JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 36, 66—80 (1996)
ARTICLE NO. 0090

An Overview of RealTimeTalk, a Design Framework for
Real-Time Systems

CHRISTER ERIKSSON,* JUKKA MAKI-TURJA,* KJELL POST,* MIKAEL GUSTAFSSON,* JAN (GUSTAFSSON,*
KRISTIAN SANDSTROM,* AND ELLUS BRORSSONT!

*Department of Computer Engineering, Mdalardalen University, P.O. Box 883, S-721 73 Viisteras, Sweden, and 1 Department of Computer
Engineering, Dalarna University College, P.O. Box 10044, S-781 10 Borlinge, Sweden

RealTimeTalk (RTT) is a design framework for developing
distributed real-time applications with both hard and soft re-
quirements. The framework supports design via hierarchical
decomposition. We believe that object-orientation is the best
way to go about structuring a problem, hence the RTT language
is based on Smalltalk with an analysis frontend to infer type
information for run-time safety, and to yield more precise esti-
mations of execution times. Unlike most real-time systems,
RTT does not force the designer to embed constructs for timing
requirements, communication, and synchronization in the code.
Rather, such information is specified on a higher level of ab-
straction using graphical tools. This not only keeps the code
““clean” but also simplifies timing analysis and resource alloca-
tion. A comparison with other real-time systems concludes the
paper. © 1996 Academic Press, Inc.

1. INTRODUCTION

A current trend today is the replacement of mechanical
and/or electromechanical control systems, as found in cars
and nuclear power plants, with computer-based systems.
This move is explained primarily by the reduced produc-
tion costs and increased functionality and fiexibility of soft-
ware systems. Still, a computer based solution must be at
least as dependable as the replaced solution.

Another observable trend is the ever-increasing com-
plexity of computer based systems, a consequence of to-
day’s demands on functionality and distribution. In the
early days, one computer pertormed one function, then
gradually more and more functions were added to each
computer. Today, we see applications requiring a function
to be mapped over several computers. Performance and
safety 1ssues, as well as geographic reasons, are incentives
behind such a distribution of control. These systems are
often referred to as real-time systems with the meaning
that ‘““the correctness of the system depends not only on
the logical result of the computation but also on the time
at which the results are produced” [21].

1 E-mail: {cen,jma.kpt,mgn jgn ksm}@mdh.se; jbr@t.hfb.se.

0743-7315/96 $18.00
Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

In the real-time research community, one often distin-
guishes between hard and soft temporal requirements. If
a deadline 1s violated 1n a hard real-time computation the
logical result 1s useless. In a soft real-time computation,
the logical result could have a meaning even though a
deadline 1s not met. Many real-time applications of today
have both hard and soft temporal requirements. For exam-
ple, in the computer system of a car, a hard requirement
involves controlling the brakes, whereas the automatic cli-
mate control i1s an example of a soft requirement.

Real-time applications often have two types of require-
ments on control: periodic and aperiodic. Periodic control
means that an activity is computed repeatedly with a prede-
fined period time, e.g., implementing a cruise control for
a car leads to a periodic activity. Aperiodic control means
that the application generates events that the computer
system must respond to within a certain time, e.g., the
brake system in a car. Periodic and aperiodic activities can
be either soft or hard.

An important aspect 1n the design of real-time systems
1s the integration of methods, architectures, and tools to
avoid 1nconsistency between design and implementation.
It 1s not unusual to find people using a particular method
in the design phase of some new system, then working with
another tool for the implementation, violating specifica-
tions set during the design phase. A classical example of
this dilemma is structured analysis and design which aids
the specification of the system without considering the run-
time environment. With the proper integration of design
specification and implementation tools, specifications
made 1n the design phase could be enforced throughout
the entire life-cycle of the product.

This paper describes RealTimeTalk (RTT), a framework
for the development of applications with both hard and
soft real-time requirements. The organization of the paper
i1s as follows. Section 2 highlights the features of RTT;
Section 3 presents the programming-in-the-large aspects
of RTT, tollowed by a presentation of the RTT language
in Section 4. Section 5 describes the run-time environment;
Section 6 describes the prototype system; Section 7 con-

AN OVERVIEW OF REALTIMETALK 67

tains a short description of related work. We conclude the
paper 1n Section &.

2. INTRODUCTION TO RTT

The main goal of RTT is to simplify the design and
implementation of predictable real-time systems. We
strongly believe that object-oriented methods are of vital
importance in this process. Object-orientation gives advan-
tages such as reusability, rapid prototyping, incremental
development, modularity, extensibility, and promotes the
use of frameworks. However, notions for synchronization
and distribution are often weak.

