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Abstract
The last decade has seen a dramatic increase in small satellite missions for commercial, public, and government intelligence 
applications. Given the rapid commercialization of constellation-driven services in Earth Observation, situational domain 
awareness, communications including machine-to-machine interface, exploration etc., small satellites represent an enabling 
technology for a large growth market generating truly Big Data. Examples of modern sensors that can generate very large 
amounts of data are optical sensing, hyperspectral, Synthetic Aperture Radar (SAR), and Infrared imaging. Traditional han-
dling and downloading of Big Data from space requires a large onboard mass storage and high bandwidth downlink with a 
trend towards optical links. Many missions and applications can benefit significantly from onboard cloud computing similarly 
to Earth-based cloud services. Hence, enabling space systems to provide near real-time data and enable low latency distribu-
tion of critical and time sensitive information to users. In addition, the downlink capability can be more effectively utilized 
by applying more onboard processing to reduce the data and create high value information products. This paper discusses 
current implementations and roadmap for leveraging high performance computing tools and methods on small satellites 
with radiation tolerant hardware. This includes runtime analysis with benchmarks of convolutional neural networks and 
matrix multiplications using industry standard tools (e.g., TensorFlow and PlaidML). In addition, a ½ CubeSat volume unit 
(0.5U) (10 × 10 × 5  cm3) cloud computing solution, called SpaceCloud™ iX5100 based on AMD 28 nm APU technology is 
presented as an example of heterogeneous computer solution. An evaluation of the AMD 14 nm Ryzen APU is presented as 
a candidate for future advanced onboard processing for space vehicles.
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1 Introduction

There are numerous studies and argumentation for increased 
onboard autonomy and data information processing to pro-
vide more efficient use of the relatively limited communica-
tion link bandwidth on small satellites [1–3]. Expanding on 
the needs of intelligent processing, it is especially relevant to 
study the rapidly evolving field Earth Observation driven by 
advances in sensor technologies. ESA’s Φ-lab at the ESRIN 
facility has led several workshops in the context of artificial 
intelligence (AI) for Earth Observation (AI4EO) and written 
a European AI research agenda [4]. The agenda identifies 
a range of challenges and opportunities for ensuring Euro-
pean pooling of resources, talent supply, digital environ-
ment for rapid prototyping, and development of solutions to 
capture the opportunities. The landscape formed around the 
transformative AI technology is today dominated by United 
States and China. ESA have formulated several candidate 
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projects in the mid-technology readiness level (TRL) range 
within the General Study Technology Programme (GSTP) 
Element 1 “Develop” AI 2019 compendium [5]. These can-
didate projects are of strategic importance to current and 
future space systems and space exploration and cover both 
data exploitation and operations. The proposed develop-
ments are categorized in these areas:

• Smart payload data
• AI in data exploitation
• AI in operations
• Guidance, navigation, and control
• Edge/onboard AI

This paper covers architectural and software aspects of 
Edge/onboard AI and Smart Payload Data but uses tool-
chains common with cloud architectures on ground and 
hence AI in data exploitation and operations. The presented 
architecture can also be applied to guidance, navigation, and 
control (GNC). The commonality with hardware and soft-
ware development environments on ground is important to 
simplify deployment of AI in space systems. It is further-
more important for cost and resource sharing reasons, where 
existing code from industry or consumer business can be 
reused and a wider access to talent is possible.

To make a difference in the information market it is 
important to provide an infrastructure and ecosystem that is 
generic while still offering specialization at the same time 
in order to minimize the size, weight, and power (SWaP) 
for small satellites. This is especially important, since small 
satellites is driving many new products and services [6].

The authors have explored edge computing and espe-
cially onboard AI data processing since 2013, leading up to 
a scalable radiation tolerant heterogeneous architecture first 
implemented using AMD  1st generation (28 nm) G-series 
System-on-Chip (SOC) paired with MicroSemi FPGA on 
an Input/output (IO) expanded industrial Qseven form fac-
tor board [6]. AMD denotes their SOCs as accelerated pro-
cessing units (APUs). This paper expands on the previous 
work to include a full heterogeneous computer architecture 
also for AMD 2nd generation (28 nm) G-series SOC, AMD 
R-series (28 nm) SOC, and the latest AMD V1000 Series 
(14 nm) SOC [7, 9].

2  Related work

Due to increasing demands of onboard sensor and autono-
mous processing, research has long focused on high perfor-
mance and reliability. The adoption of graphical processing 
units (GPU) in space is emerging rapidly due to the neces-
sity of handling massive data in-orbit or in deep space. One 
example of a CubeSat with heterogeneous architecture is 

the NASA Hyperspectral Thermal Imaging (HYT) mission 
being integrated by University of Hawaii [10].

Processing capabilities on CubeSat has been limited due 
to available SWaP and novel computer architectures have 
been explored like hybrid and reconfigurable computing. 
George and Wilson present an overview of different architec-
tures, methods, and alternatives for onboard space comput-
ing in an overview paper [8]. The authors also describe the 
radiation effects that are shared between all space comput-
ers including the presented architecture in this paper. The 
reconfigurable computing part is defined in a field program-
mable gate array (FPGA) while hybrid computing is syno-
nym with heterogenous computing, i.e., the combination of 
CPU + GPU, CPU + FPGA on the same chip or board. Fault 
tolerant computing is needed for space computers due to the 
radiation background effects and uses a combination of tech-
niques also common with the presented architecture. These 
include information redundancy exemplified by error detec-
tion and correction coding (EDAC), error correcting codes 
(ECC), cyclic redundancy check (CRC), algorithm-based 
fault tolerance (ABFT), and parity checking. Checkpoint 
and exception handling are prominent examples of software 
redundancy.

