
Heartbeat Bully: Failure Detection and Redundancy
Role Selection for Network-Centric Controller
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Abstract—High availability and reliability are fundamental
for distributed control systems in the automation industry.
Redundancy solutions, with duplicated hardware, is the common
way to increase availability. With the advent of Industry 4.0,
the automation industry is undergoing a paradigm shift; a peer-
to-peer mesh oriented architecture is replacing the traditional
hierarchical automation pyramid. With generic computational
power provided anywhere in the cloud — device continuum, the
conventional control centric solutions are becoming obsolete. The
paradigm shift imposes new challenges and possibilities on the
redundancy solutions used. We present and evaluate a hardware-
agnostic algorithm suitable for failure detection and redundancy
role selection in the new automation paradigm. The algorithm is
modeled, evaluated and validated with the model checking tool
UPPAAL.

I. INTRODUCTION
Distributed Control Systems (DCSs) are often part of the

automation solution in domains where unplanned downtime
is costly, e.g., oil extraction and petroleum production. A
common way to increase availability is critical hardware
multiplication, for example, controller duplication. In practice
in the DCS domain, the most commonly used redundancy
scheme is the one out of two (1oo2) pattern. The 1oo2 pattern
is a specialization of the M out of N (MooN) pattern, where
N nodes are in a passive mode, ready to take over for the M
active nodes. In a redundant DCS system, the active primary
controller continuously synchronizes with the backup for fast
take over in case of primary failure. The synchronization
function typically utilizes a purpose-fit redundancy link.

When the automation industry and DCS transcend into the
age of Industry 4.0 [1] and Industrial Internet [2], the wake that
follows brings the possibility of more elastic computational
power with edge [3], fog [4] and cloud computing. The
increased information and data exchange that are essential
concepts in Industry 4.0 and Industrial Internet is boosting the
incitement for replacing the traditional controller-centric ar-
chitecture with a network-centric architecture. Using purpose-
fit, dedicated, and highly customized communication links for
redundancy purposes impose hardware requirements and by
that deployment limitations.

Replacing dedicated redundancy link hardware with
general-purpose communication links such as Ethernet and
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hardware-agnostic software reduces the hardware requirement
and increases the deployment alternatives. However, doing so
means that the dynamic state transfer from primary to backup,
failure detection, and role selection, functionality previously
provided by the links becomes software responsibility. State
transfer between the redundant process is a topic of its own
and not discussed further in this paper. For the remainder of the
paper, the term process denotes the execution context hosting
the control engine. The providing of computational power and
messaging capabilities to the processes is outside of the scope.

Model checking is a method suitable for formal verification
of algorithm properties. UPPAAL is a model checking tool
for stochastic model checking, using timed automata [5], [6].
A timed automaton is a finite state machine with clocks and
time constraints [7]. UPPAAL supports modeling of a network
of timed automata, i.e., multiple timed automata that can
synchronize over channels. With a network of timed automata,
process interaction models easily, for example, a client-server
protocol interaction. The support of network timed automata
makes UPPAAL suitable for modeling our algorithm and the
interaction between primary and backup processes.

Our contribution is an algorithm that utilizes the failure
detection for role selection. In case of primary failure, it
deterministically elects the new primary out of a plurality
of backup processes within a known upper-bounded time.
We start by formulating the problem as functionality needed
and requirements on deterministic behavior. Then we describe
the algorithm and provide an UPPAAL model. The UPPAAL
model checking verifies the functionality and determinism
requirements.

The outline of the paper is as follows. The overview of the
related work is provided in Section II followed by a problem
description in Section III. The proposed algorithm is described
in Section IV. The UPPAAL model verification is described
in Section V. Lastly, we provide a conclusion and potential
future work in Section VI.

II. RELATED WORK

The redundancy role selection problem is very similar to
the leader election problem, which is a well-known problem
in distributed systems [8]. The goal of the leader election
procedure is that all processes agree upon a new leader process



upon failure of the current leader, and ensure that all processes
share the view of which process is the new leader. Translated
to redundant controllers and the DCS domain, the leader is
the primary. The goal is to select a new primary, amongst a
plurality of backups, in case of primary failure.