A number of desirable properties for the development
of real-time systems can be identified (cf. [6]). For instance,
frameworks which support hierarchical decomposition fos-
ters good design and helps the designer to cope with com-
plexity. Component based design promotes reusability and
safety. The transformation between analysis, design, and
implementation should be reversible in order to maintain
the consistency between the different models when the
system 1s maintained and extended. Within the framework,
it should be possible to both specity and verity the func-
tional and temporal aspects of the system. Ideally, a com-
mon description language for different levels of abstraction
should be used. This language should support incremental
development, prototyping and simulation, error-handling
mechanisms, and the possibility of encapsulating low level
languages, for reasons of efficiency and code re-use.

The design framework for RTT is divided 1nto parts for
programming in the large and programming in the small.
Programming in the large corresponds to application de-
sign on a higher level and contains tools to map a design
to a resource structure, whereas programming 1n the small
concerns implementation of classes.

The syntax of the RTT programming language 1s based
on Smalltalk [8], a true object-oriented language with sim-
ple syntax and semantics. Recently, Smalltalk has begun
to regain some of the ground it lost after C+ +’s appear-
ance. We believe this trend 1s mainly due to Smalltalk’s
simplistic nature and its support for rapid prototyping,
making 1t very easy to focus on the problem and to quickly
build high quality applications without having to worry
about, e.g., memory management—a nontrivial problem
in most C++ applications.

However, the nondeterministic nature of garbage collec-
tion and method invocation, together with the weak type
system makes Smalltalk less suited for real-time applica-
tions. The language also has weak support for communica-
tion and synchronization in a distributed environment. In
our adaptation of Smalltalk, we have modified these draw-
backs to make RTT type sate, predictable, and usable 1n
a distributed environment.

The RTT design framework also separates the specifica-
tion of hard and soft real-time into two parts. It also 1n-
cludes the interface between these two parts. The software
model for the design of the hard real-time part of an appli-

cation 1s based on a set of design objects where hierarchical
decomposition is a key concept. The soft real-time part 1s
currently open for any reactive model that conforms to
the interface of the hard real-time part and 1s adaptable
to the RTT run-time system.

In the hard real-time part, we have separated the func-
tional and temporal behavior of the system. The functional
requirements are specified with the RTT design objects
and are checked by prototyping and testing. The temporal
constraints are also specified within the RTT design objects
and is statically verified by the RTT pre-run-time sched-
uler. The maximum calculated execution time (MAXTC)
is calculated for each schedulable entity (task) by the RTT
compiler. The timing information is then fed to the sched-
uler which tries to find a feasible schedule for the system.
If such a schedule is found the temporal behavior will be
guaranteed during run-time.

The run-time environment consists of a set of nodes
which are connected by a predictable broadcast bus. The
RTT software platform runs on each node and 1s divided
into two parts: an operating system and a communication
system. The software platform supports execution of
time-triggered hard real-time tasks and event-triggered
soft real-time tasks. Furthermore, the communication sys-
tem supports both hard and soft real-time messages.

3. PROGRAMMING IN THE LARGE

3.1. Introduction

When designing object-oriented systems today, one of-
ten ends up with a monolithic structure where an ocean
of objects collaborate to achieve a desired function. Need-
less to say, maintenance of such nonhierarchical implemen-
tations are difficult at best and requires understanding of
the system on all levels. It also leads to problems for the
customer, who has to verify the functionality of the actual
implementation against the requirements specification. Of
course, many systems are described on different levels of
abstraction during the design, but these abstractions are
seldom explicit in the implementation. Another issue 1is
how to handle synchronization and communication in an
object-oriented system. Most programming models inte-
grate synchronization and communication with the func-
tionality. For example, when using a real-time operating
system, tasks typically have synchronization calls inter-
leaved with the rest of the code, making it ditficult to verity
and maintain the code.

Furthermore, when implementing time constraint ser-
vices with strict deadlines in a conventional system, time
constraints are often mapped to period times or priorities
of individual tasks. This approach 1s often usable when
constructing simple single node systems, but when imple-
menting time constraint functions which include several
tasks (and where the tasks might execute on different
nodes) these solutions are not adequate. To implement
these functions, the time constraints must be specified for

63 ERIKSSON ET AL.

the complete function in an explicit way to make the sys-
tem predictable.

Implementing a time constrained service can be done
either by the time-triggered or event-triggered approach.
The time-triggered execution model 1s defined as follows:
the system observes the state of the environment at specific
points 1n time. Thereafter the system decides, based on an
analysis of the state, which actions must be taken. After-
wards, new values are emitted to the environment at a
predefined point in time. By event-triggered, we mean that
an event occurrence propagates into the control system
at an arbitrary point in time. For example, an interreupt
normally initiates an action, such as resuming a task waiting
for the event.

