the order of execution, and timing requirements. As the
path found by the path-planning algorithm is a connection of several straight-
line segments on the map, realistic trajectories and continuous dynamics do
not need to be considered in this layer. Hence, the environment is modeled as
a discrete Cartesian grid whose resolution is defined appropriately to present
various sizes of static obstacles, e.g., holes, rocks, signs, etc. Even if not en-
tirely faithful to reality, the Cartesian grid provides a proper abstraction of the
map for path and mission planning. As the static layer is still at the conceptual
stage currently, we propose several possible options for modeling and verifica-
tion of this layer. DRONA [13] is a programming framework for building safe
robotics systems. which has been applied in collision-free mission planning for
drones. Rebeca is a generic tool for actor-based modeling and has been proven
to be applicable for motion planning for robots [14]. Mission Management
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Tool (MMT) is a tool allowing a human operator an intuitive way of creating
complex missions for robots with non-overlapping abilities [15].
Dynamic layer. The dynamic layer is defined as a tuple< Ed, Ts, Sd,Md, Dd >,
where Ed is a continuous environment, Ts is the trajectory plan input by the
static layer, Sd is a set of static obstacles, Md is a set of moving obstacles that
are predefined,Dd is a set of unforeseen moving obstacles that are dynamically
generated. The speed and direction of a moving obstacle m0 ∈ Md are pre-
defined as constant values in our model. The dynamically generated moving
obstacle d0 ∈ Dd is instantiated during the verification when its initial location,
moving speed and angle are randomly determined. Collision-avoidance algo-
rithms are executed in this layer if the vehicle meets moving obstacles or un-
foreseen static obstacles. Ordinary differential equations (ODEs) are adopted
to model the continuous dynamics of moving objects (e.g., vehicle, human,
etc.), and the embedded control system of the autonomous vehicle is modeled
in this layer.

This two-layer design has many benefits. Firstly, it provides a separation
of concerns for the system’s design, modeling, and verification. As a path plan
does not concern the continuous dynamics of the vehicle, the discrete model
in the static layer is a proper abstraction, which sacrifices some unnecessary
realistic elements but preserves the possibility of exhaustive verification. The
dynamic layer, which concerns the actual trajectories of moving objects, con-
sists of hybrid models that contain relatively more realistic details of the system
and environment, which enhance the truthfulness of the model. However, as a
tradeoff, only probabilistic verification is supported in this layer. In addition,
modification of algorithms or design is only restricted within the correspond-
ing layer, so potential errors will not propagate in the entire system. Secondly,
the two-layer framework is open for extension. It provides a possibility to add
layers for new functions, such as artificial intelligence or centralized control.

9.5 Pattern-based Modeling of the Dynamic Layer

A classic control system consists of four components: a plant containing the
physical process that is to be controlled, the environment where the plant oper-
ates, the sensors that measure some variables of the plant and the environment,
and the controller that determines the system state and outputs timed-based sig-
nals to the plant [16]. In our case, as shown in Figure 9.1, the execution unit is
the “plant” that describes the continuous dynamics of the AWL. The “sensors”
are divided into two classes: vision sensors (LiDAR) connecting to the vision
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(a) The skeleton of the pattern (b) The hybrid automaton of the pattern

Figure 9.4: The pattern of the linear motion component in the execution unit

unit, and motion sensors (GPS, IMU, Angle and Speed sensors) connecting to
the execution unit.

9.5.1 Patterns for the Execution Unit
Currently, the vision unit and vision sensors have no computation ability, so
they are simply modeled as data structures. The execution unit is modeled in
terms of hybrid automata, in which the motion of the AWL is given by a system
of three ordinary differential equations:

ẋ(t) = v(t)cosθ(t) ẏ(t) = v(t)sinθ(t) (9.2)

θ̇(t) = ω(t), (9.3)

where, ẋ(t) and ẏ(t) are the projections of the linear velocity on x and y axes,
ω(t) is the angular velocity, and v(t) is the linear velocity, which follows the
Newton’s Law of Motion: v(t) = F−k×M

M , where F is the force acting on the
AWL, k is the friction coefficient, and M is the mass of the AWL.

The pattern of the execution unit is a hybrid model consisting of two hybrid
automata, namely linear motion and rotation. Here we use the linear motion
component as an example to present the idea. As depicted in Figure 9.4(a),
there are four locations indicating four moving states of the AWL, that is, stop
at Idle, acceleration at Acc, moving at a constant speed at Constant, and
deceleration at Dec. Therefore, the derivatives of the position (pcx′, pcy′) and
the velocity (v′) are assigned to zero at Idle for the stop state. According
to different moving states, variations of equation 9.2 should be encoded in the
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Figure 9.5: Process scheduling

refinement of each location in the blank boxes in 9.4(a). Figure 9.4(b) is an
instance of the pattern, where v′ is set to a positive value (v′ == (AF − k ∗
m)/m) at location Acc to present acceleration. Once the velocity reaches the
maximum value (maxS) or the automaton receives a brake signal (denoted as
a channel brake), it goes to location Constant or Dec, where the ODEs are
changed to make the AWL move at a constant speed or decelerate.

9.5.2 Patterns for the Control Unit
As a part of an embedded system, the control unit model has three basic com-
ponents: a scheduler, a piece of memory, and a set of processes. Currently, the
memory is modeled as a set of global variables, hence the scheduler pattern
and the processes patterns are the essence. Due to its safety-critical nature, the
control unit is assumed to be a multi-core system and the processes are sched-
uled in a parallel, predictable, and non-preemptive fashion. This scheduling
policy is inspired by Timed Multitasking [16], which tackles the real-time pro-
gramming problem using an event-driven approach. However, instead of the
preemptive scheduling, we apply a non-preemptive strategy. To illustrate this
scheduling strategy, we use the three processes in the control unit (Figure 9.2)
as an example. The process ReadSensor is firstly triggered at the moment
Trigger1 when the process reads data from sensors and runs its function as
illustrated in Figure 9.5. Regardless of the exact execution time of a process,
the inputs are consumed and the outputs are produced at well-defined time in-
stances, namely trigger and deadline. As the input of Main is the output of
ReadSensor, the former is triggered after the latter finishes. At same the
moment, CalculateNewPath finishes its execution immediately as no in-
put comes. This is actually reasonable, since process CalculateNewPath
does not need to be executed every round, as it is responsible for generating a
new path segment only when the AWL encounters an obstacle. For the bene-
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Figure 9.6: A process model example

fits brought by the explicit execution time and deadline, we refer the interested
readers to the literature [16] for detail.

The pattern of a process consists of two parts: a state module and an oper-
ation module. Similar to the state machine function-block and modal function-
block in related work [17], the state module describes the mode transition
structure of the processes, and the operation module describes the procedure
or computation of the process. Because of their definition, the state modules
are modeled as discrete automata, and the operation modules are modeled as
discrete automata or computation formulas according to their specific function-
ality. Figure 9.6 shows the inputs of the process coming to the state module in
which the state of the process transfers according to the inputs. Some state tran-
sitions of the state module are detailed by the functions in the operation module
in the sense that the former invokes the latter for concrete computation. Specifi-
cally, functions in the operation module could be modeled as discrete automata
when they involve logic, or executable code when they are purely about com-
putation. After executing the corresponding functions in the operation module,
some results are sent out of the process as output, and some are sent back to
the state module for state transitions, which might also produce output. The
designs of the state module and operation module for different processes have
both similarities and differences. They all need to be scheduled, to receive in-
put, produce output, etc., but their specific functionality is different. To make
our patterns reusable, we design fixed skeletons of the process patterns, which
are presented as hybrid automata.

9.5.3 Encoding the Control Unit Patterns as Hybrid Automata

Scheduler. To model the scheduler as a hybrid automaton in UPPAAL SMC,
we first discretize the continuous time as a set of basic time units to mimic the
clock in an embedded system. As depicted in Figure 9.7, we use an invariant at
location Init (clock xd ≤ UNIT), and a guard on its outgoing edge (xd ==
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UNIT) to capture the coming basic time unit. We also declare a data structure
representing processes, as follows:

typedef struct{
int id; //process id
bool running; // whether the process is being executed
int period; //counter for the period of the process
int executionTime; //counter for the execution time of the

process
}PROCESS;

When a basic time unit comes, the scheduler transfers to location Updating.
In the function update(), the period counters of all processes are decreased
by one, and so are the execution time counters if the variable running in
the process structure is true. When the period of a process equals zero,
its id is inserted into a queue called ready and the variable readyLen
indicating the length of the queue is increased by one. Similarly, when the
executionTime equals zero, the process’s id is inserted into a queue called
done. The fact that the queue done is not empty (doneLen > 0) implies
that the execution times of some processes have elapsed, so the scheduler
changes from Updating to Finishing to generate the outputs of those pro-
cesses. The self loop at location Finishing indicates that the outputs of all
the processes in queue done are generated orderly by the synchronization be-
tween the scheduler and the corresponding process automaton via the channel
output. If the queue ready is not empty (readyLen > 0), similarly, the
scheduler moves to location Execution to trigger the top process in ready
via the channel execute, and waits there until the process finishes, when the
scheduler is then synchronized again with the process via channel finish.
Note that the process finishes its function instantaneously and stores its output
in the local variables, which will only be transferred to the other processes via
global variables when the execution time passes.
Process. A typical state module of a process consists of four states: being trig-
gered, doing its own function, idle, and output. A typical pattern for it is shown
in Figure 9.8(a). Except locations Start and Idle, all locations are urgent
because the execution is instantaneous, and the output is generated when the
execution time is finished. From location Start to O1, the process is being
triggered by the scheduler by synchronizing on channel execute[id], in
which id is the process’s ID. If the input is valid (input == true), the pro-
cess starts to execute by leaving O1 to the next location, otherwise, it finishes
its execution immediately by going back to Start without any output gen-
erated, just as the description of the scheduling policy in Section 9.5.2. The
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Figure 9.7: The pattern of the scheduler

blank box indicates the process’s own function that is created in an ad-hoc
fashion, so it is not part of the fixed skeleton of the pattern. After executing
its own function, the process synchronizes again with the scheduler on chan-
nel finish[id], when the process finishes and gives control back to the
scheduler. The output is generated from location Idle to Notification.
The broadcast channel notify[id] is for notifying other processes waiting
for the output of the current process. Based on this idea, we give an exam-
ple instantiated from this pattern in Figure 9.8(b). The automaton goes from
O2 to O3 through two possible edges based on data1, which is the outcome
of function ownJob1(). The concrete computation is encoded in functions
ownJob2() and ownJob3(), which are the counterparts of the functions
in the operation module of Figure 9.6. If the specific function of the process
is more complex than in this example, or it includes function invocation, this
blank box can be extended with synchronizations with other automata. We will
elaborate this by revisiting our use case in the next section.

9.6 Use Case Revisited: Applying Our Method on
AWL

As the patterns of linear motion and rotation components and the scheduler are
totally applicable in the use case, they are simply transplanted in the model
of the AWL with parameter configuration. Hence, in this section, we mainly
demonstrate how the processes in AWL’s control unit are modeled using the
proposed patterns, and present the verification results.
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(a) The skeleton of the pattern (b) An instance of the pattern

Figure 9.8: The pattern of a generic process

9.6.1 Formal Model of the Control Unit

The control unit contains three parallel processes (Figure 9.2). ReadSensor
and CalculateNewPath are relatively simple because they do not invoke
other functions, while Main calls function Execution, which calls other
three functions: AdjustAngle, Turn, and Arrive. Therefore, The state
modules of ReadSensor and CalculateNewPath are modeled as single
automata and the operation modules are the functions at edges encoding the
computation of their functionality. Differently, the state module of Main is a
mutation of the process pattern extended with a preprocessing step calculating
an initial path by running Theta* algorithm. Figure 9.9 depicts the automa-
ton of the state module of Main, in which another automaton representing the
function Execution is invoked via channel invoke[0], where 0 is the ID
of the function Execution. Note that the transition from the location Init
to Moving is the preprocessing step and Theta* algorithm is implemented in
the function main, which will be moved to the static layer eventually after the
entire framework is accomplished. As the process Main invokes other func-
tions, its operation module is a network of automata containing the function
Execution, AdjustAngle, Turn, and Arrive, which are called by us-
ing synchronizations between the state module automata and operation module
automata (channels invoke, respond, finish). After calling other func-
tions, Main goes to the location Idle via three edges based on the return
values of the invoked functions and waits to generate output there.
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Figure 9.9: The automaton of the state module of the process Main