There exist many leader election solutions. One of the first is
the algorithm proposed by Robert and Chang [9], and another
well known algorithm is the Bully algorithm presented by
Garcia-Molina [10]. Both algorithms were introduced in the
late 70s and early 80s, and much has happened since then.
The Fast Bully Algorithm (FBA) presented by Lee et al. [11]
is one example, and there are many other variants [12], [13],
[14], [15], [16].

A common way to benchmark leader election algorithms
is to measure the number of messages needed to elect a new
leader. The Bully algorithm, in the worst case, requires n2

messages to choose a new leader, and FBA needs n messages,
with n being the number of leader candidate processes in
the distributed system. In the DCS domain and redundancy,
n would be the number of processes forming the redundant
solution. However, for real-time functions, such as electing
a new primary controller processes, time and deterministic
behavior is more important than the number of messages.

The failure of the current leader must be detected to
initiate an election, i.e., failure detection is needed. Typically
a silent leader is assumed to have failed. Chandra et al. [17]
present two different properties that are fundamental for failure
detectors: completeness and accuracy.

Completeness is the failure detection degree, divided into
strong and weak. When guaranteed that every non-faulty
process permanently suspects every faulty process, the failure
detection completeness is strong. Weak completeness failure
detection is the degree reached when every faulty process will
be detected by at least one non-faulty process.

Accuracy is divided into four levels, where false positive
means that a non-faulty process is suspected of having failed:

• Strong. No indication is a false positive.
• Weak. Not all indications are false positives.
• Eventual strong. After a stabilization period, there are no

false positives.
• Eventual weak. After a stabilization period, not all indi-

cations are false positives.
Earlier work prove the impossibility of having a strong com-

pleteness and strong accuracy in a asynchronous distributed
system [18], [19]. A synchronous distributed system is a
distributed system that fulfills the criteria below:

• Deterministic network. There is a known, upper bound,
message delivery time.

• Ordered message delivery. An older message is never
processed, by the receiver, after a newer.

• Global time. All processes know the current time.
Two main monitoring failure detection approaches exist,

push and pull [20]. Push is when the supervised process
publishes a message with an expected rate, often referred to
as a heartbeat, that the supervising processes can monitor. An

example of a pull approach is when the monitoring processes
send a “how are you” message to the supervised process, if
the answer is missing or erroneous, the monitored process is
suspected to be in a non-healthy state.

There exist many variants of failure detection algorithms,
ranging from algorithms for reducing network load with
message piggybacking to statistics based strategies to reduce
false positives on unreliable networks [20], [21], [22], [23],
[24], [25], [26].

The control logic execution process in a DCS is a real-time
process, i.e., the function output and the temporal aspect are
equally important. The real-time aspect yields that the failure
detection, besides from being reliable and deterministic, also
needs to detect the failure within an upper bound time. Failure
detection time adds to the total take over time, which is the
time from a primary failure until a backup has resumed as the
new primary, also referred to as failover time. During failover,
the controller does not produce any output, i.e., the controlled
process must tolerate frozen outputs during the failover. Our
work bridges the previous failure detection and leader election
work to our specific domain by proposing an algorithm tailored
for the domain. The difference compared to the earlier work
is that our algorithm utilizes the failure detection for the role
selection and relies on the real-time capabilities that a control
system needs to fulfill.

III. PROBLEM FORMULATION
We consider a set R of N processes forming a redundant

configuration. P ⊆ R denotes the set of primary processes
and B ⊆ R the set with backup processes. At all times, there
should be at most one primary.

P ∪B = R

P ∩B = ∅
|P | ≤ 1

(1)

If the primary fails, a new primary should be selected in a
deterministic way amongst a plurality of backups. A primary
that fails is no longer considered a primary and is assumed to
fail silently.