Adams et al. of University of Georgia have investigated 
a similar approach of hybrid processing as the authors with 
a combination of Nvidia Tegra TX2i and Microsemi Smart-
Fusion2 [9]. It shares similar features with the architecture 
presented in this paper, including the physical form fac-
tor of PC/104, stacking connector, and standard protocols. 
However, there is a big difference in radiation performance 
behaviour between the Nvidia TX2 and the AMD SOC, 
which is further discussed below. Very similarly, Adams 
et al. use the SmartFusion2 as a trusted control node and 
watchdog of the larger CPU + GPU SOC. In the heteroge-
neous architecture the FPGA use is a bit expanded as it has 
redundant communication paths to the SOC and can have 
isolated hybrid compute tasks separate from the watchdog 
functionality as further described below.

ESA has investigated GPU for space applications through 
analysis of different low-end and high-end GPUs from radia-
tion and power consumption perspectives in the GPU4Space 
project [10].

NASA has conducted several studies from a radiation per-
spective on different GPUs including from both Nvidia and 
AMD [11, 12, 14]. Notable, Salazar et al. have conducted 
radiation testing on five COTS graphic cards, of which two 
AMD GPUs and three Nvidia GPUs, aiming for application 
on the International Space Station (ISS) in low earth orbit 
(LEO) radiation environment [14]. Top three among five 
GPUs were chosen to test under the total dose of 6 krad. 
However, 6 krad is very low and ISS is not a representative 
environment for most missions. An expanded description of 
radiation effects is discussed in Sect. 4. None of the cards 
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failed in a permanent failure, all the cards have several fail-
ures, i.e., functional interrupts which are required a reboot or 
power cycle to get the control again. MSI HD6450 employed 
with AMD’s GPU has performed the best and recorded 
43.1 days of MTTFI (the mean time to functional interrupt).

An important rationale for the use of GPUs in space is the 
energy efficiency for a computing task. Kosmidis et al. and 
Tsog et al. have shown that GPUs can have a significantly 
higher power efficiency compared to CPU for the same com-
putation [13, 14].

2.1  Heterogeneous computing architecture 
overview

Building on the initial Qseven standard derived heterogene-
ous design described in refence 7, Unibap AB and Troxel 
Aerospace Industries, Inc have coordinated to develop a 
next-generation onboard heterogeneous/hybrid computing 
platform for intelligent processing, e.g., Big Data analyt-
ics and Artificial Intelligence (AI) processing to address 
the need of onboard data processing using the AMD V1000 
Series 14 nm embedded family of SOCs and the Microchip 
PolarFire FPGA.

The initial compute architecture laid the foundation to the 
presented × 86 embedded computer using SOC/APUs from 
AMD. The SOC devices are from the FT3/FT3b footprint 
compatible 1st and 2nd generation G-series SOCs featuring 
multi-core 64-bit CPU cores and integrated Graphical Pro-
cessing Unit (GPU). and paired with a Microchip/Microsemi 
SmartFusion2 FPGA, which includes an ARM Cortex M3 
Microcontroller and high-speed IO. The industrial standard 
Qseven interfaces are supported together with a wide range 
of IO expanded through the FPGA. Figure 1 illustrates the 
heterogeneous/hybrid architecture combining × 86 SOC, 
ARM-based FPGA and optionally additional accelerators 
(e.g., Intel Movidius Myriad ASICs).

Figure 1 illustrates the initial heterogenous architecture 
as described above. From a raw theoretical performance 
view, the AMD G-series SOCs have up to 87 GFLOPS 
GPU FP32, single precision performance. Common space 
interfaces such as SpaceWire, SpaceFibre and RapidIO can 

be supported through the FPGA or external circuits. The 
data rate limitation in the heterogeneous SOC-FPGA link 
is 10 Giga Transfer per second (GT/s) (bidirectional) over 2 
lanes PCIexpress generation 2. The DDR3 memory support 
Error Correction Code (ECC) on both the AMD SOC and 
the FPGA and operate at 1066 or 1333 MHz on the AMD 
and 667 MHz on the FPGA. To simplify integration of new 
functions in the FPGA, Unibap developed a custom Direct 
Memory Architecture (DMA) for the heterogeneous comput-
ing architecture interaction between the AMD SOC and the 
FPGA over PCIexpress. Theoretically using two lanes of 
PCIe, an actual real data flow of 8 Gigabit/s (Gbps) is theo-
retically possible without the protocol overhead. Unibap has 
demonstrated a sustained heterogeneous bandwidth of 5.7 
Gbps (i.e., 720 MB/s) using DMA over the PCIe interface.

The heterogeneous PCIe link between the AMD SOC and 
the FPGA is used in the NASA HYTI mission by integrating 
a DMA Camera Link sensor interface and providing DMA 
interfaces to S- and X-band radios [10].

For the purpose of demonstrating a real implementa-
tion of the architecture, a Qseven compute solution in a ½ 
CubeSat volume unit (0.5U) (10 × 10 × 5  cm3) called Space-
Cloud™ iX5 is presented as an example of a heterogeneous 
computing solution suitable for spaceflight that provides 
advanced onboard processing for space systems.

2.2  High performance computing tools in space

The AMD V1000 Series SOC and AMD R-Series SOCs 
advances the concept of heterogeneous computing by inte-
grating hardware features for rapid IO memory translation 
(IOMMU) and instructions from Heterogeneous System 
Architecture (HSA) standard led by HSA Foundation [15].

Supporting HSA has significant benefits to the compute 
architecture as the V1000 and R-Series can be made to lev-
erage AMD’s high-performance computing (HPC) software 
stack called Radeon Open Compute (ROCm) [16]. A par-
ticularly interesting aspect of the ROCm stack is that is can 
convert and execute Nvidia CUDA code and hence provide 
an avenue for radiation tolerant execution of CUDA code. 
This is also of interest, since large algorithm investments 

2 GB DDR3 
ECC

AMD
x86_64

SOC
(Linux, XEN 
Hypervisor)

512 MB 
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FPGA
(FreeRTOS)
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PCIe 
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Fig. 1  Illustration of the heterogeneous compute architecture as implemented on the Qseven industrial form factor compute board
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have been made in the CUDA framework and ROCm offer 
an avenue to leverage these investments on an open source 
platform.

