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Abstract—Blockchain is a shared, distributed ledger on which
transactions are digitally recorded and linked together. Smart
Contracts are programs running on Blockchain and are used
to perform transactions in a distributed environment without
need for any trusted third party. Since smart contracts are used
to transfer assets between contractual parties, their safety and
security are crucial and badly written and insecure contracts
may result in catastrophe. Actor-based programming is known
to solve several problems in building distributed software systems.
Moreover, formal verification is a solid technique for developing
dependable systems. In this paper, we show how the actor
model can be used for modeling, analysis and synthesis of
smart contracts. We propose Smart Rebeca as an extension of
the actor-based language Rebeca, and use the model checking
toolset Afra for verification of smart contracts. We implement
a synthesizer to synthesise Solidity programs that run on the
Ethereum platform from Smart Rebeca models. We examine
challenges and opportunities of our approach in modeling, formal
verification and synthesis of smart contracts using actors.

Index Terms—Smart Contract, Actor Model, Safety Verifica-
tion, Model Checking

I. INTRODUCTION

Smart contracts are lines of code that are stored on a

Blockchain and automatically executed when predetermined

terms and conditions are met. Blockchain is a shared, dis-

tributed ledger on which transactions are digitally recorded

and linked together. It can be seen as time-stamped series

of immutable record of data that is managed by a cluster of

computers not owned by any single entity, and provide the

entire history of transactions. The benefits of smart contracts

are most apparent in business collaborations. These contracts

are typically used to enforce some kind of agreement, and

are used to perform transactions in a distributed environment

without need for any trusted third party.

Since smart contracts are used to transfer valuable assets

between contractual parties, their safety and security are of

paramount importance. Blockchain assures deterministic exe-

cution and consistent state representations, but it cannot guard

against badly written or insecure contracts. Therefore, careful

design and implementation of contracts is still necessary

[1]. Moreover, contracts may be the target of adversaries

with malicious intents e.g. to transfer money from legitimate

users to themselves. A significant number of deployed smart

contracts are intentionally fraudulent [2], and a recent analysis

on 20K of them indicated that each of them had at least one

security issue [3]. Besides, there is no way to patch bugs and

vulnerabilities of smart contracts due to their immutability.

Accounts using smart contracts in a Blockchain are like

threads using concurrent objects in shared memory [4]. There

are well-known pitfalls in building distributed and concurrent

systems using threads [5], and well-established practices for

avoiding these problems. For example in Solidity [6] (one

of the most mature languages for building smart contracts)

execution of smart contracts callback functions and implicit

arbitrary execution of fallback functions can cause concur-

rency problems. A contract may call an external service

that calls the contract’s callback function in response. If the

contract calls more than one service the order of callbacks

may be significant while there is no guarantee that the order is

preserved. Fallback functions are called because of the Solidity

payment mechanism and their order of execution can change

the results tremendously.

Most of the currently existing work on verification of smart

contracts, e.g. Ahrendt et.al. in [7] and Osterland et.al. in

[8], focus on program verification rather than concurrency

problems. However, a wide range of issues in safety and

security of smart contracts are concurrency problems.

Using actors is a way towards building less error-prone dis-

tributed and concurrent models [5]. In this paper, we propose

a model-driven approach for developing smart contracts using

actors. We propose Smart Rebeca as an extension of the actor-

based language Rebeca [9], [10]. Smart contracts are modeled

using Smart Rebeca. Smart Rebeca has a syntax similar to

Solidity and is supported by the model checking tool Afra [11].

Counter examples are generated and help in debugging the

model. Then the correct model can be transformed to Solidity

code. Hence, the modeler is enabled to assure the safety and

security of Solidity smart contracts before the synthesis. By

using the model checking tool of Rebeca, we can find a set

of concurrency issues and program bugs. Synthesis of smart

contracts based on a formally verified model provides correct-

ness by design which results in improving public acceptance

of smart contracts.

II. PRELIMINARIES

A. Solidity

Currently, Bitcoin and the Ethereum virtual machine (EVM)

are the most popular platforms that support smart contract de-

velopment. Among the languages designed to target Ethereum,
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Solidity [6] is the most mature and popular one. Solidity

is an object-oriented language influenced by C++, Python

and JavaScript. This language is statically typed, supports

inheritance, libraries and complex user-defined types among

other features. However, writing smart contracts in Solidity

is still challenging [12], mainly due to the need to use un-

conventional programming paradigms like fallback functions,

function modifiers, etc.