9.6.2 Statistical Model Checking of the AWL Formal Model
Environment configuration. In the following we consider a continuous map
with the size 55 × 55, where five static obstacles and two moving obstacles
are predefined, and another moving obstacle is dynamically generated during
the verification. In order to achieve this, we leverage the spawning command
of UPPAAL SMC to instantiate new time automata instance of the moving
obstacle that “appears” in the map whenever it is generated by the automaton
called generator and “disappears” from the map when its existence time
terminates. The speed of the moving obstacles is a constant value indicating
that they move one unit distance per second and their moving directions are
either opposite or the same as it of the AWL. The parameters of the AWL are
the weight of it, acceleration and deceleration force, friction coefficient and
maximum speed, which are defined as constant values in UPPAAL SMC.
Path generation and following. Given a start and a goal and a set of mile-
stones, the AWL must be able to calculate a safe path passing through them
orderly avoiding static obstacles if the path exists and follow it. To verify this
requirement, we first simulate the model in UPPAAL SMC using the com-
mand:

simulate 1[<= 110] {pcx, pcy} (9.4)

where pcx and pcy are the real-valued coordinate of the AWL. Figure 9.10(a)
shows the result of the simulation, and the result data is exported into Excel to
depict the moving trajectory of the AWL shown in Figure 9.10(b). The AWL
perfectly follows the generated path that avoids all the static obstacles. But the
simulation only runs one possible execution trace of the AWL model. Hence,
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(a) Coordinate changing of the AWL (b) Moving trajectory of the AWL in Excel

Figure 9.10: Moving trajectory of the AWL generated by the command
{simulate 1[<=110] pcx,pcy} in UPPAAL SMC and exported in Ex-
cel

we further verify the model with a query:
Pr[<= 70](<> arrived && counter <= 60) (9.5)

Pr[<= 110]([] followedPath) (9.6)

where arrived and counter in query 9.5 are a Boolean variable and a
clock that reflect if the AWL arrives at the destination and what the minimum
time does it take, followedPath in query 9.6 is a Boolean variable indi-
cating if the AWL has reached the destination and come back to the start by
visiting all the milestones orderly. To update the value of followedPath
timely and periodically during the verification, we create an independent au-
tomaton called monitor that checks the index of the model. The monitor
is triggered by the scheduler every time unit that is small enough to en-
sure the position of the AWL does not change much during this time interval.
The probability interval of satisfying these queries is [0.902606, 1] with 95%
confidence obtained from 36 runs.
Collision avoidance. By the nature of the Theta* algorithm, AWL is able to
avoid the static obstacles as long as it sticks to the initial path. When it meets an
unforeseen static obstacle or a moving obstacle, the AWL must run the dipole
flow field algorithm timely to avoid it. Two queries are designed to get the
simulated moving trajectory and estimate the probability of satisfaction:
simulate 1[<= 110] {pcx, pcy, ocx[0], ocy[0], ocx[1], ocy[1], ocx[3], ocy[3]}

(9.7)
Pr[<= 110]([] !collided) (9.8)
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Arrays ocx and ocy in query 9.7 represent the positions of moving obstacles
at x and y axes. The trajectories got from query 9.7 is shown in Figure 9.11,
where “A” and “B” are two predefined moving obstacles and “C” is a dynami-
cally generated obstacle that moves “recklessly” towards the AWL, so the latter
turns around to avoid the obstacle. The overlap of two trajectories at “C” does

Figure 9.11: The trajectory of the AWL in a map with three moving obstacles

not imply a collision because the AWL and the moving obstacle are not at the
same position at the same moment. To prove this, query 9.8 is designed, where
collided is a Boolean variable indicating if the AWL has collided with any
static or moving obstacles during the verification time. Similar to the verifi-
cation of path generation and following, the automaton monitor is extended
to update this variable periodically by checking if the current coordinate of the
AWL is close to any obstacle in the map, and the threshold of the distance is
0.8 in this case. The probability interval of satisfying this query is [0.902606,1]
with 95% confidence obtained from 36 runs.

9.7 Related Work

Automata-based methods [18][19][4][20] have been used for path or motion
planning. Different from our work, these studies aim to solve the vehicle-
routing problem by using temporal logic. These studies accomplish many typ-
ical autonomous tasks like searching for an object, avoiding an obstacle, and
missions sequencing. However, as they focus on achieving collision avoid-
ance in design, uncertainties in the real deployment like transmission time of
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sensors data in the embedded system and unforeseen obstacles have not been
considered.

Runtime verification that monitors the behavior of autonomous systems
complements this shortage to some extend [21][22][23][24]. This technique
extracts information from a running system, based on which the behavior of
the system is verified. Runtime overhead caused by the monitor is the most
common problem introduced by this method.

Agent-based method is another widely studied approach for autonomous
systems [25][26][21][27][28]. As the predominant form of rational agent ar-
chitecture is that provided through the Beliefs, Desires, and Intentions (BDI)
approach, these studies aim to translate the agent-based language to a formal
language to verify the behavior of the agent. But this method usually does not
concern the detail of the embedded control system and continuous dynamics
of the vehicle.

There are also some studies providing a framework for verification of au-
tonomous vehicles or robots. In [29], the authors captured the behavior of an
unmanned aerial vehicle performing cooperative search mission into a Kripke
model to verify it against the temporal properties expressed in Computation
Tree Logic (CTL). Their model contains a decision making layer and a path
planing layer. In [30], the authors propose an approach combining model
checking with runtime verification to bridge the gap between software veri-
fication (discrete) and the actual execution of the software on a real robotic
platform in the physical world. The software stack of a robotics system pro-
viding different verification capability focusing on different functionality has
inspired our work. However, our framework provides an ability to encode the
collision avoidance algorithm in the model and verifying it in a continuous
environment.

9.8 Conclusions and future work

We have proposed a conceptual two-layer framework for formally verifying au-
tonomous vehicles that decouples the high-level static planning from dynamic
functions like collision avoidance, etc. The framework provides a separation
of concerns for the complex modeling and verification of autonomous vehi-
cles. The static layer focuses on making the optimal plan for the vehicle to
accomplish a sequence of missions based on the incomplete information of
the environment. While the dynamic layer concerns the execution of the plan
with vehicle dynamics in a continuous environment model where unforeseen
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moving obstacles appear randomly. Hence, a collision avoidance algorithm
relying on dipole flow field is implemented in the model of the embedded con-
trol system in this layer. We are currently engaged in modeling the dynamic
layer using hybrid automata and UPPAAL SMC, and designing a pattern-based
method to simplify the modeling process and increase reusability. The dynamic
layer has been applied to model and verify a prototype of an autonomous wheel
loader and the verification result shows the capability and applicability of sta-
tistical model checking adopted in autonomous vehicles. We expect to report
our research of the static layer and the combination of these two layers in the
years to come.
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Abstract

Autonomous vehicles, such as construction machines, operate in hazardous
environments, while being required to function at high productivity. To meet
both safety and productivity, planning obstacle-avoiding routes in an efficient
and effective manner is of primary importance, especially when relying on au-
tonomous vehicles to safely perform their missions. This work explores the
use of model checking for the automatic generation of mission plans for au-
tonomous vehicles, which are guaranteed to meet certain functional and extra-
functional requirements, e.g., timing ones. We propose a model of autonomous
vehicles as agents in timed automata together with monitors for supervising
their behavior in time, for instance battery level. We automate this approach by
implementing it in a tool called TAMAA (Timed-Automata-based Planner for
Multiple Autonomous Agents) and integrating it with a mission-management
tool. We demonstrate the applicability of our approach on an industrial au-
tonomous wheel loader use case.
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10.1 Introduction

Autonomous vehicles [1] are complex systems that combine mechanical el-
ements, electromechanical devices, digital circuits and software programs in
embedded controllers. Their operation is subjected to many constraints, due to
cluttered environments and objectives that can change over time. Mission plan-
ning is the process of determining what each autonomous vehicle should do to
achieve the goals of the mission as described by the high-level system speci-
fications. This includes autonomous path planning such that (static) obstacles
are avoided, tasks assignment and scheduling, and re-planning in unforeseen
circumstances. The challenge in this area is the development of modeling and
verification frameworks [2, 3] able to accommodate the operating complexity
of these systems, while allowing for the verification of their designs early in
the development process. One way of ensuring the quality of mission design
for autonomous vehicles is to employ model checking for generating mission
plans with guaranteed correctness. In this study, we propose such an approach
to synthesize mission plans for autonomous agents, and apply our approach on
a use case provided by Volvo Construction Equipment (VCE), which involves
autonomous wheel loaders (AWL) working in quarries. To facilitate under-
standing, let us assume that our agents are AWL, which are in fact involved in
the industrial use case that we apply our approach on. An AWL is designed
to move and function autonomously and fulfil complex requirements, for in-
stance, “Dig stones at the stone pile. Carry and unload them into a primary
crusher 500 meters away. Avoid obstacles and keep repeating these tasks until
the stone pile is empty or the AWL needs to charge.” In order to specify such
requirements rigorously, synthesize mission plans for autonomous agents, and
verify their execution formally, we adopt the two-layer framework approach for
modeling and verifying autonomous agents, proposed in our previous work [4].
Our framework builds on the established principle of separation of concerns,
and consists of a static layer and a dynamic layer. The static layer focuses
on path planning and task scheduling and the dynamic layer focuses on mod-
eling the kinematics of the agents to verify if they can accomplish the tasks
and circumvent risks, such as moving or unforeseen obstacles, while executing
the mission plans. The contribution of this paper targets only the design of
the static layer of such a framework, which provides rigorous algorithms for
model generation and a user-friendly tool for model configuration.

Specifically, we use Timed Automata [5] and Timed Computation Tree
Logic (TCTL) [6] for capturing formally the autonomous agents’ behavior and
requirements specification, respectively. Formal definitions of the concepts,
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e.g., tasks, are given to support the model-generation algorithms that are cre-
ated and integrated with an advanced path-planning algorithm (Theta* [7]) to
generate formal models. For simplicity, we use mission plans to denote path-
and-task plans in this paper. The formal models are built for synthesizing mis-
sion plans that satisfy requirements like the one we aforementioned. These re-
quirements often concern three aspects: i) safety: all obstacles of the generated
paths should be avoided, ii) execution constraints: tasks should be executed
with respect to given logical and temporal constraints, iii) timeliness: the fi-
nal goal should be achieved within a certain amount of time for productivity
reasons. Given such a mixed palette of requirements, it is not trivial to gener-
ate automatically mission plans that guarantee all of them. Most related work
proposes solutions for synthesizing mission plans without deadline constraints,
but just respecting a required ordering of tasks. Moreover, it is desirable that
such synthesis of plans is supported by an easy-to-use tool, in which the user
can visualize and modify the mission plans.

Hence, in this work, we propose a method supported by a tool, called
TAMAA (Timed-Automata-based Planner for Multiple Autonomous Agents).
Our approach integrates the state-of-the-art model checker UPPAAL [8], suited
for verifying real-time systems, with a toolkit for mission configuration called
MMT (Mission Management Tool) [9]. TAMAA implements the model-generation
algorithms and provides a graphic interface to configure the environment, agents,
and tasks and organizes the information to build formal models, including the
movement of agents, task execution, and monitors. Next, within TAMAA, one
can verify the generated model with UPPAAL, against the TCTL queries that
formalize the natural-language requirements and generate diagnostic traces.
The traces are parsed by TAMAA to synthesize mission plans. Eventually, the
synthesis result is shown in MMT. If there is a valid path, it is guaranteed to
be correct and optimal in the sense that it is generated via exhaustive model
checking. If no valid path exists, a counter-example is depicted to illustrate the
contradictions in the model configuration. We demonstrate the applicability
and assess of TAMAA by applying it to scenarios of an industrial use case.

The novelty of TAMAA is that it addresses not only path generation but
also takes into account complex requirements (e.g., timing ones). Moreover,
our solution combines a rigorous, formal encoding of algorithms for computa-
tion with a user-friendly interface for visualizing model configurations. Model-
generation algorithms provide an automatic way for obtaining formal models,
which is less time-consuming and error-prone than the manual generation al-
ternative.

The remainder of the paper is organized as follows. In Section 10.2 we
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introduce the preliminaries of this paper. Section 10.3 describes the actual
contribution, that is, TAMAA, whereas in Section 10.4 we introduce the imple-
mentation and evaluation of TAMAA. In Section 10.5 we compare to related
work, before concluding and outlining possible future work in Section 10.6.

10.2 Preliminaries

10.2.1 UPPAAL Timed Automata

A timed automaton (TA) is an extended finite-state automaton suitable for mod-
eling real-time systems [10]. UPPAAL [6] is a tool for modeling, simulation,
and model checking of real-time systems, and uses an extension of TA as
the modeling formalism. A UPPAAL timed automaton is defined as a tuple:
< L, l0, A, V, C,E, I >, where L is a finite set of locations, l0 ∈ L is the ini-
tial location, A = Σ

⋃
τ is a set of actions, where Σ is a finite set of synchro-

nizing actions and τ 6∈ Σ are internal actions, V is a set of data variables, C is
a set of real-valued variables called clocks, E ⊆ L×B(C, V )× A× 2C × L
is the set of edges, where B(C, V ) is the set of guards over C and V , that
is, conjunctive formulas of clock constraints B(C) (of the form x ./ n or
x − y ./ n, where x, y ∈ C, n ∈ N, ./∈ {<,≤,=,≥, >}) and non-clock
constraints B(V ), and I : L 7→ Bdc(C) is a function assigning invariants to
locations where Bdc(C) ⊆ B(C) denotes a subset of clock constraints result-
ing from the restriction to upper bounds / ∈ {<,≤}.