ROCm is an open source high performance computing 
platform for GPU accelerated platforms. The open source 
aspect of the ROCm stack is important from a software 
radiation hardening perspective as it allows for injection of 
time and executing state monitoring in the code, as well 
as review and modifications of choice. The main develop-
ment of ROCm is done by AMD and currently it is target-
ing mainly Linux operating systems. As illustrated in Fig. 2, 
ROCm provides a complete software stack, from the Linux 
kernel driver, to compiler support and common libraries 
and software for machine learning. The core Linux driver 
of ROCm is accepted upstream in the Linux kernel. Cur-
rently, the latest release of ROCm is version 3.3.0 which 
have upstream support in Linux kernel 4.15 and 5.3 respec-
tively for R-series and V-series. ROCm supports important 
features for heterogeneous computing, including:

• multi-GPU coarse-grain shared virtual memory,
• process concurrency and pre-emption,
• large memory allocations,
• HSA signals and atomics,
• user-mode queues and DMA,
• standardized loader and code-object format,
• dynamic and offline-compilation support,
• peer-to-peer multi-GPU operation with RDMA support,
• profiler trace and event-collection API,
• systems-management API and tools

ROCm is the first HSA-compliant HPC software stack 
and is designed to allow other hardware vendors to adopt and 
develop their drivers to extend the ROCm ecosystem. The 
aim of HSA generally is to decrease the development com-
plexity of applications on heterogeneous processing units 
(e.g., CPU, GPU, FPGA, etc.) for developers. Moreover, it 

allows to handle coherent shared memory through the entire 
heterogeneous processing units. For example, by allowing 
this, developers do not need to care about the different mem-
ory structures of CPU and GPU. Furthermore, the process-
ing units see data in coherent shared memory in the same 
way. It reduces the mechanical data copying process between 
the memories of different processing units.

Comparing the 1st and 2nd generation G-series SOCs to 
the V1000 series reveal a significant performance uplift in 
performance, partially due to HSA but mostly because of a 
new manufacturing process and new CPU + GPU architec-
ture. The performance uplift and use of ROCm HPC soft-
ware stack is demonstrated with benchmarks in this paper. 
Overall GPU compute performance of the V1000 family in 
16 bit (half) floating point (FP16) is up to 3.7 TFLOPs and 
the SOC support up to 8 CPU threads execution using simul-
taneous multithreading (SMT) on quad × 86 CPU cores from 
the AMD ZEN microarchitecture.

3  Stacking interface for modularity 
and form factor

The SpaceCloud™ iX5 is modularized by providing a core 
compute board and a common stacking interface based on 
the Samtec LSHM-150-04.0-L-V-A-S-K-TR connector [17]. 
The physical outline form factor of the printed circuit board 
(PCB) is aligned to the Pumpkin PCB Specification [18] 
with all PC-104 related connectors removed and replaced. 
Figure 3 shows a photograph of the Unibap e2160 heteroge-
neous compute module and the iX5 CORE carrier board on 
the left. On the right the stacking connectors are highlighted. 
The system is designed to operate on 12 V DC voltage and 
fit within a 0.5 U (10 × 10 × 5 cm) volume.

Figure 4 shows a photograph of the iX5 compute mod-
ule, CORE carrier board and EXTENSION board stacked 
together.

The signal partitioning and capabilities in the stacking 
connectors on the iX5 CORE module are defined in Table 1.

4  Single‑event effect mitigation middleware 
(SMM)

A brief discussion of radiation effects is required to under-
stand the value of Troxel Aerospace’s single-event effect 
mitigation middleware (SMM) and its relevance to ena-
bling the use of COTS processors in space applications. 
Several types of radiation effects have the potential to 
damage or create incorrect operating conditions in elec-
tronics, e.g., processors, while operating in a space envi-
ronment. Total ionizing dose (TID) can be thought of as a 
build-up of absorbed radiation over time that changes the 
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electrical characteristics of transistors. A transistor’s abil-
ity to effectively switch without increasing leakage current 
degrades as dose increases to a point, where the transis-
tor will either no longer switch and/or becomes stuck in 
a closed or open state. TID effects are a combination of 
numerous particles strikes and/or gamma irradiation over 
time. Other effects occur based on a single particle strike 
and are generally grouped into the category of single-event 
effects (SEEs). Within this category of radiation effects, 
single-event latchup (SEL) is a destructive event, whereby 
a single particle, typically a heavy ion, concentrates 
enough charge within a transistor to cause a charge path 
between two of the three contact points of the transistor 
causing an un-designed current to flow between them. If 
the current flow is sufficiently large or flows in an inappro-
priate direction, the transistor suffers permanent damage 
such that it becomes a current short or in some other way 
no longer functions properly. Other types of SEE, such 
as single-event upsets (SEUs) and single-event functional 
interrupts (SEFIs), are non-destructive events caused by a 
single particle (typically a proton, neutron, or heavy ion) 
that either causes a memory bit to “flip”, i.e., change from 

1 to 0 or 0 to 1, or cause the device to enter an incorrect 
state of operations, respectively.

Radiation hardened processors (rad-hard processors) are 
designed with various techniques at the basic silicon transis-
tor layer to provide some level of immunity to the radiation 
effects previously described. Typical TID immunity levels 
exceed 100 krad up to over 1 Mrad and SEL immunity is 
typically above 75  MeVcm2/mg (Si). Non-destructive SEEs 
are designed to be so rare in these devices that they typically 
occur only once in 20 years. Rad-hard processors such as the 
BAE RAD750 [19], BAE RAD5545 [20], Cobham/Geisler 
LEON3FT [21], and Moog Broad Reach BRE440 [22], form 
the basis of many satellite control systems that require a 
high degree of radiation effects immunity, especially large/
expensive spacecraft, human-rated vehicles, and exoplan-
etary missions like the Mars rovers. However, there is a 
large performance price paid for such radiation immunity 
with rad-hard processors being typically tens to hundreds 
of times less capable in processor performance compared to 
modern COTS processors [23]. If chosen carefully and vali-
dated through extensive radiation testing, COTS processors 
can be selected that have favourable destructive radiation 
effect characteristics—indeed, the AMD processors men-
tioned in this paper have been shown to have favourable TID 
and SEL characteristics [24]. However, all COTS proces-
sors exhibit high rates of non-destructive SEEs compared 
to rad-hard processors and thus typically require frequent 
rebooting to mitigate these effects. The frequency of time 
between reboot vary greatly based on the underlying tech-
nology and the radiation environment in which the processor 
is operating. In benign environments such as the Interna-
tional Space Station, the time between reboot can be weeks 
to months while in more stringent environments such as 
polar orbits, GEO stationary, MEO, or HEO orbits, or exo-
planetary missions, SEFI rates, and time between reboots, 
can be multiple per day. For many missions, particularly 

