Product Line Adoption in Industry: An Experience Report from
the Railway Domain

Muhammad Abbas

muhammad.abbas@ri.se
RISE Research Institutes of Sweden
Vasteras, Sweden

Eduard Paul Enoiu
eduard.paul.enoiu@mdh.se
Malardalen University
Vasteras, Sweden

ABSTRACT

The software system controlling a train is typically deployed on
various hardware architectures and must process various signals
across those deployments. The increase of such customization sce-
narios and the needed adherence of the software to various safety
standards in different application domains has led to the adoption
of product line engineering within the railway domain. This pa-
per explores the current state-of-practice of software product line
development within a team developing industrial embedded soft-
ware for a train propulsion control system. Evidence is collected
using a focus group session with several engineers and through
inspection of archival data. We report several benefits and chal-
lenges experienced during product line adoption and deployment.
Furthermore, we identify and discuss improvement opportunities,
focusing mainly on product line evolution and test automation.

CCS CONCEPTS

« Software and its engineering — Software product lines.

KEYWORDS

Software product-line engineering, Challenges and opportunities,
Overloaded assets

ACM Reference Format:

Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard Paul Enoiu,
Mehrdad Saadatmand, and Daniel Sundmark. 2020. Product Line Adoption
in Industry: An Experience Report from the Railway Domain. In 24th ACM
International Systems and Software Product Line Conference (SPLC °20), Oc-
tober 19-23, 2020, MONTREAL, QC, Canada. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3382025.3414953

1 INTRODUCTION

Software running on train systems has to allow a high degree
of customization to address the varying regional standards and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7569-6/20/10...$15.00
https://doi.org/10.1145/3382025.3414953

Robbert Jongeling
robbert.jongeling@mdh.se
Malardalen University
Vasteras, Sweden

Mehrdad Saadatmand

mehrdad.saadatmand@ri.se
RISE Research Institutes of Sweden
Vasteras, Sweden

Claes Lindskog
claes.lindskog@rail. bombardier.com
Bombardier Transportation AB
Vasteras, Sweden

Daniel Sundmark
daniel.sundmark@mdh.se
Malardalen University
Vasteras, Sweden

certifications, as well as the varying software and hardware needs
of different trains. The variance across products is mostly generated
by the varying capacity and speed requirements of the vehicles. To
meet these customization requirements, Bombardier Transportation
(BT) is moving towards the adoption of Software Product Lines
(SPLs). SPLs are expected to help the company in delivering (variant-
rich) quality products quickly at scale.

BT develops various products for different target seat capacity
and speed requirements, as illustrated in Figure 1. At the heart of all
these products is a software system controlling the train’s engine,
the Power Propulsion Control (PPC) software. The PPC software
needs to be developed in variants, each addressing the specific
hardware configuration, including the motors and controllers of
a product. Nevertheless, PPC software variants are sharing many
common properties. The PPC team at BT in Sweden successfully
exploited these commonalities and adopted a software product line
for the development of its propulsion software.

The benefits and costs of product line adoption can vary based
on the adoption strategy used. A commonly perceived benefit in
the industry is a reduced product development time [27]. The up-
front costs depend mainly on the adoption strategy. There are four
main approaches for the transition into product line engineering,
namely incremental, big bang, tactical, and pilot project [27]. As
the name suggests, the incremental transition approach allows the
introduction of the product line using lightweight steps. The assets
in the incremental strategy are developed over time, usually in par-
allel with product development. In contrast, the big bang approach
requires the domain engineering phase to be completed first to de-
velop a common base for future products. A pilot project approach
usually does not consider existing product families for migration.
In the PPC team, a lightweight incremental transition strategy was
chosen because of the low initial investment needed and because it
allows for the development of multiple products in parallel. Similar
transition strategies have been used by other companies in the
literature [3, 13, 22, 37]. Given that SPLE adoption is an inherently
complex organizational change, industrial experiences can provide
valuable insights for other organizations making this transition.

Contributions & Results. In this paper, we report the current prac-
tices of the Software Product Line Engineering (SPLE) process at
BT. The findings in this study are collected using mixed-method

https://doi.org/10.1145/3382025.3414953
https://doi.org/10.1145/3382025.3414953

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

A
Locomotives
Metros :IS ﬁ 1).
Commuter 1l g
Pl [
‘S
]
&
& Light Rai i High
ght Rail 2 Intercity
m_ ‘.3 Speed v}
Monorails "=
Ny
>
Speed

Figure 1: Overview of the product family at BT. Product
names are shown in light green, class of train in black.

research. Our findings show that the company was able to signif-
icantly reduce the time spent on the development and testing of
software components, as well as on safety assessments of products.
In addition, engineers report increased confidence in the devel-
oped product. Moreover, the results identified a well-defined and
standardized way of working and the development of a knowledge-
base as the benefits of adopting SPLE practices. Among the most
prominently experienced challenges, participants recognized the
identification of reuse opportunities, the evolution of the product
line and the derived products, tool configuration and migration,
and SPLE awareness. As future vision of the company, we iden-
tified several themes that need to be considered: the creation of
separate domain and application engineering teams, creation of
product-wide regression test suites, application of automated test
case generation. In addition, the results suggest that there is a need
for more research on methods related to test automation, test reuse,
automated test repair, and change impact analysis in SPLE.

The remainder of the paper is structured as follows. Section 2
presents a summary of the research method used to obtain the
results; this is later presented in detail in Appendix A, which also
addresses threats to validity. Our findings are presented in Section 3
and then discussed in Section 4 along with related work on product
line adoption. Finally, the paper is concluded in Section 5.

2 RESEARCH METHOD

We used a mixed-method research approach to obtain our results.
Document analysis [9] and focus group research [19] are employed
to study the SPLE process of a team responsible for developing PPC
software at BT. The underlying goal of this research is to improve
the current state-of-practice of SPLE in this setting. By applying
various research methods and studying different data sources, we
aim to obtain reliable industrial insights experienced during the
adoption and deployment of SPLE in the railway domain.

We break down the research goal into the following three re-
search questions:

Abbas et al.

RQ1. What are the experienced benefits of the adoption and deploy-
ment of software product line practices in the railway domain? This
research question aims at collecting raw data about experienced
benefits of SPLE at different levels of abstraction, such as at the
level of requirements, software components, or tests in one PPC
team inside BT.

RQ2. What are the perceived challenges during and after the adop-
tion of the product line engineering in the railway domain? We aim
at gathering data about the challenges the company has faced dur-
ing the process of moving towards the product line engineering
process. The question also is focused on collecting improvement
opportunities in SPLE.

RQ3. What is the future vision of the company for their SPLE
process? We collect data about the company’s future vision for the
SPLE process.

