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Abstract. Methods for Worst-Case Execution Time (WCET) analysis
have been known for some time, and recently commercial tools have
emerged. However, the technique has so far not been much used to anal-
yse real production codes. Here, we present a case study where static
WCET analysis was used to find upper time bounds for time-critical
regions in a commercial real-time operating system. The purpose was
not primarily to test the accuracy of the estimates, but rather to in-
vestigate the practical difficulties that arise when applying the current
WCET analysis methods to this particular kind of code. In particular,
we were interested in how labor-intense the analysis becomes, measured
by the number of annotations to explicitly constrain the program flow
which is necessary to perform the analysis. We also make some qualita-
tive observations regarding what a WCET analysis method would need
in order to perform a both convenient and tight analysis of typical op-
erating systems code. In a second set of experiments, we analyzed some
standard WCET benchmark codes compiled with different levels of opti-
mization. The purpose of this study was to see how the different compiler
optimizations affected the precision of the analysis, and again whether
it affected the level of user intervention necessary to obtain an accurate
WCET estimate.

1 Introduction

A Worst-Case Execution Time (WCET) analysis finds an upper bound to the
worst possible execution time of a computer program. Reliable WCET estimates
are a key component when designing and verifying real-time systems, especially
when real-time systems are used to control safety-critical systems like vehicles,
military equipment and industrial power plants. WCET estimates are needed
in hard real-time systems development to perform scheduling and schedulability
analysis, to determine whether performance goals are met for periodic tasks,
and to check that interrupts have sufficiently short reaction times [1]. However,
WCET analysis has a much broader application domain; in any product de-
velopment where timeliness is important, WCET analysis is a natural tool to
apply.

Any WCET analysis must deal with the fact that a computer program typ-
ically has no fixed execution time. Variations in the execution time occur due
to the characteristics of the software, as well as of the computer upon which



the program is run. Thus, both the properties of the software and the hardware
must be considered in order to understand and predict the WCET of a program.

The traditional way to determine the timing of a program is by measure-
ments, also known as dynamic timing analysis. A wide variety of measurement
tools are employed in industry, including emulators, logic analyzers, oscillo-
scopes, and software profiling tools [2, 3]. This is labor-intensive and error-prone
work, and even worse, it cannot guarantee that the true WCET has been found.
This is because, in general, it is practically impossible to perform exhaustive
testing.

Static timing analyses estimate the WCET of a program without actually
running it. The analyses avoid the need to run the program by simultaneously
considering the effects of all possible inputs, including possible system states,
together with the program’s interaction with the hardware. The analyses rely
on mathematical models of the software and hardware involved. Given that the
models are accurate enough, the result is a safe timing estimate that is greater
than or equal to the actual WCET.

The static WCET analysis research area has developed during the last decade,
and recently commercial WCET tools, such as aiT [4] and Bound-T [5], have
reached the embedded system market. However, practical experience of WCET
analysis in industry has so far been rather limited, see Section 2.

In this case study we report from experiences when using a static WCET
analysis tool to analyze code from the Enea OSE Real-Time operating system
[6]. This is a commercial operating system, used in applications such as mobile
phones and aircrafts, and thus an example of real production code.

Real-time operating systems are important to analyze with respect to timing
properties, since they often are used in time-critical applications. Tasks with hard
real-time constraints may make operating system calls. If no good WCET bound
for the called code is known, then it is not possible to find a good WCET bound
for the calling task either. Furthermore, OS services such as task switching must
have good WCET bounds in a real-time system, since they also affect the timing
properties of the application code. Finally, operating systems contain disable
interrupt regions (or DI regions for short), where the interrupts are turned off,
e.g., to provide a critical section where some shared resource is protected. The
WCETs of such regions need also to be bounded, since their execution can delay
higher priority tasks.

In our study, we analyzed some selected system calls and DI regions. We
were somewhat interested in the precision of the analysis, but more in issues
like how difficult it is to analyze typical operating systems code. WCET analysis
cannot be completely automatic, (or we would have solved the halting problem),
and manual user directives are typically needed to provide information that the
analysis is not able to derive automatically. These directives provide problems:
they can be erroneous, in which case the analysis might give an underestimation
of the WCET, and providing the proper directives may be laborious and require
a deep understanding of the code. This means that WCET analysis methods
must be tuned to handle certain important classes of code with a minimum



of needed user intervention. Our hypothesis was that operating systems code
provides a particularly challenging class in this regard, and is much different in
character than, for instance, signal processing code.