High speed 
modular stacking 
interface

Fig. 3  Photograph of SpaceCloud™ iX5 core components. Left, IO expanded Qseven compatible compute core (Unibap e2160) with CORE-
1000 carrier board. Right: Photograph of SpaceCloud™ iX5 CORE module with high speed stacking interface for expansion

Fig. 4  Photograph of SpaceCloud™ iX5 CORE and EXTENSION 
module stacked with compute module attached at the top
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expensive or human-rated ones mentioned previously, where 
rad-hard processors are typically used, such reboot rates, and 
moreover, any reboot at all is unacceptable. Additionally, the 
observed SEFI susceptibility of COTS processors has been 
increasing as their feature sizes have decreased (i.e., moving 
from 32 to 28 nm to 14 nm, etc.) reducing times between 
reboot for a given mission.

To overcome this limitation and provide a means to make 
COTS processors viable for space applications that require 
both improved processing capability and reduced radiation 
susceptibility (i.e., less frequent reboots) Troxel Aerospace 
developed an SEE Mitigation Middleware that greatly 
improves non-destructive SEE upset rates. Troxel Aero-
space’s SEE Mitigation Middleware (SMM) provides core-, 
device-, and system-level fault tolerance by implementing 
multicore checking in the background in Linux. This robust 
middleware for heterogeneous multicore processors provides 
resource-aware configuration and execution management, 
and fault detection and mitigation. The SMM is designed 
to operate as either a background “scrubbing” task or as an 
interactive fault correction mechanism directed by missions 
software. The middleware software layer primarily resides 
between the application layer and the Operating System 
(OS), with extensions into and below the OS, to provide 
intelligent resource, fault, and power management. The 

middleware provides a consistent computing environment 
and application programming interface (API) for fault man-
agement that allows mission software to be largely agnostic 
to the specific underlying hardware, thereby reducing devel-
opment and integration cost, complexity, and schedule.

A functional block diagram illustrating where the middle-
ware resides within a multicore processor software stack is 
shown in Fig. 5. The SMM provides an abstraction layer on 
which mission software, be it command and data handling 

Table 1  Summary of the 
electrical interfaces in the 
high-speed expansion stacking 
interface (level 1 and level 2)

Interface LSHM-150-06.0-F-DV-S-K-TR (100 pin, height 12 mm)

module (level) DD-iX5 CORE (level 1) DD-iX5 EXTENSION (level 2)

Signal definition Device Signal definition Device

CORE Mod-
ule Stacking 
Connector 
Extension

16 × LVDS pair @ 700 Mbps FPGA 2 × I2C FPGA
CAN v2.0b FPGA 2 × USB v2.0 AMD SOC
2 × I2C FPGA SPI FPGA
SPI FPGA I2C AMD SOC
2 × SERDES (10 Gbps) FPGA
12 × GPIO 3.3 V FPGA
PCIexpress × 1 (5 GT/s) AMD SOC

CORE Module 
Stacking Con-
nector Base

3.3 V DC 3.3 V DC
3.3 V on/off FPGA 5 V DC
5 V DC 5 V on/off FPGA
5 V on/off FPGA 12 V DC
12 V DC 12 V on/off FPGA
12 V on/off FPGA Reset FPGA
Reset FPGA 12 × GPIO FPGA
6 × GPIO 3.3 V FPGA PCIexpress × 1 (5 GT/s) AMD SOC
2 × SATA v3 AMD SOC PCIexpress × 4 (20 GT/s) AMD SOC
PCIexpress × 4 (20 GT/s) AMD SOC
2 × USB v3 AMD SOC
2 × USB v2 AMD SOC
I2C AMD SOC
Ground

Mission Software

C&DH Software Applications

Middleware

API

OS

Hypervisor

Multicore processor

Fig. 5  Proposed middleware software architecture
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(C&DH) software or applications, execute to increase port-
ability and fault tolerance. The SMM is largely processor-
agnostic and supports multiple processor architectures with 
core management functions fully portable across proces-
sor and Linux variants. A relatively small portion of the 
middleware is required to be OS- and processor-specific to 
support resource and fault status collection, and to execute 
commands to manage resources, deploy applications, and 
mitigate faults through processor-specific interfaces and 
technology. The technology-agnostic central management 
features of the SMM communicate to the technology-spe-
cific components (i.e., OS and hypervisor kernel extensions) 
through standard interfaces allowing the design to be com-
mon across processor and OS architectures.