Data about the current state-of-practice inside BT (reported in
Section 3.1) is collected through document analysis. After collecting
the current practices, the data were analyzed by the researchers
and subsequently validated by the team’s manager. This manager
was not part of the performed focus group session. Data about
the experienced benefits, perceived challenges, and future vision
is collected using the focus group research method. Appendix A
explains the details of our research method and how data was
collected.

3 RESULTS

We present findings in five parts. First, we present the current
practices of the PPC team for SPLE. Then, experienced benefits (see
Table 1) and perceived challenges (see Table 2) of the introduction
of SPLE are listed (corresponding to RQ1 and RQ2). In addition to
the perceived challenges, the fourth part presents improvement
opportunities (see Table 3). The last part lists the findings related
to planned future work on improving the SPLE process (which
corresponds to RQ3, see Table 4). Note that to distinguish them
from the main text, direct quotes from interviewees are included in
italics throughout the remainder of this paper.

3.1 Current Development Practices

Today’s challenge for BT is that every train for any given customer
is unique. In practice, this means that both software and hardware
vary across different products, since the software has a close de-
pendency on the hardware. In particular, it is crucial to handle the
electrical system interface with the software modules such that
the software can handle a variety of hardware configurations. Nev-
ertheless, every train software shares a large number of common
components and features. The PPC team at BT decided to exploit
these commonalities to enhance reuse and reduce the lead time
of products. One way to achieve a high degree of reuse is via the
adoption of a SPL containing overloaded assets (150% SPLs). The in-
cremental adoption strategy was used to introduce the product line
of overloaded assets [27, 30]. In the studied setting, the product line
assets are always under evolution, and new functionality is added
when needed. Reuse in BT’s SPL is realized using a clone-and-own
way of working, i.e., existing projects are copied and modified to
meet customization requirements. This ad-hoc manner of reuse
helps companies to avoid high upfront investment in SPL adoption

Product Line Adoption in Industry: An Experience Report from the Railway Domain

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

Q
O

1 S

O

Asset

integration Z Asset Ax |ntegranon X
% §> Product % D
D D Derivation
Asset B Asset Bx

Product Line Derived Product

Figure 2: Overview of product derivation process from over-
loaded assets based SPL

produces

= L A
— Analysis = E
Customer Regs.
Tender Doc. A q Standard FRSP
E % :'4_“595_;— Regs. Reuse
: i |

Proiect-specific FRSP

Figure 3: Overview of requirements-level process at BT

and engineering since most of the required assets are already de-
veloped in past projects. The same incremental adoption strategy
has been found useful in overcoming high upfront investment in
other cases too [3].

The product line at PPC is based on clone-and-own based reuse.
As shown in Figure 2, the assets are trimmed (trapezoid shape of
Asset Bx), in some cases modified or removed (triangle shape in
Asset A, Arrow in Asset Bx) in the final derived product. An asset is
usually a combination of several software components. Features can
be mapped to one or more assets. The integration of the assets may
also vary in the derived products (as shown in Figure 2, integration
x in derived product). The functional variants (modified versions of
the assets) of the components are maintained separately for each
derived product, meaning that a standard component can have
multiple functional variants. Due to the safety-critical nature of
the product line, requirements have to be documented and traced
down to implementation models and test cases. In the remainder
of this section, we present the current way of working at PPC after
the introduction of SPLE. We structure the section into three levels
describing the process of requirements engineering, development,
and testing.

- -import> ! %

Project-specific FRSP .
. Product-specific Assets

BT Subset ,

- - import- > f

Figure 4: Overview of the product development process at
BT

Requirements Engineering. The process of product derivation
starts with a set of customer requirements to be realized. The re-
quirements come from a high-level requirements analysis phase
from a different team at the company. Over the years, a standard
Functional Requirements Specification (standard FRSP in Figure 3)
document is created as generic domain requirements. The FRSP
describes the overloaded assets and also serves as a features de-
scription document. When a new product is to be derived, the
standard FRSP is reused/tailored to accommodate the new prod-
uct requirements. The reuse analysis process also considers exist-
ing similar product requirements in the repository. Note that the
project-specific FRSF derivation is done manually and might require
several iterations.

Development. The content of the standard FRSP is imported in
Simulink Requirements to map the requirements into different com-
ponents and ensure traceability. Note that these traceability links
are created manually. The overload assets contain many compo-
nents. Each component is a Simulink model that can be used to
generate C/C++ code for target computers using Embedded Coder.
The Simulink components are created by combining building blocks
from a library of well-tested commonly-used components (e.g.,
Mathematical operations) developed by BT (known as BT Subset in
the company). Software components are tested, and each is associ-
ated with its own test harness. The whole SPL itself is not executable,
and thus it undergoes a series of modifications (e.g., removal of
components, the addition of functionality to a component) driven
by new customer requirements. In practice, the components in the
derived products are integrated differently than their integration in
the SPL. Every functional variant of the component can be mapped
to one Simulink model and can be traced back to its standard com-
ponent in the product line. The product line itself is maintained
and evolved in parallel to the derived products. Whenever a new
product is derived, a SPL baseline is created for that product. Some
changes to the SPL, e.g. bug-fixes, may also be propagated to the
derived product(s).

Testing. Testing is performed in three different phases and at
four different levels (shown in Figure 5). In order to achieve a Safety

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

Phases
MIL SIL PIL

Plant model Plant model Plant model

R (e

Model Under Test Processor Under
Test

Software Under Test

=
-
£ £

Integration Level

BT Subset Level Component Level System Level

Figure 5: Overview of the testing process at BT

Integrity Level (SIL) 2 compliance for the propulsion software, test-
ing on some test levels has to conform to the EN50128 standard!
for development of rail control software. Note that the restrictions
placed on the test process only apply to some levels and not all.
Specifically, the standard applies to hardware-software integration,
software integration, and components.

The developed artifacts for the derived products (mostly Simulink
models) are tested in-house in three different phases. If an artifact
has any hardware/environment dependencies, a plant model is cre-
ated to simulate the required behavior of the hardware/environment.
The artifact is the first tested in a Model-In-the-Loop (MIL) envi-
ronment inside Simulink. Embedded Coder is then used to generate
C/C++ code from the Simulink model. The generated code is then
tested in a Software-In-the-Loop (SIL) environment. For safety-
critical components, the generated code is also subjected to code
reviews. The reviewed code is deployed on the target processor for
a Processor-In-the-Loop (PIL) testing.