In Listing 1, the code of a simple contract which provides

basic banking operations is shown in Solidity.

1 contract Bank{
2 mapping(address=>uint) userBalances;
3 function getUserBalance(address user)

constant returns(uint) {
4 return userBalances[user];
5 }
6 function addToBalance() {
7 userBalances[msg.sender] =
8 userBalances[msg.sender] + msg.value;
9 }

10 function withdrawBalance() {
11 uint amount =
12 userBalances[msg.sender];
13 if (msg.sender.call.value(amount)()

== false) {
14 throw;
15 }
16 userBalances[msg.sender] = 0;
17 }
18 }

Listing 1. Smart Contract’s Code of a simple bank in Solidity

A contract is like a class in object-oriented languages,

consisting of declaration of state variables, functions, function

modifiers, events, structure types, enum types, etc. The values

of the state variables (e.g. line 2 of Listing 1) are stored

in the blockchain. Provided functions of smart contracts can

be called by users or other contracts. In the contract of

Listing 1, the user can deposit to the bank with the function

addToBalance and withdraw using withdrawBalance
function. The variable userBalances is a hash table that

saves the money balance of each user with users addresses in

the blockchain. Note that functions may have parameters and

return values.

Functions have different levels of visibility for other

contracts, including public, private, external, and

internal. There is a set of function modifiers that can be

associated with functions to amend the semantics of functions

in a declarative way. For example, in line 3 of Listing 1,

declaring getUserBalance as a constant function,

disallows assignment to state variables. Keywords pure,

view, payable, anonymous, indexed, virtual, and

override are used for other modifiers which their detailed

description is presented in [6].

In Solidity, there are special variables and functions that are

used to retrieve information about the blockchain or provide

widely-used utility functions. For example, block.number
returns the current block number and msg.sender returns

the identifier of the sender of the message (line 7 and 8).

Another set of Solidity built-in functions are used for encod-

ing/decoding purpose which are encapsulated in the abi pack-

age or independent functions like sha256, keccak256, and

ecrecover. Solidity provides a set of functions for aborting

the execution and reverting changes which are assert,

require, and revert. The first two functions revert if their

input condition (i.e. a boolean expression) is not met. Also,

selfdestruct function can be used to destroy the current

contract and send its funds to its given Address.

B. Rebeca Modeling Language

Rebeca is an actor-based language designed for modeling

and verification of concurrent and distributed systems and is

supported by a model checking tool, Afra [9], [10]. There is

no shared variables among actors and the communication takes

place by asynchronous message passing. Rebeca is designed

with the goal to bridge the gap between software engineers

and the formal methods community. With usability as one of

the primary design goals, Rebeca’s concrete syntax is Java-

like (close to object-oriented languages), and its computation

and communication model is kept simple. Learning Rebeca

is fairly easy for programmers and using model checking

tools requires far less expertise than deduction-based analysis

methods. Rebeca has a formal semantics and allows efficient

compositional verification based on model checking. There are

multiple state space reduction techniques designed for Rebeca

based on its actor-based model of computation [13], [14].

In Rebeca a set of actors are defined and each actor has

an unbounded buffer, called message queue, for its arriving

messages. Computation in Rebeca is event-driven, meaning

that each actor takes a message that can be considered as

an event from the top of its message queue and executes the

corresponding message server. The execution of a message

server is atomic which means that there is no way to preempt

the execution of a message server of an actor and start

executing another message server of that actor.

A Rebeca model consists of a set of reactive classes and the

main block. In the main block, actors which are instances of

the reactive classes are declared. The body of the reactive class

includes the declaration of its known rebecs, state variables,

private methods, and message servers. A very simple example

of a bank reactive class is depicted in Listing 2 which its

behavior is similar to the smart contract of Listing 1. Message

servers and private methods consist of the declaration of local

variables and the body of the message server. The statements in

the body can be assignments (line 11), conditional statements,

enumerated loops, non-deterministic assignment, and method

or message server calls. Message server calls are sending

asynchronous messages to other actors (line 13) or to itself.

Private methods cannot be called by other actors. A private

method starts with the type of its return value instead of the

msgsrv keyword (lines 9 to 11 of Listing 2).

A reactive class has an argument of type integer denoting

the maximum size of its message queue (line 1 shows that the

size is 10 for this reactive class). Although message queues

are unbounded in the semantics of Rebeca, to ensure that the
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state space is finite, we need a user-specified upper bound for

the queue size. The operational semantics of Rebeca has been

introduced in [9] in more detail. Actors in Rebeca are single-

threaded which is aligned with smart contracts in Solidity .