The semantics of a TA is given by a labeled transition system. The states
of the labeled transition system are pairs (l, u), where l ∈ L is the current
location, and u ∈ RC

≥0 is the clock valuation in location l. The initial state is
denoted by (l0, u0), where ∀x ∈ C, u0(x) = 0. Let u |= g denote that clock
value u satisfies guard g. We use u+ d to denote the time elapse where all the
clock values have increased by d, for d ∈ R≥0. The following transitions (→)
can happen in a timed automaton:

- Delay transitions: < l, u >
d−→< l, u+ d > if u |= I(l) and (u+ d′) |= I(l),

for 0 ≤ d′ ≤ d, and
- Action transitions: < l, u >

a−→< l′, u′ > if l
g,a,r−−−→ l′, a ∈ Σ, u |= g, clock

valuation u′ in the target state (l′, u′) is derived from u by resetting all clocks
in the reset set r of the edge, such that u′ |= I(l′).

A network of TA, B0 ‖ ... ‖ Bn−1, is a parallel composition of n TA
over C, A and synchronization channels (i.e., a! is synchronized with a? by
handshake). We refer the reader to the literature [10] for more information on
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the theory of TA.
UPPAAL uses a decidable subset of (Timed) Computation Tree Logic [6]

as the query language. It consists of path formulae and state formulae. Specif-
ically, we use the following path-specific temporal operators: “Always" (�)
temporal operator for which a given formula is true in all states of a path, and
the “Eventually" (♦) operator used to show that a formula becomes true in
finite time, in some state along a path. In this paper, we use queries of the fol-
lowing categories: (i) Invariance (i.e., A� p), stating that p should be true in
all reachable states for all paths, and (ii) Reachability (i.e, E ♦ p), stating that
there exists a path starting at the initial state, such that p is eventually satisfied
along that path.

10.3 TAMAA Approach
In this section, we describe an approach to automatically synthesize correctness-
guaranteed mission plans for autonomous agents. We first describe the function
and architecture of an industrial use case, the AWL, in Section 10.3.1, which
motivates and supports the design of TAMAA, even though our approach is in-
tended to be generic. Next, in Section 10.3.1, we introduce the components and
workflow of TAMAA, followed by formal definitions of autonomous agents,
their movement, tasks and their execution, which are all needed for the auto-
matic model generation. Last, we describe the model-generation algorithms in
Section 10.3.4.

10.3.1 Use Case: Autonomous Wheel Loader

In this section, we introduce our use case, which is based on an industrial sys-
tem provided by VCE in Sweden. The use case contains Autonomous Wheel
Loaders (AWL) that are used in construction sites to perform operations with-
out human intervention. For example, as shown in Figure 10.1, we consider
the case of AWL that are utilized to dig and transport stones in a quarry. The
AWL first digs a given stone pile before it carries the stones to the primary
crusher. Thereafter, the AWL loads the crushed stones and continues moving to
the secondary crusher to unload the stones and completes one round of work.
During this process, the AWL performs its tasks autonomously and moves to
the charging point when its battery level is low. The AWL must avoid obsta-
cles, e.g, holes on the ground. The problem involves mission planning, path
following, and collision avoidance.
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Figure 10.1: An example of a working environment for an autonomous wheel
loader

In this paper, we focus on generating valid paths for autonomous agents,
guaranteed to avoid static obstacles, as well as correct schedules for the op-
erational tasks of the agents. We assume a two-layer approach of the design,
as proposed in our previous work [4], with mission planning belonging to the
static layer, whereas the avoidance of dynamic obstacles, including the case of
overlapping paths of multiple agents moving at the same time, is being dealt
with in the dynamic layer. We assume that the latter functions correctly, and
we focus only on synthesizing mission plans.

We apply this generic approach on the AWL use case. Specifically, the re-
quirements of AWL from industry can be divided into the following categories:

• Task Coverage. Each AWL must execute all tasks and repeat them un-
til the ultimate goal is achieved (e.g., all stones are transferred to the
secondary crusher).

• Task Matching. Each AWL must perform certain tasks at particular mile-
stones (e.g., digging stones at the stone pile).

• Task Sequencing. The task execution order must be correct.

• Timing. Each AWL must finish the tasks within a prescribed time, to keep
the desired productivity (e.g., an AWL must complete carrying a ton of
stones in 0.5 hours).

• Event Reaction. Some special tasks are only triggered by events under
certain circumstances. For instance, when the battery level is below a
certain level, the AWL must move to the charging point to charge itself.
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Figure 10.2: Overview of the process of model generation and mission plan
synthesis in TAMAA

Overall Challenge. Given an environment containing one or several AWL with
accurate speed control and a deterministic speed range, predefined milestones
and static obstacles, and a set of requirements (e.g., task coverage, task match-
ing and sequencing, timing, and reacting to events), synthesize mission plans
for these AWL in this environment, such that the requirements are satisfied.

In the following, we introduce our TAMAA approach for the automatic
synthesis of correct mission plans for autonomous agents.

10.3.2 Workflow of TAMAA

Given this challenge, we propose a method called TAMAA (Timed-Automata-
based Planner for Multiple Autonomous Agents) for computing an optimal
plan for the autonomous agents to accomplish a sequence of tasks based on
a set of given requirements. Overall, the approach is composed of the steps
shown in Figure 10.2: i) Step 1 - formalizing the requirements into CTL/TCTL
queries, ii) Step 2 - configuring the information of the environment and tasks
in MMT, iii) Step 3 - automatically generating the UPPAAL TA of movement,
tasks, and monitors, iv) Step 4 - verifying models generated in Step 3 in UP-
PAAL against the queries of Step 1, and generating execution traces that satisfy
or violate the queries, and v) Step 5 - using the traces to obtain the mission
plans in cases when the requirements are met, or counter-examples when no
mission plan exists in the environment configuration. Since this is an auto-
matic approach, users are only involved in the first two steps in the config-
uration phase of Figure 2. All steps are described in detail in the following
sections.
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10.3.3 Model Formalization and Definitions of Concepts
In this section we define formally the elements of TAMAA, that is: autonomous
agents and their movement and tasks. To illustrate the formal definitions and
algorithms, we use a running example extracted from our use case.

Running example. As depicted in Figure 10.3(a), an AWL starts from A, goes
to the stone pile at B and digs stones and moves to the crusher at C to unload
stones and comes back eventually.

An AWL can be considered as an autonomous agent that is situated within an
environment, can sense the environment and act on it, over time, in pursuit of
its own goals [11]. In this paper we focus on mission planning of autonomous
agents, whose movement and tasks are simply abstracted as time durations
without considering any real-time feedback from the environment. Therefore,
autonomous agents can be considered automated agents at this level of ab-
straction and defined as follows: An automated agent is a system that receives
instructions from its mission plan and executes its instructions with no human
control and no interaction with its environment. There are many definitions of
automated agents in different fields of research [11]. In this paper we assume
the definition above, and we formalize an automated agent as follows:

Definition 1 (Automated Agent). An automated agent (AA) is defined as a
tuple:

AA ,< S,M, T >, (10.1)

where:

• S is the speed of the moving agent,

• M is a set of motion primitives that make the agent move and execute
tasks,

• T is a set of tasks that the agent has to accomplish. �

The working environment of an agent is a closed space including some static
obstacles that the agent should avoid, and some milestones where the tasks
should be carried out. However, when an agent is reaching a milestone, it does
not necessarily stop. According to the mission plan, the agent can stop and
execute the corresponding task or simply pass. Static obstacles and milestones
are represented as a set of X-Y coordinates in the environment. The working
environment of an agent is defined as a weighted graph G = (Vg, Eg), where
Vg is a set of vertices denoting the milestones, Eg ⊆ Vg × Ng × Vg is a set
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(a) An example extracted from the use case (b) The weighted graph modeling the
example

(c) TA encoding of an agent’s movement in the example

Figure 10.3: A running example and its corresponding weighted graph and TA

of edges, where Ng ⊆ R≥0 denotes a set of traveling times between vertices.
Edges only connect the vertices that are directly reachable from each other,
which means the shortest path between two connected vertices does not pass
any other vertices.

We assume that automated agents are equipped with a set of motion primi-
tives that allow them to deterministically move from v to v′ for each (v, t, v′) ∈
Eg , with v, v′ ∈ Vg . Hence, the traveling time t between two vertices is con-
stant, and it is calculated by graph-search algorithms such as Theta* algorithm
[7]. The weighted graph extracted from the example of Figure 10.3(a) is de-
picted in Figure 10.3(b).

When agents start to move, their positions depend on the connectivity of
vertices and the traveling time. Hence, the movement of agents involves dis-
crete changes of position and the continuous evolution of time, which makes
TA a suitable formalism for modeling.

Definition 2 (Movement of AA). The movement of an AA is defined as a timed
automaton in a restricted form:

Mm ,< P, p0, xm, Am, Em, Im >, (10.2)
where:

• P = Pv ∪Pe is a finite set of locations, where Pv denotes the vertices of
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the weighted graph of the environment, and Pe denotes the locations
of components encode moving between vertices. The component consists
of an incoming edge, a location in Pe and an outgoing edge;

• p0 ∈ Pv is the initial location denoting the initial position;

• xm is a clock variable defined to measure the traveling time;

• Am = {move} ∪ τ is a set of actions, where “move” is for synchroniz-
ing with the automaton encoding the agent’s tasks, and τ /∈ Σ denotes
internal or empty actions without synchronization;

• Em ⊆ Pv×Am×Bm(xm)×2C×Pe is a set of edges, whereBm(xm) is
a set of guards containing clock constraints of the form xm ≥ Υ, where
Υ ∈ R≥0 is a constant value of the traveling time between two locations,
and C = {xm};

• Im : Pe 7→ Be(xm) is a function that assigns invariants to locations in
Pe, where Be(xm) contains clock constraints of the form xm ≤ Υ. �

Based on Definition 2, a part of the TA that models the movement of agents
is depicted in Figure 10.3(c), where the agent moves from A to B and and
vice versa. Locations A2B and B2A, belonging to Pe, and the their associated
invariants are created to model the duration of traveling.

Any automated agent should carry out tasks that can be operations (e.g.,
digging for AWL) or simply a state of stop. A task is only allowed to be
executed at certain predefined positions, with an execution time given as an
interval. For example, an AWL only unloads rocks at a primary crusher or a
secondary crusher. Some tasks, like charging, are triggered in special circum-
stances, but once they are triggered they must be prioritized. Given an agent
(S,M, T ) and a set of events Ev triggering Ti ∈ T , one needs to formally
capture the agent’s tasks and their execution, which we introduce by the fol-
lowing Definitions 3 and 4, respectively.

Definition 3 (AA Task). A task is defined as a tuple:

Task , (B,W,∆, S, F, V,G,R,O,M), (10.3)
where:

• B is the best case execution time,

• W is the worst case execution time,
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• ∆ is the time that has elapsed during the execution of a task,

• S is a Boolean variable denoting if the task has started,

• F is a Boolean variable denoting if the task has finished,

• V is a set of variables that are changed after the task finishes,

• G is a set of Boolean variables (events) that trigger the task,

• R is a precondition that must be met before the task starts,

• O is a postcondition that must be met after the task finishes,

• M is a set of indices of milestones where the task is allowed to be exe-
cuted. �

To simplify the notation, Ti is used to denote a task for any i ∈ N and we
use “.” to access an element in the tuple. For instance, Ti.∆ is designed to
measure the total execution time of a task, so B ≤ ∆ ≤ W . The precondition
is Ti.R = θt(T0.F, ..., Tk.F )∧θe(ev0, ..., evm), where θt and θe are predicates
reflecting the execution order of tasks {T0, ..., Tk} ⊆ T \ Ti, and the status of
events {ev0, ..., evm} = Ev. The postcondition is Ti.O =

∧n
i=1 ¬evi ∧ Ti.F ,

where evi ∈ Ti.G and n = |Ti.G|.

There are three tasks {T1, T2, T3} in the example of Figure 10.3(a), namely
digging the stone pile, loading, and unloading, respectively. The rules of ex-
ecution are: T3 can start after T1 and T2 finish, T2 can start after T1 finishes,
ev0 triggers T1; then the preconditions and postconditions of these tasks are:

T1.R = ev0, T1.O = ¬ev0 ∧ T1.f

T2.R = T1.f ∧ ¬ev0, T2.O = T2.f

T3.R = T1.f ∧ T2.f ∧ ¬ev0, T3.O = T3.f

For some tasks, e.g., digging stones, finishing an execution means a de-
crease of the volume of the stone pile. This feature is reflected in the value
change of the variables in Ti.V . When an agent is executing a regular task, it
must not move. After finishing tasks, the agent must switch to a special task
called no-op task before it starts to move. The no-op task indicates that no task
is being executed, and it is denoted by T0(0,∞+,∆, S, F, ∅, ∅,M, ∅, ∅). In T0,
B is 0 and W is∞+, implying the execution time can be any length, R and O
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are “∅” implying the agent can get to or out of this task without restrictions, M
is the complete set of all the milestones in the environment implying that this
task is allowed at any position (except obstacles), and V and G are ∅ implying
that this task does not change any data variable and is not triggered by any
event. Based on Definition 3, we define the execution of tasks of an automated
agent AA, as follows.