These phases are performed on four different levels. First (unit
level), the subset is tested, and the source code is reviewed. Then
the components (created from combining the sub-set elements) are
subjected to all phases of the testing. Thirdly, the components are
integrated in a way that serves a system function. The integrated
components are tested in all three phases for integration errors.
Lastly, the propulsion system is tested in all three phases at the
system level. In addition, a final Hardware-In-the-Loop (HIL) testing
is performed off-site. Note that the SPL itself is only tested at the BT
subset level and partially at the component level. Components that
are integration dependent are only tested in the derived products.

3.2 Experienced Benefits

Saving time and resources. Since the introduction of SPLE, the
lead time of software changes has decreased significantly: “The time
needed for implementing new functionality is about a month, whereas
it was estimated to be about six months to a year.” This decrease

EN 50128 - Railway applications - Communication, signalling and processing systems
- Software for railway control and protection systems.

Abbas et al.

can be attributed to shorter development cycles as introduced in
SPLE, and a smaller scope of the products as compared to the
previous organization with development divided into projects with
long release cycles: “The product development was taking around six
months to a year to complete. It used to require many changes, and
managing those changes within the project time-frame was difficult”.
Although these time gains are rough estimates and based on data
from one development team, they do indicate the suitability of
SPLE for development in short cycles, which is popularized by the
publishing of the manifesto for agile software development [5].

After the introduction of the product line, the testing process has
been shortened. In testing components, the majority of the effort
resides in writing test cases. Hence, the reuse of test harnesses and
test cases was an important factor in increasing the productivity of
the development team. The highest productivity gain is obtained
in cases where all tests could be reused, and therefore only need to
be re-run for a derived product but not altered. In cases where the
test cases do need to be altered, having an existing test harness and
test cases also improves the development productivity by reducing
the effort of designing test cases from scratch. Indeed, one domain
expert estimated the related time effort to be at least 50% more
efficient: “The time it takes to complete or create a new test case was
about a day. Now, you do a modification and retest, and you are going
from a standard day or eight hours to anywhere between one to four
hours”.

Another time-saving aspect is related to the required safety
assessments. The reuse of products implies that a large portion of
the safety assessment can also be reused because it is performed
on the product level, and the changes to derive the product are
expected to address only small portions of that product. “The idea
is that if you have a product already safety assessed, you can then
do the next safety assessment a lot easier since the safety assessment
should focus on the changed part of the product.” This is, in particular,
important in the studied setting because of the required certification
for all developed software.

Confidence boosting. Some other experienced benefits are not
directly related to savings of time or resources. The common denom-
inator of these benefits is the increased confidence in the developed
products. Thereby, they indirectly improve the productivity of the
development team.

As discussed earlier, deriving the products from the SPL means
that these are based on software that is already tested and safety-
assessed. In addition, the way of creating such a derived product is
highly standardized with the introduction of SPLE, which increases
the confidence of developers in the resulting artefacts: “What also
helps is the fact that in the SPL, we are following the entire develop-
ment process as defined by the standard team. So we know how certain
things should be done, especially testing, for example, software-in-the-
loop testing, how to setup everything for processor-in-the-loop testing,
etc. Once you then go to the derived product, all you have to do is to fol-
low the development process.” The shaping of this way-of-working
hence seems to be an important by-product of the introduction of
SPLE.

Also, the current way of organizing reuse inherently means that
a knowledge-base is created that is built upon project after project:
“you can develop the product so that the next product has all the benefits

Product Line Adoption in Industry: An Experience Report from the Railway Domain

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

Table 1: Identified themes and sub-themes corresponding to experienced benefits (RQ1).

Theme Sub-theme
1 Saving development time and resources | 1.1 Reduced development time
1.2 Less time spent on writing test cases.
1.3 Easier safety assessment when performed incrementally.
2 Confidence boosting 2.1 Increased confidence in software for derived products
2.2 Well-defined “way-of-working”
2.3 Inherent knowledge-base built through reuse.

from the lessons learned of the past derived products”. This works
since all products are now derived from a shared common SPL that
is developed separately from the products. Whereas, in the former
project-based setting, every new project was only based on its
direct predecessor. Furthermore, the ongoing product development
can benefit from knowledge built during the development of any
other product, since in some occasions, new functionality or a patch
introduced in a product is propagated back from derived products
into the SPL: “We can have multiple product derivations running in
parallel. All their feedback is then pushed into the SPL. The past way
of working where you are just taking the latest project doesn’t allow
this”.

3.3 Perceived Challenges

Deriving products. As we discussed in the previous subsection,
the experienced benefits are mostly related to the way the product
derivation is organized. Although the process is clearly delivering
benefits to the company, some challenges remain.

Reuse begins by identifying opportunities for reuse between
the SPL and the products. The problem faced in identifying these
opportunities was a high number of new requirements coming in,
and at the same time, a large existing set of artifacts spread out over
many derived products. Some of these artifacts could, unbeknown to
the engineer, already be addressing the new incoming requirements:
“The problem that we faced was that many new requirements were
coming in. We didn’t know if we had handled this requirement before,
if this was something we already had, or if it has a small difference
from what we already had. Because the amount of requirements
is so large, there are so many past derived products; there are so
many different designers and architects. Nobody could know all the
requirements that are already being handled by control software”.

After artifacts are identified and reused, they are not final. In-
stead, they keep being subject to evolution, for example, due to
changed requirements or bug fixes. A challenging aspect currently
under research in a different study within the development team is
how to propagate changes made in the SPL (after a product has been
branched off) to the products in which those (parts of) software
components or test cases are reused. For each product, it needs to
be decided if the changes are desired to be propagated or not. In
some cases, it might also occur that a change in a derived product
is later "pushed back" to the SPL. In conclusion, since the changes
are made to both the SPL and the derived products, continuous
maintenance is required.

A product consists, among other artifacts, of a set of software
components, tests, and component integration. In general, it is chal-
lenging to assess the impact of changes in the SPL on the derived

products, as outlined by one participant of the focus group: “One
issue we had is that the tester has to have a quick and easy way of
identifying what changes were made, where they were made. And if
there were any changes, have a quick confirmation that there was
no functional change, and everything is the same as it was before or
behaving the same as it was before. (...) If this is all manual work,
then that builds extra time and overhead”. This quote specifically
has test case development in mind, but for changes in the com-
ponent integration, impact analysis is experienced as even more
challenging: “The issue is when a derived product makes changes to
the component integration, it is hard to identify the impact of those
changes on other parts. (...) In such cases, the tester has to identify
these changes and know where they were made. The tester also has to
find the impact of such changes on functionality and behavior”. Also,
for both scenarios, automated means could help the developers and
testers to be more efficient. The literature contains proposals for
automated impact analysis techniques, but these can be challenging
to adopt in particular industrial settings. One of the aspects of this
challenge lies in the specific tools used in a particular setting. We
now discuss such tool-related challenges.