The algorithm needs to support the following.
• Failover time. Known upper bound time from primary

failure to a new primary has been selected. Note that, in
this paper, we only consider the time from the silence of
the primary, until the backup that will become primary is
informed.

• Failover determinism. The backup to primary role prece-
dence should be known, i.e., the backup to become the
new primary should not be arbitrary.

• Switchover. A primary should be able to pass on the
primary role to a backup process. The switchover pos-
sibility is a common feature in today’s redundant DCS
for a controlled change of the primary.

• Clinging. The current primary should remain, even if a
former primary recovers.

• Single primary. Only one primary at all times.
The algorithm rely on the following assumptions.



• Byzantine free. None of the processes are, intentionally
nor unintentionally, malicious.

• Message ordering. Messages order is kept. If a process
sends message Mi before message Mj , then the receiving
process either receives message Mi before message Mj ,
or Mi is discarded. I.e., not processed by the receiving
process at all. Message ordering is assumed to be the
communication protocol’s responsibility.

• Reliable communication. Redundant communication
paths ensure that the probability for message loss is
negligible. Message loss due to communication failure
leads to partitioning, i.e., multiple sets of redundant
processes that are unable to communicate in-between the
sets. Message propagation time, including processing in
sender and receiving side, is assumed negligible to the
messaging cycle time.

• Accurate clocks. Synchronized time is not needed, but
the perception of elapsed time needs to be equal enough
for the drift to be negligible.

The above are properties of a reliable real-time system, and
if fulfilled by a distributed system, the system is synchronous.
If the system is synchronous, the failure detection can achieve
strong accuracy and completeness [17]. We use those proper-
ties to propose a failure detection based role selection.

IV. HEARTBEAT BULLY

We named the algorithm Heartbeat bully since it utilizes
heartbeat-based failure detection for redundancy role selection,
inspired by the Bully leader election algorithm [10]. Similar
to the Bully algorithm, Heartbeat bully utilizes priority and
message absence as election means. When a backup process
detects that the primary process does not send heartbeats, the
detecting backup processes send a heartbeat requesting all
higher priority processes to send a heartbeat, i.e., the backup
process sends a reveal request heartbeat. If the process sending
the reveal request heartbeat does not observe a heartbeat from
a higher priority process within a specified period, the reveal
heartbeat sending process is the new primary process.

We describe the details of Heartbeat bully with two state
machines - one for the failure detection and one for the role
selection, starting with the syntax used.

The transitions edge labels follow the format:
Trigger/Operation/Event. An edge can have multiple
labels representing alternative transitions separated by a
linebreak.

• Trigger. Trigger of the transition, typically an internal
trigger, such as the expiration of a timer, or external event
or a command. External means that the event or command
is external to the state machine described, for example,
an event generated by the failure detection, but triggered
on by the role selection, is external to the role selection.

• Operation. Operation to perform synchronous to the
state transition.

• Event. Event raised synchronous to the state transition.
The following prefix and infix are used:

TABLE I
HEARTBEAT MESSAGE FIELDS.

Name Description
BecomeSupervised When set (value different than zero),
(BS) and the value is equal to the identity

of the receiving processes, this process
should become the supervised process.

Priority The priority of the heartbeat sender.
TieBreaker A unique ID. Needed in case two

priorities are equal, to break the tie
and give precedence. Can for example
be a system wide unique process ID.

Reveal When set (value different than zero)
all processes with higher priority than
the sender, should send a heartbeat.

• Cmd. Prefix that denotes a command. A command is
an external trigger to the state machine, issued by the
state machine user. For example, the role selection state
machine gives commands to the failure detection state
machine.

• Ev. Prefix that denotes an event.
• Fd. Infix that denotes the failure detection state machine.
• It. Prefix that denotes an internal trigger, such as the

expiration of a timer.
• Op. Prefix that denotes an operation.
• Rs. Infix that denotes the role selection state machine.
The priority handling is central; it is the means to decide

which process should back away and provide precedence to
another. The TieBreaker, see Table I, provides a priority tie-
breaker to guarantee that all processes have different prece-
dence. It is allowing dynamic properties, such as network
connectivity, CPU-load, etc. to reflect the priority so that
a more “fit” process gets precedence (higher priority). The
TieBreaker ensures that one process has higher priority, even
if the Priority values are equal.

