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Abstract—The rapid development of IoT, cloud and fog com-
puting has increased the potential for developing smart services
for IoT devices. Such services require not only connectivity
and high computing capacity, but also fast response time and
throughput of inferencing results. In this paper we present our
ongoing work, investigating the potential for implementing smart
services in the context of industrial robot applications with focus
on analytic inferencing on fog and cloud computing platforms. We
review different use cases that we have found in the literature and
we divide them into two suggested categories, "distributed deep
models" and "distributed interconnected models". We analyze
the characteristics of IoT data in industrial robot applications and
present two concrete use cases of smart services where inferencing
in a fog and a cloud architecture, respectively, is needed. We also
reason about important considerations and design decisions for
the development process of analytic services.

I. INTRODUCTION

During the last years, the usage of deep learning for big
data analysis has expanded tremendously [1]. Deep learning is
based on layered algorithms with numerous parameters that are
used to process various types of input data in order to generate
output data for regression or classification. Since training
and inferring with these algorithms require high computing
capacity, offloading such computation to remote servers is the
natural choice — should response time or throughput not be
a critical issue. The increased device connectivity has paved
the way for Internet of Things (IoT) where an ever increasing
number of devices can be connected to the internet [2]. IoT
devices constitute vast sources of data that can be processed for
various purposes to create new services or improved services
with more intelligence.

Deep learning analytics [1] is used in a number of applica-
tion domains, e.g., Smart Home, Smart City, Industry, Agri-
culture and Retail to mention a few. Deep learning provides
a toolbox to implement services in these application domains.
These services will often include one or more basic services
such as image recognition, voice and speech recognition,
localization, physiological detection, psychological detection,
security and privacy. The basic services are often based on
deep learning and can be used as building blocks for the
application specific services.

Industrial robot applications, i.e. industrial robots perform-
ing processing tasks, e.g., picking, palletizing, drilling, assem-
bly or grinding, can be used for various tasks in most of
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these application domains. As connected IoT devices, they
are capable to generate a lot of data originating from the
robots, external sensors (e.g., cameras), process equipment
and potentially also from parts to be processed. The recent
development of fog architectures [3] has brought analytic
computing closer to the data sources, i.e., the IoT devices,
thereby reducing response times. Preprocessing of input data
from IoT devices in fog nodes also decreases the network
load, since the amount of data being transferred to the cloud
for further processing is reduced.

Infrastructures for fog and cloud services with deep learning
support, e.g., [4], are in constant progress and there is a huge
potential to create additional value for industrial robot appli-
cations. Deep learning analytics can be used to improve robot
applications in many different ways and enable completely
new services. However, different use cases will have very
different requirements on, e.g., response times and throughput.
The main challenge addressed in this work is how to create
new value by developing new robot application services with
deep learning analytics that fulfill use case requirements on,
e.g., computational accuracy, response time and throughput.

In this paper, we investigate the data characteristics for
industrial robot applications in an IoT Big Data perspective.
We present two different use cases of deep learning analytics
and discuss their requirements in a fog/cloud architecture.
We review different approaches proposed in the literature, for
performing distributed analytics with fog architectures. Here
we have identified two different categories of such approaches;
distributed deep models and distributed interconnected models.
Finally, we discuss design aspects for deep learning analytics
with deployment into fog computing platforms.

Section II is a review of different use cases that we have
found in the literature, where analytics is performed in a
fog and cloud environment. Section III discusses the IoT
big data characteristics for an industrial robot application.
Section IV provides two examples of concrete use cases where
fog or cloud analytics can be used to improve industrial robot
applications. Section V discusses design aspects for analytic
services in industrial robot applications. Finally, Section VI
concludes the paper and outlines current work-in-progress
along with future research directions.

II. RELATED WORK

The following sections list different use cases that we
have found in the literature, covering different approaches



concerning how to distribute analytic inferencing over fog and
cloud architectures. The works are separated in two suggested
categories, i.e., distributed deep models and distributed inter-
connected models.

a) Distributed deep models: This category separates the
layers of a deep model onto different nodes. During inferenc-
ing, the first layers are executed by node 1. This node takes
input from the IoT devices and generates intermediate output
from the first set of layers. The intermediate output from node
1 becomes input data for node 2, which generates output from
the second set of layers etc. The last layers on the last node
generates the final output, e.g., a classification of an image.
The nodes may be distributed over the fog, the cloud or both.