Automation. In general, setting up development tooling for a SPL
is difficult. Each company and maybe even each project has its own
specific needs. Therefore, tool vendors provide highly configurable
tools that can be used in many situations. Within the team, Simulink
and Embedded Coder are used for modeling systems and generating
code from these models. One of the encountered challenges in using
this tooling appropriately was its configuration, and the team was
sometimes not helped by the documentation, on the contrary: “the
information that we found online was either wrong or misleading”.
Hence, in some cases, some more thorough investigations than a
quick search through the documentation were required to find out
how exactly to use the tool: “If you look online for example, this not
the sort of information that you are going to find.”

Another aspect of this tool flexibility is that multiple developers
can opt for different alternative ways of performing similar tasks.
This is planned to be resolved by separating domain and application
engineering, as explained by one of the interviewees: ‘T think it’s
good to be very clear and concise about what we are doing, what we
are aiming for, what you can do in the tool, what you cannot do in
the tool. For the people using it for a particular purpose, if you are a
developer and looking at improving the process and improving the
product line, improving upon how we use the tool, then you have
all this flexibility and customizations. So, I think there should be a
clear distinction between the people doing that improvement work
and people who just apply the way-of-working with this product”.

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

Abbas et al.

Table 2: Identified themes and sub-themes corresponding to Perceived Challenges (RQ2).

Theme Sub-theme

3 Product Derivation | 3.1 Identification of reuse opportunities
3.2 Propagating changes form the SPL to the derived products
3.3 Impact analysis of behavioral changes on test cases

4 Automation 4.1 Domain-specific configuration of tooling
4.2 Incomplete migration to central tool

5 SPLE Awareness 5.1 Shift from projects to product-line thinking not propagated throughout organization
5.2 Software architecture choices negatively impact re-usability opportunities

Table 3: Identified themes and sub-theme for Improvement Opportunities (RQ3)

Theme Sub-theme

8 Software Testing 8.1

8.3 Automated test case repair.

Methods for automated software verification (e.g., model checking).
8.2 Test case reuse between MIL, SIL and PIL.

9 Artifacts Evolution | 9.1

Automated change impact analysis on test cases.
9.2 Traceability link recovery between requirements and model elements.

10 SPLE Tooling 10.1 Migration of development actions from auxiliary tools to Matlab environment
10.2 Architecture formalization and use CI pipeline to check consistency between it and the implementation.

This is also noted as one of the improvements to the development
process in the future, as shown in Table 4.

SPLE has been introduced five years ago within the team, but the
process of transitioning to the development tools is ongoing. As one
interviewee noted, this is a much needed next step towards the full
introduction of the product line and specifically the team’s main
development tool Simulink. Although the current development
of software components and test cases is performed in Simulink,
several other steps in the process are performed in different ways: T
would like us to integrate more steps into Simulink. We have software
components, assembly, and test cases in Simulink (but also) we are
using a lot of Excel sheets.”

SPLE Awareness. In addition to these more technical challenges,
some organizational challenges were identified. One of them is the
challenge of shifting the way of thinking throughout the organi-
zation from project-based development to product lines. A lack of
this is experienced by one of the interviewees: “nobody really had a
clear definition of what a product is”. The consequence of the igno-
rance of SPLE concepts is that the interviewees notice challenges
to motivating the required development steps and associated costs.
Furthermore, the interviewee notes that the company is not yet
reaping the full benefits of reuse for these reasons: “it helps a lot
if you deliver a lot of products because then you see more potential
reuse. There are work steps or processes that are rapidly reoccurring.
If you can shorten the steps, there is motivation to do so. But if you
have long-running product derivation cycles, where you only start
sort of maybe a few per year, then these concepts come into difficulty.
It’s difficult to measure, and it’s difficult to motivate why you should
doit.”

Some architectural decisions have, in hindsight, been preventing
optimal reuse: “at the moment we are only sending over components.
It’s more difficult to send over high-level integrations. And that’s based
on architectural decisions that should be reviewed”. This could be a

consequence of the initial unawareness of SPLE and the continuing
move towards it from a project-based way-of-working.

3.4 Additional Improvement Opportunities

In addition to the perceived challenges, we present some opportu-
nities for improvement of the encountered state of practice in the
studied setting.

Product Testing. Writing test cases consumes resources and re-
quires domain-level expertise. One participant in the focus group
suggested that the company is looking for automated approaches
for testing and verification, such as model checking (Sub-theme 8.1
in Table 3). Besides, it seems that the company can benefit from test
reuse between the different testing phases such as MIL, SIL, and
PIL (Sub-theme 8.2 in Table 3). One of the participants suggested
that: “There is a huge potential in reusing test cases of MIL in SIL and
PIL testing.” Methods supporting reuse between MIL, SIL, and PIL
would be of high interest for BT. We also noted that in many cases,
a small modification to the components results in test case break-
ages. To fix these, currently, test cases are manually reviewed and
updated. In this case, there is a need for approaches for automated
test case classification and repair (Sub-theme 8.3 in Table 3).

Evolution of the product line and products. The evolution of the
product line and derived products brings several challenges. Partic-
ularly, there is manual effort involved in assessing whether or not
to co-evolve derived products upon changes in the product line. We
found that if a decision is made in favor of such co-evolution, it is
very hard to know the impact of possible changes on the resulting
test cases and the behavior of the derived product. Similar lessons
learned have also been reported in the literature (e.g., in [36]).

There is a need for approaches and methods for variability-aware
change impact analysis (Sub-theme 9.1 in Table 3). In addition,
compliance with safety standards requires the demonstration of

Product Line Adoption in Industry: An Experience Report from the Railway Domain

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

Table 4: Identified themes and sub-themes corresponding to Future Vision (RQ3).

Theme

Sub-theme

6 Test automation 6.1 Automated test generation
6.2 Creation of product-wide regression suite

7 Development process | 7.1 Adoption of CI/CD
7.2 Separation of domain and application engineering

traceability from the customer requirements to models and test
cases. Currently, the requirements are imported into Simulink and
are linked manually with the model elements satisfying them. We
see an improvement potential and a need for automated traceability
link recovery between natural language requirements and model
elements (Sub-theme 9.2 in Table 3).

Tooling. The supporting tools for product development and man-
agement should allow for a very high degree of flexibility. Con-
sequently, obtaining the right development setup is not straight-
forward. Indeed, configuring a tool for company-specific needs is
challenging.

As mentioned earlier, some development artifacts and steps are
organized in auxiliary tools such as Microsoft Excel. It is desired
to include those steps in the Simulink environment to make the
way-of-working less dependent on error-prone steps in which data
from one tool is used as an input for another one.