The second part of the study concerns how compiler optimizations affect the
manual labor needed to perform an accurate WCET analysis. Optimizations
may create a more unstructured, complex, program flow in the resulting code,
which may make it harder to provide proper annotations for constraining the
program flow. In addition, we studied how compiler optimizations for speed and
size, respectively, affected the WCET itself. This is also interesting: for instance,
it is not evident that an optimization for average speed will give a lower WCET.
For this part of the study we were not able to use the OSE operating system
code, the reason being that this code, due to its low-level nature, only compiles
with a small set of compilers with certain combinations of flags set. Instead, we
used a set of standard WCET benchmarks.

The rest of this paper is organized as follows. In Section 2, we give a brief
introduction to WCET analysis and related work in the area. Section 3 presents
our WCET project and our previous industrial experiences. In Section 4 the aiT
WCET tool is described. Section 5 gives a short description of the OSE operating
system. Section 6 presents the target processor for the analysis, including the
associated development environment. Section 7 describes the experimental setup
and the obtained results. Finally, in Section 8, we draw some conclusions and
give ideas for further research.

2 WCET Analysis Overview and Related Work

Static WCET analysis is usually divided into three phases: a fairly machine-
independent flow analysis of the code, where information about the possible
program execution paths is derived, a low-level analysis where the execution time
for atomic parts of the code is decided from a performance model for the target
architecture, and a final calculation phase where flow and timing information
derived in the previous phases are combined to derive a WCET estimate.

The purpose of the flow analysis phase is to extract the dynamic behaviour
of the program. This includes information on which functions get called, how
many times loops iterate, if there are dependencies between if-statements, etc.
Since the flow analysis does not know the execution path which corresponds to
the longest execution time, the information must be a safe (over)approximation
including all possible program executions. The information can be obtained by
manual annotations (integrated in the programming language [7] or provided
separately [8, 9]), or by automatic flow analysis methods [10–12]. The flow anal-
ysis is usually called high-level analysis, since it is often done on the source code,
but it can equally well be done on intermediate or machine code level.

The purpose of low-level analysis is to determine the timing behaviour of
instructions given the architectural features of the target system. For modern
processors it is especially important to study the effects of various performance
enhancing features, like caches, branch predictors and pipelines [13–16].



The purpose of the calculation phase is to calculate the WCET estimate for
a program, combining the flow and timing information derived in the previous
phases. A calculation method frequently used is IPET (Implicit Path Enumera-
tion Technique), using arithmetical constraints to model the program flow and
low-level execution times [8, 17, 12]. IPET calculations normally rely on integer
linear programming to solve the generated constraint system.

Studies of WCET analysis of industrial code are not common. There are
some reports on application of commercial WCET tools to analyze code for
space applications [12, 18, 19], and in aerospace industry [20, 21]. A recent case
study describes experiences from applying WCET analysis to LIN and CAN
communication software in cars [22].

An investigation of industrial embedded code has been done by Engblom [23].
He collected statistics of the number of occurrences of certain code features
that may be problematic for a WCET analysis, like recursion, unstructured flow
graphs, function pointers and function pointer calls, data pointers, deeply nested
loops, multiple loop exits, deeply nested decision nests, and non-terminating
loops and functions. In a more recent study [24], industrial code is investigated
with respect to how amenable it is to a syntactical flow analysis, a method which
detects certain loop patterns for whome immediate bounds can be given.

Studies of how to perform WCET analysis on operating system kernels are
even more rare. We have done an earlier case study of the OSE operating sys-
tem [25], where a number of DI regions were identified and analyzed. The study
presented here is a followup. The only other work we know in the area is by
Colin and Puaut [26]. They analyse some operating system functions of RTEMS,
a small, open-source real-time kernel.

3 The Project Context

The work presented here has been carried out in the context of a project whose
aim is to develop WCET analysis methods that work for real embedded software.
We have developed a modular WCET analysis tool architecture [8], and an actual
prototype tool named SWEET (SWEdish Execution time Tool) is in the final
stage of completion [27]. Our current focus is on automatic methods to find
constraints on program flows, like the maximal number of iterations for loops.
The currently available WCET analysis tools only have quite crude methods for
doing this, and SWEET will be used to experiment with more precise methods,
like Gustafsson’s interval-based flow analysis [10]. The motivation for this work
is that the need for manual flow constraint annotations is believed to be a major
hurdle when analyzing real embedded software. The case study presented here
is an attempt to test this hypothesis for a certain class of embedded software.

