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Abstract—The fifth generation of cellular wireless technol-
ogy, 5G, bears the promise to transform the future network
connectivity by providing seamless, low-latency and reliable
interconnections between devices. In this paper, we focus on
modeling and analyzing 5G service orchestration that deals
with virtual network function placement, resource assignment
and traffic routing, which are the building blocks of generating
network slices catering to various application requirements. In
order to ensure that a particular network slice works as stated
by the application’s service level agreement, it is essential that
the constituent virtual network functions are placed in proper
hosts, allocated adequate resources in terms of processing power,
memory, bandwidth, and routed such that the constraints of the
hosts and the network are met. This is a complex problem to solve
if one considers the diverse set of requirements of 5G services.

We tackle this problem by proposing a UML-based modeling
and analysis framework, called UML5G Service Orchestration
Profile, which allows one to describe 5G network slices and
service orchestration via a specialized profile, and analyze as-
sociated quality-of-service requirements by checking constraints
expressed in Object Constraint Language. Our framework allows
a designer to model any candidate orchestration scheme for
5G networks and verify if the network function placement,
resource assignment, and routing guarantee the application’s
quality-of-service requirements, at design time. We evaluate the
framework on a prototype implementation of an orchestration
algorithm that generates a multitude of allocation configurations
that we automatically check against requirements formalized
in Object Constraint Language. Our contribution facilitates
modeling and design-time evaluation of network slicing and
service orchestration schemes in 5G-based solutions.

Index Terms—5G, Network Slicing, Service Orchestration,
UML 2.0, UML5G Service Orchestration profile

I. INTRODUCTION

The 5G technology has been proposed to address the short-
comings of 4G networks in terms of congestion and support
of heterogeneous applications, by utilizing a less crowded,
higher bandwidth (up to 20Gbps) spectrum that can achieve
a connection density as large as 1 million devices per square
kilometer, and meet a latency of as low as 1 ms in radio
access network [1]. A 5G network is divided into the so-
called network slices that are independent logical networks
on a shared infrastructure, which can be optimized to serve
the higher bandwidth, low latency or enhanced broadband
requirements [2]. In general, a network slice consists of a
number of Virtual Network Functions (VNFs) that need to
be interconnected or chained, according to a VNF Forwarding
Graph (VNFFG), to fulfill application requirements and meet

specific network constraints in order to realize a particular
use-case scenario [3] belonging to, for instance, the health,
automotive or media domains, respectively. Since each VNF
has a resource requirement in terms of processing power and
storage, and chaining them results in additional overheads
in terms of bandwidth capacity and connection latency, it is
crucial that these VNFs are adequately placed onto available
hosts, such that the application requirements are met [4], [5].

There are now standardized slices defined for enhanced
Mobile Broadband (eMBB), massive-machine-type commu-
nication (mMTC), ultra-reliable low latency communication
(uRLLC), and Vehicle to Everything (V2X), which can cater
for the specific requirements of targeted applications [6].
However, as already mentioned, in order to benefit from the
potential of 5G network slicing, one needs to apply service
orchestration schemes [7] that allow different slices to effi-
ciently share the available network resources (processing units,
storage, and bandwidth) to achieve different quality-of-service
(QoS) requirements. Since service orchestration consists of
decisions regarding VNF placement on hosts, but also resource
assignment to each VNF, and traffic routing over network
links, the problem is complex due to the impact that decisions
have on one another [5], [8], which might end up in breaching
requirements. A promising way of capturing such impacts is
by specifying the system in a well-understood modeling lan-
guage, and automatically generating and checking associated
constraints of possible orchestration schemes resulting from
applying given algorithms.

In this paper, we address the above by proposing a UML
2.0-based modeling framework, named UML5G Service Or-
chestration (UML5G-SO). The latter is based on a UML
Profile [9] that we define, which allows one to model network
slicing and service orchestration depicting VNF placement,
implicit assignment of required resources to the VNFs and
traffic routing. In addition, we demonstrate our approach with
the UML-based Specification Environment (USE) tool [10],
in which we model and check candidate allocations against
requirements captured in the Object Constraint Language
(OCL), in order to identify the set of feasible ones, at design
time. We carry out the experimental evaluation of the method
on a prototype implementation of a greedy algorithm for
service orchestration, as well as of an enumerative solution
of generating VNF allocations and routing schemes.

The rest of the paper is organized as follows. Section II
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Fig. 1. Use Case Description

details the problem statement. In Section III, we overview the
preliminaries of UML 2.0 modeling, OCL and the USE tool.
In Section IV, we present our UML 2.0 profile allowing the
modeling of network slicing and service orchestration in 5G
systems. Section V shows the specification and validation of
the system by logic-based analysis using the USE tool, the
experimental evaluation, and a brief discussion of the gained
insights. Section VI compares our contribution to related
work, whereas VII provides the concluding remarks with some
directions of future work.