1 reactiveclass Bank(10){
2 knownrebecs {
3 Client client1, client2, client3,
4 client4, client5;
5 }
6 statevars{
7 int[5] balances;
8 }
9 int getUserBalance(int id) {

10 return balances[id];
11 }
12 msgsrv addToBalance(int id, int amount) {
13 balances[id] += amount;
14 }
15 msgsrv withdrawBalance(int id, int r) {
16 ((Client)sender).receive(balances[id]);
17 balances[id] = 0;
18 }
19 }

Listing 2. Bank contract in Rebeca

A Rebeca code can be model checked against a given set

of Linear Temporal Logic (LTL) properties. These properties

specify the correct behaviors/states of the model. For example,

in the case of the bank contract, one correctness property

is that the balance of all clients must be none-negative in

all the states. This property can be specified in LTL using

�(balance1 ≥ 0∧· · · balance5 ≥ 0) formula. Figure 3 shows

how the mentioned LTL property is specified in the Rebeca

property file.

At the first step, the atomic propositions of the formula are

defined in the define section, considering the state variables

of the actors. As depicted in Figure 3, five atomic propositions

are defined for the bank contract example which examine

balances for all clients (lines 2 to 8). The name of atomic

propositions are b1 to b5 and their corresponding formula is

put after the equal sign. In the LTL section correctness proper-

ties are specified (line 10). In this example, only one property

with the name Safety is defined. Textual presentation of

LTL modality Always (�) is G in Rebeca property files and

conjunction between atomic propositions is shown by &&.

1 property {
2 define {
3 b1 = bank.balance[1] >= 0;
4 b2 = bank.balance[2] >= 0;
5 b3 = bank.balance[3] >= 0;
6 b4 = bank.balance[4] >= 0;
7 b5 = bank.balance[5] >= 0;
8 }
9 LTL {

10 Safety:G(b1 && b2 && b3 &&
11 b4 && b5);
12 }
13 }

Listing 3. The property file for the Rebeca code in Listing 2
stating the safety property as an LTL formula

III. SMART REBECA FOR SMART CONTRACTS

Smart contracts are a sequence of source codes that are

sequentially executed in an atomic step. It means that when a

user or a device asks for calling one of the functions of a con-

tract, lines of the code will be executed in the written order and

no other request will be processed until ending the execution of

that function (i.e. none-preemptive execution). Also when an

error or an exception happens in the code, performed changes

are reverted. Considering this characteristic of smart contracts,

it seems that they are easy to model, analyze, and synthesize.

However, there are many challenges in modeling and analyzing

smart contracts which have to be considered. For example,

supporting all the built-in functions of abi package of Solidity

or accessing block and transaction properties in Rebeca is not

easy. This makes program verification of Solidity contract in

Rebeca more challenging.

To address the mentioned challenges we develop Smart

Rebeca as an extension of Rebeca with a set of annotations

to be able to model Solidity features that are not supported

in Rebeca. In the following sections we propose a mapping

between Solidity language constructs and Smart Rebeca and

clarify the parts of Solidity that are not supported by Smart

Rebeca.

A. Mapping between Smart Rebeca and Solidity

We use the Solidity source code of a casino contract as

the running example to show how Solidity smart contracts

can be modeled using Rebeca, and what extensions to Rebeca

are needed to be able to model smart contracts efficiently.

By applying these extensions to Rebeca we build the Smart

Rebeca language. The casino contract regulates how a casino

should make a coin-tossing game available to the players.

In this model, a player makes a guess and the last player

who makes the correct guess wins the game. This contract is

developed based on the following legal contract items, which

are presented in [7].

• The casino owner may deposit or withdraw money from

the casino’s bank as long as the bank’s balance never falls

below zero.

• As long as no game is in progress, the owner of the

casino may make available a new game by tossing a

coin and hiding its outcome. The owner must also set

a participation cost of choice for the game.

• The bank balance may never be less than the sum of the

participation cost of the game and its win-out.

• The win-out for a game is set to be 80% of the partici-

pating cost.

The Solidity implementation of the smart contract of this le-

gal contract is depicted in Listing 4. The function placeBet
is invoked by external players to place a bet (lines 45-51). The

functions withdraw (lines 15-23), startTheGame (lines

31-36), and endTheGame (lines 37-44) are invoked by the

casino owner to manage the game life cycle. Note that in this

model the function tossACoin (lines 25-30) is developed to

model random number generation which should be replaced
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with a fair external random number generation mechanism.