The SMM has been deployed on a homogenous quad-core 
ARM processor, the Unibap e2000 and e2100 family featur-
ing AMD 1st Gen SOC fm. “eKabini” and 2nd Gen SOC 
fm. “Steppe Eagle” Series GPU, the Unibap V1000 series 
AMD, and a Digital Signal Processor (DSP), demonstrat-
ing the middleware’s flexibility across platforms. Through 
the completion of a NASA JPL SBIR Phase II program, 
the SMM implementations on the Steppe Eagle and DSP 
were irradiated with 32 h of heavy ions using Texas A&M’s 
Cyclotron in November and December 2019 and demon-
strated SEU (bit-flip) and SEFI immunity for all error events 
observed demonstrating a 720 × increase in non-destructive 
SEE susceptibility. The 720 × increase takes a conservative 
approach by assuming that the next test observation would 
have resulted in an uncorrectable error, which is possible 
but very unlikely. Even so, this is a dramatic increase in 
upset rate. As mentioned in the radiation discussion above, 
this improvement provides a varied benefit depending on 
the mission orbit. To provide two examples, if the proces-
sor would otherwise suffer a SEFI (reboot) every 3 days, 
i.e., a relatively harsh mission, the system would instead 
suffer a SEFI once every 5.9 years with Troxel Aerospace’s 
SMM enabled. In another mission scenario, if the processor 
would suffer a SEFI every 30 days, i.e., a moderately harsh 
mission, the system would instead suffer a SEFI once every 
59 years with the SMM enabled. These results demonstrate a 
substantial improvement in SEFI rate and would make these 
processors viable for a wide range of otherwise inappropri-
ate missions such as autonomous operations, docking, exo-
planetary landings, and other missions described in Sect. 5.

5  Mission scenarios and application

The latest available NASA crosscutting technology road-
map lists key avionics goals to include improved reliabil-
ity and fault tolerance, increased autonomy, reduced size, 
weight, and power (SWaP), and commonality across space-
flight and ground processing systems [25]. Long-duration 

crewed missions, space-based observatories, and solar sys-
tem exploration will require highly reliable, fault-tolerant 
systems. Communication delays, the challenging orbital 
dynamics of Near-Earth Asteroids (NEAs), and extreme 
science missions require increased autonomy for on-board 
decision infrastructures [26]. Future robotic missions will 
involve greater complexity and reactivity, which will require 
increased reliance on autonomy (i.e., advanced onboard pro-
cessing). Deep-space missions that target active, dynamic, 
or time-varying phenomena will need robots that can adap-
tively adjust their configurations and behaviour to changing 
circumstances, and robustly handle uncertainty. Robotic 
missions to NEAs will require the decision-making and 
monitoring processes—currently performed by ground con-
trol—to be performed by onboard autonomous systems [27]. 
Advanced avionics technologies and approaches are needed 
to support these challenging missions.

Subsection TA11.1.1 of the Chief Technologists Office 
Technology Roadmap lists the three areas of flight comput-
ing that are critical to next-generation needs for science and 
exploration to include processors, memory, and high-perfor-
mance flight software [25]. Scalable, multicore processors, 
co-processors, and memory that have a range of capabili-
ties for fault tolerance and recovery are needed for use in 
radiation fields to support an increasingly software-intensive 
onboard environment. Flight software, called on to perform 
a range of functions, including increasing autonomy, will 
require techniques for state-based design and verification 
techniques to manage complexity at design time and ensure 
reliability and safety in operations. Historically, flight com-
puting has focused on tight-loop operations.

Onboard experiments with intelligent onboard processing 
on CubeSats took a significant step forward in 2013 when 
the IPEX CubeSat was launched as a secondary payload. 
IPEX validated a range on board instrument data-processing 
algorithms and autonomy [28, 29].

ESA’s Earth Observation directorate have been pushing 
AI for small satellites through the Φ-Sat-1 satellites. The 
Φ-Sat-1 mission was formulated in response to an ESA chal-
lenge and consists of two 6U CubeSats. The mission will 
demonstrate on-orbit image filtering using AI of hyperspec-
tral images [30]. This mission represent the comprehensive 
approach ESA is taking to identify and deploy AI on space 
mission as discussed in the introduction [4, 5]. Varile et al. 
have explored Convolutional Neural Networks (CNN) for 
autonomous image analysis [31].

Future trends show generalization toward varied require-
ments for flight computing, including hard real-time, mis-
sion-critical calculations that often involve vision-based 
algorithms such as those for entry, descent, and landing; 
high-data-rate instrument throughput imperatives, such as 
those for hyper-spectral and synthetic aperture radar; and 
the increasing use of model-based reasoning techniques like 
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those for mission planning and fault management. Future 
flight computing systems must provide heterogeneous archi-
tectural support across this spectrum of computational driv-
ers, including uncertainty, distribution, concurrency, and 
operations. As more capable science instruments observe 
and capture larger volumes of data, there is a need to develop 
methods for data reduction and triage at the point of collec-
tion. The introduction of intelligent machine-learning algo-
rithms onboard is a critical technology area that is impor-
tant for helping to address the entire end-to-end observing 
path in data-driven environments. Furthermore, the need to 
respond to and update observation plans is a critical part of 
moving towards more autonomous operations. This para-
digm shift will require new onboard capabilities as demands 
for computation, storage, and software continue to grow to 
enable more autonomous operations coupled with onboard 
data services.

Additionally, new paradigms for fleet management and 
sustainment, such as the Digital Twin, which are enabling 
to extended autonomous operations, amplify the need for 
robust onboard computing [32]. Pinpoint landing, hazard 
avoidance, rendezvous-and-capture, and surface mobil-
ity are directly tied to the availability of high-performance 
space-based computing. In addition, multicore architectures 
have significant potential to implement scalable computing, 
thereby lowering spacecraft vehicle mass and power by 
reducing the number of dedicated systems needed to imple-
ment onboard functions. These requirements are equally 
important to space science and human exploration missions. 
In addition, power-efficient, high-performance, radiation-
tolerant processors and the peripheral electronics required 
to implement functional systems could also benefit com-
mercial aerospace entities and other governmental agencies 
that require high-capability spaceflight systems. Advances 
in middleware to support cooperative processing in combin-
ing high-performance multicore general-purpose processors 
(GPPs) and niche co-processors, such as the robust mid-
dleware proposed by Troxel Aerospace, and heterogeneous 
computing architectures by Unibap, is required to achieve 
planned mission performance requirements.