II. PROBLEM STATEMENT

The main goal of the paper is to provide a modeling and
analysis framework of 5G orchestration schemes. As a running
example, we consider a system with a set of computing hosts
deployed in the edge and cloud, respectively, which needs to
support applications from various domains, e.g., health and
media, via network slices. The hosts are characterized by
their processing power, storage, capabilities to execute VNFs
(interchangeably called services henceforth), and support of
mobile edge computing (MEC). We assume that edge hosts
are MEC capable, whereas cloud hosts are not. The host nodes
form an overlay network where different nodes are connected
via links. In this paper, we consider only virtual links defined
by bandwidth capacity and latency, respectively. Throughout
the paper, we consider a 5G network slice as a chain of VNFs.
The VNFs have respective resource requirements in terms of
computation and storage, execution time, and a constraint of
whether they require mobile edge computing, hence need to
be placed in host devices with such capability.

Given the above scenario, in order to satisfy the applica-
tion requirements on latency and bandwidth, it is essential
that the VNFs are placed in adequate hosts respecting the
constraints, are assigned enough resources on hosts respecting

their requirements, and subjected to a traffic routing scheme
across the links, which respects the VNF chaining sequence
and the link constraints of capacity and delay. This problem
is called service orchestration, and it is difficult to solve
due to the potential impact that VNF placement, implicit
resource assignment, and traffic routing may have on one
another, deeming the final orchestration scheme not suitable
for particular applications.

Hence, it is essential that orchestration solutions need to be
designed such that QoS guarantees can be provided, especially
in worst-case scenarios where maximum system capacities
are exploited. To achieve this, one needs to verify if the
VNF placement and the routing scheme (service orchestration
scheme) fulfill the application requirements.

In this paper, we tackle this problem and provide a UML-
based modeling and analysis framework, named UML5G-SO,
which assists designing such service orchestration schemes
by facilitating design-time checks in OCL, to evaluate if the
scheme guarantees the application requirements.
Use case description. The 5G-based system under considera-
tion is depicted in Fig. 1. We examine a scenario with two ap-
plications, namely a health-monitoring application on a health
band that sends alarms in case of health-parameter deviations,
and a video streaming application. The two applications have
their specific real-time and bandwidth requirements, so we
assume that they use two 5G network slices, respectively, a
health slice, and a video slice. The health slice needs to deal
with the communication from the user equipment (health band)
to the hospital in case of health emergencies. In most cases,
the health emergencies are critical and the hospital needs to be
alerted as soon as possible (real-time), yielding requirements
on the maximum allowed communication latency. In addition,
after acknowledging the alarm, the doctor/caregiver may in



<<stereotype>>
VNF

+ CPU_Requirements: Int
+ Storage_Requirements : Int
+ Execution_Time : Int
+ MEC_Constraint : Bool

<<Metaclass>> 
Class

Fig. 2. An example of a stereotype definition in an UML Profile

some cases request video conferencing with the patient, which
translates into requirements on bandwidth as well. However,
latency requirements are more stringent for such applications,
hence we consider the health slice as an instance of the
standard uRLLC slice, with certain bandwidth requirements.
The video slice, in comparison, is used by video-streaming
users, thus it has very high requirements on bandwidth.
However, there are also soft requirements on latency for this
slice, to ensure that the video streaming experience is pleasant.
Consequently, we consider the video slice as an instance of
the eMBB slice, with soft real-time latency requirements.

In our case, the health slice is a VNF chain consisting of
VNF1, VNF2, VNF3 and VNF4, and the video slice is a
VNF chain of VNF5 and VNF6. The VNFs can be those
defined in the 5G architecture [2] (e.g., Core Access and
Mobility Management Function (AMF), Data network (DN)
etc.), or domain-specific VNFs. The order in which VNFs are
chained is defined by the VNF Forwarding Graph (VNFFG).
In general, a VNFFG can have many different structures, but
for simplicity we consider in this paper only VNFFG where
VNFs are sequentially connected, named VNF Forwarding
Sequential Graph (VNFFSeq). In the use case, we assume that
we have two cloud hosts (Host1 and Host2) and two edge hosts
(Host3 and Host4). As shown in Fig. 1, Host1 and Host3 are
connected via virtual link L1, Host1 and Host4 via L2, Host2
and Host3 via L3, and Host3 and Host4 via L4.