This implementation ensures that the mentioned legal contract

is never violated.

1 contract Casino {
2 address owner;
3 bool coinResult, guessedValue;
4 uint gameState, betValue;
5 uint public constant STATE_GAME_STOPPED=0;
6 uint public constant STATE_GAME_STARTED=1;
7 uint public constant STATE_GAME_BET_PLACED=2;
8 uint nonce = 10;
9 address public player;

10

11 function Casino() {
12 owner = msg.sender;
13 gameState = STATE_GAME_STOPPED;
14 }
15 function withdraw(uint amount){
16 assert( msg.sender==owner);
17 //if game’s not stopped we require to have

enough money to pay the player
18 if(gameState!=STATE_GAME_STOPPED)
19 assert(amount<=this.balance-18*betValue/

10);
20 else
21 assert(amount<=this.balance);
22 owner.transfer(amount);
23 }
24 // a pseudo-random function which should be

replaced by an external service using
Oraclize

25 function tossACoin() internal returns (bool){
26 uint randomnumber = uint(keccak256(now,

msg.sender, nonce)) % 900;
27 randomnumber = randomnumber + 100;
28 nonce++;
29 return randomnumber>450;
30 }
31 function startTheGame(){
32 assert( msg.sender==owner);
33 coinResult = tossACoin();
34 // For simplicity we don’t use a Oraclize

service for a random guess
35 gameState = STATE_GAME_STARTED;
36 }
37 function endTheGame() {
38 assert( msg.sender==owner);
39 if(gameState==STATE_GAME_BET_PLACED) {
40 if(guessedValue==coinResult)
41 player.transfer(18*betValue/10);
42 gameState = STATE_GAME_STOPPED;
43 }
44 }
45 function placeBet(bool coinGuess) payable {
46 assert(gameState==STATE_GAME_STARTED);
47 player = msg.sender;
48 betValue = msg.value;
49 gameState = STATE_GAME_BET_PLACED;
50 guessedValue = coinGuess;
51 }
52 }

Listing 4. Casino Contract in Solidity

In the Rebeca implementation of the casino model, the

contract is modeled as the Casino reactive class which is

extended from the Contract reactive class. We embedded a

model of the blockchain inside Smart Rebeca Contract re-

active class, which its simplified version is shown in Listing 5.

The embedded model contains the bookkeeping (balances

of the contracts, e.g. line 3) and Ether transfer mechanisms

(send and receive functions in lines 8-14 and 15-17).

This way, to model a money transfer inside any contract,

developer only needs to call function send. If there is no

receive function, the Contract reactive class mimics the

Ethereum mechanism for money transfer by executing the

fallback function.

1 abstract reactiveclass Contract (10) {
2 statevars {
3 int balance;
4 }
5 Contract(int startBalance) {
6 balance = startBalance;
7 }
8 boolean send(Contract receiver,int value){
9 if (value > balance)

10 return false;
11 balance -= value;
12 receiver.receive(value);
13 return true;
14 }
15 msgsrv receive(int value) {
16 self.balance += value;
17 }
18 void fallback() { }
19 void callback() { }
20 }

Listing 5. The Contract abstract class in Rebeca

Functions of the contract are implemented as message

servers of Casino as they can be called asynchronously by

the external actors. The simplified version of the Smart Rebeca

model of Casino is shown in Listing 6. Besides, external

actors have to be added as other reactive classes. In the case

of Casino, they are Player and CasinoOwner reactive

classes. The complete code of this model is available at Rebeca

homepage [11].

1 env int GameStopped = 0;
2 env int GameStarted = 1;
3 env int BetPlaced = 2;
4 reactiveclass Casino extends Contract (10) {
5 knownrebecs {
6 CasinoOwner owner;
7 }
8 statevars{
9 int betValue, state;

10 boolean coinResult, guessedValue;
11 Player player;
12 }
13 Casino(int startBalance){
14 balance = startBalance;
15 betValue = 0;
16 state = GameStopped;
17 }
18 msgsrv withdraw(int amount){ ... }
19 msgsrv deposit(int amount) { ... }
20 msgsrv startTheGame() { ... }
21 msgsrv endTheGame() { ... }
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22 msgsrv placeBet(int value, boolean guess)
23 { ... }
24 }
25 reactiveclass Player(10) { ... }
26 reactiveclass CasinoOwner(10){ ... }
27

28 main {
29 Casino casino(owner):(100);
30 CasinoOwner owner(casino):(100);
31 Player player(casino):(20);
32 }

Listing 6. The Casino contract in Rebeca

The syntax of Rebeca is Java-like and very similar to

the syntax of Solidity and transforming the body of func-

tions to message servers is straightforward. For instance, the

Rebeca codes of endTheGame and placeBet are shown

in Listing 7. Message servers and some statements of this

implementation is annotated with some keywords which will

be described in the following sections.