In one experimental setup, a Convolutional Neural Network
(CNN) is used to classify images in a fog architecture [5]. The
network layers are split into two parts that are deployed on two
different nodes. The raw input data in the form of image files
are processed by the lower layers of the CNN at the first node
to generate an intermediate output. The output is transferred
to the second node for further processing by the higher layers
of the CNN to generate a final output with inferencing results.
Best throughput, i.e., number of analyzed images per second,
is achieved if the complexity of the two model parts are equal.
On the other hand, the communication overhead is reduced if
the first node gets a bigger part of the model. However, the
total response time for analyzing one image is not evaluated
or compared, e.g, with single node execution.

The need to minimize response times was partly addressed
by [6]. They use a CNN to perform machine vision inspection
of parts in the manufacturing industry. The CNN is deployed
as a Distributed Deep Neural Network [7] into a fog and
cloud architecture. The lower layers are computed on the fog
architecture and the higher layers are computed in the cloud.
To improve the response time, an early exit branch [8] onto
the lower layers gives preliminar inspection results. This early
exit branch is jointly trained with the final exit branch and
provides outputs for the same inference parameters but with
a lower accuracy. If the early exit inspection results meets
application requirements in terms of accuracy, they can be
used without waiting for continuous processing in the cloud,
thereby significantly reducing the response time.

b) Distributed interconnected models: For this category,
data from IoT devices are processed in several steps, where
each step uses one analytic model to calculate output data
that represents some known properties. This is different from
intermediate layers in a deep model where the output data, the
"features", can not be directly interpreted to any concrete in-
formation. To increase throughput and reduce communication
overhead, the analytic models are distributed in a sequence
over different nodes in the fog and the cloud. In [5], a
crowdedness detection application is presented that is split into
three processing steps: image collection, face recognition and
a crowdedness monitor. In [9], an investigation of a use case
for a smart shopping mall is presented. Video cameras are
monitoring the entrances of the shops in the mall. The cameras
generate video data that are analyzed by face detection ana-

lytics on multiple first level fog nodes. The face information
is sent to a second level fog node that analyzes detected
faces and generates age and gender estimations. The age and
gender estimations are sent to the cloud where additional
analytic processing generates appropriate advertisements to be
displayed on electronic billboards in the shopping mall.

A pipeline for deep learning processing over an architecture
with three tiers, i.e. edge, cloudlet and cloud is proposed in
[10]. The data processing is made in consecutive stages that
can be distributed over the nodes in the different tiers. Each
stage can also potentially be parallelized. A running example
is the processing of video images that can be separated in
consecutive stages: video loading, video decoding, motion
detection, video frame enhancement, video frame scaling,
object detection and object recognition. Experiments show
how the throughput is improved when these stages are dis-
tributed in different ways. The pipeline also serves the purpose
of overcoming limitations in network load by reducing the
amount of data that is communicated to the nodes that handle
the later stages.

III. DATA CHARACTERISTICS

IoT Big Data can be characterized [1] by 6 V’s, i.e., Volume,
Velocity, Variety, Veracity, Variability, and Value. As analyzed
below, the data generated from industrial robot applications
matches these characteristics.

Volume. This means a high volume of data is generated. In-
dustrial robot applications often runs 24/7 and will accumulate
a lot of data over time.

Velocity. This means data will not only be generated in
large volumes, but also with a high rate. Industrial robot
applications will not only generate data at discrete events,
but also continuously with high frequencies, e.g., an industrial
robot from ABB can generate sensor feedback continuously
every 4 ms for the built-in arm servo control [11]. A camera
may generate images continuously or at discrete events, e.g.,
only when an object appears.

Variety. This means data will be generated in different
forms and types. Industrial robot applications generate data
from heterogeneous devices, e.g., robots, sensors and different
process equipment. The data from the different devices will
also be heterogeneous, e.g., in form of text or images, and will
represent various properties, e.g., sensor readings. The variety
of data is illustrated by robot data of joint position references
for axes 1-3 in Fig. 1 and an image taken by a camera of chips
with printed characters in Fig. 2.

Veracity. This means data is consistent and can be trusted.
The data from industrial robot applications are generated from
trusted devices that are installed to perform predefined tasks,
e.g., in a production facility. The quality of the devices is
expected to be high compared to consumer products, since they
fulfill a number of industry standards and regulations regarding
different relevant aspects, e.g., safety, Electro Magnetic Com-
patibility (EMC), Ingress Protection (IP) and cyber security.
They are also dimensioned for a long life, operating 24 hours
per day, 7 days per week (24/7) with low failure rates.