In order to capture service orchestration in such a 5G-
based system, we need to be able to model the allocation
of the VNFs, namely VNF1 to VNF6, to the various hosts,
Host1 to Host4, together with a routing scheme for each slice.
To accomplish this, in Section IV we present our UML5G-
SO framework that we apply on this use case. Further, in
order to analyze the feasibility of candidate orchestration
configurations for our system, we show how to check if the
VNFs are allocated such that the resource constraints are met,
and also if the selected routing scheme meets the end-to-end
latency and bandwidth requirements.

III. PRELIMINARIES

In this section, we briefly overview the UML 2.0 Profile
Diagram, Object Diagram, OCL constraints, and the USE tool.

A. UML Profile, Class, and Object Diagrams

UML 2.0 profiles are structural diagrams that offer the
possibility to extend UML 2.0 by defining stereotypes, tagged

VNF1

+ cpuReq = 10000
+ storageReq = 200
+ mecVNF = true

Host1

+ cpuRes = 30000
+ storageRes = 500
+ mecEnabled = false

host

Fig. 3. Example of simple system

values, and constraints for capturing domain-specific concepts
[9]. For instance, in Fig. 2, we present a stereotype, VNF,
extending the UML 2.0 metaclass, Class. The stereotype VNF
is associated with a set of properties (tag definitions) to rep-
resent the VNF’s CPU requirements, Storage Requirements,
Execution Time and MEC constraints. When this stereotype
is applied to a specific model element, the values taken up by
these tag definitions are referred to as tagged values. We have
not represented any constraints for our VNF stereotype. In this
work, we define a new UML5G-SO profile that facilitates the
modeling of service orchestration of 5G-based systems.

UML 2.0 class diagrams provide visualization of the classes
that extend our UML5G-SO stereotype. In order to represent
an instance of our use case at a particular time, we use the
UML 2.0 object diagram.

B. OCL and the USE tool

The Object Constraint Language (OCL) [11] is a declarative
language in which constraints over UML models can be
specified. For instance, one can specify that an attribute value
must lie within a certain range. In this work, we use OCL to
capture Boolean conditions which, if satisfied by a certain or-
chestration configuration, guarantee that the quality of service
is met. As an example, consider the UML specification of a
host and an allocated VNF in Fig 3.

In this system, we would like to enforce that the storage
and CPU requirements are met by the available resources of
the host, and if the VNF requires MEC-capabilities then the
host must have them. We can formalize this as constraints:

cpuRes ≥ cpuReq (1)
storageRes ≥ storageReq (2)
mecEnabled ∨ ¬mecVNF (3)

In Fig. 3, we can see that the first two constraints are
satisfied while the last one is not, indicating that the system is
not valid. We do not delve into the details of the OCL syntax
here, instead we simply note that it allows for expressing all
constraints presented in the paper. The USE tool [10] is a
software program that enables one to check OCL constraints
automatically. We apply it to show, as a proof of concept, that
it is possible to automate the verification of the 5G models of
service orchestration.

IV. UML5G-SO MODELING FRAMEWORK

In this section, we overview our proposed UML5G Service
Orchestration (UML5G-SO) framework, which enables us to
model and analyze 5G service orchestration schemes. We start



1

1..*

1

0..*

0..*

0..*

linkEnd
0..*

1

pathEnd

0..*

1

pathStart

0..*

1
linkStart

0..*

1

<<stereotype>>
Host

+ cpuRes : Int
+ storageRes : Int
+ capabilities : Set(VNF) 
+ mectHost : Bool

<<stereotype>>
VNFForwardingGraph

+edge: Set(Edges)

<<datatype>>
QoS

+ e2elatency : Int
+ e2ebandwidth : Int

Path

+ links : Seq(Link)

<<stereotype>>
Link

+ latency : Int
+ banwidth: Int

<<stereotype>>
VNF

+ cpuReq : Int
+ storageReq : Int
+ execTime : Int
+ mecNF : Bool

RoutingScheme

<<stereotype>>
5GNetworkSlice

+ sliceID : Int1

0..*
Nodes

<<stereotype>>
VNFForwardingSequence

+ vnfs : Seq(VNF)
+ bandwidthReq : Seq(Int)

<<Metaclass>> 
Component

<<Metaclass>> 
Class

<<Metaclass>> 
Class

1

1

<<datatype>>
Edges

+ start: VNF
+ end: VNF

Nodes and Edges form 
the sequence contained in 
'vnfs'
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by presenting a formalization of the system definitions of our
framework. Thereafter, we present the UML5G-SO profile,
which can be used for modeling 5G service orchestration
configurations in any tool that supports UML. Next, we
illustrate the modeling approach by applying the UML5G-
SO profile to our use case (described in II), and provide the
system-specific class diagram and the object diagram views,
respectively. In the forthcoming section, we also introduce the
analysis part of our framework, using the USE tool.