Definition 4 (Task Execution of AA). For an automated agent (S,M, T ), the
execution of tasks in T is defined as a timed automaton in a restricted form:

Taa , (N, l0, xe, Ae, Ve, Ee, Ie,Me), (10.4)
where:

• N is a set of locations representing the tasks in T ,

• l0 ∈ N is the initial location representing the no-op task T0,

• xe is a clock that is reset whenever a task finishes,

• Ae = {move, done0, ..., donen} ∪ τ is a set of actions,

• Ve is a set of variables containing variables of all the tasks in T , i.e.,
Ve =

⋃S
i=1 Ti.V , S = |T |,

• Ee ⊆ l0 ×Ae ×Be(xe, T )× 2C × 2T ×N is a set of edges connecting
l0 and l ∈ N with a set of actions and guards, where C = {xe},

• Ie : N \ l0 7→ Bi(xe) is a function assigning invariants to locations
except l0,

• Me : N 7→ T is a function assigning tasks to locations. �

In Ae, “move” and “done0, ..., donen” are used for the synchronization be-
tween the task TA and the movement TA and the monitor TA respectively. The
monitor TA are for supervising some indices of the agents that we will introduce
later. For ∀ei ∈ Ee, they are always between l0 and l ∈ N , because the agents
have to switch to the no-op task before they move or execute the next task. For
∀ Ti ∈ T \ T0, the invariant Bi(xe) is of the form xe ≤ Ti.W . The guard on
the incoming edge of Ti is of the form Pj ∧ Ti.R, where the Boolean variable
Pj denotes if the current position of the agent is a milestone mj ∈ Ti.M . The
guard on the outgoing edge of Ti is xe ≥ Ti.B. Clock xe, variables vi ∈ Ti.V ,
task flags Ti.S and Ti.F are updated on the corresponding edge, respectively.
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Figure 10.4: A monitor as an UPPAAL TA

Figure 10.5: A network of TA obtained by TAMAA

As some tasks are triggered by events (e.g., when the battery level is below
a certain level, a battery-low event occurs and it triggers the agent to charge),
we need monitors to supervise the status of the agents and inform in a real-time
manner when the values of the indices are below or above thresholds. In fact,
these indices are rates of consumption that could be represented by real-number
values of time, e.g., the fuel/electricity at 0.8 rate when the agent travels a
certain period of time. In this paper, we assume that all events concern only
the indices changing monotonically and continuously over time. An example
of monitor TA is depicted in Figure 10.4. The invariant of M0 and the guard
of its outgoing edge are used to guarantee that the monitor is progressing to
M1 when the clock’s value reaches the threshold. The invariant of M1, and
guard of its outgoing edge are used when switching to Stop when the clock’s
value reaches a certain threshold, meaning that the agent has no resources to
move anymore. Hence, the monitor gives the agent a time horizon between the
threshold and deadline to react to the event. However, if the agent ignores it for
too long, energy (fuel, battery, etc.) is consumed so the former cannot move,
which is represented as a deadlock in the TA.

A network of TA Mm || Taa ||Monitor1 || ... ||Monitorn over (A,X) is a
composition of TA for the movement, tasks, and monitors (Figure 10.5), where
A = {move, done1, ... , donen}, X = {Mm.xm, Taa.xe,Monitor1.xr, ... ,

Monitorn.xr}, n = |Ev|. Taa sends out synchronization signals move to in-
form the movement TA that it is allowed to move, and donei to Monitori
informing the monitor TA that the task reacting on event evi has been carried
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out.

10.3.4 Automatic Generation of Autonomous Mission Mod-
els via TAMAA

In this section, we describe the algorithms used for generating the correspond-
ing TA, and we also show how we formalize the requirements as UPPAAL
CTL/TCTL queries.

Generation of TA modeling the Movement of AA.

To abstract the continuous-space environment as discrete models (as shown in
Definition 2 of Section 10.3.3), we decompose the environment into a set of re-
gions. There are two types of decompositions that have been investigated pre-
viously in the literature [12, 13]. The geometry-ignoring decomposition [12]
concerns only a set of regions of interest and ignores the actual geometry of
these regions. In contrast, the geometry-using decomposition [13] divides the
environment by using different types of geometries, like rectangles, triangles,
or convex polygons. Both approaches to environment decomposition ensure
that propositions are well preserved by the discrete model of the environment
and are therefore called proposition-preserving decompositions [12].

Our approach combines these two approaches, by dividing the environment
into square cells for path calculation between milestones, and abstracting the
environment as a TA where milestones and transitions among them are repre-
sented. The concrete description is shown in Algorithm 2. We first decompose
the environment as a Cartesian grid and abstract the set of milestones as a two-
dimensional array (i.e., ms in Algorithm 2) for storing the coordinates. An
array tt of integers is used for storing the traveling time between milestones
(lines 2 - 5). The Theta* algorithm is used to generate paths and traveling
times (lines 6 to 8). In addition, we traverse the elements in ms and create a
location (A) in ta for each of these elements (lines 9 and 10). “MAX” is the
maximum value of integers. After selecting another location (B) in ta other
than A, we connect them via a new location C (lines 11 - 15). We use a func-
tion “CreateConnection” for assigning guards and channels to edges as shown
in Definition 4 of Section 10.3.3 (lines 19 - 23). Once the agent moves to a
milestone, the corresponding element in the array position flips to true, being
turned to false when the agent leaves the milestone. Similarly, the array visit is
used for storing the visited milestones (lines 21 and 24).
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Algorithm 2: TA Generation of the Movement of an AA

1 Function CreateTA(Environment env)
2 grid :=new CartesianGrid(env)
3 ms :=new Milestones(env)
4 ta :=new TimedAutomata()
5 int tt[][] :=new int[grid.size][grid.size]
6 for mi ∈ ms do
7 for mj ∈ ms ∧mi 6= mj do
8 tt[mi][mj ] :=ThetaStar(grid,mi,mj)
9 end

10 end
11 while ms 6= ∅ do
12 Select a mi ∈ ms, create a location A in ta representing it
13 for B ∈ ms ∧B 6= A ∧ tt[A][B] < MAX do
14 Create a location C in ta
15 Label C with a guard: ta.c ≤ tt[A][B]
16 CreateConnection(A,C,B, ta)
17 CreateConnection(B,C,A, ta)
18 end
19 Remove mi from ms

20 end
21 return ta
22 Function CreateConnection(L1, T , L2, ta)
23 Create an edge e in ta from L1 to T
24 Label e with a channel move?
25 Label e with assignments: ta.c := 0, position[L1] := false
26 Create an edge e′ in ta from T to L2

27 Label e′ with a guard: ta.c ≥ tt[L1][L2]
28 Label e′ with assignments: position[L2] := true,

visited[L2] := true
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Figure 10.6: Environment decomposition and paths calculation for the envi-
ronment of Figure 10.3(a)

Figure 10.6 illustrates the decomposition of the environment of Figure
10.3(a). The cells in the Cartesian grid are the decomposition unit. The ones
that are completely or partially occupied by obstacles are marked as forbid-
den cells (colored in grey in Figure 10.6). Consequently, this is a conservative
approach for obstacle detection that leads to unnecessary avoidance. This can
be solved by increasing the grid resolution, which might however increase the
computation time.

Generation of the Task TA for Automated Agents.

Based on the concepts defined in Definition 4 of Section 10.3.3, we describe
the process of building task TA (i.e., Algorithm 3).

Note that, the line numbers mentioned in this paragraph refer to Algorithm
3. We first create a TA and an initial location l0 to represent the no-op task
and label the self-loop edge of l0 with a channel “move” for synchronization
with the movement TA. In addition, we traverse every task Ti ∈ AA.T and
create a location li in ta to represent it (lines 6 and 7). The li edge is labeled
with an invariant ta.c ≤ Ti.W , which ensures that the execution of the task
must not be longer than its worst-case execution time. We create a new edge
connecting l0 to li and label it with a guard and assignments (lines 9, 10, and
11). The edge denotes the start of Ti and the guard is used to model that the
agent must be at one of the locations whose index belongs to Ti.M and that the
task’s precondition Ti.R must be true (line 10). The assignment on the edge
resets the clock and flips the starting flag to true and the finishing flag to false
(line 11). We create an edge connecting li to l0 (lines 12 to 17) and label it
with a guard, a channel, and assignments. The tasks triggered by events are
labeled with “done[i]” to inform the monitor TA that the events are responded
to (lines 13 - 15). For all tasks, the assignments reset the clock and update the
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Algorithm 3: Task Automaton Generation

1 Function CreateTaskAutomaton(Agent aa, Bool position[], EventSet
Ev)

2 ta :=new TimedAutomata()
3 Create an initial location l0 in ta representing the no-op task
4 Create a self-loop edge of l0 and label it with move!
5 while aa.T 6= ∅ do
6 Select a task Ti ∈ aa.T
7 Create a location li in ta representing Ti
8 Label li with an invariant: ta.c ≤ Ti.W
9 Create an edge e connecting l0 to li

10 Label e with a guard:
∨m

j=k position[j] ∧ Ti.R, where
{k, ...,m} = Ti.M

11 Label e with assignments: ta.c := 0, Ti.S := true,
Ti.F := false

12 Create an edge e′ connecting li to l0
13 for evi ∈ Ev do
14 if evi triggers Ti then
15 Label e′ with a channel: done[i]!
16 end
17 end
18 Label e′ with assignments: ta.c := 0, Ti.S := false,

Ti.F := true
19 Label e′ with a guard: ta.c ≥ Ti.B
20 Delete Ti from aa.T
21 end
22 return ta
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Figure 10.7: A UPPAAL TA for execution of tasks

starting and finishing flags (line 16). For exemplification, we show in Figure
10.7 a task TA, which models the execution of a subset of tasks in our running
example, namely digging holes (i.e., T1) and loading stones (i.e., T2). T0 is the
no-op task.

Composition of TA.

A network of movement TA, task TA, and monitor TA is constructed to synthe-
size mission plans satisfying various properties. As shown in Figures 10.3(c)
and 10.7, the task TA and the movement TA are synchronized using the “move”
channel. Specifically, in the task TA in Figure 10.7, this channel is only la-
beled in the self-loop of T0, because the agent is only allowed to move when
it has no operation to perform. We mention here that the agent does not neces-
sarily move to milestone C (i.e., position[2]) for executing the corresponding
task T2. It probably simply passes it to go to another milestone. Therefore
the transition from T0 to T2 is not synchonized with the movement TA. The
synchronizations between the task TA and monitor TA are modeled in a similar
way. The network of TA is then used for model checking it against certain
CTL/TCTL queries in UPPAAL. The resulting execution traces from model
checking representing transitions between milestones and tasks are then used
to synthesize mission plans.

UPPAAL Queries Design.

We use the requirements in our use case provided by VCE (as described in
Section 10.3.1) to show the design of UPPAAL queries in the following way:

• Task Coverage. Given that the agent must finish all tasks, the corre-
sponding CTL query can be written as:

E♦ (F [1] ∧ F [2] ∧ ... ∧ F [j] ∧ stonePileVol == 0) (10.5)

As shown in Definition 3 in Section 10.3.3, “F [i]” represents Ti.F and
stonePileVol is a variable that belongs to Ti.V and indicates the volume
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of the stone pile. Hence, this query requires the agents to finish all the
tasks and repeat them. When the query is verified in UPPAAL, a diag-
nostic trace is generated for the synthesis of mission plans. We make
use of UPPAAL’s ability to generate traces witnessing submitted reach-
ability properties. Currently, UPPAAL supports three options for trace
generation: some trace leading to a goal state, the shortest trace with the
minimum number of transitions, and fastest trace with the shortest time
delay.

• Task Matching. For this requirement, the agent must execute certain
tasks at certain milestones. Assuming that task Ti is allowed at milestone
Pi, the corresponding CTL query has the following form:

A� (Taa.Ti imply Mm.Pi) (10.6)

• Task Sequencing. This requirement specifies that the order of task exe-
cution must be correct. Assuming that task Ti must be done before Ti+1

starts, one can design the query in the following form:

E♦ S[i+ 1] (10.7)

A� S[i+ 1] imply F [i] (10.8)

• Timing Requirement. For this requirement, tasks must be completed
within a time limit. Assume the agent must finish all tasks to carry all
stones within N time units, and c is a clock variable, the TCTL query
can be as follows:

E♦ (F [1] ∧ ... ∧ F [j] ∧ stonePileVol == 0 ∧ c ≤ N) (10.9)

• Event Reaction. For this requirement, special tasks that are triggered by
events under some circumstances need to be executed and prioritized.
For instance, for battery level checking, a monitor would activate an
event when the battery level is lower than a threshold. As the agent
model describes all possible combinations of behavior, it is possible that
the agent keeps staying at one location or moves meaninglessly without
executing any task until its battery is consumed. Nevertheless, the sat-
isfaction of query (10.5) or (10.9) guarantees that the synthesized mis-
sion plan subsumes that the agent charges itself whenever the low-battery
event occurs, since if a deadlock happens in the monitor TA, there is no
way to finish all the tasks (i.e., queries (10.5) and (10.9) cannot be satis-
fied).
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Figure 10.8: The architecture of TAMAA

10.4 TAMAA Implementation and Evaluation

In this section we outline the main aspects of TAMAA, including a high-level
implementation description and an evaluation of its applicability and scalabil-
ity.