When implementing hard real-time functions it 1s very
important to be able to verify the function easily. With
the time-triggered approach this is more straightforward,
because the number of states to test 1s much smaller than
for the event-triggered approach [15]. The reason for this
1s that the events 1in the environment can only propagate
into the system at predefined points in time, or more spe-
cific, in predefined time intervals. In the event-triggered
model, events can propagate into the system at arbitrary
points in time and thus the temporal behavior will be more
difficult to verify compared to the time-triggered approach.
As a consequence, the time-triggered approach 1s superior
to the event-triggered approach when implementing con-
trol loops and monitoring functions. On the other hand,
when implementing functions that are inherently event-
triggered, the transtformation to a time-triggered model 1s
often nontrivial and the transtormed solution does not
reflect the structure of the function. Thus, when imple-
menting such functions the event-triggered approach is
more suited. Furthermore there are powertul, commer-
cially available tools for modelling event-triggered client-
server applications, for instance user interfaces. We con-
clude that there is a need for both of these approaches,
because one could not choose an approach without consid-
ering the controlled application.

RTT 1s well suited for time-triggered hard real-time ap-
plications, and periodic or event-triggered soft real-time
applications.

3.2. Application Example

The following example, in which we 1imagine a railroad
network supervised by a distributed computer system
serves to illustrate various aspects of the RTT software
model.

The railroad network is divided into segments (Fig. 1).
Segments can be connected in either end to form loops
and junctions. Each segment consist of a straight sequence
of zones, each zone corresponding to a fixed amount of rail.
Trains 1n a segment are managed by a segment computer.
Trains are considered dumb in that respect that the seg-
ment computer dictates their speed. Segment computers
need to negotiate on in- and outgoing trains and are there-

\ /
S4
FIG. 1. Railroad network. Each S; denotes a segment; dashes corre-
spond to zones,

fore linked to each other. A central computer (henceforth
referred to as the traffic area controller, TAC) collects
information from each segment computer to construct an
overall plan. This plan 1s produced continuously to make
etficient use of the railroad network. The segment comput-
ers attempts to follow this plan, but will of course deviate
from 1it, should there be a chance of collision. It should be
stressed that segment computers are in no way dependent
on the TAC for safety i1ssues.

A plan i1s based on a ‘“snapshot” of the system and
describes desired speed settings for each train until the
next plan is constructed. After the plan is formed (which
may take some time), a new snapshot is taken to verify
that the plan is still consistent. If so, the plan 1s downloaded
to the segment computers, otherwise it 1s discarded. Should
the central computer face a deadlock, the system stops and
an operator have to resolve the situation.

This example will be used in the remainder of this paper
to illustrate various parts of the RTT framework.

3.3. The Hard Real-Time Model

A key concept in the design of hard real-time applica-
tions 1s the use of different levels of abstractions. In RTT,
design is supported by hierarchical decomposition and the
use of a predefined set of design objects. These design
objects are modes, mode transitions, use-cases, and tasks.
Figure 2 illustrates a generic application structure.

3.3.1. Modes and Mode Transitions. When developing
a system one often realizes that the modelled system has
several distinct states, or modes. For a locomotive, these
modes could be notOperating, manuallyOperating, and
autopilot. The fact that there exist distinct modes does not
mean that the functionality of these modes are disjoint.
For instance, it is reasonable to assume that the modes
manualOperation and autopilot have some common func-
tionality. When the different modes of a system have been
identified one has to model the transitions between them.
In the train example, two of the mode transitions could
be ManualToStopped and AutoToManual.

AN OVERVIEW OF REALTIMETALK 69

Application

L

recms

FIG. 2. The hierarchical structure of a generic application.

A mode defines the activities that must take part during
a particular state of the application. A mode transition
corresponds to actions taken when we have a change of
mode 1n the system. Thus a mode i1s mapped to a continuous
schedule whereas a mode transition 1s mapped to a one-
shot schedule.

The problem with implementing modes and mode transi-
tions 1s that most systems does not have an explicit notation
for modes. Instead, modes and mode transitions are usually
embedded in the code. If the model supports distinct modes
one can casily see which functions that run in each mode
and thereby allocate resources in an efficient way. Another
advantage 1s that each mode could be designed separately.
In the RTT model, a precise notation and semantics for
modes and mode transitions are supported by the design
objects Mode and ModeTransition. The transitions be-
tween the difterent modes are described as a high level
state machine. For instance, in Fig. 3, we see such a graph
for the train application.