Besides work on automatic flow analysis, we work with case studies involving
WCET tool vendors and companies with different kinds of time-critical embed-
ded software. As mentioned in Section 2, we have performed an earlier case study
with WCET analysis of the OSE operating system [25], as well as a case study
with software for handling LIN and CAN bus communication in cars [22]. In
the first study we used an early version of SWEET, but in the second study



as well as the one presented here we have used the commercial WCET analysis
tool aiT [4]. This tool has a richer set of processor timing models than we can
maintain for our prototype tool, and it also has a better user interface than what
can be expected from a research prototype like ours. Therefore, it was a natural
choice to use this tool once it was avaliable to us.

4 The aiT WCET Tool

The aiT tool is a commercial WCET analysis tool from AbsInt GmbH [4], which
is a spinoff company from Universität des Saarlandes. aiT analyses executable
binaries, and it has support for a number of target architectures including the
ARM7TDMI. aiT performs the following steps in its analysis:
− a reconstruction of the control flow graph from the executable code,
− an analysis to bound loop iterations, based on a combination of an interval-

based abstract interpretation and pattern-matching tuned to the compiler
that generated the analyzed code [28],

− a value analysis to determine the range of values in registers,
− a cache analysis that classifies accesses to main memory w.r.t. hits and misses,

if the processor has a cache,
− a pipeline analysis, where a model of the pipeline behavior is used to determine

the execution time of basic blocks, and finally
− a path analysis where an IPET calculation is made to determine the WCET.
In essence, the aiT WCET analysis conforms to the general scheme presented in
Section 2. Several of the analyses in the chain are based on abstract interpreta-
tion [29], such as the value analysis and the cache analysis [17].

The aiT ARM7 tool analyses executables stored in .ELF format. This format
contains information about the code, like symbol tables, which is used by aiT.
This information is to some extent vendor-specific, meaning in reality that the
aiT ARM7 tool can analyze executables from only a limited set of compilers. We
used the ARM compiler, see Section 6, which belongs to this set.

The information present in the .ELF file and the executable itself is typically
not sufficient to yield a good WCET bound for the analyzed code. In particular,
information about program flow, such as bounds to loop iteration counts not
caught by the loop bounds analysis, and knowledge of infeasible paths, has to
be provided by the user. Therefore, aiT supports a set of user annotations to
provide external information to the analysis [9]. Some of the more important
annotations are: loop bounds, maximal recursion depth, dead code, and (static)
values of conditions. The two latter can be used to exclude parts of the code, like
error routines, which one may want to exclude from the WCET analysis even
though their execution is feasible. In addition, there are a number of possible
annotations to specify the control flow of subroutine calls, when needed, and
to provide hardware-related information such as clock rate and address map-
ping to different kinds of memories. The annotations can be given in a separate
annotation file or in the C-code in form of special comments1.
1 We did not use any source code annotations in our study, since the aiT tool at the

time of the study did not support the ARM compiler fully.



Fig. 1. aiT ARM7 WCET Tool Graphical Interface

The larger lower window in Figure 1 illustrates the graphical interface for
the aiT ARM7 WCET tool, including action keys for performing the WCET
analysis and a subwindow with ARM7 assembler code extracted from the .ELF
file. The front window gives some illustrative examples of possible annotations,
including loop bound and dead code annotations.

5 The OSE Operating System

OSE is a real-time operating system, developed by Enea Embedded Technol-
ogy [6]. It is used in embedded system applications such as mobile phones and
aircrafts. OSE is available for a number of target processors, mostly towards the
high-end spectrum of embedded processors. The delta kernel of OSE, which has
been used in this study, is available for ARM, StrongARM, PowerPC, Motorola
68k, and MIPS R3000. The OSE source code is written both in C and assembler.

The OSE kernels are process-based, fully preemptive, and provide priority-
based process scheduling. Processes communicate through messages: messages
are sometimes called signals, and are sent through buffers. Each buffer is iden-
tified by a signal number. Only a small number of system calls are needed to
support most requests: for instance, basic interprocess communication can be
handled by the two system calls send and receive.