Fig. 1. Joint position references for axes 1-3 from a robot controller.

Fig. 2. Camera image with detected characters.

Variability. This means data is generated with different
rates. The heterogeneous devices in industrial robot applica-
tions will generate data with different rates, both continuously
with certain frequencies and at discrete events.

Value. This means the data has a value that can be
transformed to improved or new valuable services for robot
applications. The use cases presented in the next section gives
concrete examples on how value can be created from the data.
Typically, the end customer, i.e., the owner of the industrial
robot application installation, also owns the generated data.
The customer needs an incentive, e.g., improved performance
or reliability, to share data with, e.g., the supplier of the
industrial robots.

IV. USE CASES

This section presents two use cases with very different re-
quirements and characteristics for industrial robot applications
where data can be turned into Value by analytic computations
in the fog or the cloud. Both these example may be realized
with assistance from deep learning models.

A. Predictive maintenance

Predictive maintenance, or Condition Based Monitoring
(CBM) [12], can be used to diagnose failure states and
prognosticate the Remaining Useful Life of components and
devices in industrial robot applications. Sensor data recorded
from failing scenarios can be used to train a deep model
to estimate the remaining time until a certain failure will
occur. As part of CBM, inference is performed on real time
production data. The output data from the deep model can be
used to plan and schedule appropriate maintenance activities,
e.g. replacement of parts, in time before a failure state occurs.

To enable CBM, it is necessary to select the parameters
to be monitored [13]. For industrial robot applications, some
parameters are available in every system since they support
basic system functions, e.g., motor current for robot axes.
Other parameters are available in a subset of systems, e.g.,
images from machine vision equipment. To predict some
failure states, additional sensors may be required for this
purpose and if so, they need to be reliable and the additional
cost must be motivated by the consequences of having a
failure. As an example, the selected data can be continuous,
high frequency measurements of motor currents, positions and
speeds for each axis of an industrial robot. A predicted failure
can be, e.g., a gear box breakdown and the corresponding
planned maintenance action can be an exchange of gear box
oil and seal.

For the predictive maintenance use case, the inference time
of the deep model is not a critical factor. The accuracy and
the time horizon of the model predictions can be expected
to be more important, considering that a maintenance action
from a service technician may require a few days waiting time.
Inferencing can be run using cloud computing and the result
can be monitored by a centralized system to schedule actions
for service technicians. Using fog computing to speed up the
analysis would make little sense.

B. Reactive replanning

Industry is recently transitioning from traditional caged
robots working in fairly static environments towards more
collaborative robots working physically closer to humans and
other actors without separating fences. The environment is
more dynamic and less predictable, and entails an increased
risk of having a failure when following a predetermined plan
of robot movements and process interactions.

To improve efficiency and robustness while preserving
safety, industrial robot applications need to become reactive
by design to handle unforeseen events, e.g., grasping failures
or unexpected movements of humans. In [14], an architecture
is proposed addressing reactive replanning of industrial robot
applications. As part of this architecture, a supervisor com-
ponent performs continuous supervision of both the robot’s
plan and the predicted movement of objects and actors in it’s
surrounding environment, see Fig. 3.

Whenever a conflict is detected that may cause a failure, or
an opportunity is detected for improving the plan to a more
efficient one, the supervisor component activates a reactive



Fig. 3. Supervisor component.

replanning event. Then, a new plan is generated by a planning
component, that replaces the current one in a reactive way.

The supervisor needs to receive data originating from
different sources, i.e., robot controllers, data bases and cam-
eras/sensors. The analytic computations of a supervisor com-
ponent can become quite heavy, due to the high volume and
velocity of data to be processed. Required computation rate
depends on the speed of the robot, the speed of objects and
other actors, the accuracy requirements of the processing of
parts and the desired overall system reactiveness to avoid
collisions, correct for failures or find more efficient paths or
actions. Considering these factors, it is suggested that the
supervisor is offloaded to a fog architecture. The required
response time of the supervisor is less than 0.1s, making cloud
computing a less feasible solution.

V. DESIGN ASPECTS AND WORK-IN-PROGRESS

Development of new and improved services for industrial
robot applications, using deep learning analytics deployed
into fog and cloud computing platforms, require a number of
important considerations and design decisions. Among them:

• The requirements of the use case, e.g., accuracy, response
time and throughput.