5.1  Applications

There are many mission’s scenarios and applications, where 
massive onboard processing is critical as discussed earlier in 
the paper. Some mission are prime candidates for advanced 
onboard computing, including the following types:

• Autonomous rendezvous and docking
• Quick react, low latency science observations, where 

human time scales are not enough to react
• Exo-planetary avionics and science missions, where mes-

sage latency is too long

• Downlink bandwidth limited missions (high rate sen-
sors), where intelligent data reduction is required

An example of a bandwidth limited mission that leverag-
ing onboard radiation tolerant heterogenous × 86 computing 
is the NASA Hyperspectral Thermal Imaging, HyTI mis-
sion, due for launch in 2021 [10]. The HyTI mission is a 
6U CubeSat that will demonstrate spectral thermal imaging 
from Low Earth Orbit (LEO) orbit with onboard science 
data product generation.

6  Software overview

The heterogeneous architecture allows for software portion-
ing over different compute nodes in the heterogenous archi-
tecture (i.e., multi-core CPU, GPU, and the FPGA in this 
case). It is possible to extend the heterogenous architecture 
with more compute nodes using the available peripherals 
such as PCIe or USB, e.g., Intel Myriad X Vision Processing 
Units (VPU) with 3 TOPS as illustrated in the figure.

For the purpose of benchmarking and demonstrating AI 
software in this paper, the software configuration listed in 
Table 1 was used with either CPU support or both CPU and 
GPU support. The tools clpeak [33] and mixbench [34] was 
used to verify the GPU performance of 87 GFLOP for the 
AMD G-series SOC and 2 TFLOPs for the AMD V1605B 
SOC from the V1000 family.

It is important to note that the AMD HPC software stack 
ROCm is not possible to run on SOC/APUs after version 
1.7 without modification. The official APU support has 
been removed from the packages. Hence, it was needed to 
recompile the entire stack to enable support for the AMD 
embedded series of devices. Bruhnspace corporation and 
Mälardalen University performed the ROCm patching and 
Bruhnspace provide an experimental software build online 
[35] while Unibap has patched the latest ROCm v3.3.0.

To illustrate the use of the “hipify” tool we convert a 
simple squaring CUDA code and execute it.

This example uses a simple squaring example, square.
cu1 to demonstrate the simplicity of using CUDA on AMD 
ROCm. However, it should be noted that “hipify” cannot 
parse CUDA assembler which need to be manually con-
verted to AMD GPU assembler.

$ hipify-perl square.cu>square.cpp // ROCm “Hipify” 
Nivida CUDA example code to generic cpp code.

$ hipcc square.cpp -o square_hip // Compile the cpp code 
with AMD “hip compiler”.

1 https ://raw.githu buser conte nt.com/ROCm-Devel oper-Tools /HIP/
maste r/sampl es/0_Intro /squar e/squar e.cu.

https://raw.githubusercontent.com/ROCm-Developer-Tools/HIP/master/samples/0_Intro/square/square.cu
https://raw.githubusercontent.com/ROCm-Developer-Tools/HIP/master/samples/0_Intro/square/square.cu
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$./square_hip // and finally run it on ROCm stack for 
AMD APU devices.

info: running Square CUDA example on device AMD 
Ryzen Embedded V1605B with Radeon Vega GFX.

info: allocate host mem ( 7.63 MB) info: allocate device 
mem ( 7.63 MB).

info: copy Host2Device info: launch ’vector_square’ ker-
nel info: copy Device2Host.

info: check result PASSED!

7  Intelligent data processing performance 
evaluation

To demonstrate the next-generation intelligent processing 
capabilities of the heterogeneous compute platform, six 
experiments have been conducted in this paper and executed 
on AMD A10-8700P (codename “Carrizo”) R-series SOC 
and AMD V1605B part of the V1000 family of SOCs using 
the ROCm HPC stack (v2.6.0 and v3.3.0).

7.1  Evaluation environment

The experiments are performed on two refence platforms 
featuring V-Series V1605B and A10-8700P APUs from 
AMD. V1605B APU includes gfx902 (Vega) GPU with 
1.1 GHz (15 W TDP setting) clock rate and Ryzen CPU 
with 2 GHz (15 W TDP setting) clock rate [36]. A10-8700P 
APU consists of Excavator CPU and gfx801 GPU that is 
employed in Acer E15 E5-552-T99R model notebook [37]. 
The clock rates of CPU and GPU in A10-8700P APU are 
1.67 GHz and 0.8 GHz, respectively. The software used are 
defined in Table 2.

7.2  Experimental design

Artificial intelligence (AI) enabled applications are one of 
the concepts that should be employed for intelligent onboard 
data processing. TensorFlow2 is explored as machine learn-
ing platform/framework in the experiments. Using Tensor-
Flow, matrix multiplication has been performed for Experi-
ment A on both CPU and GPU with the different sizes of the 
arrays. TensorFlow is an open source machine learning plat-
form involving tensor computations. Matrix multiplication 
is the fundamental of neural network, hence, we selected 
it in this experiment. The aim of this experiment is to dis-
cuss how the platform gains computing performance using 
GPU for the advanced parallel algorithms compared to CPU. 
Furthermore, this experiment indicates the performance of 

Tensorflow framework. Necessary parameters for Experi-
ment A are described in Table 3

Then, in Experiment B, we consider the optimal imple-
mentations of matrix multiplication provided by vendors 
(ROCm) as well as a well-known library (BLAS3) to evalu-
ate the performance capabilities of the platforms. We use a 
code written in C++ for HIP compiler for GPU computing 
and sgemm from BLAS for CPU cores. For comparison rea-
son, we use the program that used in Experiment A as well 
(Table 4).

In Experiment C, we evaluate the inference performance 
when running two different convolutional neural network 
(CNN) across both CPU and GPU on the v1605b and the 
A10-8700P. The networks are from the TensorFlow object 
detection model zoo which are good candidates for transfer 
learning when running detection networks for earth observa-
tion on a satellite. A resolution of 512 × 512 is used, where 
multiple overlapping images can be used to cover the typical 
large sensor sizes seen on satellites.

In Experiment D we benchmark the compute throughput 
and bandwidth of ROCm 3.3.0 running on AMD V1605B.