Currently, there is no automated support for handling the vari-
ability in the team. There have been talks with the pure-systems’?
team on the use of pure-variant at BT. However, it is desired to
utilize the Simulink environment with their Variant Manager.

In addition, the product architecture is described through in-
formal diagrams, e.g., Powerpoints or Visio diagrams. Since the
architecture does not evolve much, due to new incoming require-
ments being similar to some extent, there is no current need for
diagrams or formal models in formats that are more maintainable.
However, upon the creation of more different products and shorter
development cycles, some more formal architecture models might
be useful, particularly to allow automated checking of the consis-
tency between Simulink models and the intended architecture. It is
an interesting research opportunity to formalize the architectural
models and check, for example, within the CI pipeline, whether the
Simulink models conform to the intended architecture or violate it.

3.5 Future Vision

At the end of the focus group, we discussed some future plans of
the team for improving the way-of-working in product line engi-
neering. These are additional to the plans that have been discussed
in previous subsections.

One of the areas of interest is test automation. A pilot study has
shown interesting results of applying automated test generation:
“surprisingly, some interesting issues have popped up by just apply-
ing automatic test case generation at the component-level. (...) For
example, some components have dead code, and some input values for
test cases were not optimal in the sense that they would allow for an
output that was outside the set boundaries”. Since a test generation
plugin is included in the Simulink tool suite, through its Design

Zpure-systems: https://www.pure-systems.com/

Verifier, the team plans to explore its deployment in the near future.
Another future vision for testing is to create a complete test suite
for the product at the integration level. Although it is currently not
certain if that will be established, one participant states: ‘T hope that
we would standardize the platform, that we would also come with
the complete overall test suite”. A clear benefit of this standardiza-
tion would enhance the reuse opportunities at the integration and
system-level testing of PPC software.

Other topics of interest mentioned in the focus group include
improving software engineering practices and establishing a con-
tinuous integration pipeline, which could allow for optimizations
in the development process. It is noteworthy that more involved
practices such as continuous deployment and delivery are of less
interest in the railway domain, due to the need for certification
and safety assessment of the products. As discussed earlier, an im-
portant part of improving software engineering practices is the
separation of domain and application engineering.

4 DISCUSSION

In this section, we discuss our results, provide an analysis of our
observations, and provide an overview of the related work. The
product development lead time in our case is reduced significantly
after the product line adoption. Mainly, our results suggest that the
adoption of product line practices reduced the lead time by lowering
the product development time, test case creation time, and time
required for activities related to safety standard compliance. All this
was achieved by a high degree of reuse of the core assets. Moreover,
the reduction in lead time was made possible by introducing a
standardized and well-documented way-of-working for each team.
This was originally a by-product of SPLE adoption but turned out
to be highly beneficial. Similar experiences of reduced development
time are also reported in the literature (e.g., [31, 35]).

We also observed that an evolutionary and incremental adoption
strategy leads to successful adoption in small teams due to its low
up-front cost. However, this evolutionary way of working can result
in a product-line growth issue for product derivation. We found
that, when the number of derived products grows (the number
of modified assets will also grow), engineers find it hard to know
if a new customer requirement is already satisfied by a modified
component in an existing derived product. Similar findings have
also been reported in the literature regarding asset accessibility and
management [32]. Currently, a tool for requirements-level reuse
analysis and recommendation is under development [1], and evalu-
ation. In addition, the requirements-level configuration (deriving
the project-specific FRSP in Figure 3) is a resource-intensive task.
The company is looking for automating the process with tools such
as Zen-ReqConfig [21].

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

4.1 Related Work

Over the years, software reuse through SPLs has been the focus
of many researchers and companies. The expected benefit of the
adoption of a product line is reduced efforts in the development of
quality products [27]. However, the shift towards a software product
line faces challenges. Various product line adoption strategies and
experience reports can be found in the literature [2, 15]. We provide
an overview of the related work on product line adoption, and link
reported findings to our own findings as presented in Section 3.

Product Line Adoption in Small and Medium Companies. Bastos
et al. used a mixed research method to report the product line
adoption in small companies [3]. Based on systematic mapping, an
industrial case study, and expert opinion, the authors reported 22
findings. Some similar findings to ours revealed that the adoption
road-map is necessary, and the incremental introduction of SPLE is
more appropriate in small companies or teams. Nazar and Rakotom-
ahefa conducted an ethnographic study to identify the challenges of
product line adoption in a small Chinese company [25]. The study’s
suggestions have some overlap with our outlined future vision,
which includes having a separate domain and application engineer-
ing teams. Njima and Demeyer interviewed four participants from
two start-ups to identify the motivational factors and challenges of
product line adoption [26]. Results from the interviews show that
start-ups see the reduced development time and cost of quality prod-
ucts as a benefit. The study also reported challenges that start-ups
might encounter while adopting software product lines. Knauber et
al. reported their experiences in applying the product line engineer-
ing method in small companies [17]. Their experience shows that
there was a lack of documentation in the companies, and a clear
vision about the product evolution is essential to successful adop-
tion. Verlage and Kiesgen reported experiences of the transition of
a small software company toward software product lines [36]. The
study summarizes the current product line, the changes made to the
process for product line adoption, and lessons learned. Initially, no
separate application and domain engineering teams were formed,
as in our case. Other overlaps in findings show that analyzing the
impact of changes can be challenging.

Opinions, Guidelines and Experiences of Product Line Adoption in
Large Enterprises. Catal et al. presented common barriers in adop-
tion of product line engineering [12]. The study also categorizes
ten findings in three categories based on three views (Sponsor
and customer view, company or development group view, and
SPLE community view). The sponsor and customer view include
overlapping challenges on a lack of SPLE knowledge. The develop-
ment view includes challenges about the practitioners not having
enough knowledge regarding SPLE, issues in the integration of
hardware/software, high up-front cost, organizational structure
change, and training. Finally, the community view includes an
overlapping finding on the lack of practical resources on SPLE,
specifically testing and high training cost. The authors also pro-
vided suggestions on how to avoid these barriers. Bilic et al. used
overloaded models in a model-driven product line in the automotive
domain [6, 7]. The outlined challenges include creating and main-
taining a legacy variant, lack of traceability, product configuration,
and no test optimization. The authors also reported lessons learned

Abbas et al.