A. System Definitions

We begin by proposing a mathematical description of a
5G service orchestration system, which we use as a basis
for our UML modeling and the subsequent OCL constraint
formalization.

Definition 1: (5G Service Orchestration System) We define
a 5G Service Orchestration System as the following tuple:

5GSOSys , 〈F ,V,H,L,S〉,

where each component is defined as follows:
1) F = {f1, . . . , fn}, n ∈ N, is the set of network functions,

which are available in the 5G system.
2) V = {v1, . . . , vn} is the set of virtual net-

work functions, where a VNF is defined as: vi =
〈nf i, cpuReq i, storReq i,mecVNF i, execTimei〉, ∀i ∈
[1, n]. Here, nf i ∈ F represents the network function that
the VNF caters for, cpuReqi, storReqi ∈ N represent vi’s
minimum CPU and storage requirements, respectively,
mecVNF i indicates whether the VNF vi has a MEC

constraint such that it can only be executed in a MEC-
compatible host, and execT imei defines the execution
time of vi.

3) H = {h1, . . . , hn} is the set of hosts in the system, where
hi = 〈cpuResi, storResi, capabilitiesi,mecHosti〉,
∀i ∈ [1, n]. Here, cpuResi, storResi ∈ N are constants
representing the CPU and storage resources available at
host hi, respectively, capabilitiesi ∈ 2F is a set of
network functions that hi is capable of executing, and
mecHosti is a Boolean variable indicating whether hi is
MEC-enabled or not.

4) L = {l1, . . . , ln} is the set of links connecting hosts,
where li = 〈hstarti , hendi

, llati, lbwi〉, ∀i ∈ [1, n]. Here,
hstarti , hendi

∈ H denote the start host and the end host
of li, respectively, llati denotes li’s latency, and lbwi is
the bandwitdh provided over li.

5) S = {s1, . . . , sn} is the set of 5G network slices, where
si = 〈sliceIdi, slati, sbwi,VNFFSeq i〉, ∀i ∈ [1, n].
Here, sliceIdi refers to the slice identification number
and slati, sbwi ∈ N are the required end-to-end latency
and bandwidth of slice si, respectively. The tuple element
VNFFSeq i = 〈vi1, vi2, . . . , vij〉, with vij ∈ V represents
the sequence of particular VNFs that are chained in slice
si, indicating what VNFs need to be used and in what
order.

Given a particular 5G service orchestration system, there
are many possible candidate configurations, that is, allocations
of VNFs on hosts, assignments of resources, and routing
schemes, which may or may not fulfill all requirements.



Definition 2: (Candidate Configuration) We define a candi-
date configuration (CC) as the following tuple:

CC5GSOSys , 〈A,R〉,

where each component is defined as follows:
1) A : V → H is the VNF allocation, a function assigning

one host to each VNF, which decides on which host each
VNF is to be executed.

2) R : S×H×H → P is the routing scheme, assigning for
each slice and pair of hosts, a path to use for communi-
cation. Here, P = (p1, . . . , pn), where pi = (li1, . . . , l

i
n),

lii ∈ L, ∀i ∈ [1, n]. Intuitively, given a routing scheme
R, R(s1, h1, h2) returns the sequence of virtual links
traversed when slice s1 is chaining its selected VNFs
between host h1 and host h2.

For simplicity, when defining routing schemes for a CC, we
only include paths that are relevant (i.e., paths between hosts
of allocated VNFs located next to each other in a VNFSeq
chain).

Example 1: To help understanding, we now exemplify the
above definitions using our 5G use case. The input system is
UC = 〈FUC ,VUC ,HUC ,LUC ,SUC〉 with:
• FUC = {A,B,C}
• VUC = {v1 , v2 , v3 , v4 , v5 , v6}, where:

v1 = 〈B, 1000, 100, true, 5〉,
v2 = 〈A, 200, 50, true, 5〉,
v3 = 〈A, 1000, 100, false, 5〉,
v4 = 〈C, 500, 70, false, 10〉,
v5 = 〈A, 1000, 100, true, 5〉,
v6 = 〈C, 1000, 500, false, 10〉

• HUC = {h1 , h2 , h3 , h4}, where
h1 = 〈30000, 500, {A,C}, false〉,
h2 = 〈15000, 900, {A,C}, false〉,
h3 = 〈2000, 300, {A,C}, true〉,
h4 = 〈1000, 150, {A,B}, true〉