In OSE, related processes can share the same memory pool. This provides a
larger degree of fault tolerance, since a corrupted memory pool will affect only
the processes sharing that pool. System calls like alloc and free buf are used
for memory handling by application processes.



Due to the communication and memory pool models, OSE must handle a
great deal of shared memory structures. Since the process model is preemptive,
this means that the operating system code must contain quite a few critical
sections to keep these structures consistent during updates. These sections are
typically implemented by DI regions. Executing such a DI region can thus cause
a temporary priority inversion, where a higher-priority process is delayed by a
lower-priority process. It is therefore important to have small WCETs for the
DI regions, in order to keep these delays down.

6 The ARM Board and Development Environment

We selected the ARM7TDMI processor as target architecture since it is widely
used, since OSE is implemented for it, and since there is a version of aiT for it.
This is a 32-bit RISC processor, with an uncached core and a 3-stage pipeline.
Most of the instructions are executed in a single clock cycle. The ARM7TDMI
is forward compatible with ARM9, ARM10 and StrongARM.

Interrupts are enabled (EI) and disabled (DI) by setting some bits in a status
register. This is done with a move-register-to-status-register instruction. Thus,
an EI or DI will be executed depending on the contents in the source register.

6.1 ARM development tools

The ARM development toolkit2, used contains an ANSI C compiler, assembler,
linker, ARMulator simulator, and an ARM development board. The C compiler
produces ARM object format or assembly source output. It can be run with
a variety of flags, including different levels of optimization for both space and
execution time.

We used the ARMulator in our experiments. The ARMulator is a simulator,
which makes it possible to evaluate the behaviour of a program for a certain ARM
processor without using the actual hardware. The ARMulator model consists of
four main components:
− The ARM processor core model that handles the communication with the

debugger.
− The memory system. It is possible to modify the memory model, for instance

w.r.t. different RAM types and access speeds.
− The coprocessor interface that supports custom coprocessor models.
− The operating system interface, which makes it possible to simulate an oper-

ating system.
It is possible to measure the number of clock cycles used by a program using
the ARMulator. Bus and core related statistics can also be obtained from the
debugger. There is no guarantee that the ARMulator timing model corresponds
exactly with the actual hardware. However, since ARM7TDMI is an uncached
and not very complex core, we expect the ARMulator to be rather cycle accurate.
2 ARM Developer Suite Version 1.2



system call description
alloc Allocation of memory in a pool

free buf Free allocated memory
receive Receive signal from another process
send Send signal from process to another process

Table 1. Analyzed system calls

system call restrictions of the analysis assumptions
alloc(a) Buffers of correct size exist
alloc(b) No buffers of correct size exist No swap out handler is registered
free buf There are two pools in the sys-

tem
receive(a) Receive all signals The signal is first in the queue. No swap out handler is

registered. A 20 bytes signal is copied. No redirection.
receive(b) Receive a signal The signal is in at second place in the queue. Max 2

buffers before in the queue. No swap out handler are
registered. A 20 bytes signal is copied. No redirection.

send(a) Send a signal to a process with
higher priority

The call to int mask handler is not analysed. No swap
out handler is registered and the analysis stops before
the interrupt process is called. No redirection.

send(b) Send a signal to a process with
lower priority

No redirection

Table 2. Description of performed analyses and assumptions made

7 Experimental Setup and Results

We made a series of experiments. First we analyzed a set of OSE system calls,
and a number of DI regions in the OSE operating system, using the aiT tool.
Then we investigated the influence of code optimization on WCET analysis. For
this experiment, we compiled some standard benchmark programs with different
levels of optimization, and performed WCET analyses on the resulting binaries,
again using the aiT tool. For these binaries, we also tried to find the exact
WCET by simulating the longest path with the ARMulator. This was done in
order to estimate the accuracy and safety of the WCET estimates provided by
the static analysis. In all experiments, we used the ARM C compiler, and we
assumed a memory model with zero wait states for both the WCET analysis and
the simulation (i.e., an instruction is executed in same number of clock cycles
no matter where in the memory it is stored). The estimated WCET results and
simulated execution times are given in number of clock cycles.

7.1 Analysis of system calls

We analyzed the OSE system calls given in Table 1. These calls includes error
checks and use advanced memory protection. They are real-time classified system
calls in OSE.