A. Failure detection

The primary process cyclically sends a multicast heartbeat.
We denote the period between two heartbeats HbPeriod. The
supervising processes, i.e., the backup processes, checks every
HbPeriod if a heartbeat has been received. The maximum
number missing heartbeats tolerated is HbMissingMax.
HbTmo is the time until the supervised process is assumed
to have failed:

HbTmo = HbPeriod ·HbMissingMax (2)

A supervising process resets the HbPeriod timeout upon
receiving a heartbeat. Two different HbPeriod, one for the
sender (supervised process) and one for the receiving (super-
vising processes) is also an alternative, where HbPeriodSnd
denotes the HbPeriod in the supervised process, the sender of
the heartbeats. HbPeriodRcv denotes the HbPeriod in the
receiving process, the supervising process. We need to ensure
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Fig. 1. Failure detection state machine.

that HbPeriodSnd < HbPeriodRcv to avoid false posi-
tives failure indications. If HbPeriodSnd = HbPeriodRcv,
i.e., the same HbPeriod, HbMissingMax > 1 ensure
HbPeriodRcv > HbPeriodSnd. To avoid real numbers, we
use HbMissingMax = 2.

Fig. 1 shows the failure detection state machine. The super-
vising processes remain in state BeaterOK until a supervised
process is suspected. An expiration of HbTmo means that
the supervised process is failure suspected. The failure detec-
tor raises the EvFdSilence event. The role selection state
machine, see Fig. 2, reacts to the EvFdSilence and issues
the command CmdFdSupMeReveal, that makes the failure
detector enter the Heartbeating state, and send a heartbeat
with Reveal set. Reveal triggers all processes with higher
priority to send a heartbeat.

1) States:
• Idle. Represents the initial/idle state, failure detection not

active.
• BeaterOK. Supervising state where the supervision is

active and receiving heartbeats from the supervised pro-
cess.

• BeaterSuspected. The supervised process is suspected.
There are three reasons for entering this state; HbTmo
has expired, received a heartbeat requesting this process
to become supervised, or received a heartbeat with the
Reveal set from a lower priority process.

• Heartbeating. The state of the process being supervised.
In this state, heartbeats are sent every HbPeriod.

2) Commands: The commands that can be given to the
failure detection are the following:

• CmdFdSupOther - start the supervision, failure detec-
tion, of the primary process.

• CmdFdSupMe - become the supervised process.
• CmdFdSupMeReveal - similar to CmdFdSupMe,

sends a heartbeat with the Reveal set instead of a regular
heartbeat upon the transition to state Heartbeating.

• CmdFdPassOn - sends a heartbeat with the BS field
set. In other words, it passes on the heartbeating to
another process, pointed out by the BS field.

• CmdFdStop - stops the failure detection, transition back
to Idle state, left out of Fig. 1 for simplicity reasons.

3) Internal trigger: Trigger events internal to the failure
detector, such as the expiration of a timeout timer or received
heartbeat. Heartbeats are considered internal failure detector
triggers since it is the sender and receiver of heartbeats.

• ItHbTmo - HbTmo expired, no heartbeat received
within the HbTmo timeout time.

• ItLoPrRevealReqHb - received a heartbeat with the
Reveal set from a process with lower priority.

• ItReqBeSupHb - received a heartbeat with the BS field
set to the identity of this process.

• ItHbLoPrio - received a heartbeat from a lower priority
process when in Heartbeating state.

• ItHbHiPrio - a heartbeat received in Heartbeating
state from a process with higher priority.

4) Operations: Failure detector operations performed syn-
chronously to a state transition.

• OpSendHb - sends a heartbeat message.
• OpSendHbReveal - sends a heartbeat message with the
Reveal set.