• LUC = {l1, l2, l3, l4}, where:
l1 = 〈h1 , h3 , 4, 100〉, l2 = 〈h1 , h4 , 2, 100〉,
l3 = 〈h2 , h3 , 10, 200〉, l4 = 〈h3 , h4 , 5, 200〉

• SUC = {s1, s2}, where:
s1 = 〈1, 60, 2, (v1 , v2 , v3 , v4 )〉, s2 = 〈2, 100, 4, (v5 , v6 )〉

A possible CC is the following allocation and routing
scheme:
• A(v1 ) = h2 , A(v2 ) = h3 , A(v3 ) = h4 ,
A(v4 ) = h2 , A(v5 ) = h3 , A(v6 ) = h1

• R(s1, h2 , h3 ) = l3,
R(s1, h3 , h4 ) = l4,
R(s1, h2 , h3 ) = l3,
R(s1, h4 , h2 ) = l3, l4,
R(s2, h3 , h1 ) = l1

In the above CC, we can see that v1 is allocated to host h2,
v2 is allocated to h3, and when slice s1 chains VNF v1 and
v2 it uses the path consisting of the single link l3.

Given a 5G SO system and a candidate configuration, it
is possible to check whether all constraints in terms of QoS

are met. In the remainder of the paper, we describe how the
SO system and candidate orchestration configuration can be
modeled in UML, using our UML5G profile, as well as how
the constraints can be formalized in OCL, to allow for the
automatic verification of a given configuration.

B. The UML5G Service Orchestration Profile

The UML5G Service Orchestration Profile proposed in this
paper provides a UML 2.0-based framework intended for
modeling and analysis of service orchestration schemes in
5G-based systems. The profile is depicted in Fig. 4. The
stereotype Host is defined to specify the hosts in our overlay
network and it extends the UML Metaclass::Component. We
have also defined stereotypes to specify 5GNetworkSlice,
VNF, VNFForwardingGraph, and Link, by extending the UML
Metaclass::Class. The stereotypes are constructed to match the
system definitions given in subsection IV-A. For instance, our
network slice stereotype has attributes for specifying the slice
id, and is associated with a set of QoS requirements that the
slice should meet1. Each 5GNetworkSlice has an association
to a VNFForwardingGraph (VNFFG). In our profile, we have
a specialization of the VNFFG, that is, VNFForwardingSe-
quence, which restricts the VNF chaining to a sequence that
represents one of the common ways of chaining VNFs. How-
ever, the profile can also be extended with other mechanisms of
VNF chaining, for instance, branching. We have also defined
datatypes to specify the QoS attributes of the slice and to
specify the edges of our VNFForwardingSequence.

C. Use-Case Modeling with Class and Object Diagrams

In this section, we demonstrate our UML5G-SO profile to
model the use case overviewed in Section II. In order to use
the profile for our specific example, we first identify how the
profile can be applied to match our use case; we show this by
using the class diagram description as follows.

Example 2: The class diagram depicted in Fig. 5 shows
how our use case supports modeling of two categories of
hosts, namely Edge and Cloud, connected via virtual links.
In addition, we keep the network functions abstract, naming
them VNF-A, VNF-B and VNF-C. In addition, in this use
case, we consider two categories of 5GNetworkSlice: eMBB
and uRLLC, with VNFs chained as sequences, represented
by VNFFSeq. Our modeling framework describes potential
routing schemes RoutingScheme and Path. It should be noted
that the class diagram in Fig. 5 respects all the associations
and multiplicities depicted in the UML5G-SO Profile Diagram
of Fig. 4.

Given the class diagram, we now present a snapshot of
our use-case system at a particular time instance, using an
object diagram representation. The object diagram provides
the complete system view at a particular time. It consists of
our input, that is, the set of network slices, hosts, VNFs and

1It is important to emphasize that this stereotype can be extended with
parameters specifying slice life cycle, geographical coverage, etc., but since
we do not use these parameters in our system analysis in the current work,
we have restricted to the above definition.
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Fig. 5. Class Diagram (It inherits all associations and multiplicities depicted in Fig. 4)

their forwarding graphs, and it depicts a possible candidate
configuration with an allocation and routing scheme for each
slice, respectively.