1 msgsrv endTheGame() {
2 @Assert(sender == owner)
3 if(state == BetPlaced){
4 if(guessedValue == coinResult)
5 transfer(betValue+(8*betValue) /10);
6 state = GameStopped;
7 }
8 }
9 @Payable

10 msgsrv placeBet(int value, boolean guess) {
11 @Assert(state == GameStarted)
12 player = (Player)sender;
13 betValue = value;
14 state = BetPlaced;
15 guessedValue = guess;
16 }

Listing 7. Detailed implementation of two message servers of Casino
in Rebeca

B. Smart Rebeca Annotations
To support special features of Solidity in Rebeca, instead

of extending the syntax of the language we added a set of

annotations. In the following sections, the detailed description

of the Solidity features which are supported by Smart Rebeca

and their corresponding annotations in Smart Rebeca are

presented.
1) Functions Visibility: Smart Rebeca only provides

public and private visibility modifiers of Solidity. Solid-

ity functions are defined as message servers in Smart Rebeca

and are publicly available for the other actors. Methods which

are called synchronously from message servers of a smart

contract are assumed private.
2) Function Modifiers: From the function modifiers of

Solidity, Smart Rebeca supports only payable modifier. We

will talk about this modifier and how the payment mechanism

is developed in Smart Rebeca in Section III-C. In Solidity,

new modifiers can be defined to encapsulate the common

behaviors of functions. Smart Rebeca supports these user

defined function modifiers. For example, in the following code

onlyOwner modifier is associated with abort function to

make this function available only to the owner (line 5).

1 contract Auction {
2 modifier onlyOwner() {
3 require(msg.sender == seller);
4 }
5 function abort() public onlyOwner {
6 // ...
7 }
8 }

In Smart Rebeca, user defined modifier functions are

implemented as private methods which are annotated with

@Modifier. A message server which the defined modifier

has to be associated with, uses @Modifier annotation with

a parameter, as shown in line 7 in the following listing.

1 reactiveclass Auction extend Contract (5) {
2 @Modifier
3 void onlyOwner() {
4 @Require(sender != owner)
5 return;
6 }
7 @Modifier(onlyOwner)
8 msgsrv abort() {
9 // ...

10 }
11 }

3) Block Chain Related Global Variables: In the current

version of Smart Rebeca, none of the block chain variables

(i.e. variables in the form of block.<func-name>) are

supported. Smart Rebeca only supports sender which is

passed to message servers implicitly.

4) Encryption/Decryption Libraries: In the current version

of Smart Rebeca, none of the abi functions and other

independent functions like sha256, keccak256, etc, which

are used for encryption and decryption are supported.

5) Error Handling: Two functions assert and require
of Solidity are used to make sure that their given expressions

are valid by evaluating them to true. They throw an exception

if the condition is not met. The function assert using up

all remaining gas in the failing condition and require will

refund the remaining gas. These two functions are modeled

with @Require or @Assert annotations. Line 2 of Listing 7

shows an example of using @Assert. Note that Smart Rebeca

does not support revert error handling mechanism.

6) Events: To inform the external component about the

execution of a contract function, a component can subscribe

to an event and when the event is emitted, its corresponding

code will be executed. In the following an event is defined in

line 2 and it is called in line 5.

1 contract Auction {
2 event inc(address bidder, uint amount);
3 function bid() {
4 // ...
5 emit inc(msg.sender, msg.value);
6 }
7 }

This mechanism is implemented by defining an empty body

method in Smart Rebeca and annotating it with @Event.

Upon needs for emitting the event, the empty body method
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is called and the call statement is annotated with @Event as

well, as shown below.

1 reactiveclass Auction extend Contract (5) {
2 @Event
3 void inc(int bidder, int amount){}
4 msgsrv bid() {
5 // ...
6 @Event
7 inc(sender, value);
8 }
9 }

7) Variable Types: Rebeca supports a limited number of

variable types and its current version does not provide mecha-

nism for defining new data types. However, Solidity supports a

wide range of variable types, some of which are shown below.