and management, and the evolution of assets was suggested to be
done in an incremental manner. The assets evolution is a similar
overlapping finding to our work. Similar experience reports also
reporting reduced product development time can be found in other
domains as well [31, 35]. Kuvaja et al. presented challenges and
guidelines related to product line adoption based on interviews
with ten practitioners [20]. The related identified finding includes
requirements’ data not utilized fully, lack of training, and lack of
adoption plans. Lack of education and training is also reported as
a barrier to software reuse [32]. Sherif and Vinze’s findings also
show some overlap with our findings regarding asset management
and asset accessibility (similar to our sub-theme 3.1 in Table 2) [32].
Jha et al. surveyed 29 practitioners to find issues in software reuse
in context software product lines [16]. Some overlapping findings
indicate a high up-front and maintenance cost as an issue, need for
reuse planning, confidence boost as a benefit, and knowledge-base
development as a benefit. Bockle et al. presented guidelines on the
transition towards product line engineering process [8]. The work
reports and discusses various adoption strategies and emphasizes
on preparing a business case and an adoption plan. Moreover, the
authors recommend transforming the organizational culture to
product line engineering. Our findings also show that there is a
need for product-oriented thinking in the company. Staples and Hill
reported their experience of adopting product line development via
variation provided in configuration management [34]. This allows
the assets reuse developed with no product line architecture in
mind. The approach improved product development time and qual-
ity by allowing the propagation of fixes across the products. Similar
fast feedback cycles (to the standard product line, in our case) has
been noted in our findings. Mohagheghi and Conradi discussed
the adoption of product families at Ericsson [23]. The adoption
was introduced incrementally, and requirements management for
the components was seen as a challenge. The adoption resulted in
reduced development time and cost. Bauer reported the challenges
of structured reuse adoption in the context of a big undisclosed
company [4]. The paper presented two failed adoptions of reuse
and reported the barriers that made the adoption unsuccessful. The
authors also outlined lessons learned during different cases. Dor-
dowsky and Hipp reported the adoption of software product line
principles at an avionics company [14]. The study presents the
company’s process and also reported experiences. Related findings
show that incremental adoption was used to avoid failure. The
finding also revealed that product development time is reduced to
a quarter of the development time with no product line.

There is some overlap between our findings and those presented
in the aforementioned literature. Commonly reported benefits in-
clude SPLE awareness and reduced lead time. A common expe-
rienced challenge is change impact analysis. In addition to the
literature, we report challenges to identifying reuse opportunities
at the requirements level, in particular certain product line evolu-
tion scenarios and migration to specific SPLE tooling. Moreover,
we have identified new research opportunities in the domain, as
outlined in Section 4.

Product Line Adoption in Industry: An Experience Report from the Railway Domain

5 CONCLUSIONS

We report the state-of-practice of SPLE at the PPC team of BT. Apart
from the experienced benefits, we also identified several current
challenges and research opportunities related to the SPLE process
in one team inside a large enterprise in the railway domain.

Our study of RQ1 has yielded the following perceived benefits:
reduced lead time for product development, testing, and safety
assessment, increased confidence in the product. We also conclude
that successful adoption of SPLE was made possible by following a
lightweight evolutionary and incremental transition strategy.

In relation to RQ2, we identified that analyzing the impact of
changes in the evolving product line and derived products continues
to be challenging in industrial practice. Moreover, identifying reuse
opportunities remains challenging with the growth of software
development complexity, including an increasing number of prod-
ucts addressing an increasing number of requirements. Engineers
experienced that tools used for the development and management
of the product line are hard to configure, and their versatility may
be counterproductive if not adequately controlled. Finally, our find-
ings underscore the importance of product-line-oriented thinking
throughout the entire organization.

As a general finding with respect to RQ3, our results suggest
that researchers and tool vendors should develop novel automated
methods to support product line engineering and management,
specifically addressing the challenging topics of reuse recommen-
dation, test reuse, variability-aware testing and verification, change
impact analysis, and traceability link recovery. More specific to the
studied setting, the future vision of the PPC teams is to establish a
product-wide regression suite, introduce a continuous integration
pipeline, and apply automated test generation via model check-
ing. The company is also planning to use separate domain and
application engineering teams. In addition, the team has on-going
initiatives in collaboration with other companies and universities
on change impact analysis, variability testing, and reuse recommen-
dation.

Based on the identified challenges and research opportunities,
there is a need to improve the variability-aware change impact
analysis and recommendation methods and incorporate these as
part of a product line engineering process.

A FOCUS GROUP PROTOCOL

The focus group session was conducted to gather data about the
experienced benefits, perceived challenges, and the future vision
(corresponding to each research question). Focus group research
is a well-established practice in empirical software engineering re-
search used to gather practitioners’ experiences and opinions about
new tools and methods [18, 19, 24, 33]. In planning and executing
the focus group session, we followed the guidelines presented by
Breen [11]. The recorded audio was afterwards transcribed and
then analyzed following the thematic analysis guidelines proposed
by Braun and Clarke [10]. The process followed in conducting
the focus group session is presented in Section A, also shown in
Figure 6.

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

A.1 Focus Group Planning

Instrument. A study plan to manage the focus group session was
created by three authors of this paper. The plan contained a focus
group instrument with three topical research questions and five
sub-questions. The plan was reviewed in an online workshop by
the authors, and the topical questions were chronologically ordered.
As a substitute for a pilot, the instrument was validated by one prac-
titioner affiliated with the company and thereafter revised based
on received comments. The focus group session was conducted
with three members of the PPC team who are experts in differ-
ent domains of SPLE. The final focus group instrument covered
five open-ended sub-questions related to three pre-defined themes
corresponding to each of our research questions.

Confidentiality and Ethical Concerns. At the start of the focus
group, consent was obtained from all participants for taking audio
recordings and notes. The recordings were transcribed and subse-
quently deleted. Within the transcript, the practitioners have been
made anonymous, but names of tools and development practices
have not, since they are relevant to the presented findings.

A.2 Session and Transcription

Participants. Three members of the PPC team were selected to
participate in the focus group session. The selection ensures a di-
versity of age, gender, roles, and experience. Roles vary between
requirements engineering, testing, and software design. The partici-
pants have two, seven, and thirty years of experience in the control
software development and testing.

Session. The focus group session was conducted in an online
meeting using Skype for Business. The session was moderated by
one of the authors, and two authors were mainly tasked with note-
taking but also with asking for clarifications when needed. We
started the session with an introduction on the pre-defined goal of
this study. We record one hour and ten minutes of audio material.
The total length of the session was one hour and thirty minutes,
since we started the recording only after a short introduction and a
discussion about obtaining consent for this recording.

Transcription. The audio recording of the session was transcribed
in a text document containing around seven thousand words. The
transcription process included also the anonymization of confiden-
tial and personal information (such as names of the participants
and names of confidential projects). The anonymized terms were
replaced with labels in brackets (e.g., a confidential project name
was replaced with {Project followed by a letter}). The anonymized
transcript was subjected to a thematic analysis.