A problem that we soon discovered is that the execution time of these sys-
tem calls depend on many parameters, such as the number of signal buffers, or
maximal message sizes. Assuming a global worst-case scenario, where all these
parameters assume their “worst” values, can give very poor WCET estimates
for actual configurations, where these parameters typically are bound to much
smaller values. Furthermore, certain feasible paths may not be interesting to
analyze since they will not be executed in normal operation. Error handling
routines typically belong to this category.



system call funcs instr blocks loops annot WCET
alloc(a) 1 78 15 0 10 127
alloc(b) 9 390 54 0 18 433
free buf 2 100 19 0 15 186

receive(a) 15 531 119 2 29 821
receive(b) 17 609 143 4 33 1469
send(a) 4 281 56 0 32 493
send(b) 5 288 62 0 33 417

Table 3. Result of system call analyses

We dealt with these problem in our experiments by assuming some “typical”
scenarios for parameters affecting the WCET (after correspondance with the
OSE designers). Furthermore, we excluded uninteresting execution paths from
the analysis by manual annotations, setting conditions to true or false or by
explicitly excluding basic blocks. For alloc, receive and send, we assumed
two different scenarios each. They are denoted by (a) and (b), respectively, in
Table 2, which summarizes the conditions under which the analyses were made.

Table 3 gives the results of the analyses. For each analysed system call, funcs
is the number of analysed routines in the call graph, instr is the total number
of assembler code instructions, and blocks is the number of basic blocks. All
these numbers are for the system calls with the error handling excluded. The
estimated WCET’s are given in column WCET.

The most interesting information in Table 3 is the number of annotations
(annot) needed to perform each WCET analysis. As seen, quite a few anno-
tations are required for each system call analysis. Another observation is that
excluding the error handling yields significantly smaller code to analyze. For in-
stance, send with full error check uses at least 39 routines. This indicates that
it really is important to identify and exclude execution scenarios that are not
interesting to analyze, even if their execution is feasible.

Some of the analyzed system calls contained loops. Providing upper bounds
for these loops posed a problem since they were dependent on dynamic data
structures present in the system. As mention in Section 4, aiT includes a loop
bound analysis. According to email discussions with the aiT developers, their
loop bound analysis typically bounds 70-95% of all loops automatically (ARM7
code compiled with the Texas Instrument ARM compiler). However, the loops
in the OSE kernel have a very parametrical behaviour, making the recognition
rate very low for these loops.

An illustrating example is a loop appearing in receive. The loop iterates
through an array with signal numbers, searching for a specific signal buffer.
Each iteration of the loop takes 13 clock cycles: thus, each iteration has a lim-
ited impact on the total WCET. However, there are more than 32000 possible
signal numbers. Using this as a loop iteration bound will give a very pessimistic
WCET. In many practical situations, the actual number of signal numbers will
be statically bound by a much smaller number, and the calculated WCET will
be a huge overestimation.

Another interesting loop is found in receive(b). The loop iterates through
a queue of buffers, and the number of iterations is bounded by the number
of buffers searched before finding the right one. Unfortunately, the number of



�

���

����

����

����

� � � � �
����������	


��
��

�
�


��
��

��



��	
��
���

�����
���

Fig. 2. receive WCET scaled with loop iterations

buffers in the system may be hard to know statically since it depends on the
current system state. The time for an iteration was 182 clock cycles and was a
significant part of the total execution time of the system call. In Figure 2 we
have tabulated the total WCET of receive(b) against the number of iterations
performed in the loop. If the loop iterates more than five times, then its total
contribution to the WCET will exceed the contribution of the rest of the executed
code. The WCET for receive(b) in Table 3 was given under the assumptions
that at most two buffers were searched before the right buffer was found.

The analysis of the system calls was done by the first author, who made the
work as part of his M. Sc. thesis. Thus, he may be considered a typical engineer
who has not yet acquired a lot of experience using WCET analysis tools, and who
is not particularly knowledgeable about the code to be analysed. The analysis
was quite labor-consuming, taking in total a few weeks to perform, even if the
analyzed code in the end became quite small. The main reason for this was that
the author first tried to correct all the warnings that occurred in the analysis,
e.g., set unresolved branches and loop bounds, before actually understanding
what parts of the code that should be excluded from the analysis. Secondly, the
student was forced to rely on information from the OSE designers to give feasible
loop bounds.