1 contract Auction {
2 uint a;
3 address b;
4 ether c;
5 mapping(address => uint) votes;
6 }

In Smart Rebeca, variable types which have to be synthesized

to Solidity special types, should be annotated with target types

like below.

1 reactiveclass Auction extend Contract (5) {
2 @uint int a;
3 @address int b;
4 @ether int c;
5 @addressidx int votes[10];
6 }

The same can be done for all subdenomination of Ether, i.e.

wei, szabo, and ether.

C. Payment in Smart Rebeca

Defining a function as payable allows it to receive ether

while being called, as shown in the following code.

1 contract Auction {
2 function bid() payable { ... }
3 }

The payable functions are defined in Smart Rebeca using

@Payable annotation as shown below. The first parameter

of a payable function in Smart Rebeca has to be in form of

int value which shows the transferred value.

1 reactiveclass Auction extend Contract (5) {
2 @Payable
3 msgsrv bid(int value) { ... }
4 }

But, calling payable functions is not the only way of

transferring money in smart contracts. In smart contracts and

EVM, there are send and transfer functions for low

level money transfer. Using them, results in call of receive
method in the receiver side. Smart Rebeca only supports send
and implement it in the Contract reactive class. A modeler

can use these methods or overwrite receive in its own

contract.

In Solidity, a function named Fallback, can be defined

inside a contract (in Solidity this function has no name and

is shown by two parentheses in the code) which is called if

the method receive is not defined. Contracts that receive

Ether directly (without a function call, i.e. using send or

transfer) call fallback function which may lead to reen-

trancy attacks in smart contracts. The fallback function is also

called when a contract receives a request for calling a function

which does not exists.

In Smart Rebeca, as the reactive class Contract defines

receive for receiving money and defined fallback as an

empty body private method, the mentioned attack does not

happen.

D. Synthesizing Solidity Codes from Smart Rebeca Models

Transforming Smart Rebeca models to Solidity code is

straightforward as suggested in the above examples. Note

that in the transformation, there is no need for transforming

Contract reactive class as its functionality is provided by

EVM.

IV. ANALYSIS OF SMART REBECA

In the Blockchain, the order of executing transactions (re-

quests for executing contract functions) is determined by the

miners to increase their profit, and therefore it is somewhat

random. This policy leads to problem of the transactions

ordering and needs to be considered in the verification process.

In addition, arbitrary execution of callback functions as a result

of external service call and execution of fallback functions as a

result of Solidity payment mechanism may causes concurrency

issues. These concurrency issues have to be taken into account

in verification.

We transform Smart Rebeca models to Rebeca models to

perform formal verification. Transforming from Smart Rebeca

to Rebeca is straightforward and only function modifiers

and error handling notations have to be considered. In this

transformation, error handing annotations are replaced with an

if statement to mimic their behavior. The body of the user-

defined function modifiers are put as the first statement in the

body of message servers. For the case of payable functions,

one statement is added to the beginning of the body of those

functions to increase the balance of the contract with the given

value for the value parameter.

There is no need for more modification in the transfor-

mation of a Smart Rebeca contract to Rebeca except for

multi-contract models. In some cases, a contract is defined

as a set of independent contracts. Message passing between

contracts in Ethereum is usually synchronous. It means that in

corresponding Smart Rebeca model of such a contract, there

is a need for the synchronous call between actors which is not

allowed. To resolve this issue, a multi-contract Smart Rebeca

model is transformed to a Rebeca model in which the body of

all of the contracts are embedded in one reactive class. This

way, the required synchronous function calls are possible.
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A. Concurrency in Smart Contracts

Referring to the sequential and non-preemptive execution of

smart contracts, it seems that there is no concurrent behavior

in smart contracts. But in many cases, smart contracts have to

communicate with the services outside of the Blockchain to

acquire data and run external services. Since connecting to an

external service is time-consuming and IO errors may happen

during the call, execution is performed asynchronously. This

way of calling external services is called Oracelizing service

call and may results in concurrency in execution [4].

We will illustrate concurrency problems using a gambling

contract called BlockKing [4], a part of it is shown in Listing 8.