10.4.1 Implementation and User Interface

We present several technical solutions used in the implementation of TAMAA to
fully support the complexity required for model-checking the generated mod-
els. We have implemented the algorithms described in Section 10.3.4 in Java
and have integrated the TAMAA tool with a Mission Management Tool (MMT)
1. MMT is a tool allowing users to graphically create complex environment and
missions for agents [9]. One can drag and drop markers in the environment
as milestones and assign specific tasks to them (See Figure 10.9). When the
environment and tasks are configured in MMT, one can choose a planner from
the interface to calculate a mission plan. Our TAMAA tool is linked to MMT
as an explicit planner option, which runs the Theta* algorithm, generates the
UPPAAL TA and calculates mission plans satisfying the given queries.

As illustrated in Figure 10.8, TAMAA has two communication modules and
one processing module, which are implemented in Java. The communication
module connecting to UPPAAL is shown as module A in Figure 10.8, and con-
sists of two sub-modules: one for connecting to UPPAAL for model checking
and the other one for analyzing the obtained trace. The module for automatic
TA generation is module B. The communication module connecting to MMT
is shown as module C. Module B first reads data from MMT via module C,

1One can find the introduction video on: http://www.es.mdh.se/staff/3552-Rong_Gu
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(a) A mission plan generated in a
feasible environment

(b) A counter example generated
in an unfeasible environment

Figure 10.9: Two screenshots of the MMT user interface
which is implemented in Apache Thrift2, to obtain information about the envi-
ronment, agents and tasks. Next, TAMAA executes its model-generation engine
for automatically creating the UPPAAL TA, represented as xml files. Module A
invokes UPPAAL and sends the generated model and the necessary commands
as command-line arguments. After UPPAAL finishes the verification of the
model, an execution trace is produced and parsed by module A so that module
B can interpret it as a mission plan and transfer it to MMT via module C. Fi-
nally, if a satisfactory execution trace exists, the corresponding mission plan is
depicted in MMT as it is shown in Figure 10.9(a). Otherwise, a counter exam-
ple representing an invalid mission plan is also produced and shown in MMT’s
GUI (See Figure 10.9(b)) for further debugging.

10.4.2 Evaluation of TAMAA’s Applicability

In this section, we consider various scenarios of AWL to show the applicability
of this method in a realistic setting. The following environment is used in all
scenarios: a 50 × 50 2D space containing 3 static obstacles and 4 milestones.
The evaluation is conducted on a machine running an Intel Core i5 processor
with 16 GB of RAM and a 64-bit Windows OS. We present here the scenarios
and the evaluation results.

Scenario 1. An AWL needs to perform three tasks in the right order for one
round. We design queries in the form of queries (10.5)–(10.9) to obtain execu-
tion traces and check if the model satisfies the requirements. As all queries are

2Apache Thrift is a software framework for scalable cross-language services development.
https://thrift.apache.org
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Table 10.1: Scalability evaluation results with different number of milestones
and tasks, and 1 agent.

Query
Numer of
Milstones

Numer of
Tasks

Numer of
Explored States Time

Reachability
30 30 20,363 0.2 s
60 60 157,033 2.2 s

100 100 712,721 14 s

Invariance
30 30 41,193 0.3 s
60 60 317,703 4.5 s

100 100 1,429,903 29 s

satisfied, a mission plan is synthesized within a few milliseconds.

Scenario 2. An AWL needs to repetitively execute four tasks until the stone
pile is empty and travel to a certain location to charge itself when the battery
is low. In this case, one more task (i.e., charging) is added being triggered
by the “low-battery” event. A monitor containing an auxiliary data variable is
designed to inform the task TA when the battery level decreases under a certain
threshold. A query in the form of query (10.9) is verified and the computation
takes 0.5 seconds while exploring 113,719 states. The generated trace for this
query shows that the AWL as specified in the model reacts to the event “low-
battery” in time.

Scenario 3. In this case, three AWL cooperate to accomplish one complex task.
They have to all gather at one milestone and start some task simultaneously.
After that, they continue to finish their own tasks. In this situation, the synthesis
of mission plans for three agents has to be conducted in one entire model.
Similarly, queries in the form given by formulas (10.5)–(10.9) are checked
and satisfied. Verifying invariance queries in the form of query (10.8) takes
less than 9 s exploring more than 770,000 states. Overall, our results show
that mission plans are successfully synthesized for all scenarios within a few
seconds. This is an indication that the TAMAA approach is applicable to the
industrial scenarios of AWL.

10.4.3 Evaluation of TAMAA’s Scalability

In this section, we consider the scalability of TAMAA with regard to the number
of milestones, tasks and agents considered. In all scenarios we are interested in
two types of queries: reachability and invariance (queries (10.5) and (10.8) are
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Table 10.2: Scalability evaluation results with different number of agents run-
ning 3 tasks among 3 milestones.

Query
Numer of

Agents
Numer of

Explored States Time

Reachability

2 1,661 0.01 s
3 159,632 2.0 s
4 2,058,132 20160 s
5 Out of Memory Out of Memory

Invariance
2 3,533 0.03 s
3 344,701 4.0 s
4 Out of Memory Out of Memory

used as examples). In this evaluation, we first vary the number of milestones
and tasks between 30 and 100 for both. Meanwhile, we use one AWL for all
variations as this is one of the scenarios of the use case. The result is presented
in Table 10.1, and it shows that the computation time ranges between 0.2 s and
29 s and the number of explored states is increasing quickly with the number
of milestones and tasks for all queries. We mention here that even for a model
containing 100 milestones and tasks, the results are encouraging in terms of
model checking efficiency.

In addition, we evaluate the scalability of TAMAA by varying the number of
AWL between 2 and 5. The results are shown in Table 10.2. The environment
is kept the same for all variations and contains three milestones and three tasks.
We conduct this evaluation using Scenario 3 described in Section 10.4.2, as it
is the most complex one. The number of explored states and computation time
increase exponentially with the number of AWL. We observe that the results
for the case with three AWL running in a 3-milestone environment executing
3 tasks are similar with the results for one agent executing in an environment
with 60 milestones and 60 tasks shown in Table 10.1. This can be explained
by the increase in the number of TA and clocks for the models containing more
agents, which results in more time zones and non-deterministic interleaving
transitions. Thus, searching through models with more agents takes signifi-
cantly longer. We note that the use of more than three agents is problematic
and therefore the method restricts the handling of larger systems, due to the
increased cost of computation time and number of explored states. Because
of the use of clocks at locations and edges, partial order reduction [14] of the
model is not suitable in this model. One of our ongoing work is to integrate
reinforcement learning [15] in the model to leverage the historical exploration
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of the state space of the model to alleviate the scalability problem. We leave it
to report in our future work.

10.5 Related Work
In recent decades, there has been a growing interest in formal modeling and
verification of autonomous systems given mission planning problems with com-
plex goals. Belta et al. [2] present a hierarchical structure and based on a three-
level process they propose a method using Linear Temporal Logic (LTL). This
is evaluated in several case studies [16, 17]. Bhatia et al. [18, 12] propose a
multi-layered synergistic approach for solving motion planning problems for
mobile robots involving temporal goals. This approach addresses two key is-
sues: the construction of the discrete abstraction of the robots and its efficient
exploration in the high-level layer. Dimarogonas et al. [19, 20] propose their
method for motion planning of multiple-agent systems using various tempo-
ral logic. In contrast to these studies, our approach is focusing on integrating
a state-of-the-art path-planning algorithm with temporal logic to leverage the
heuristics and efficiency of the former and the rigorousness and expressive-
ness of the latter. In addition, our approach combines a model-checker with a
mission-management tool to tackle this problem on an industrial case, which
demonstrates the applicability of this approach in realistic scenarios. Instead of
using LTL (e.g., [2]) for requirement specification, we explore the use of TCTL
for expressing different types of requirements like timing requirements.

10.6 Conclusions and Future Work
In this paper, we have presented an integrated approach (named TAMAA) for
automatically generating mission plans for autonomous agents satisfying vari-
ous requirements, such as functional and timing ones. As part of TAMAA, we
provide formal definitions of the movement of autonomous agents and tasks.
These definitions enable the formalization of a practical problem. We also
provide algorithms for the automatic model generation before verifying the
models in UPPAAL against CTL/TCTL queries expressing requirements of au-
tonomous vehicles. For increasing the appeal of our method, we have imple-
mented these algorithms in a tool and integrated it with a mission-management
tool to provide an easy-to-use automated support. Our approach has been eval-
uated in three scenarios proposed by industry demonstrating its applicability
in realistic scenarios. The scalability evaluation shows that while the number



142 Paper C

of tasks and milestones do not significantly influence the cost of model check-
ing, the synthesis efficiency dramatically decreases when the number of agents
increases.

The future work has at least two potential directions. One is to combine
model checking techniques with machine learning (e.g. reinforcement learn-
ing) to improve the efficiency of searching through the state space. Another
direction is related to the integration of TAMAA with our two-layer framework
with the goal of proposing and evaluating an entire solution for performing
static planning and dynamic simulation and verification by taking into account
the kinematics of different types of agents.
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Abstract

The problem of mission planning for multiple autonomous agents, including
path planning and task scheduling, is often complex, especially when the num-
ber of agents grows or requirements include real-time constraints. In this pa-
per, we propose a novel approach called MCRL that integrates model checking
and reinforcement learning to overcome this difficulty. Our approach employs
timed automata and timed computation tree logic to describe the autonomous
agents’ behavior and requirements, and trains the model by a reinforcement
learning algorithm, namely Q-learning, to populate a table used to restrict the
state space of the model. Our method provides a means to synthesize mis-
sion plans for autonomous systems whose complexity exceeds the scalability
boundaries of exhaustive model checking, but also to analyze and verify syn-
thesized mission plans to ensure given requirements. We evaluate the proposed
method on various scenarios involving autonomous agents, as well as present
comparisons with other methods and tools.
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11.1 Introduction

Autonomous agents are systems that usually move and operate in a possibly
unpredictable environment, can sense and act on it, over time, while pursu-
ing their goals [1]. As this kind of systems bear the promise of facilitating
people’s daily lives and increasing safety and industrial productivity by au-
tomating repetitive tasks, autonomous technologies are drawing an increased
attention from both researchers and practitioners. In an attempt to realize their
functions, mission planning of autonomous agents, including path planning
and task scheduling, is one of the most critical problems to solve [2]. As path-
planning algorithms focus on calculating collision-free paths towards the des-
tination, they do not handle requirements concerning logic and temporal con-
straints, e.g., delivering goods in a prioritized order, and within a certain time
limit. In addition, when considering a group of agents that need to collaborate
with each other and usually work alongside humans, the job of synthesizing
correctness-guaranteed mission plans becomes crucial and more difficult.

In our previous work [3], we have proposed an approach based on Timed
Automata (TA) and Timed Computation Tree Logic (TCTL) to formally capture
the agents’ behavior and requirements, respectively, and synthesize mission
plans for autonomous agents by model checking. Our approach is successfully
implemented in a tool called TAMAA, and shown to be applicable to solving the
mission-planning problem of industrial autonomous agents. However, TAMAA
alone is not scalable when the number of agents is large, as the state space of
the model explodes when the number of agents grows.

The state-space-explosion problem is one of the most stringent issues when
employing model checking [4] for verification, therefore many studies have
explored ways of fighting it [5]. In this paper, we propose a novel method
called MCRL that combines model checking with reinforcement learning [6]
to restrict the state space in order to synthesize mission plans for large numbers
of agents. Our method is based on UPPAAL [7] and leverages the model of
autonomous agents generated by TAMAA. Instead of exhaustively exploring
and storing states of the model, MCRL utilizes Monte Carlo simulations to
obtain the execution traces leading to the desired states or deadlocks. Note
that in TAMAA timing uncertainties are modeled by non-deterministic delays
bounded from below as well as above, rather than by probability distributions.
Therefore, the simulation is simply for randomly sampling execution traces.
Then, a reinforcement learning algorithm, namely Q-learning [8], is employed
to process the execution traces, and populate a Q-table containing the state-
action pairs and their values. The Q-table is recognized as the mission plan
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that we have aimed to synthesize, which is injected back into the old TAMAA
model, forming a new model. As the Q-table regulates the behavior of the agent
model, the state space is greatly reduced, which makes it possible to verify
mission plans for large numbers of agents. Moreover, MCRL enables the model
equipped with Q-tables to make best decisions when the task execution time
and duration of movement are uncertain, which is not supported by TAMAA.
As MCRL is based on formal modeling, it complements classic reinforcement
learning algorithms with means to verify the synthesized mission plans against,
for instance, safety requirements.