In Experiment E we evaluate the possibility to do train-
ing on the platform. There are cases when it is impractical 
to get data to ground and where online learning can be done 
on self-supervised data such as anomaly detection on sen-
sor readouts. Included is an experiment, where we train a 
simple Long short-term memory (LSTM) autoencoder on a 
time series anomaly detection dataset. Given the algorithmic 
advancement in where classification workloads have reduced 
in FLOP count by 2 × every 16 months [38] workloads that is 
efficient to train on ground today is likely to become easier 
to train efficiently in orbit during the platforms lifetime.

In Experiment F we test the Intel Movidius Myriad X 
as neural network accelerator that can be used to offload 
calculations from the platform. Networks run in FP16 pre-
cision compiled through the Intel OpenVINO framework.4 
Given the drop in precision and separate implementations, 
a slightly different result is given for the numbers quoted for 
the Myriad X is on a different network.

7.3  Results

Experiment A Tables 5, 6, and 7 present the processing time 
of matrix multiplication on CPU and GPU with respect to 
edge size of matrices in the reference machines V1605B 
with TensorFlow 1.14.1, V1605B with TensorFlow 2.0.0, 
and A10-8700P with TensorFlow 2.0.0, respectively. Tables 
include minimum, maximum, average and median values of 

2 https ://www.tenso rflow .org/.

3 BLAS – Basic Linear Algebra Subprograms https ://www.netli 
b.org/blas/.
4 https ://docs.openv inoto olkit .org/.

https://www.tensorflow.org/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://docs.openvinotoolkit.org/
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the processing time. For the comparison study of CPU and 
GPU, we focus on median values of the processing time. 
We confirm that the processing time on CPU increases rap-
idly, while edge size of matrix increases. Under edge size 
of 100, the usage of CPU could be better than the usage of 
GPU. On the other hand, we see that the processing time 
(median) on GPU is better than CPU when the edge size is 
more than 200.

Furthermore, we can see about 3.1 times improve-
ments between the processing time for the edge size of 
5000 on CPU, as it is 1633.21–1639.05 ms in V1605B and 
5077.05 ms in A10-8700P. This result explains that the next 
generation platform employs a much powerful CPU based 
on AMD ZEN architecture. In the case of the GPU, we can 
see 2 times improvements between the GPUs employed in 
V1605B (about 704 ms for the edge size of 5000) and A10-
8700P (1464.71 ms). In addition, we do not confirm big dif-
ference between the different versions of TensorFlow used 
for the experiments in V1000.

Experiment B Table 8 presents the comparison study of 
processing times of the different implementations of matrix 
multiplication. TF-GPU and TF-CPU describe a matrix 
multiplication code using TensorFlow 2.0.0 on GPU and 
CPU, respectively. HIP means a code provided in ROCm 
software stack and is implemented for GPU using HIP com-
piler. BLAS describes a matrix multiplication code for CPU 
computation using BLAS library. We consider both HIP and 
BLAS as optimized codes, since they are provided by ven-
dors or a well-known benchmarking library. TF is our target 
framework in this paper, and we evaluate it by conducting 
the comparison study with the optimized codes. Naïve is 
a naïve implementation of matrix multiplication for CPU 
written in C. As a note, both HIP and BLAS are written in 
C/C++ , and TF-CPU and TF-GPU are written in Python.

Matrices with edge sizes larger than 128, we see that TF-
GPU performs better than HIP for both reference machines. 
Moreover, TF-CPU on A10-8700P leads BLAS on A10-
8700P as well. Only TF-CPU on V1605B performs less 
compared to BLAS on V1605B. Since BLAS on V1605B 
leads BLAS on A10-8700P, it can be concluded that Tensor-
Flow 2.0.0 is not optimized well for Ryzen CPU in V1605B. 
Although GPU in A10-8700P has less performance capabil-
ity compared to GPU in V1605B, HIP on A10-8700P per-
forms better than HIP on V1605B. This could be explained 
that the optimization of ROCm for A10-8700P is better 
than V1605B, since A10-8700P is one of the oldest plat-
forms started with the ROCm development. In other words, 
there are room for more improvement in ROCm for gfx902 
(Vega) GPU. The results of matrices with edge sizes smaller 
than 64 are less informative. This is, because, the different 
programming languages use, and their time measurement 
methods are slightly different. Hence, we can explain the 
overhead time influences on the results a lot in these cases. 

As a conclusion of this experiment, we can emphasize the 
optimization of TensorFlow fits well with our reference 
machines.

Experiment C Two pre-trained models, Model A and 
Model B, are considered in this experiment. Model A is a 
mobilenet with ssd5and Model B is a resnet50 with faster 
rcnn.6 The experiment is run on randomized data across 256 
images split into 16 batches and on 32-bit floating point 
(single precision). The APU is set to do automatic thermal 
management (to the threshold 12 W or 15 W TDP) to get 
a balanced overall system performance. Adding additional 
priority to the GPU can yield faster inference as indicated 
in the GPU high column but with CPU clocks dropping to 
400 MHz and the total power increasing to maximum TDP 
(Table 9).

Experiment D Figure 6 show that the maximum through-
put of 2.2 TFLOP is reach at 9 GB/s bandwidth and 2 
TFLOP throughput at 16.5 GB/s bandwidth is measured 
using mixbench (HIP, alt mode) for the AMD V1605B 
embedded APU in single memory configuration. The 
V1605b support dual memory configuration.

Experiment E The training benchmark is run using a 
128 LSTM run on a single dimensional temperature data-
set. While this is limited in scope this mirrors the useful-
ness of, e.g., monitoring sensors on board and finding out 
when adjustments needs to be done to various instruments. 
This training is compared to a typical server as found on the 
ground, in this case a 24 core AMD ThreadRipper with a 
Nvidia 2080 RTX GPU. Given the limited size of the net-
work this perform similarly on a server class cpu and gpu 
and the difference to the embedded platform for this type of 
workload is smaller making the case for training directly on 
the V1605B platform stronger.