The gamble in BlockKing works as follows. At any given time

there is a designated “Block King” which is initially set to the

writer of the contract. When money is sent to the contract

by a gambler s, a random number is generated and if the

current block number modulo 10 is equal to that number,

then s becomes the new Block King. Afterward, a portion

of the money in the contract (from 50% to 90%) is sent as

the reward to the new Block King, and the remained money

is set to the writer of the contract. In this model, there is

a need for generating random numbers, which is difficult to

be provided in deterministic systems. So, BlockKing uses a

trusted external web service to generate unpredictable random

numbers, Wolfram Alpha (an Oraclize service). In this contract

the enter function is called by the player and the bet money

is sent to the contract (lines 1-16). After setting the contract

variables (lines 10-12), a request is sent to the Oraclize

service (lines 13-15) and the function is terminated. The called

external service checks the request and after generating the

random number calls the callback function in the contract

with the generated number as the parameter. Meanwhile, many

other functions of the contract may be executed, and some

blocks and the state of the Blockchain may be changed. So,

there is no guarantee that the state of the BlockKing contract

at the time of callback be the same as its state at the time of

Oraclize service call.

1 function enter() payable {
2 /* 100 finney = .05 ether minimum payment
3 * otherwise refund payment and stop
4 * contract
5 */
6 if (msg.value < 50 finney) {
7 msg.sender.send(msg.value);
8 return;
9 }

10 warrior = msg.sender;
11 warriorGold = msg.value;
12 warriorBlock = block.number;
13 bytes32 myid =
14 oraclize_query(0,"WolframAlpha",
15 "random number in [1, 9]");
16 }
17 function __callback(bytes32 myid,
18 string result) {
19 if (msg.sender != oraclize_cbAddress ())
20 throw;
21 randomNumber = uint(bytes(result)[0])-48;
22 process_payment ();

23 }
24 function process_payment() {
25 ...
26 if (singleDigitBlock == randomNumber) {
27 rewardPercent = 50;
28 // If the payment was more than .999
29 // ether then increase reward percentage
30 if (warriorGold > 999 finney) {
31 rewardPercent = 75;
32 }
33 king = warrior;
34 kingBlock = warriorBlock;
35 }
36 }

Listing 8. Smart BlockKing Contract

There is a concurrency bug in this implementation of

BlockKing contract. Assume that multiple gamblers wish to

try their luck and attempt to play in a short period of time.

The presented implementation of this contract does not have a

mechanism for keeping track of different players and the newly

entered player overwrites the values of warriorBlock and

warrior in lines 10 to 12. This way, the contract only

knows the information regarding the last player. So, every

time the external service calls the callback function, only the

last player is considered for a chance of winning; although,

the other players paid for it. The problem lies in lines 24

to 32 of process_payment, which is called at the end

of the __callback function. Note that in Smart Rebeca,

the reactive class Contract has an empty body callback
function which mimics the behavior of the __callback
function.

Modeling of these kinds of behaviors can be performed

efficiently in Smart Rebeca, because it is designed for model-

ing concurrent behaviors and a modeler can easily model not

only the contract logic but also service providers and external

services. For instance, in BlockKing, a modeler can implement

the contract logic, users, and external service as different

reactive classes, then defines the correctness properties and

check the correctness.

B. Arbitrary Order of Execution

The fact that transactions and function calls are executed

in a nondeterministic order decided by miners may cause

concurrency problems. Model checking smart contracts can

reveal such potential problems. A newly issued request for

executing a function may be executed before the previously

issued requests. This nondeterminism may affect the correct-

ness of a contract when the logic of the contract depends on

the outcome of more than one request and the ordering is

significant.

For instance, assume that there is a bank contract and the

bank manager wants to add the yearly profit to the saving

accounts. He wants to add 5 percent profit to the account,

which can be implemented by multiplying the balances of

accounts by 1.05. Also, assume that there is a customer who

wants to withdraw 10 dollars from his account which its

balance is 100 dollars. Now in a scenario that these two
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requests are waiting for execution on Blockchain, the balance

of the customer account may have two different values since

the order of the transactions cannot be determined no matter

which request comes earlier (one of 94.5 or 95 dollars). This

was an example of how racing condition affects the outcome of

a contract. This type of nondeterminism is considered by Afra.

In the case of having more than one message to handle, model

checkers chooses one of the messages nondeterministically

and handle it.