Example 3: The object diagram representation of our use
case is depicted in Fig. 6. We consider two different ap-
plications (Health and Video streaming) with requirements
on bandwidth requirement and latency, and requesting two
slices - HealthSlice and VideoSlice, which are of type uRLLC
and eMBB, respectively. The health slice is identified by an
identity number, namely, slice id=1; it has 4 VNFs, that
is, VNF1, VNF2, VNF3 and VNF4, an end-to-end latency
requirement of at most 60ms in case of emergency alarms,
and a bandwidth requirement of 100Gbps. Similarly, the video
slice, with slice id=2,/ has 2 VNFs, VNF5 and VNF6, with
an end-to-end latency and bandwidth requirements of 240ms
and 50Gps, respectively. For the purpose of our study, we
consider four hosts, out of which two are edge hosts and
two are cloud hosts. Each host has respective constraints on
processing, storage, as well as on which network functions
it can execute, as depicted in Fig. 6. For instance, Host1,
which is a cloud node, has a processing power 30000 GBps,
a storage capacity of 500 GB and VNF capabilities that allow
the execution of virtual network functions of type VNF-A
and VNF-C. In addition, for each host, we have a Boolean
constraint showing whether the host is MEC-capable or not.
In our case, Host3, Host4 are MEC capable, while Host1,

Host2 are not.
Moreover, as shown in Fig. 6, each of the VNFs has resource
constraints, an execution time, and a MEC constraint, respec-
tively. As an example, VNF1 requires a processing power of
1000 GBps, storage of 100 GB, has an execution time of 5 ms,
and a MEC constraint, implying that it can only be executed
in MEC-capable hosts.

Furthermore, the HealthSlice and VideoSlice each have an
associated VNFFSeq, VNFFSeq1 and VNFFSeq2, respectively,
as well as a routing scheme, RS1 and RS2. Here, we illustrate
via an example of the health slice. The VNFFSeq1 depicts
the VNF sequence, VNF1, VNF2, VNF3, VNF4, which is an
ordered list of VNFs. In addition, RS1 creates an association to
P1 and P2, connecting Host1 and Host2 through link L1, and
Host2 and Host3 through links L1, L2, respectively. We show
an example of modeling and verifying the VNF placement
to hosts, which is generated by a slightly modified version
of the minimum latency greedy algorithm [12], [4]. The
modified version of our algorithm is shown as pseudocode,
see Algorithm. 1. The output of the algorithm is a resource
assignment and placement of VNFs to existing hosts, as well
as a routing path minimizing the overall latency. One of
the candidate configurations that we obtain by employing
the algorithm in our use case is demonstrated in the object
diagram representation of Fig. 6. As shown, our candidate
configuration is the following: VNF1 is placed on Host2; VNF2



on Host1; VNF3,VNF4,VNF5 on Host3 and VNF6 in Host4,
by respecting the resource constraints of both VNF and hosts.
For HealthSlice, routing scheme RS1 with paths P1 and P2 is
chosen, and for VideoSlice, scheme RS2 with P3 is selected.

In the forthcoming section, we illustrate the analysis of
our approach using the USE tool, wherein we check whether
the respective greedy algorithm has generated VNF placement
candidates that meet the implicit resource requirements of the
VNFs, and routing schemes that allow fulfilling the application
requirements.

V. LOGIC-BASED ANALYSIS USING USE TOOL

A major benefit of an adequate modeling of the system is
that it allows an automatic procedure to verify properties. In
particular, we can check that the quality of service of each slice
is guaranteed to hold. We begin by formalizing the constraints,
such that we can leverage them and use existing tools to
automatically check them on specified models. For readability,
we introduce a set of auxiliary functions, as follows:

count(link , path)

gives the number of times link occurs in path .

A−1(h)

is the inverse of the allocation function, that is, it gives all
VNFs allocated to host h. Finally,

slicePath(s, i) = R(s,A(s.vnffseq [i]),A(s.vnffseq [i+ 1])),

where vnffseq [i] denotes the ith element of the sequence
vnffseq , gives the path connecting the hosts of which the ith
and i + 1th VNFs of the VNF sequence of the slice s are
allocated.

Moreover, we use ’.’ to denote elements of tuples. For
example, if s ∈ S and s = 〈sliceId, slat, sbw,VNFFSeq〉,
then s.slat denotes slat of s.

A. Constraints
1) LinkNotOverloaded: Each link must have sufficient ca-

pacity for its utilization:

∀l ∈ L∑
s∈S

|s.vnffseq|−1∑
i=1

count(l, slicePath(s, i))

 · s.sbw ≤ l.lbw

2) VNFBandwidthWithinBounds: There must be enough
bandwidth capacity between each pair of chained VNFs:

∀s ∈ S,∀i ∈ [1..|l.vnffseq | − 1]

(minl∈slicePath(s,i)l.lbw) ≥ s.sbw

3) CompatibleHost: Each VNF must be allocated to a host
that has the capability to process the particular VNF network
function:

∀v ∈ V
v.nf ∈ (A(v)).capabilities

4) MECEnabled: If a VNF requires a MEC-enabled host,
the allocation must respect that:

∀v ∈ V
¬v.mecVNF ∨ (A(v)).mecHost

5) HostHasEnoughComputationResources:

∀h ∈ H ∑
v∈A−1(h)

v.cpuReq

 ≤ h.cpuRes

6) HostHasEnoughStorageResources:

∀h ∈ H ∑
v∈A−1(h)

v.storReq

 ≤ h.storRes

7) LatencyWithinBounds:

∀s ∈ S( ∑
vnf∈s.vnffseq vnf .execTime+∑|s.vnffseq|−1

i=1

∑
p∈slicePath(s,i)

∑
l∈p l.llat

)
≤ s.slat

We have formalized all constraints in OCL, and encoded
them into the USE tool[10] together with the UML 2.0 profile
from Sec. IV-B. Therefore, an object diagram representation
of a particular 5G service orchestration system can also be
encoded into the USE tool to automatically check that the
particular instance meets all the above constraints. If all
relevant constraints have been captured in OCL, this allows
for an automatic procedure to verify a CC for a given 5G-
based system.

B. Experimental Evaluation

To demonstrate how an automatic verification process could
work, we consider a simple greedy algorithm, inspired by
one of the deliverables in the EU H2020 5GTransformer
project [4], and present how it is possible to check its output.
Given a 5G-based system, the algorithm generates a candidate
configuration, that is, an allocation and a routing scheme, by
selecting, at each step, the choice that minimizes the latency.
The algorithm iterates over all slices, and for each slice goes
through the chain of VNFs. The first VNF, if not already
allocated, can be placed anywhere. For each following VNF of
the chain, the “closest” (i.e., with minimum possible latency
from the host of previous VNF) as well as “possible” (i.e., with
enough resources and capability for the considered VNF) host
is chosen for allocation. When considering a host, to compute
the minimum latency, if no previous path has been selected
for routing, all possible paths are considered, and the one with
the lowest latency is chosen and added to the routing scheme.
The steps are repeated until all VNFs have been placed. If at
any point no suitable host can be found, the algorithm returns
failure (i.e., no backtracking is performed). The algorithm is
shown in Alg. 1.
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Fig. 6. Object Diagram (It inherits all associations and multiplicities depicted in Fig. 4)



Input : Hosts, Slices, Links
Output: Allocation, Routing

1 initialization;
2 for s in slices do
3 chain ← s.vnffseq
4 if chain.head not allocated then
5 allocate chain.head anywhere
6 if no suitable host then
7 return Fail
8 end
9 else

// vnf1 is allocated
10 for (vnf1, vnf2) with (bwReq) in chain.tail do
11 allocate vnf2 to host with minimum latency
12 if no suitable host then
13 return Fail
14 end
15 add chosen path to routing scheme
16 remove resources from resp. host and links
17 end
18 end
19 end

Algorithm 1: Greedy allocation algorithm.

Category Count Verified
Greedy 567 567
Enumerative 110 110
Infeasible 323 -

TABLE I
RESULTS FROM EXPERIMENTAL EVALUATION.

Example 4: The configuration presented in Ex. 1 has been
obtained by running the greedy algorithm on the corresponding
5G-based system. We can use the USE tool, as mentioned
above, to verify that the configuration indeed fulfills all
constraints.

Furthermore, we can query the USE tool to give us the
actual end-to-end latency of all the slices. We sum all of these
together to obtain the objective value of the configuration.
By generating all possible candidate configurations, keeping
the ones fulfilling the constraints and querying the latency
of each configuration, we can observe that in total there
are thirteen actual solutions (combinations of allocation and
routing scheme). The lowest possible total latency among the
solutions is 61 ms, compared to the total latency of 74 ms
obtained from the greedy algorithm.

As a second demonstration, we generate 1000 input systems
randomly (each with two different network functions, four
hosts, four links and two slices) with random capabilities,
capacities and requirements. Due to the randomness, some of
the inputs will have solutions, while some have contradictory
constraints that are impossible to satisfy. For each input we run
the greedy algorithm. In case that the greedy algorithm fails
to find a solution, we enumerate all possible configurations to
see if at least one exists. We then run the USE tool to verify
the greedy or the enumerative solution. The resulting numbers
are shown in Table I.

Note that this evaluation does not verify the greedy algo-
rithm itself, but it allows one to verify particular generated
orchestration configurations, ensuring that they are correct
before actually using them. Moreover, the greedy algorithm
has no special role in this, it was picked due to being quite
straightforward. In general, any algorithm can be used.