• OpSendHbPassOn - sends a heartbeat message with
the BS field set to the identity of the process that is to
become the supervised process.

5) Events: Events raised by the failure detector.
• EvFdSilence - the supervised process is silent, no

heartbeat received within the HbTmo period.
• EvFdReveal - received heartbeat message with the
Reveal set, i.e., received a reveal request from a process
with lower priority.

• EvFdReqSup - the supervised process has requested this
process to become the supervised process, i.e., to become
the primary.

• EvFdHiPrio - received a heartbeat, in state
Heartbeating, from a higher priority processes.

• EvFdLowPrio - received a heartbeat, in state
Heartbeating, from a lower priority process.

6) Edge labels: The labels indicated in Fig. 1 are generic
labels that are used for the sake of the presentation. In practice,
they are expanded following the Trigger/Operation/Event
format as:

• Fd1: CmdFdSupOther/−/−
• Fd2: ItHbTmo/− /EvFdSilence
ItLoPrRevealReqHb/− /EV FdReveal
ItReqBeSupHb/− /EvFdReqSup

• Fd3: CmdFdSupOther/− /
• Fd4: CmdFdSupMe/OpSendHb/−
CmdFdSupMeReveal/OpSendHbReveal/−

• Fd5: ItHbHiPrio/− /EvFdHiPrio
CmdFdPassOn/OpSendHbPassOn/−

• Fd6: EvFdLowPrio/− /−

B. Role selection algorithm

The role selection utilizes the failure detection to achieve
a deterministic role selection negotiation. The central part of
the algorithm is the Prospect state interaction with the failure
detection, and the Reveal handling. The Reveal forces all
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process with higher priority to reveal themselves and enter
Prospect state. Only the process with the highest priority,
TieBreaker included, will transition to the Primary state.
The lower priority processes will transition back to, or never
leave, Backup state.

1) States:

• Idle. Idle state, role selection is not active.
• Sync. The process is not synchronized with the primary

process, i.e., not ready to take over. The state does not
contribute to the algorithm per se - it exemplifies the
broader context.

• Backup. The process is synchronized with the primary
and ready to take over. In case no primary to synchronize
with, the process is assumed synchronized.

• Prospect. Entered when this process is a primary
prospect. When entering the Prospect state due to a
silent primary, the role selection instructs the failure
detector to send a heartbeat with the Reveal set imme-
diately. Forcing all other processes with higher identity
to reveal themselves. Prospect state is left when a
higher priority process reveals itself, i.e., receiving event
EvFdHiPrio from the failure detector, or upon the
PrTmo (prospect timeout) expiration. The PrTmo time
needs to be large enough to guarantee that all processes
have reacted on the heartbeat with Reveal set, i.e., allow-
ing them to reveal themselves if they have higher priority.
Using the same arguments as for HbMissingMax in
Section IV-A, we get.

PrTmo = 2 ·HbPeriod (3)

In the case of unreliable communication links, a longer
PrTmo is suitable. The PrTmo period should, in that
case, contain multiple resend heartbeats with the Reveal
set.

• Primary. Entered when ensured that there is no other

process of higher priority, or when requested to become
primary. In case a partitioning has occurred, each par-
tition has a process in Primary state. When the prob-
lems causing the partitioning vanishes, the two partitions
will merge, the lower priority primary will receive a
EvFdHiPrio event and back away. The higher priority
primary can receive a EvFdLowPrio event and remain
as primary.

2) Commands: The commands provided to the role selec-
tion user, for example, a process providing a control engine
execution service.

• CmdRsStart - start role selection.
• CmdRsBackup - enter the Backup state, backup is

synchronized with the primary (or no primary detected).
• CmdRsNBackup - leave the Backup state, backup is

out of synchronization with the primary (or some other
reason for leaving the backup state).

• CmdRsPassOn - pass on the primary role to another
process.

3) Internal trigger: The role selection have one internal
trigger, the expiration of the PrTmo timeout.

• ItRsProspectTmo - PrTmo timeout expired, no higher
priority process observed within the PrTmo time.