V. RELATED WORK

A. Smart Contracts and Solidity

In the recent years, several programming languages have

been defined on top of Ethereum virtual machine (EVM)

platform. For example, Bitcoin script is a non-Turing complete

language, which allows implementing a limited form of smart

contracts. In particular, this language supports some basic

arithmetic and logical operators, but no loops, and it suffers

from low expressiveness [15]. Ivy [16] is another Bitcoin

language, which is more secure than Bitcoin script. In fact,

by constraining the expressiveness of Bitcoin script as well as

introducing financial asset and transaction notions as first-class

concepts, it renders large classes of potential smart contract

vulnerabilities simply impossible by design. The functional

language Simplicity is another notable language for designing

smart contracts that are secure by design [17]. Simplicity

is a functional language without loops and recursion, which

comes with formal denotational semantics defined in Coq. This

language is still under development. Vyper [18] is another

Ethereum language, which is designed to be secure and

simple. Following these goals, this language does not provide

support for some features such as modifiers, inheritance and

overloading. As another Ethereum language, Bamboo [19] is

defined to provide support for formal verification. In par-

ticular, this language makes state transitions explicit, which

is beneficial for model-checking purposes. Developers define

which functions can be called in each state, and the language

provides constructs to specify changes of state explicitly.

However, Bamboo does not present any additional features

geared towards the safety of programs [20].

Among the languages designed to target Ethereum, Solidity

[6] is the most mature and popular which we described it in

detail in Section II.

B. Verification of Smart Contracts

The semantics of EVM bytecode is formalized in the F*

proof assistant in [21], obtaining executable code that is

validated against the official Ethereum test suite. Furthermore,

the authors have formally defined a number of central security

properties for smart contracts, such as call integrity, atomicity,

and independence from miner controlled parameters. Luu et

al. presented Oyente [3], a state-of-the-art static analysis tool

for EVM bytecode that relies on symbolic execution. Oyente

comes with a semantics of a simplified fragment of the

EVM bytecode and, in particular, misses several important

commands related to contract calls and contract creation.

Oyente supports a variety of security properties, such as

transaction order dependency, timestamp dependency, and

reentrancy, but the security definitions are rather syntactic and

are described informally. Brent et al. [22] introduce a security

analysis framework for Ethereum contracts, called Vandal,

which converts EVM bytecode to semantic relations, which are

then analyzed to detect vulnerabilities described in the Souffle

language. Note that all of the above mentioned approaches

consider EVM bytecodes which may make the analysis more

complicated.

On the other hand, VeriSolid [23] is a framework for formal

verification of smart contracts specified using a transition-

system based model. This framework provides natural-

language-like templates for specifying safety and liveness

properties. However, the need to be familiar with the concept

of transition systems and state machines may limit the adop-

tion of this framework. Tesnim et al. [24] propose an approach

to model smart contract and Blockchain execution protocol

along with users’ behaviors using the BIP framework. BIP [25]

includes a strong component-based modeling formalism and a

statistical model checking engine for systems verification. The

latter two may not be friendly for the practitioners working

with the existing programming languages and Solidity. In [8],

the authors propose a method to translate Solidity programs

to PROMELA models. The SPIN model checker is then used

to verify the correctness properties. They do not discuss how

they handle callback and fallback functions which are essential

for developing real-world smart contract.

C. Synthesis of Smart Contracts from Models

In addition to the verification facilities, VeriSolid also

supports generation of Solidity code from the verified models.

In [26], the authors present a tool to model smart contracts

as finite state machines (FSM), which are then transformed

to Solidity code automatically. They also introduce a set

of design patterns, which they implement as plugins that

developers can easily add to their contracts to enhance security

and functionality. UML statecharts are used in [27] to model

contract behaviors. The statechart models are then translated

to Solidity code based on some predefined mapping rules.

In [1] an algorithm is proposed to translate ADICO mod-

els to Ethereum smart contracts. ADICO allows behavior

specification in terms of human-readable statements. The

currently generated smart contract skeletons using ADICO

require significant amount of manual inputs to enable them

to be executable in EVM.

VI. CONCLUSION

In this paper, we present an approach for modeling and

verification of smart contracts using Smart Rebeca and show

how modeling and analysis challenges are addressed. We

illustrate that the model of computation of Smart Rebeca and

smart contracts developed in Solidity are very close. We make

it clear that statements in Smart Rebeca and Solidity are

similar, so, the transformation is straightforward. We show

how annotations can be used to cover the limitations of
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Smart Rebeca for modeling Solidity contracts. To illustrate

the applicability of our approach, we present a set of Solidity

smart contracts and discuss how issues that are caused by

concurrency and nondeterminism can be revealed by model

checking.

In the future, we plan to extend Afra to support the

automatic transformation from Solidity to Smart Rebeca. We

also plan to develop a more comprehensive set of case studies

to provide samples for Solidity contract developers to support

them in the modeling phase.
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