We select relevant scenarios involving autonomous agents in a construction
site, and conduct experiments with MCRL, TAMAA, and UPPAAL STRATEGO
[9] that is a tool often used for generating winning strategies for stochastic
priced timed games. The experimental results show that MCRL performs better
than TAMAA and UPPAAL STRATEGO, when the number of agents is greater
than five. The time of synthesizing mission plans using MCRL increases lin-
early with the number of agents, whereas for the other two methods it increases
exponentially.

To summarize, the contributions of this paper are:

• A novel approach called MCRL for synthesizing mission plans of large num-
bers of autonomous agents by reinforcement learning, combined with model
checking the synthesis results.

• An evaluation of the scalability of MCRL via experiments conducted with
tools such as TAMAA, UPPAAL STRATEGO, and MCRL, on relevant scenar-
ios involving autonomous agents. The experimental results show that MCRL
can scale to large numbers of agents that cannot be handled by other meth-
ods.

The remainder of the paper is organized as follows. In Section 11.2, we in-
troduce the preliminaries of this paper. Section 11.3 describes the problem
that we attempt to solve and its challenges, whereas in Section 11.4 we intro-
duce our novel approach for taming the scalability of model checking, which
combines the latter with reinforcement learning. In Section 11.5, we explain
the experiments and their results on TAMAA, UPPAAL STRATEGO, and MCRL.
In Section 11.6 we compare to related work, before concluding and outlining
possible future work in Section 11.7.
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Figure 11.1: An example of a timed automaton of a traffic light

11.2 Preliminaries
In this section, we introduce timed automata, UPPAAL, UPPAAL STRATEGO,
and reinforcement learning.

11.2.1 Timed Automata and UPPAAL
A timed automaton (TA) is a finite-state automaton extended with real-valued
variables, called clocks, suitable for modeling real-time systems [10]. UPPAAL
[7] is a tool for modeling, simulation, and model checking of real-time systems,
which uses an extension of TA as the modeling formalism. Figure 11.1 depicts
a simple example of a UPPAAL TA modeling traffic lights. Two locations Red
and Green model the two colors of a traffic light. A clock variable x is used
in the invariants (boolean expressions over clocks) on locations (e.g., x<=10)
to enforce an upper bound of delaying in that location (in our case, after 10
time units, the automaton must leave location Red). Edges are directed lines
used to connect locations, and they are decorated by guards, which are boolean
conditions over clocks or discrete variables, which enable the automaton to
traverse the respective edge once they evaluate to true. In our case, when x>=
5, the TA may move from the Red to the Green location. In UPPAAL, there
is a special type of location, namely committed (denoted by encircled c). It
requires that time does not elapse in these types of locations and the next edge
to be traversed needs to start from a committed location. Clocks can be reset
over edges, e.g., x:= 0 in Figure 11.1, whereas discrete typed variables can be
assigned values, accordingly, via updates on the edges, or via functions that
are implemented by a subset of the C language in the declaration of the TA.
A network of TA, B0 ‖ ... ‖ Bn−1, is a parallel composition of n TA via
synchronization channels (i.e., a! is synchronized with a? by handshake). In
Figure 11.1, the edges are labeled with channels named STOP and GO, which
synchronize this TA with other TA of vehicles.

The UPPAAL queries that we verify in this paper are properties of the form:
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(i) Invariance: A � p means that for all paths, for all states in each path, p is
satisfied, (ii) Liveness: A ♦ p means that for all paths, p is satisfied by at
least one state in each path, (iii) Reachability: E ♦ p means that there exists
a path where p is satisfied by at least one state of the path, and (iv) Time-
bounded Leads to: p  ≤t q, which means that whenever p holds, q must
hold within at most t time units thereafter; it is equivalent to the property:
A� (p⇒ A♦≤t q).

11.2.2 UPPAAL STRATEGO
UPPAAL has several branches that extends it to deal with various specific prob-
lems. UPPAAL STRATEGO [9] is a tool that integrates UPPAAL with two of
its branches, that is, UPPAAL SMC [11] (statistical model checking) and UP-
PAAL TIGA [12] (policy synthesis for timed games). In this paper, we em-
ploy UPPAAL STRATEGO to solve the same mission-planning problem for au-
tonomous agents, in order to compare the result with our MCRL approach.
UPPAAL STRATEGO is designed to synthesize strategies for stochastic priced
timed games. A game is a mathematical model of a system consisting of sev-
eral players that compete in a common environment and aim to achieve their
independent goals. Since it is based on UPPAAL, its modeling language is an
extension of timed automata, which differentiates actions into two types: con-
trollable and uncontrollable. The former ones are actions controlled by the
players, whereas the latter ones are controlled by the environment. We refer
readers to the literature [9] for details of this tool. A strategy is a policy of a
player’s actions for any possible situation that guides the player to reach its final
goal. A winning strategy contains sequences of controllable actions that lead
players to the states satisfying desired properties, regardless of the executed
uncontrollable actions. In UPPAAL STRATEGO, one can synthesize winning
strategies in form of: strategy S = control: P, where “=” is an assignment sign,
P is the TCTL property to be met, and verify the synthesized strategies in the
form of: P’ under S, where P’ is a stronger property that the model is verified
against, with its behavior regulated by strategy S.

11.2.3 Reinforcement Learning
Reinforcement learning is a branch of machine learning aiming to calculate
how agents should take actions in an environment, in order to maximize the
accumulated reward obtained from the environment [6]. In this paper, we use
one of the model-free reinforcement learning algorithms called Q-learning [8],
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which is usually adopted to learn policies that indicate agents the actions to
take at different states. A policy is associated with a state action value function
called Q function, where “Q” stands for “quality”. The optimal Q function
satisfies the Bellman optimality equation:

q∗(s, a) = E[R(s, a) + γ max
a′

q∗(s′, a′)], (11.1)

where q∗(s, a) represents the expected reward of executing action a at state s,
E denotes the expected value function,R(s, a) is the reward obtained by taking
the action a at state s, γ is a discounting value, s′ is the new state coming from
state s by taking action a, max

a′
q∗(s′, a′) represents the maximum reward that

can be achieved by any possible next state-action pair (s′, a′). The equation
means that the expected reward of the state-action pair (s, a) is the sum of the
current reward and the discounted maximum future reward. As the learning
process iterates, the Q-value of each state-action pair converges to the maxi-
mum Q-value, i.e., q∗, and the parameters are updated using gradient descent
[13]. Although Q-learning is a model-free algorithm, the learning process of-
ten relies on a simulation environment that depends on the form of the model.
In this paper, we use the simulation function in UPPAAL to gather the infor-
mation of state-action pairs, and invoke the Q-learning algorithm to populate a
Q-table that stores state-action pairs and their Q-values.

11.3 Problem Description
In this section, we introduce an industrial use case of an autonomous quarry,
containing various autonomous vehicles, e.g., trucks, wheel loaders, etc. For
example, as shown in Figure 11.2, we consider the mission of transporting
stones in a quarry site, where a wheel loader digs and loads stones, and trucks
transport stones. They need to carry the stones from stone piles to the pri-
mary crushers, where stones are crushed into fractions, and proceed to carry
the crushed stones to the secondary crushers, which is the destination. During
this process, the vehicles must avoid static obstacles (e.g, holes and rocks on
the ground, larger than given sizes) and go to the charging point when their
battery level is low. In an autonomous quarry, all the operations are performed
automatically without human intervention, and the vehicles are autonomous
agents that we call agents for short, in this paper. To achieve their goal, respec-
tively, the agents need to be able to calculate collision-free paths and schedule
their tasks efficiently. Hence, our research problem involves task scheduling,
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Figure 11.2: An example of an autonomous quarry

path planning and following, and collision avoidance for multiple autonomous
agents. In our previous work [14], we have proposed a two-layer framework
for the design of formal models of agents, where task scheduling and path
planning belong to the so-called static layer, whereas the path following and
avoidance of dynamic obstacles, including the case of overlapping paths of
multiple agents, is being dealt with in the dynamic layer. In this paper, we
assume that the collision avoidance of dynamic obstacles functions correctly,
and focus on the static layer for synthesizing verifiable mission plans.

11.3.1 Problem Analysis

For simplicity, henceforth, we call the problem of path planning and task schedul-
ing for agents as mission planning. Path planning deals with computing collision-
free paths that visit all required target positions (a.k.a. milestones), via efficient
algorithms such as Theta* [15] and RRT [16]. We adopt the Theta* algorithm
in this paper, since the environment in the problem is a 2-D map, and the al-
gorithm is especially good at generating smooth paths with any-angle turning
points in 2-D maps. After the paths are calculated, the agents need to know the
assignment and execution order of tasks. For instance, digging stones must be
carried out at stone piles before the stones are unloaded into the primary crush-
ers. In this case, digging stones and unloading stones are two tasks, and their
execution positions and order must be correct. Additionally, as the machines
must guarantee a certain level of productivity, the work has to be completed
within some given time. As our solution aims to be general, regardless of the
exact type of agents, we formulate the requirements generically, and categorize
them as follows:
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• Milestone Matching. Tasks must be performed at the right milestones.

• Task Sequencing. The task execution order must be correct.

• Timing. Tasks must be done within prescribed times.

• Event Reaction. Some special tasks are only triggered by events under cer-
tain circumstances, e.g., when the battery level is low, the agents must go to
charge themselves.

The task-scheduling problem in this paper is similar to a classic scheduling
problem called job-shop problem [17], which consists of a finite set of jobs
to be processed on a finite set of machines. Each job is a sequence of tasks
to be executed in a certain order and no tasks can be preempted once started.
Each machine can process at most one task at a time and the execution time
varies for tasks, but it is fixed. The objective is to assign jobs to machines and
decide their starting times in order to minimize the total execution time of all
jobs. The problem is NP-hard, so even a simple instance with very restrictive
constraints remains difficult to solve [18]. Although the task scheduling in this
paper shares many similarities with the job-shop problem, e.g., tasks are non
preemptive, our problem has some unique challenges that we introduce in the
following section.

11.3.2 Uncertainties and Scalability of Mission Planning
The classic job-shop problem is deterministic as the information is known and
fixed. However, the task-scheduling problem in this paper contains two types of
uncertainties, i.e., the uncertain execution time of tasks and uncertain duration
of agent movement.

• Uncertain execution time of tasks. The execution time of tasks is modeled
by time intervals between the BCET (best-case execution time) and WCET
(worst-case execution time), which are usually different.

• Uncertain movement time. The traveling time between milestones of any
agent is not fixed, due to the fact that the destination milestone can be occu-
pied at some time, and thus the agent that is approaching it has then to wait
until the destination is available, and the waiting time is uncertain.

These features make our problem more difficult than the classic job-shop prob-
lem. When the number of agents increases, the complexity of the problem
grows exponentially.
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Table 11.1: Evaluation of TAMAA and UPPAAL STRATEGO

Number of
Agents

Number of
Explored States

Time

TAMAA 4 2,058,132 20160 s
5 Out of Memory Out of Memory

UPPAAL
STRATEGO

2 12,031 2670 s
3 Out of Memory Out of Memory

In our previous work [3], we propose a timed-automata-based approach
called TAMAA to solve this problem. Although the approach manages to gener-
ate mission plans satisfying complex requirements, when the number of agents
increases to 5, model checking the TAMAA model exhausts the existing mem-
ory due to the state-space explosion problem of model checking [3, 4]. To
compare with a similar existing approach, we also employ UPPAAL STRAT-
EGO [9] to synthesize mission plans by verifying the model of TAMAA in this
tool (Section 5). Researchers have utilized UPPAAL STRATEGO to solve simi-
lar scheduling problems like ours, for e.g., cruise control [19], and floor heating
[20], which involve assigning motions to “players” in the environment, to ob-
tain winning strategies. Thus, UPPAAL STRATEGO is considered to be suitable
to solve such task-scheduling problems. However, UPPAAL STRATEGO is only
able to generate results when the number of agents is less than 3, as it is shown
in Table 11.1. In a nutshell, task scheduling for multiple autonomous agents,
as an NP-hard problem, remains unsolved when the number of agents is large.

11.4 MCRL: Combining Model Checking and Re-
inforcement Learning in UPPAAL

In this section, we introduce our novel approach called MCRL for mission plan-
ning of multiple autonomous agents, which combines model checking with re-
inforcement learning to alleviate the state-space-explosion problem. The TA
model in MCRL originates from TAMAA, therefore, we first briefly introduce
TAMAA in the following section to lay the foundation of this method. The for-
mal definitions of the movement and task execution in TAMAA, as well as the
model generation algorithms are described in our previous work [3], which the
interested reader is referred to for details1.

1A demo of TAMAA is in https://doi.org/10.5281/zenodo.3614128



11.4 MCRL: Combining Model Checking and Reinforcement Learning
in UPPAAL 157

(a) A simple example of a quarry (b) Map decomposition and paths calculation

Figure 11.3: An example of an autonomous quarry

(a) Part of an agent’s movement TA (b) Part of an agent’s task execution TA

Figure 11.4: The TA model of the example in Figure 11.3

11.4.1 Timed-Automata-Based Model for Mission Plan Syn-
thesis

We elaborate the TA model in TAMAA by an example illustrated in Figure
11.3(a). In an autonomous quarry, there are four autonomous trucks starting
from milestone A, aiming to transport stones at milestone B, to the primary
crusher at milestone C or D, and eventually go to the secondary crusher at
milestone E. There are also autonomous wheel loaders working at milestone B,
digging stones and loading them into the trucks. A charging point is located at
milestone F, where all the vehicles go for charging when their battery-level is
low.