4) Operations: Issuing failure detector commands are the
only operations performed.

5) Events: The events raised by the role selection.
• EvRsBackup - raised on the transition to the Backup

state.
• EvRsNBackup - raised on the transition to the
Synchronizing state.

• EvRsPrimary - raised on the transition to the Primary
state.

• EvRsLowPrio - raised when another lower priority
primary is detected. In a healthy setup, these events
should not come unless there is partition merge, and in
that case, it should be at most one.

6) Edge labels: The labels indicated in Fig. 2
are generic labels they are expanded following the
Trigger/Operation/Event format as:

• Rs1 - CmdRsStart/− /−
• Rs2 - CmdRsBackup/CmdFdSupOther/EvRsBackup
• Rs3 - CmdRsNBackup/CmdFdStop/EvRsNBackup
• Rs4 - EvFdSilence/CmdFdSupMeReveal/−
EvFdRev/CmdFdSupMeReveal/−
EvFdReqSup/CmdFdSupMe/−

• Rs5 - EvFdHiPr/− /−
• Rs6 - ItRsProspectTmo/− /EvRsPrimary
• Rs7 - EvFdHiPr/− /EvRsBackup
CmRsPassOn/CmdFdPassOn/EvRsBackup

C. Properties

In this section we present the properties of Heartbeat bully,
for each of the requirements from Section III. In Section V we
present the UPPAAL model and the verification queries used
for validating that the properties hold.



1) Failover time: The failure detection and the role se-
lection time is constant and independent of the number of
processes. The time from silence until the selection of the
highest priority backup as the new primary is the FoT
(failover time), the maximum and minimum FoT are given
by the equation:

FoT =

{
PrTmo + HbTmo−HbPeriod Min
PrTmo + HbTmo Max

(4)

The shortest failover time (Min) occurs when the supervised
process fails just before HbPeriod expires at the supervising
process. The supervised process reset the HbPeriod timeout
upon receiving a heartbeat, hence the takeover time is longest
when the supervised process fails just after sending a heartbeat.

2) Failover determinism: The priority handling and the
reveal handling in the Prospect state of the role selection
provides a deterministic take over order.

3) Switchover: The BS field in the heartbeat message, see
Table I, provide the switchover functionality. When a backup
process Pi failure detector observes that BS contains the
identity of Pi, it raises the EvFdReqSup to the role selection,
which enters the Prospect state. Neither the Bully algorithm
nor FBA have support for commanded leadership pass on.

4) Clinging: Heartbeat bully must pass through the
Backup role selection state, and the corresponding failure
detector state BeaterOK, before it can transition to the
Primary state. In these states, it listens for an existing
primary, which ensures that the primary process running, will
remain the primary, even if a higher priority process recovers.

5) Single primary: The clinging and the failover determin-
ism ensure that there will be at most one primary at any given
time. A Byzantine process or communication channel failure
is the only exception.

6) Number of messages: A typical property used to dis-
tinguish different leader election algorithms efficiency is the
number of messages needed to elect a new leader upon
leader failure. For example, the Bully algorithm [10] requires
O(n2), and the FBA [11] requires O(n) messages, where n
is the number of potential leader processes. Heartbeat bully
requires the maximum number of messages when the lowest
priority process reacts first, i.e., it timeouts before the higher
priority processes, and sends out a reveal heartbeat to all other
processes. All processes, except the failed former primary
process and the sending process, see the reveal heartbeat
and also send out a reveal heartbeat to all other processes.
Resulting in a total number of heartbeats of hb = (n− 1)2 to
select the new primary, where n is the number of processes
in the redundant configuration. The first glance suggests the
same message performance as the Bully algorithm and worse
than FBA. Heartbeat bully uses the heartbeat, and when the
primary process fails, it stops sending heartbeats. The number
of heartbeats sent if there would not have been a failure is
equivalent to the number of backup processes multiplied with
the failover time, FoT .

hbNrm = (n− 1) · FoT (5)