We conclude that it is possible to apply static WCET analysis to code with
properties similar to the system calls in OSE Delta kernel. However, it is hard
to fully automate the WCET analysis process on a ’one-click-analysis’ basis.
Instead, much manual intervention, and detailed knowledge of the analyzed code,
is required to perform the analysis. Furthermore, if the obtained WCET values
are to be useful, they must be calculated under the actual conditions for which
the system is expected to run, with stronger bounds on system parameters and
input arguments to system calls.

7.2 Analysis of disable interrupt regions

In this experiment, we analysed 180 DI regions from the OSE operating system.
This is a selection of the DI regions analysed in [25]. Most of the DI regions
analysed were short and not so complex: 132 the regions contained five or less
basic blocks, and only one of the selected regions contained a loop. Consequently,
not so many annotations were needed and most DI regions needed only a few
annotations: 119 of the 180 analyses needed two or less annotations. Figure 3
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Fig. 3. Number of manual annotations per DI region

DI region instr blocks loops annot WCET
DI92728-EI92752 6 2 0 1 12
DI74156-EI74216 16 4 0 2 29
DI82928-EI83088 28 9 1 6 331

Table 4. Properties of some example DI regions

shows in detail how the number of annotations is distributed. In Table 4 the
properties of three analysed DI regions are given together with their WCETs.

For this kind of code, the annotations were used mostly to restrict the WCET
analysis to the actual program paths possible between the actual EI and DI
operations. This is not always a trivial task, since DI regions may span function
boundaries. Two different types of annotations were used for this. The condition
annotation was used to follow the paths in the basic block graph, and the dead
code annotation was used to make sure that the analysis would stop at the
correct instruction. The single loop found, which is looking for any changes in a
signal buffer, could not have its iteration count bounded automatically by aiT.
Therefore, we manually set the loop bound to 10 to be able to extract a WCET.

We conclude that DI regions are more suitable than the system calls to
perform automatic WCET analysis upon. However, for some DI regions expert
knowledge of the code is required to provide correct annotation and iteration
bounds, making it hard to make the analysis fully automatic.

7.3 WCET analysis of optimized code

Compilers for embedded system can optimize for both speed and size. In many
applications, such optimizations are important. Thus, it is interesting to study
how these optimizations affect WCET analysis of the resulting code.

The benchmarks used in this experiment contain conditional constructs. They
are listed in Table 5 together with their size, numbers of blocks, and number of
loops, compiled with medium optimisation for space with the ARM C compiler.

Each benchmark was compiled with optimization for size and speed, respec-
tively, and with medium and maximum optimisation levels for both. In Table 6,
the results are given. For each optimization we give the WCET estimate pro-
duced by aiT (aiT), the simulated time obtained from the ARMulator (armu),
the ratio in precent between these (+%), and the number of annotations (ann).



program description instr blocks loops
bs Binary search for the array of 15 integer elements 28 10 1
crc Cyclic redundancy check computation on 40 bytes of data 104 28 3

expint Series expansion for computing an exponential integral function 50 18 2
isort Insertion sort on a reversed array of size 10 42 7 2

ns Search in a multi-demensional array 51 14 4
select A function to select the nth largest number an array 91 34 4

Table 5. Benchmarks for evaluating WCET and compiler optimizations

pro- speed – medium speed – high size – medium size – high
gram aiT armu +% ann aiT armu +% ann aiT armu +% ann aiT armu +% ann
bs 100 93 7.5 4 65 60 8.3 2 107 100 7.0 5 65 60 8.3 2
crc 34852 34804 0.1 7 27499 27455 0.2 7 34869 34821 0.1 7 27517 27473 0.2 4

expint 2208 1997 10.6 5 1150 1145 0.4 2 2263 2052 10.3 5 2113 1891 11.7 5
isort 1230 1190 3.4 4 1213 1190 1.9 3 969 962 0.7 4 944 919 2.7 3
ns 8518 8497 0.2 2 7228 7208 0.3 0 8601 8516 1.0 2 8603 8517 1.0 0

select 1357 1349 0.6 16 1333 1306 2.1 13 1428 1401 1.9 17 1362 1295 5.2 12
Table 6. How compiler optimizations affect WCET

We have also repeated the experiment with a ARM7 C compiler from IAR Sys-
tems with similar results, see [30] for details.