A.3 Thematic Analysis

Qualitative data analysis can be performed in many different ways.
We perform a thematic analysis using the guidelines presented
by Breen [11] since these are commonly followed for qualitative
research studies in different research communities. Terminologies
used in the remainder of this section are first defined here:

Theme is an abstraction of a pattern within a data-set. In our case,
we pre-defined a set of three themes from our research questions
(Experienced Benefits, Perceived Challenges, and Future Vision).

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

Abbas et al.

A.1 Foucs Group Planning & Research Questions

Ordering and —_—

Refinement

Instrument

L

Validation

produced

Instrument Draft
Refined Instrument

Final Instrument Session

1

~

<_workshop__

Final Sub-Themes
and Codes

S«—E/

Merged Codes Merge

‘
and Sub-Themes

Coded Transcripts
\ A.3 Thematic Analysis

-\ :

Author 1

Author 2

verify——— N N

i Transcription

Transcript

/ ! A.2 Session and Transcription

Figure 6: An overview of the research process followed to gather data from the focus group session.

Pre-defined themes are common in qualitative research and are
referred to as a priori themes.

Sub-Theme is a theme within a theme.

Codes are labels assigned to data (such as sentences) to index them.

The thematic analysis was performed by two authors to en-
courage the diversity of the sub-themes and codes (as shown in
Figure 6, 5.3). Each author performed coding of the transcript and
grouped the codes to general sub-themes representing an abstract
concept. The sub-themes were grouped into the three pre-defined
main themes derived from the research questions. Codes that did
not fit into the pre-defined themes were considered for identifying
research opportunities (reported in Section 4). This process of the-
matic analysis and coding was repeated one more time to refine the
codes and sub-themes and identify sub-themes and codes that we
might have missed during the process. The codes were merged and
ranked to drop codes that might not be relevant to the focus of this
study. The final sub-themes and codes were validated and verified
by two other authors of this paper. The resultant document was
shared with the focus group participants to allow them to correct
any possible misunderstandings.

A.4 Validity Threats

We address the validity threats of our results following the classifi-
cation and guidelines proposed by Runeson and Host [28].

Construct Validity. Construct validity reflects the extent to which
the studied operational measures are representative of what the
researchers intend to study. To tackle potential threats to construct
validity of our results, we designed our instrument using termi-
nologies known by the participants. The instrument was subjected
to thorough iterations, refinement and was validated by both re-
searchers and an engineer in the team who did not take part in the
focus group session.

Internal Validity. Internal validity threats affect the validity and
credibility of our results. Potential internal validity threats were

tackled by using multiple data sources (we obtain our findings
through document analysis and participant observation) and by
asking engineers to validate our take-aways from these sources.

External Validity. External validity reflects the extent to which
the results can be generalized. The presented findings in this study
are obtained from studying the case of one team in a company, we
therefore do not claim any findings generalized beyond the domain
of the team. Furthermore, the reported findings come from the
development of safety-critical software in a real industrial context
and can, therefore, be valuable to the community as well as other
practitioners in a similar domain.

Reliability. This aspect reflects the extent to which the data and
findings are independent of the researchers that performed the
study. We address this aspect of the validity threats by follow-
ing well-established qualitative research methods and guidelines.
In addition, we involved industrial professionals and multiple re-
searchers to validate the research process and the obtained findings.

ACKNOWLEDGMENTS

This work has been supported by and received funding from the
ITEA3 European XIVT [29]3, and ARRAY# projects.

REFERENCES

[1] Muhammad Abbas. 2020. Variability Aware Requirements Reuse Analysis. In
The 42nd International Conference on Software Engineering Companion (ICSE °20
Companion). ACM. http://www.es.mdh.se/publications/5734-

[2] Jonatas Ferreira Bastos, Paulo Anselmo da Mota Silveira Neto, Eduardo Santana
de Almeida, and Silvio Romero de Lemos Meira. 2011. Adopting software product
lines: a systematic mapping study. In 15th Annual Conference on Evaluation &
Assessment in Software Engineering (EASE 2011). IET, 11-20.

[3] Jonatas Ferreira Bastos, Paulo Anselmo da Mota Silveira Neto, Padraig O’Leary,
Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. 2017. Software
product lines adoption in small organizations. Journal of Systems and Software
131 (2017), 112-128.

Shttps://itea3.org/project/xivt.html
*https://www.es.mdh.se/projects/497- ARRAY

http://www.es.mdh.se/publications/5734-
https://itea3.org/project/xivt.html
https://www.es.mdh.se/projects/497-ARRAY

Product Line Adoption in Industry: An Experience Report from the Railway Domain

=

~
[

8

=

[9

=

[10

[11]

[12

[13]

[14

[15]

[16]

[17]

(18]

[19]

[20]

Veronika Bauer. 2015. Challenges of structured reuse adoption—Lessons learned.
In International Conference on Product-Focused Software Process Improvement.
Springer, 24-39.

Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. 2001. Manifesto for Agile Software Development. http://agilemanifesto.org
Damir Bilic, Daniel Sundmark, Wasif Afzal, Peter Wallin, Adnan Causevic, and
Christoffer Amlinger. 2018. Model-Based Product Line Engineering in an Indus-
trial Automotive Context: An Exploratory Case Study. In International Systems
and Software Product Line Conference. ACM, 56—63. https://doi.org/10.1145/
3236405.3237200

Damir Bilic, Daniel Sundmark, Wasif Afzal, Peter Wallin, Adnan Causevic,
Christoffer Amlinger, and Dani Barkah. 2020. Towards a Model-Driven Prod-
uct Line Engineering Process: An Industrial Case Study. In Proceedings of the
13th Innovations in Software Engineering Conference on Formerly known as India
Software Engineering Conference. 1-11.

Giinter Bockle, Jests Bermejo Mufioz, Peter Knauber, Charles W Krueger, Julio
Cesar Sampaio do Prado Leite, Frank van der Linden, Linda Northrop, Michael
Stark, and David M Weiss. 2002. Adopting and institutionalizing a product line
culture. In International Conference on Software Product Lines. Springer, 49-59.
Glenn A Bowen et al. 2009. Document analysis as a qualitative research method.
Qualitative research journal 9, 2 (2009), 27.

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77-101. https://doi.org/10.1191/
1478088706qp0630a

Rosanna L Breen. 2006. A practical guide to focus-group research. Journal of
Geography in Higher Education 30, 3 (2006), 463-475.

Cagatay Catal. 2009. Barriers to the adoption of software product line engineering.
ACM SIGSOFT Software Engineering Notes 34, 6 (2009), 1-4.

Krzysztof Czarnecki and Michat Antkiewicz. 2005. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. In Generative Programming
and Component Engineering. Springer Berlin Heidelberg, 422-437.