If considering the failure detection period, the equation below
describes the additional number of heartbeats resulting from
the election:

∆hb =

{
(n− 1)2 − (hbNrm) if hbNrm < (n− 1)2

0 if hbNrm ≥ (n− 1)2

(6)

When using the failover time from Eq. 4, 3 ≤ FoT ≤ 4,
we get a hbNrm range between:

hbNrm =

{
(n− 1) · 3 Min
(n− 1) · 4 Max

(7)

Using the smallest number of heartbeats that would have
been sent in the normal case, hbNrmmin, the difference in
heartbeats compared to a normal period are:

∆hb =

{
(n− 1)2 − hbNrmmin if n > 4

0 if n ≤ 4
(8)

When considering the FoT period, there are no additional
messages needed to elect a new primary, compared to a
normal run, for redundancy configurations containing up to
four processes, and that is the worst case. The minimum
number of heartbeats to elect a new primary occurs when the
highest priority process reacts first and all the other processes
see that heartbeat before timing out, i.e., ∆hb = n. In the best
case, when considering the FoT period the additional number
of messages due to the election process is 0, regardless of the
number of backup processes.

V. FORMAL METHOD VERIFICATION

A. Model

We use the model checking tool UPPAAL1. In UPPAAL,
a template model each timed automata, and instantiated tem-
plates build the network of timed automata [5]. The following
are the templates we use.

• ComChannelRx. We model communication between the
processes with a simplistic communication channel. The
channel consists of two templates. The ComChannelTx
below, and this, the ComChannelRx, that models the
receiver.

• ComChannelTx. Transmitting part of a communication
channel.

• FailureDetector. UPPAAL model for the failure detector
shown in Fig. 1.

• RoleSelection. UPPAAL model for the role selection
shown in Fig. 2.

• UsingService. An example service that uses the role
selection. The UsingService locations used in the ver-
ification queries are Idle, Primary, Backup, Passover
and PrimaryWithTxComFailure. The location name serve
as a description of the location, the details are in the
model [27].

1The developed model is available for download https://github.com/
Burne77a/HeartbeatBully



The model is configurable by changing the value of constants,
such as changing the startup order of the processes and
enabling communication failure triggering.

B. Verification

UPPAAL provides a verifier and query language to express
and check the requirements [5]. The following subsection
describes the verification queries used. We are using four,
1oo4, redundant processes. Zero identifies the process with
the lowest identity and priority and three the process with the
highest identity and priority.

1) Failover time: The process with the highest priority
is the initial primary. We simulate a transmission error on
the primary. The global clock gTakeOverT ime measures
the takeover time. The maximum and minimum value of
gTakeOverT ime when entering location PrimaryU gives
the shortest and longest takeover time. PrimaryU is an
urgent location, i.e., the transition from PrimaryU to
Primary is instant, see UPPAAL turtorial and the model
for details [5], [27]. When UsingService transitions to loca-
tion PrimaryWithTxComFailure, its ComChannelTx is
commanded to stop forwarding messages. The requirement
checking function inf, short for infima, retrieves the shortest
failover time.

inf{
(UsingService(3).PrimaryWithTxComFailure ||
UsingService(3).Backup) &&
UsingService(2).PrimaryU_}: gTakeoverTime

The longest failover time is retrieved by replacing the infima
function with suprema in the query above. Inserting a value of
2 ·HbPeriod for ProspectTmo and HbTmo in Eq. 4 gives:

3 ≤ failoverT ime ≤ 4 (9)

The result from the UPPAAL verification confirms the calcu-
lation, gTakeOverT ime is between three and four.

2) Failover determinism: The process with the highest
priority is the initial primary. The UsingService triggers a com-
munication error. The query below checks that process with
identity zero becomes primary, that process with identity one
and two never becomes primary, and that process with identity
three becomes primary. Combined with the verification for the
clinging, the below proves the failover determinism.