Model V1605B Ground-
based 
server

CPU GPU CPU GPU

Time series anomaly detection (steps/s) 10 50 175 280

Experiment F The Myriad X experiment is run over USB 
3.0 on a Mobilenet SSD (depth multiplier 1.0) with only 1 
output category and 16-bit floating point. The network has 
a fixed input resolution of 480 × 384.

Using both execution slots and queuing up 32 jobs the 
average rate that can be processed is 29,8 fps

5 https ://githu b.com/tenso rflow /model s/blob/maste r/resea rch/objec 
t_detec tion/g3doc /detec tion_model _zoo.mdssd _mobil enet_v1_coco.
6 https ://githu b.com/tenso rflow /model s/blob/maste r/resea rch/objec t_
detec tion/g3doc /detec tion_model _zoo.mdfas ter_rcnn_resne t50_coco.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.mdssd_mobilenet_v1_coco
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.mdssd_mobilenet_v1_coco
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.mdfaster_rcnn_resnet50_coco
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.mdfaster_rcnn_resnet50_coco
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8  Conclusions

A radiation tolerant CubeSat compatible onboard infor-
mation processing architecture have been prototyped and 

evaluated. Evaluation of AMD 28 nm and 14 nm embed-
ded products with multicore CPU and GPU have shown 
significant benefits in acceleration of radiation tolerant and 
potentially radiation hardened compute tasks.

Fig. 6  Throughput vs bandwidth benchmark of ROCm v3.3.0 on AMD V1605b using mixbench

Table 2  Verified software AMD 
G-series SOC, AMD R-series 
AMD V1000

Software name G-series R-Series/V-series V-series

(L)Ubuntu Operating system 18.04.4 6 AMD64 18.04.4 AMD64 18.04.4 AMD64
Linux kernel 5.4.28 5.0.0 5.4.28
AMD gpu kernel driver amdgpu amdgpu Amdgpu
AMD IOMMU driver – IOMMU2 IOMMU2
AMD HSA driver amdkfd amdkfd Amdkfd
AMD ECC memory kernel driver AMD64 EDAC – –
Unibap DMA kernel driver 1.0 – –
GCC 7.2 8.1 7.2
cmake 3.11 3.11 3.16
LLVM 10.0.0 6.0.0 11.0-git
Mesa, patched by Unibap 20.1-devel 18.2 19.2
Libclc, patched by Unibap 2020–02-22 – –
ROCm, patched by Unibap – 2.6.0 3.3.0
OpenCL 1.2 2.0 2.0
OpenGL 4.6 4.6 4.6
Vulcan 1.2 1.2 1.2
Theano 1.0.0 – –
Caffe 1.0 – –
OpenCV 3.3.1 4.1.1 4.1.1
Robot Operating System (ROS) 1.12.13 (Kinetic) – –
TensorFlow 1.4 1.14.1/2.0 1.15.2/2.2
pyTorch 1.6a
PlaidML 0.6.4 0.6.4
Clpeak [19] 2019–09-05 2019–09-05 2019–09-05
Mixbench (HIP) [20] 2020–05-19
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AMDs high performance computing software stack 
ROCm have been patched to enable embedded devices and 
shown to support machine learning software like Tensor-
Flow and execution of CUDA code in a radiation tolerant/
hardened silicon.

The experiments show that the theoretical compute 
throughput is reached in benchmarks but real applications 
using TensorFlow can be further optimized.

It has been shown that deep learning training can effi-
ciently be performed in orbit and that neural networks tuned 
for Earth observation applications can be used for near real-
time onboard information processing and onboard training.

The heterogeneous architecture is tested by expanded the 
AMD SOC with an Intel Movidius Myriad X neural accel-
erator which can significantly increase the AI processing 
speeds but at lower bit resolution.

Table 3  Parameters for Experiment A

Parameters Values

Edge size of matrix 10, 20, 50, 100, 200, 
500, 1000, 2000, 
5000

Experiments number 100 times

Table 4  Parameters for Experiment B

Parameters Values

Edge size of matrix 8, 16, 32, 64, 128, 256, 
512, 1024, 2048, 
4096

Experiments number 10 times

Table 5  Processing time on 
both CPU and GPU in V1605B 
(TF 1.14.1) with respect to edge 
size of matrix

Edge size On CPU (ms) On GPU (ms)

Min Max Average Median Min Max Average Median

10 0.12 0.20 0.15 0.15 0.39 1.77 0.63 0.58
20 0.12 0.16 0.13 0.12 0.39 1.89 0.66 0.58
50 0.13 1.74 0.24 0.19 0.36 3.82 0.58 0.50
100 0.21 0.92 0.31 0.27 0.35 3.17 0.78 0.68
200 2.43 10.64 4.62 4.05 0.32 8.72 0.64 0.53
500 30.71 49.57 36.23 35.57 1.38 32.31 2.10 1.77
1000 199.05 278.22 213.13 211.69 6.30 142.80 8.29 6.98
2000 96.27 125.78 103.78 104.17 34.82 541.33 46.17 41.36
5000 1566.19 1691.06 1631.44 1633.21 639.78 3804.77 733.65 704.74

Table 6  Processing time on 
both CPU and GPU in V1605B 
(TF 2.0.0) with respect to edge 
size of matrix

Edge size On CPU (ms) On GPU (ms)

Min Max AVERAGE Median Min Max Average Median

10 0.13 0.33 0.16 0.16 0.37 2.56 0.77 0.65
20 0.13 0.63 0.24 0.21 0.38 2.35 0.61 0.55
50 0.12 0.21 0.13 0.13 0.40 3.54 0.62 0.56
100 0.23 1.56 0.45 0.39 0.36 3.64 0.54 0.47
200 2.90 14.41 6.49 6.65 0.36 8.93 0.65 0.51
500 17.89 73.60 45.14 45.27 1.14 32.49 1.71 1.31
1000 15.60 342.25 259.27 273.90 5.85 139.83 7.86 6.46
2000 99.04 2075.00 487.88 107.33 35.27 525.53 46.10 41.39
5000 1573.95 7671.68 1696.15 1639.05 653.73 3839.39 733.60 704.28
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