When the benchmarks were highly optimized, the structure of the programs
changed a bit, but in most cases it was not so difficult to find the corresponding
code and make the proper annotations. Changes that occurred were, for instance,
that a function was moved inside the callers body, and the loop control could
be changed to the end of the loop instead of the beginning. The most difficult
changes to handle annotation-wise were when loop fission or loop fusion occurred.

Interestingly, the results indicate that it was not harder to perform an ac-
curate WCET analysis for highly optimized code. The ratio between WCET
estimate and simulated execution time stays quite constant. It was somewhat
harder to produce annotations, but not much harder. (The number of annota-
tions even drop some with increasing level of optimization, but this is mainly an
effect of the code size decreasing with increasing levels of optimization.)

7.4 Justifying obtained WCET estimates
When comparing simulated ARMulator times and calculated aiT WCET esti-
mates it should be noted that both methods rely on software models of the
hardware, making it hard to say that one timing estimate is more correct than
another one. Engblom [16] identifies several error sources in constructing a cor-
rect hardware timing model, including hardware bugs, manual writing errors and
simulator implementation errors. Furthermore, for competitive reasons processor
manufactures often keep the internals of their processor cores secret.

To get some justification of the quality of calculated WCET estimates we
compared timing estimates from aiT and the ARMulator for a number of bench-
marks (not included in this article, see [30] for details). The benchmarks con-
tained features like system calls, loops and branches, but had only one single
execution path through the program. By keeping track of the number of times
each basic block was taken during a simulator run, we were able, by annotations,
to provide exact bounds on the executions of each basic block for the WCET
calculation. Thereby, the resulting timing discrepancies were not due to incorrect
flow information, but only due to differencies in the hardware timing models.



The experiments showed that the aiT WCET estimates were on average
about 5% larger than the times obtained using the ARMulator. For none of
the tested benchmarks aiT gave a WCET lower than the timing produced by
the ARMulator. We therefore conclude that the timing model and the timing
estimates produced by the aiT tool for ARM7 should be of approximately the
same quality as for the ARMulator3.

8 Conclusions and Future Work

The results indicate that static WCET analysis is a feasible method for deriving
WCET estimates for real-time operating system code. For all analyzed parts of
the OSE operating system we were able to obtain WCET estimates, including
both system calls and DI regions.

We note however that the static WCET analysis technique is not yet mature
enough to fully automate the timing analysis process on a ’one-click-analysis’
basis. Instead, detailed knowledge of the analyzed code is required and often
manual intervention must be performed in terms of annotations.

We conclude that the usefulness of WCET analysis would improve with a
higher level of automation and support from the tool. Especially important
should be to develop advanced flow analysis methods, especially to find more
loop bounds automatically. For most of the loops analyzed in OSE it was not
possible to determine their bounds just by looking at the loop, and the loop
iteration bounds analysis of aiT would not produce a bound either. Rather, ex-
pert knowledge was needed, and the work was time-consuming and error-prone.
Similarly, better support for easy exclusion of error handling routines from the
normal WCET analysis would be of great value.

Another important conclusion made is that absolute WCET bounds are not
always appropriate for real-time operating system code. The reason is that the
WCET often depends on dynamic system parameters, like the number of signal
buffers, which however may be bounded in practical configurations or modes.
Then, an absolute WCET bound, covering all possible situations, will provide a
gross overapproximation.

Therefore, one would like to express the WCET conditionally, given that the
system runs in a certain mode. Modes, or sets of modes, can often be encoded
as value-range constraints on program variables (settings of flags, bounds on
number of processes, etc.). Program flow constraints can also be expressed as
value-range constraints, but on execution count variables. Thus, it seems inter-
esting to develop means to communicate such information to the analysis in
order to constrain the possible program flows for the given mode.

A parametric WCET analysis [31] may also be useful, especially for handling
code like system calls. This type of WCET analysis could express how the WCET
for system calls depends on, e.g., the system state and the input arguments.
3 The aiT developers have seen overestimations up to 4% for their ARM7 timing

model, (compared to measurements with a logic analyzer on a TI TMS470 bond-out
chip). The main cause of overestimation are believed to be instructions with varying
execution time dependent of argument values (such as mult and div) [28].



A more general conclusion is that the constant time assumed for, e.g., context
switch, in many scheduling approaches, will be a gross overestimation in many
cases. A conditional WCET, in terms of system state and input arguments,
would lead to a much tighter value, and thus a better utilisation of the system.
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