Both experimental evaluations show how our UML5G-SO
profile can be used with OCL constraints to automatically ver-
ify candidate configurations. Checking a particular candidate is
done very quickly (< 20 ms), allowing for verification before,
for example, deployment. Of course, generating all possible
candidates is time consuming and not scalable for even slightly
larger systems. However, this work establishes a baseline from
which further expansion is possible. The profile uses a well-
understood and industrially-adopted language of designing (or
generating) input systems, as well as specifying candidate
configurations, in addition benefiting from many tools that
support UML modeling. This yields a connection between a
user-friendly language, UML, and mathematical rigor.

VI. RELATED WORK

While substantial work has been recently devoted to solving
the service orchestration problem with respect to VNF place-
ment and resource assignment in a 5G networking context [7],
[13], [14], not much research focuses on providing modeling
and analysis support for describing 5G-based orchestration
systems and their solutions, and checking the latter against
QoS requirements. Models, workflows, and tools to create
and automatically verify service orchestration solutions in 5G-
based systems, against QoS requirements, are still very limited
or completely missing, and need to be established to fully
support the development of 5G network applications.

Some initial approaches for this have been presented by the
SONATA project [15], which provides a set of SDK tools that
support service developers to create and ship new network
services. This SDK also offers descriptor validation function-
alities that go beyond simple syntax or schema checks, e.g.,
the automatic detection of loops in virtual network function
forwarding graphs [16]. However, this work is limited to such
checks and does not offer a logic-based design-time analysis
of the orchestration scheme against latency, bandwidth and
storage requirements.

In one of the deliverables of the EU H2020 project
5GTRansformer [7], which our greedy placement algorithm
is inspired from, the contributors propose an approach to find
an optimal solution to 5G VNF orchestration, by using a
relaxation strategy that replaces binary variables by real vari-
ables bounded between 0 and 1, together with VNF placement
heuristics in order to avoid getting infeasible solutions. In
contrast, our approach generates orchestration candidates and
verifies them automatically, hence eliminating the infeasible
ones.

The architecture proposed in the 5GTango project [17]
adds a verification and validation component to the network
function virtualization reference architecture, allowing testing
and verification of single network functions or entire network



services before they are deployed to production [18]. However,
the endeavor does not offer a reusable modeling infrastructure,
like our UML5G-SO profile does, which can be employed
to build various diagrams for describing the structure and
behavior of 5G orchestrators. Formal methods have also been
used to verify VNFs and VNF chains against reachability and
safety properties, in order to determine whether services are
interfering, or are accessed by unauthorized users. Focusing
on concrete VNF implementations, Marchetto et al. [19]
propose a framework for verifying VNF chains automatically,
by extracting verification models starting from a Java-based
representation of a given VNF. VNF definitions are translated
into formal verification models for different verification tools.
Although this work offers a higher degree of assurance for
VNF chains than ours, it is not focusing directly on service
orchestration, also not on the set of QoS requirements that we
consider in this paper. The closest to our work is the work of
Papageorgiou et al. [20], in which the authors identify three
main generic categories of 5G network slice models, namely,
service-driven, resource-driven, and deployment-driven mod-
els. For these, the authors propose high-level models described
in UML, representing the skeleton of the three generic cate-
gories. Specific detailed data models that belong to one of
these categories should be possible to map to the respective
skeleton. The core concept, the model structure, and prominent
representative solutions for each of the designed models are
explained and discussed. However, the work does not go
beyond such modeling, nor provides any logic-based analysis
of service orchestration, which we propose and demonstrate
in this paper.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a UML-based modeling and
analysis framework for 5G network slicing, named UML5G-
SO, which enables one to model and analyze the feasible
VNF placement and routing schemes respecting the VNF
forwarding graphs of the slices. Our solution, unlike the ones
available in literature, allows a 5G architect to model and
analyze the orchestration scheme prior to implementation, by
employing the user-friendly and industrially-adopted graphical
modeling environment provided by UML. Our analysis frame-
work not only provides the best possible VNF allocation and
routing schemes, but also allows the engineers to eliminate the
routing schemes that are not feasible. An important highlight
of the framework is that no matter what service orchestration
algorithm is chosen, the framework can model and analyze it,
allowing a lot of flexibility and scalability options.

One of the limitations of our framework is that currently we
deal with the system’s design stage, hence considering only a
static view of the system at each point of time. In the future,
we want to expand our framework with modeling behavior
that could be encountered at run time, such as flexible VNF
sequencing, aperiodic events, possible component failures etc.,
and provide guarantees across all possible network configura-
tions and extreme system traffic. We also plan to extend our
UML5G-SO profile to serve the complete specification of a 5G

system, for instance, by adding modeling support for physical
and cloud-native network functions among others.
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