Frank Dordowsky and Walter Hipp. 2009. Adopting Software Product Line Prin-
ciples to Manage Software Variants in a Complex Avionics System. In Proceedings
of the 13th International Software Product Line Conference (SPLC "09). Carnegie
Mellon University, USA, 265-274.

M. A. Jabar, M. B. Zarei, F. Sidi, and N. F.M. Sani. 2013. A review of software
product line adoption. Journal of Theoretical and Applied Information Technology
57,1(2013), 88-94.

Meena Jha and Liam O’Brien. 2009. Identifying Issues and Concerns in Software
Reuse in Software Product Lines. In Proceedings of the 11th International Confer-
ence on Software Reuse: Formal Foundations of Reuse and Domain Engineering (ICSR
’09). Springer-Verlag, Berlin, Heidelberg, 181-190. https://doi.org/10.1007/978-3-
642-04211-9_18

P. Knauber, D. Muthig, K. Schmid, and T. Widen. 2000. Applying Product Line
Concepts in Small and Medium-Sized Companies. IEEE Software 17, 5 (2000),
88-95.

Jyrki Kontio, Johanna Bragge, and Laura Lehtola. 2008. The focus group method
as an empirical tool in software engineering. In Guide to advanced empirical
software engineering. Springer, 93-116.

Jyrki Kontio, Laura Lehtola, and Johanna Bragge. 2004. Using the focus group
method in software engineering: obtaining practitioner and user experiences.
In Proceedings. 2004 International Symposium on Empirical Software Engineering,
2004. ISESE 04. IEEE, 271-280.

Pasi Kuvaja, Jouni Simild, and Hanna Hanhela. 2008. Software product line
adoption-guidelines from a case study. In IFIP Central and East European Confer-
ence on Software Engineering Techniques. Springer, 143-157.

[21]

[22]

[23

[24

[26

[27

(28]

[29

[31

[32

[33

(34]

&
2

[36

[37

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

Yan Li, Tao Yue, Shaukat Ali, and Li Zhang. 2019. Enabling automated require-
ments reuse and configuration. Software and Systems Modeling 18, 3 (2019),
2177-2211. https://doi.org/10.1007/s10270-017-0641-6

N. Matsuda. 2004. Problems and suggestions for adopting product line software
engineering from modification style development. In 11th Asia-Pacific Software
Engineering Conference. 568-571.

Parastoo Mohagheghi and Reidar Conradi. 2003. Different aspects of product fam-
ily adoption. In International Workshop on Software Product-Family Engineering.
Springer, 429-434.

Jefferson Seide Molléri, Michael Felderer, Emilia Mendes, and Kai Petersen. 2019.
Reasoning about Research Quality Alignment in Software Engineering. Journal
of Systems and Software (2019).

Najam Nazar and TM] Rakotomahefa. 2016. Analysis of a Small Company for
Software Product Line Adoption-An Industrial Case Study. International Journal
of Computer Theory and Engineering 8, 4 (2016), 313.

Mercy Njima and Serge Demeyer. 2019. An Exploratory Study on Migrating
Single-Products towards Product Lines in Startup Contexts. In Proceedings of the
13th International Workshop on Variability Modelling of Software-Intensive Systems
(VAMOS ’19). Association for Computing Machinery, New York, NY, USA, Article

Article 10, 6 pages. htt{)s://doiAorg/loA1145/3302333,3302347
Klaus Pohl, Giinter Bockle, and Frank J van Der Linden. 2005. Software product line

engineering: foundations, principles and techniques. Springer Science & Business
Media.

Per Runeson and Martin Host. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2(2009), 131-164. https://doi.org/10.1007/s10664-008-9102-8

Holger Schlingloff, Peter M. Kruse, and Mehrdad Saadatmand. 2020. Excellence
in Variant Testing. In Proceedings of the 14th International Working Conference
on Variability Modelling of Software-Intensive Systems (VAMOS °20). Association
for Computing Machinery, New York, NY, USA, Article 12, 2 pages. https:
//doi.org/10.1145/3377024.3377028

K. Schmid and M. Verlage. 2002. The economic impact of product line adoption
and evolution. IEEE Software 19, 4 (2002), 50-57.

D. Sellier, M. Mannion, G. Benguria, and G. Urchegui. 2007. Introducing Software
Product Line Engineering for Metal Processing Lines in a Small to Medium
Enterprise. In 11th International Software Product Line Conference (SPLC 2007).
54-62.

Karma Sherif and Ajay Vinze. 2003. Barriers to adoption of software reuse: A
qualitative study. Information & Management 41, 2 (2003), 159-175.
Williamson Silva, Igor Steinmacher, and Tayana Conte. 2019. Students’ and
instructors’ perceptions of five different active learning strategies used to teach
software modeling. IEEE Access 7 (2019), 184063-184077.

M. Staples and D. Hill. 2004. Experiences adopting software product line de-
velopment without a product line architecture. In 11th Asia-Pacific Software
Engineering Conference. 176-183.

Stefan Strobl, Mario Bernhart, and Thomas Grechenig. 2010. An Experience
Report on the Incremental Adoption and Evolution of an SPL in EHealth. In
Proceedings of the 2010 ICSE Workshop on Product Line Approaches in Software
Engineering (PLEASE ’10). Association for Computing Machinery, New York, NY,
USA, 16-23. https://doi.org/10.1145/1808937.1808940

M. Verlage and T. Kiesgen. 2005. Five years of product line engineering in a small
company. In Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005. 534-543.

G. Zhang, L. Shen, X. Peng, Z. Xing, and W. Zhao. 2011. Incremental and iterative
reengineering towards Software Product Line: An industrial case study. In 2011
27th IEEE International Conference on Software Maintenance (ICSM). 418-427.

http://agilemanifesto.org
https://doi.org/10.1145/3236405.3237200
https://doi.org/10.1145/3236405.3237200
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-3-642-04211-9_18
https://doi.org/10.1007/978-3-642-04211-9_18
https://doi.org/10.1007/s10270-017-0641-6
https://doi.org/10.1145/3302333.3302347
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/3377024.3377028
https://doi.org/10.1145/3377024.3377028
https://doi.org/10.1145/1808937.1808940

	Abstract
	1 Introduction
	2 Research Method
	3 Results
	3.1 Current Development Practices
	3.2 Experienced Benefits
	3.3 Perceived Challenges
	3.4 Additional Improvement Opportunities
	3.5 Future Vision

	4 Discussion
	4.1 Related Work

	5 Conclusions
	A Focus Group Protocol
	A.1 Focus Group Planning
	A.2 Session and Transcription
	A.3 Thematic Analysis
	A.4 Validity Threats

	Acknowledgments
	References