• What data is needed and what characteristics (6 Vs) of
this data is needed.

• What are the requirements of sensors and other IoT
devices that shall provide the data.

• How the computational hardware architecture shall be de-
signed. For example, availability, computational capacity
and organisation of fog and cloud nodes.

• Required networking capacity.
• What types of hardware to use. To accelerate deep

learning analytics, a number of hardwares specialized in
accelerating the inferencing and training of deep neural
networks have been developed recently [15]. In general,
they are based on parallel computing using different
processing units, e.g., CPUs, GPUs, ASICs and FPGAs
and they leverage from the inherent parallelism of deep
models.

• How analytic models shall be designed to reach the
required accuracy.

• How analytic models shall interact to generate desired
results.

• Distribution of deep models, e.g., deciding the cutting
points between layers and where to deploy them.

• Distribution of interconnected models, e.g., how to define
stages of execution and decide where to deploy them.

Our work-in-progress target finding efficient and accurate
solutions to the above considerations and design decisions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented out ongoing work exploring
the potential for creating new and improved services for
industrial robot applications by using analytic computations
in fog and cloud computing platforms. We have analyzed the
characteristics of IoT data in industrial robot applications and
provided two concrete use cases. We have reviewed different
approaches that we have found in the literature, to perform
analytic computations in fog and cloud architectures, and we
have divided them into two categories, i.e., distributed deep
models and distributed interconnected models. Finally, we
have discussed design aspects for analytic services. Along with
current work-in-progress, one potential area of future research
is the development of tools that can help to simplify this
process. In addition we will address the realization of reactive
replanning in a fog architecture.

REFERENCES

[1] M. Mohammadi et al., “Deep learning for IoT big data and streaming
analytics: A survey,” IEEE Comm. Surv. Tut., vol. 20, no. 4, pp. 2923–
2960, 2018.

[2] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises,” Business Horizons, vol. 58, no. 4,
pp. 431–440, 2015.

[3] Cisco. (2015) Fog computing and the internet of things: Extend the
cloud to where the things are. [Online]. Available: https://www.cisco.
com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf

[4] D. Chappel. (2015) Introducing azure machine learning.
[5] P. Tsai et al., “Distributed analytics in fog computing platforms using

tensorflow and kubernetes,” in Asia-Pacific Network Operations and
Management Symp. (APNOMS), 2017, pp. 145–150.

[6] L. Li et al., “Deep learning for smart industry: Efficient manufacture
inspection system with fog computing,” IEEE Trans. on Ind. Inf., vol. 14,
no. 10, pp. 4665–4673, 2018.

[7] S. Teerapittayanon et al., “Distributed deep neural networks over the
cloud, the edge and end devices,” in IEEE Int. Conf. on Distr. Comp.
Syst. (ICDCS), 2017, pp. 328–339.

[8] ——, “Branchynet: Fast inference via early exiting from deep neural
networks,” in Int. Conf. on Pattern Recognition (ICPR), 2016, pp. 2464–
2469.

[9] K. Lun Cai and F. Joseph Lin, “Distributed artificial intelligence enabled
by onem2m and fog networking,” in IEEE Conf. on Standards for Comm.
and Netw. (CSCN), 2018, pp. 1–6.

[10] M. Ali et al., “Edge enhanced deep learning system for large-scale video
stream analytics,” in IEEE Int. Conf. on Fog and Edge Comp. (ICFEC),
2018, pp. 1–10.

[11] A. Blomdell et al., “Extending an industrial robot controller: implemen-
tation and applications of a fast open sensor interface,” IEEE Robotics
Automation Magazine, vol. 12, no. 3, pp. 85–94, 2005.

[12] J.-H. Shin and H.-B. Jun, “On condition based maintenance policy,”
Journal of Comp. Design and Eng., vol. 2, no. 2, pp. 119–127, 2015.

[13] A. Tsang, “Condition-based maintenance: Tools and decision making,”
Journal of Quality in Maintenance Engineering, vol. 1, pp. 3–17, 1995.

[14] A. Lager et al., “Towards reactive robot applications in dynamic environ-
ments,” in IEEE Int. Conf. on Emerging Tech. and Factory Automation
(ETFA), 2019, pp. 1603–1606.

[15] K. Abdelouahab et al., “Accelerating CNN inference on FPGAs: A
survey,” 2018.