Initially, the environment is decomposed into a Cartesian grid and the Theta*
algorithm [15] is executed to calculate the shortest paths among milestones A -
F (See Figure 11.3(b)). Note that the trucks only need to choose one primary
crusher at position C or D, to unload stones. Next, a TA-model is automatically
generated by TAMAA, based on the decomposed environment. For brevity, an
example of the TA model is only partly shown in Figure 11.4(a). It models
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the movement of autonomous trucks between milestones A and B. The initial
location of the automaton has only one outgoing edge to location A, indicating
that milestone A is where the truck starts. Locations A2B and B2A are cre-
ated to count the duration of traveling between A and B. Variable TT[m1][m2]
is the travelling time between milestones m1 and m2. Locations G0 and G1
are committed locations that do not cost any time and are used to diverge the
movement to multiple targets. Since some of the milestones are not accessi-
ble when they are occupied, the guard function “isOccupied” is utilized (see
Figure 11.4(a)) to judge if the milestones are occupied or not. When the func-
tion returns false, the edge is enabled but does not trigger the transition,
which means that the agent can stay at this location rather than go to the target.
Therefore, the incoming edges of locations A and B are labelled with channels
“go[id]?”, where “id” represents the index of the agent, and it synchronizes the
movement TA with the tasks execution TA.

When an agent is at a milestone, it has three options for the next motion:
staying, moving, or executing tasks. TAMAA generates a TA for tasks execution
that models these behaviors. This TA is partly depicted in Figure 11.4(b), with
location Idle representing the no-operation task, where the agent is allowed
to move. The invariant and self loop of location Idle represent the time unit of
scheduling a moving action. Every “MAXWAIT” time unit, the tasks execution
TA informs the movement TA that the agent is ready to move. Location T1
represents the task “loading”, and the guard on its incoming edge regulates
that it must be carried out at milestone B and after task 2, finished provided that
the charging event does not occur. Location T1 has an invariant that indicates
that the actual execution time of task “loading” must not exceed its WCET.
Similarly, the guard on the outgoing edge of T1 ensures that the agent leaves
the location when the execution time is no longer less than BCET.

After the resulting TA model is verified in UPPAAL, execution traces indi-
cating the order of visiting milestones and operating tasks are generated. Since
UPPAAL provides three types of execution traces, i.e., the shortest, the fastest,
and random ones, we can generate mission plans that take the least number of
steps (shortest), or the shortest time (fastest), or random. However, the verifi-
cation is based on exhaustive model checking, which means that the entire state
space is built and stored during the process. Therefore, the number of states
of the model grows exponentially as the number of agents increases, and thus
the computation time and memory consumption increase dramatically, as it is
shown in Table 11.1. In the following, we show how we alleviate this short-
coming, by applying a reinforcement learning algorithm to reduce the state
space of model checking the TA model.
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Figure 11.5: The process of creating a model using a Q-table

11.4.2 MCRL Method Description
In order to alleviate the state-space explosion problem, MCRL adopts random
simulation instead of exhaustive model checking, and trains the model by the
Q-learning algorithm. Figure 11.5 depicts the process of the method. First,
in the data-gathering phase, we obtain the execution traces of the model by
Monte Carlo simulation in UPPAAL. We assign rewards to the state-action pairs
of the execution traces that satisfy the desired properties, and penalties to the
ones containing deadlocks. The traces that either hold the properties or contain
deadlocks are ignored and not used in the next phases. Thereafter, in the model-
training phase, we adopt the Q-learning algorithm, which is implemented as
Java program, to process the traces and populate a Q-table, which is then used
to form a new model whose state space is restricted. Details of this approach
are presented in the following.

Model Design and Data Gathering

To differentiate between the state of TA and the state of Q-tables, we define
Q-state and Q-action as follows:

Definition 1 (Q-state). A Q-state is defined as a tuple:

QS =< TP ,MATCH >,

where TP is a real number denoting the time of leaving this state, MATCH is
a tuple < RT ,CT ,CP ,EV ,ST >, where

• RT is an integer denoting the number of rounds for finishing all tasks,

• CT is an integer denoting the index of the current task,

• CP is an integer denoting the index of the current milestone,

• EV is a set of Boolean values of events, occurred or not,
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• ST is a set of integers of EST (execution status of tasks) of all the agents in
the environment. �

Definition 2 (Q-action). A Q-action is defined as a tuple:

QA =< BT ,WT ,MT ,TT >,

where,

• BT is a real number denoting the BCET of the action,

• WT is a real number denoting the WCET of the action,

• MT is an integer denoting the type of the motion,

• TT is an integer denoting the target of the motion. �

“TP” in Definition 1 is created to distinguish “meaningless” execution
traces of agents that simply move around and consume plenty of time but do not
complete tasks. The Q-states that have the same values of other attributes but
own a much larger value of “TP” can be omitted. Note that “ST” in Definition
1 represents the execution status of tasks (EST ) of all agents in the environ-
ment. It has three possible integer values, i.e., 0: unfinished, 1: finished, or 2:
will be finished by the time the current agent arrives at the milestones where
other agents locate. As each agent owns a Q-table, when they need to make
a decision, i.e., which milestone to go, or which task to execute, they must
be aware of the EST of other agents to avoid unnecessary waiting. “MT” in
Definition 2 has two possible values, i.e., 0: movement, 1: execution. Corre-
spondingly, “TT” can be the index of the target milestone, or the index of the
next task.

All the attributes of a Q-state and a Q-action can be elicited from the TA
model generated by TAMAA, and thus, we create a 2-dimensional array in the
global declaration of the TA model in UPPAAL to represent the Q-table for each
of the agent mode. The state-action pairs in the Q-tables are calculated and
stored during the random simulation of the model. UPPAAL 4.1.222 provides a
new function of simulation that prints information only when certain predicates
are true. For example, in the following query, the model is simulated 1000
rounds and 100 time units for each round. Only when the predicate following

2UPPAAL 4.1.22 was published in March 2019 on http://www.uppaal.org/
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the simulation query is true, i.e., the Boolean variable “taskAllFinish” turns
true, the information within the curly parentheses ({. . .}) is printed.

simulate[<= 100; 1000]{...} : taskAllFinish == true

By using this function, we can control the simulation to print data when all
tasks are finished (good traces), or any of the agents is stuck in a deadlock (bad
traces). At the end of each round of the simulation, if the predicate is satisfied,
rewards (positive values) are assigned to the state-action pairs in the trace by
the functions in the TA model; if a deadlock occurs, penalties (negative values)
are assigned to them in a similar way. More precisely, the reward has a value
of MAX − CTime, where MAX is the maximum simulation time, CTime
is the time point of finishing all tasks, whereas penalties have the same fixed
value. In this way, the traces that reach the states that satisfy the predicates
faster would get higher rewards and thus are enhanced by Q-learning.

There are several things about the simulation that deserve further explana-
tion. In UPPAAL, the simulation query subsumes Monte Carlo simulation to
simulate the model, which is originally designed for statistical model check-
ing [11]. However, in this paper, we do not adopt this feature of UPPAAL
but only utilize the Monte Carlo simulation to explore the state space of the
model, and the only two uncertainties in the problem, e.g., uncertain task ex-
ecution and movement times, are modeled as time-bounded delays that follow
a uniform probability distribution. One can change it to an arbitrary choice of
time-bounded delays or other probability distributions and still use MCRL to
solve the problem. Additionally, the simulation time of each round should not
be shorter than the shortest time needed to finish tasks, otherwise the predicate
remains false and thus no good trace can be gathered in the simulation. The
number of simulation rounds should be set properly so that the gathered data
is not only enough for training the model, but also not too large, which would
entail unnecessarily long time to process it. When the simulation finishes, UP-
PAAL prints the state-action pairs into a file, which is used in the model-training
phase.

Model Training and Reforming

After the state-action pairs are formed in the simulation, we input those data
into the Q-learning algorithm, which is implemented as Java program, to pop-
ulate a Q-table. We illustrate the format of the Q-table as follows:

|Q-state|Q-action|Q-value|
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Figure 11.6: The conductor TA in the new model with a Q-table

As aforementioned, the Q-tables for agents are stored in a two-dimensional ar-
ray of the TA model. After running the Q-learning algorithms, Equation 11.1
guarantees that the Q-values of the state-action pairs are accumulated and con-
verged.

In the model-reforming phase, a new TA model, which we call conductor,
is designed for each of the autonomous agents, which looks up the agent’s Q-
table and sends controlling commands. Since there is no centralized control in
the environment, each agent model is equipped with one conductor. However,
the conductor contains the Q-tables of all agents in order to decide which one
has the priority to act, when multiple agents intend to perform some concurrent
actions. Figure 11.6 depicts the TA model of conductors. The initial location
Init is urgent to ensure that whenever the agent is ready, it is scheduled im-
mediately. The function makeDecision() looks up the Q-table and chooses
the state-action pair that owns the highest value among those that match the cur-
rent state of the agent. Note that, here we only need to compare the attributes
in “MATCH ” but not “TP”, because the former is enough to represent the
states of the agent and environment. If the chosen action is “execution”, the
conductor sends an “executing” command to the task execution TA via channel
“exe[id]”. If the chosen action is “movement”, the conductor looks up other
agents’ Q-tables to obtain their intentions of actions. If they also intend to go
to the same milestone where agents are mutually exclusive, the one with the
highest value of state-action pair is allowed to move, whereas others have to
wait until the former finishes scheduling. Whatever the command is, the con-
ductor TA transfers to the location Waiting to wait until the agent finishes its
action and responds via the synchronization channel “done[id]”.

The fact that locations, expect locations “Disappear” and “Waiting”,
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(a) Reformed TA of an agent’s movement (b) Reformed TA of an agent’s task execution

Figure 11.7: Reformed TA model

are either urgent or committed guarantees that all agents are scheduled simul-
taneously. Meanwhile, UPPAAL sets the order of running the conductors to
be arbitrary, which means agents could act in any order. However, the formal
verification of the model equipped with Q-tables can prove that no matter what
the acting order is, agents are guaranteed to satisfy the desired properties. This
is what traditional RL algorithms cannot provide.

Consequently, the original TA of movement and task execution (see Figures
11.4(a) and 11.4(b) as examples) need to be slightly adjusted. As depicted in
Figures 11.7(a) and 11.7(b), the edges with functions move() and start()
are labelled with channels “run[id]?” and “exe[id]?”, respectively. In those
two functions, a Boolean variable “idle[id]” is turned to false, indicating that
the agent is scheduled to start working. However, if the target position is occu-
pied at the moment and multiple agents are not allowed at this milestone, the
movement TA should not transfer. Hence, the channel “run[id]” is broadcast
so that it does not block the transition in the conductor TA, and the variable
“idle[id]” remains true because the function move() is not invoked.

In this case, the conductor TA needs to be informed when the position is
released in order to re-schedule the agent. When the action finishes, the con-
ductor leaves location Waiting and moves back to the initial location to start
another round of scheduling. As the times of such actions are not determined,
the conductor does not know when to restart. Hence, the edges with functions
finish() and reach() in the task execution TA and movement TA are syn-
chronized with the conductor TA via channel “done[id]”, so that whenever an
agent completes an action, its conductor restarts. The conductor TA could also
go back to its initial location via the edge labelled with a broadcast channel
“restart?” and a guard “idle[id]”, indicating that some other agent has changed
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its state, and if the current one is idle, it can be re-scheduled. A Boolean
variable “finished” is used in the conductor TA. When the agent finishes the
requested rounds of work, this variable turns to true on the edge going to the
location Disappear, and the milestone occupied by this agent is released,
indicating that it has left the site and stopped. This edge is also labelled with
the channel “restart!” to inform other agents for re-scheduling.