E<> (UsingService(0).Primary)
A[] (!UsingService(1).Primary)
A[] (!UsingService(2).Primary)
E<> (UsingService(3).Primary)

3) Switchover: We verify the switchover functionality by
enabling the UsingService to pass along the primary role. The
UsingService passes on the primary role to the process with an
identity one higher than itself. If no higher processes identity
exist, the process identity to pass along to is zero. We check
that all processes become primary, with the following query,
one for each process identity. All are satisfied, meaning that we

have been able to pass along the primary role to all processes.
We also verify this using the simulation, see Section V-C1.

E<> (UsingService(0).Primary)

With the two queries below, we check the minimum and
maximum time without a primary when passing on the primary
role.

sup{UsingService(0).Passover &&
UsingService(1).PrimaryU_}: gTakeoverTime
inf{UsingService(0).Passover &&
UsingService(1).PrimaryU_}: gTakeoverTime

We use UPPAAL channels [5] for modeling messaging, i.e.,
message transfer is instant. The time without a primary is
PrTmo, which is two. The above query confirms that.

4) Clinging: We verify the clinging by letting the lowest
priority process, process zero, startup first, and thereby become
primary. None of the other processes should become primary.
The query below checks that there is a path in which the
UsingService with the lowest identity becomes primary, and
the three other queries verify that none of the other processes
becomes primary. Hence, the process with the lowest priority
is clinging on to the primary role.

E<> UsingService(0).Primary
A[] (!UsingService(1).Primary)
A[] (!UsingService(2).Primary)
A[] (!UsingService(3).Primary)

5) Single primary: The below query verifies that there
never are two primaries.

A[] forall(i : id_t) forall(j : id_t)
UsingService(i).Primary &&
UsingService(j).Primary
imply i==j

The above query, combined with the query below, proves that
there is one primary and only one primary, i.e., we check
that there is a path where there is a primary and the query
above has verified that there never are two, or more, different
primaries.

E<> UsingService(0).Primary

C. Simulation

UPPAAL simulation with plotting is a swift way to test an
algorithm and get model behavior feedback [6].

1) Switchover: The process with the lowest identity and
priority starts as primary and then passes the primary role, as
described in Section V-B3. The query below run the simulation
for 100 time units. Fig. 3 shows the result.

simulate [<=100]
{UsingService(0).Primary,
UsingService(1).Primary,
UsingService(2).Primary,
UsingService(3).Primary }



Fig. 3. Simulation of switchover in UPPAAL, showing the primary at each
point in time.

2) Failover: The process with the highest priority start
as primary, then the UsingService triggers communication
failure by commanding the ComChannelTx to Error state.
At that point, there is no working primary, until the process
with identity two resumes. When the UsingService commands
ComChannelTx to enter OK state again, and by that repairing
the communication failure, there will be two primaries for a
short while. Until the primary with the lowest priority back
away, see Fig. 4.

Fig. 4. Simulation of failover in UPPAAL, showing the process ID 2 taking
over as primary when process ID 3 encounters communication failure.

VI. CONCLUSION AND FUTURE WORK

There exist many leader election algorithms for distributed
systems, as well as many failure detection algorithms. Inspired
by those algorithms, and with our problem formulation as
input, we have deduced an algorithm capable of fulfilling
the specified requirements. The algorithm provides relevant
functionality for failure detection and redundancy role selec-
tion, for example, deterministic failover behavior with, known,
upper bound takeover time. We verified the functions using
a UPPAAL model. The model contains a service using the
presented algorithm as well as a simplistic communication
channel. With the UPPAAL model checking, we prove that
the algorithm holds what we claim.

Several additions can be made to the model we developed,
for example, probabilistic network delays and disturbances.
Another natural continuation is to incorporate state transfer
and look at the whole redundancy solution. We have tested
the solution on a switched Ethernet network using UDP
multicast heartbeat. Performance aspects of different networks,
protocols, and security solutions are interesting continuations.

Industry 4.0 comes with more extensive utilization of virtu-
alization and containerized solutions for cloud, fog, and edge
computing. An evaluation of the suitability of this algorithm,
or similar, in such a context, is a potential next step.
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