Mission Plan Synthesis and Analysis

By introducing the conductor TA, the behavior of the autonomous agents is
restricted by the Q-table. Hence, if the Q-table is formed by using the state-
action pairs satisfying certain predicates, the reformed model is supposed to
satisfy the predicates. For example, in the data-gathering phase, the simulation
query is designed as follows:

simulate[<=T; R] {...}: forall(i:int[0,N-1]) work[i] ≥ X,

where T is the simulation time of each round, R is the number of simulation
rounds, N is the number of agents, X is the requested rounds of work. In the
case of autonomous trucks, one round of work means starting from the stone
pile and eventually unloading stones at the secondary crusher as it is shown in
Figure 11.2. The predicate regulates that if the N agents accomplish X rounds
of work, the information in the parenthesis ({...}), i.e., the state-action pairs
and their rewards/penalties, is printed. Hence, when the TA model is verified
in UPPAAL, properties of the following form:

A♦ forall(i:int[0,N-1]) work[i] ≥ X, (11.2)

should be satisfied, which we demonstrate in Section 11.5. Meeting this kind
of properties proves that the Q-table serves as the mission plan that we intend
to synthesize, and guides the agents to accomplish a requested amount of work.
Additionally, one can also verify properties of the following form:

A� forall(i:int[0, M-1]) positionOccupied[i] ≤ 1 (11.3)

batter==low −− > movement.charging && x ≤ L (11.4)

Equation 11.3 requires that milestones are never occupied by multiple agents.
Equation 11.4 requires that the agent goes to the charging point within L time
units, when its battery level is low. One can design their own properties, or
TA model, to express and verify specific requirements. These properties are
impossible to be verified by traditional model checking alone in the cases con-
taining large numbers of agents, due to the exponentially grown state space.
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Table 11.2: Tasks for the autonomous agents in the experiment

Task BCET WCET precondition

Truck
Load 1 4 none

Unload 4 4 Load
Charge 15 15 none

Wheel loader
Dig 2 2 none

Unload 1 4 Dig
Charge 15 15 none

11.5 Experimental Evaluation
In this section, we evaluate our approach by conducting experiments on MCRL,
TAMAA, and UPPAAL STRATEGO to make a comparison. The experiments are
conducted in UPPAAL 4.1.22 and UPPAAL STRATEGO 4.1.20-7, on a laptop
running an Intel Core i5 processor with 16 GB of RAM and a 64-bit Windows
OS. The environment model in this experiment is the one depicted in Figure
11.3(a), containing 4 static obstacles, 6 milestones, and several autonomous
trucks and 1 autonomous wheel loader. To make a comparison with TAMAA
and UPPAAL STRATEGO, we vary the number of agents from 2 to 6. The tasks
and their execution times for autonomous trucks and wheel loader are shown
in Table 11.2.

Experimentation using TAMAA. After configuring the agents, tasks, and
environment in the TAMAA tool, we obtain the TA model of task execution,
movement, and monitor for the battery-low event. To synthesize the mission
plan that transfers all the stones to the secondary crusher with the minimum
time consumption, we verify the model in UPPAAL and select the fastest diag-
nostic trace. The TCTL query designed for the verification is as follows:

E♦ (stone==0 && time≤LIMIT), (11.5)

where the variable “stone” represents the volume of the stone pile, whose value
is updated in the function “finish()” in the task execution TA, and “time ≤
LIMIT” regulates the time limit of finishing the job. The verification results3

show that TAMAA can generate mission plans that guide the agents avoid static
obstacles and carry all the stones to the destination. However, this approach
can only synthesize a certain type of mission plans, e.g., fastest, shortest, or
random, as UPPAAL provides these three types of diagnostic traces. When the

3Graphic mission plans in TAMAA: http://doi.org/10.5281/zenodo.3731960
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execution times of tasks are uncertain, these types of mission plans are not
sufficient to handle all situations.

Experimentation using UPPAAL STRATEGO. In order to synthesize
mission plans in UPPAAL STRATEGO, the TA model in TAMAA needs to be
adjusted slightly. See Figure 11.4(a) as an example, where edges from location
A2B to location B and from location B2A to A in the movement TA are changed
to “uncontrollable” ones, as they are controlled by the environment. Similarly,
in the task execution TA, the incoming edges of location Idle are changed to
“uncontrollable”. Thereafter, we verify the model against queries as follows:

strategy MP = control: A♦ stone==0 (11.6)

E♦ (stone==0 && x≤MAXTIME) under MP (11.7)

Query 11.6 utilizes a special syntactical keyword of UPPAAL STRATEGO “con-
trol” to synthesize strategies that enable the model to transfer all the stones to
the secondary crusher under any circumstances (i.e., A♦). Query 11.7 verifies
the model to see whether the agents are able to transfer stones within a time
limit (i.e., “x≤MAXTIME) under MP”), when their behaviors are restricted
by the strategy (i.e., “under MP”). These queries provide a means of syn-
thesizing and optimizing mission plans that handle the uncertain times of task
execution and movement, which is better than TAMAA. However, as UPPAAL
STRATEGO still adopts exhaustive model checking to generate mission plans
(strategies) by queries like Query 11.6, the state-space explosion problem is
inevitable when the system is large and complex.

Experimentation using MCRL. In this experiment, we train and reform
the TA model of TAMAA in the way described in Section 11.4.2. Then, we
synthesize mission plans for 2 to 6 autonomous agents. Figure 11.8(a) shows
the comparison of the number of explored states in the verification using dif-
ferent methods, where “OOM” means the verification runs out of memory and
fails to generate a result. As shown in Figure 11.8(a), MCRL is able to gener-
ate a result for all the cases and explores much less states than the other two
methods. This demonstrates that the new approach is applicable and scalable
to solve the mission-planning problem for larger numbers of agents. We ex-
periment up to 6 agents, however we believe that MCRL is able to handle even
larger numbers of agents.

11.5.1 Discussion
From the experimental results we can conclude that MCRL can generate results
for up to 6 agents, TAMAA for maximum 4 agents, and UPPAAL STRATEGO
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(a) The number of states explored (b) The time consumption

Figure 11.8: Experimental result of the algorithm performance of synthesizing
mission plans for different numbers of agents using three methods

for maximum 2 agents (see Figure 11.8(a)). Figure 11.8(b) shows the compu-
tation time of synthesizing mission plans using different methods. Since the
difference between times are significantly large, in order to show the data in
one graph, the Y-axis is not entirely equidistant, as from 8 we skip numbers.
Since TAMAA and UPPAAL STRATEGO fail to generate results when agents
are more than 4 and 2 respectively, the black portion of the graph indicates
that the methods exhaust memory and return an “out of memory” error after
large amounts of time, respectively. The computation time of MCRL is the
sum of computing all phases, including data gathering, model training and re-
forming. As the number of agents grows, the time increase of computation is
nearly linear. In the case of 3 agents, TAMAA costs the least time, as UPPAAL
STRATEGO and MCRL consider all the situations of uncertain task execution
and movement times, which are not dealt with by TAMAA. In the case of 4
agents, TAMAA can still generate results but costs more than 5 hours, whereas
MCRL only needs nearly 3 minutes.

Beside the ability of handling larger number of agents, MCRL also provides
a way to analyze the synthesized mission plans. Given the model with a Q-
table, we can inspect sample mission plans via simulation query as follows:

simulate[<=45; 2]{ position, task+6}, (11.8)

where tasks and positions are encoded as different levels, and the simulation
runs 2 rounds and 45 time units for each round. The result of the simulation
query is depicted in Figure 11.9, which indicates that the agent probably goes
to the primary crusher at milestone C or D (see Figure 11.3(a)), to carry out
the unloading task. It is due to the fact that, in case either milestone is being
occupied, the agent knows to go to the other one to avoid unnecessary waiting.
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Figure 11.9: Two samples of mission plans

Figure 11.10: A scenario where agent 1 learns in the training phase

This “intellegence” is obtained through the model-training phase, which is one
of the benefits of adopting Q-learning. One can design various queries to ana-
lyze the synthesized mission plans in this integrated method, which is another
contribution of MCRL.

By verifying Query 11.9, we can get the counter-example of the query that
enables one to understand how the choice is made.

A� agent[1].unload==FIN imply movement1.C (11.9)

As illustrated in Figure 11.10, when agent 1 finishes the loading task, agent 2
is occupying the primary crusher at position D and unloading stones. At this
moment, if agent 1 goes to position D, it needs to predict whether agent 2 is
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still there, which entails that agent 1 has to wait. To achieve this, we employ
the attribute “ST” (execution status of tasks) in Definition 1.

The moment agent 1 finishes its task at position B, it sends a request to ob-
tain the execution status of the agent working at position D, which contains two
elements: execution status (ES ) and worst-case-execution-time of the current
task (WCET ). Based on the movement TA of agent 1, it is aware of its travel-
ing time of reaching position D. Hence, ES of agent 2 can be easily predicted
by the following formula:

ES2(c+ µ1) =


FIN , ES2(c) == FIN ,

UFIN , ES2(c) 6= FIN & c+ µ1 <WCET 2,

WFIN , ES2(c) 6= FIN & c+ µ1 ≥WCET 2,

(11.10)

where c is the current time, and µ1 is agent 1’s traveling time to position D. For-
mula 11.10 means: (i) if agent 2’s current task has finished at the moment, after
the traveling time of agent 1, it is still “finished”, or, (ii) if the future time point
(c + µ1) is less than the WCET of agent 2’s current task, it is “unfinished”,
otherwise (iii) it “will-be-finished”. This formula provides a conservative pre-
diction if the WCET is different from the BCET of the task. One can change
WCET in Formula 11.10 with BCET to make aggressive predictions.

Once the states of the model are distinguished in this way, the learning algo-
rithm is able to gradually acquire the optimal decisions for different situations,
after multi-rounds of simulation. For example, in the data-gathering phase, we
obtain the state-action pairs of agents going to positions C and D. The learning
algorithm assigns higher values to the ones with less time consumption, there-
fore, like the situation in Figure 11.10, when the predicted execution status of
agent 2 is unfinished, agent 1 going to position C is “reinforced” because it
is faster. Moreover, Query 11.11, a modified version of Query 11.9, can be
satisfied, which means the observation in the sample is generally held by the
mission plan.

(agent[1].load == FIN && agent[2].unload == UFIN)

−− >(agent[1].unload == FIN imply movement1.C)
(11.11)

Besides this example, one can specify various requirements by using CTL/TCL
queries, and apply MCRL to synthesize mission plans and verify them by model
checking. To the best of our knowledge, the ability of synthesizing verifiable
mission plans for large numbers of agents is not provided by any existing solu-
tion in the literature.

Although promising, one observation of MCRL is that if the simulation
rounds in the data gathering phase are not enough, and thus do not obtain
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enough data, the method is unable to synthesize valid mission plans, even when
there exists one solution in the original model. Currently, the number of sim-
ulation rounds is decided based on the experience of designers, and a method
to infer the number is needed in the future work. However, according to the
experiments (see Figure 11.8(b)), we know that, even including all phases of
MCRL, the total time consumption is much less than other two methods when
the number of agents grows.

11.6 Related Work

Recently, there has been a rising interest in policy synthesis for autonomous
systems. Wang et al. [21] propose a novel POMDP (Partially Observable
Markov Decision Processes) formulation to synthesis policies over a vast space
of probability distributions so that their approach is capable of handling uncer-
tain obstacles. Bouton et al. [22] also employ POMDP for modeling, and their
solution enables the autonomous vehicles to adapt to the behavior of other
agents. Nikou et al. [23] propose an automata-based solution for controller
synthesis of multi-agent path planning, where Metric Interval Temporal Logic
(MITL) is used to describe each agent’s individual high-level specification. In
contrast to these studies, our approach combines model checking and reinforce-
ment learning so that both merits benefit our solution that proves to be accurate
and scalable.

The combination of formal methods and learning algorithms is a recent
trend that attracts a large body of research work. Li et al. [24] utilize the
expressiveness of formal specification languages to capture complex require-
ments of robotic systems to construct reward functions of reinforcement learn-
ing so that they are interpretable. Bouton et al. [25] propose a generic approach
to enforce probabilistic guarantees on agents trained by reinforcement learning.
Mason et al. [26] present an assured reinforcement learning algorithm using
abstract Markov decision processes and probabilistic model checking to es-
tablish abstract policies for autonomous agents that are formally verified. As
aforementioned, UPPAAL STRATEGO is a new branch of UPPAAL designed by
David et al. [9], which adopts reinforcement learning algorithms to refine the
synthesized strategies for winning priced timed games. However, as different
from these studies, our approach focuses on using reinforcement learning to
replace exhaustive model checking for mission-plan synthesis of multi-agents,
so that the state-space explosion is alleviated.

To the best of our knowledge, the first attempt to solve the state-space-
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explosion problem of model checking using reinforcement learning is done
by Behjati et al. [27]. These authors propose a bounded rational verification
approach for on-the-fly model checking. However, this method is limited to
non-timing LTL properties.

11.7 Conclusion and Future Work
We present a novel mission-plan synthesis method called MCRL that can han-
dle large numbers of autonomous agents. The method adopts formal mod-
eling to capture the behavior of autonomous agents and Q-learning to train
the model and synthesize mission plans in the form of Q-tables. We demon-
strate MCRL’s ability of handling multiple agents by an experiment, and com-
pare the result with TAMAA and UPPAAL STRATEGO. The experimental results
show that the computation time of MCRL increases linearly with the number of
agents, whereas the other two approaches show an exponential increase of their
computation time, respectively. MCRL is also able to cope with uncertain task
execution and movement times, which is not supported by exhaustive model
checking in TAMAA. We present means for verifying and analyzing the syn-
thesized mission plans using model checking to ensure safety-critical require-
ments. As the current approach does not consider unforeseen situations such as
undetected obstacles, one direction of the future work is to introduce statistical
model checking into our method to cope with probabilistic situations. Another
possible direction will focus on integrating Q-learning directly into the gener-
ation of the state space with UPPAAL, and possibly on applying other machine
learning or AI algorithms to tame verification scalability or guide the model
checking itself.
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