In RTT each activity in a mode and mode transition 1s
modelled by a use-case.

3.3.2. Use-Cases. A use-case can be seen as an engine
that controls a number of cooperating objects to perform
a certain task. A use-case models an activity as a periodic
function. An aperiodic activity i1s translated to a periodic
activity, for example, with the theory provided by Mok [18].

When implementing a use-case that consists of a several
collaborating computational entities, it 1s important to have
an explicit notation for both synchronization and commu-
nication, as well as being able to describe both sequential
and parallel executions. With synchronization we mean
the order in which the different entities should be executed.
Furthermore, i1t should also be possible to describe that
some resource 1s shared and that the access of this resource

WaitForPlan

FIG. 3. A high-leve] state machine for the train example.

1s protected. In many systems these mechanisms are, as
mentioned before, embedded in the implementation which
make them hard to understand and maintain.

With communication we mean the information that is
exchanged between the different entities. This information
should also be explicit for the same reasons as for synchro-
nization. RTT models both synchronization and communi-
cation with a precise syntax and semantics, at a high level
of abstraction.

A use-case 1s defined by a precedence graph, an inter-
action graph, and the period time of the computation. A
precedence graph 1s a directed acyclic graph and defines
the execution order between the entities. The interaction
graph specifies the communication between the entities
and the use of shared resources. The period time specifies
the time between two consecutive activations of the entities
specified in the precedence graph. These entities are
called tasks.

3.3.3. Tasks. A task encapsulates an object and pro-
vides the thread of control and communication for the
object. As just mentioned, the model does not mandate
synchronization and communication constructions in the
code. Rather, we have equipped the tasks with in- and out-
ports to decouple the code from communication details.
The synchronization 1s decoupled from the code by explic-
itly specifying it in a precedence graph. Let us first describe
the operation of a task, then its temporal attributes.

Assume an object S with a method m: and an object C
who wants to send the message m: arg to S (Fig. 4). C
could potentially reside on a different node in the system.
As seen 1n Fig. 4, the object S and its method are encapsu-
lated by a task. The role of the task is to (1) map the in-
port of the task to the arguments of the method; (2) invoke
the method m in the object; and (3) map the result of the
method’s execution to the out-ports.

The temporal attributes of the task are release time,
deadline, MAXTC (maximum calculated execution time),
and MINTC (minimum calculated execution time). These
temporal attributes can be divided into two groups. The

Task

out-port

FIG. 4. The structure of the task that encapsulates the object S.

70 ERIKSSON ET AL.

first group, involving MAXTC and MINTC are static,
meaning that these parameters do not depend on the use-
case the task i1s part of. Release time and deadline, on the
other hand, are context dependent; i.e., they depend on
the temporal requirements of the use-case in which they
are defined. The release time and deadline are set relative
to the period time of the specific use-case. The following
relation defines constraints on the release time and
deadline:

(deadline =< period time) /\ (release time = 0)
/\ (deadline = release time + MAXTC).

A complete specification of a task include the object that
it encapsulates, the activation method of the encapsulated
object, the node the task will execute on, the in- and out-
ports, and the four temporal attributes just mentioned. In
RTT, a port is either a primitive object—such as a boolean,
integer, character, float or string—or a compound object,
having primitive objects as instance variables.

3.3.4. Precedence Graphs and Interaction Graphs. For
some activities, 1t is very important that input and output
with the environment i1s synchronized. For example, in the
train example it i1s imperative that each snapshot of the
trains’ position 1s taken within a certain time interval by
cach segment computer, or otherwise an inconsistent view
of the state may result. It is also desirable to be able to
describe the execution order of the tasks.

In order to specity synchronization between tasks on a
higher level of abstraction, we have introduced precedence
graphs. A precedence graph 1s a directed acyclic graph
which specifies the precedence relationship between tasks.
For example, if task A precedes task B in the graph, task
A must terminate i1ts execution before task B can start.

To specify communication between tasks, the interaction
graph is introduced. The interaction graph is a binary rela-
tionship specifying pairs of tasks that can communicate
with each other, i.e., where the producer’s out-port 1s con-
nected to the consumer’s in-port. The interaction graph
also specifies the use of shared resources.

These two graphs are often merged into one graph. For
example, in the MARS system [16] the precedence rela-
tionship also includes data transfer. In our opinion, this
requirement 1s too strong and makes 1t difficult to describe
things like feedback loops. The reason behind our separa-
tion of synchronization and communication 1s that these
two issues really are orthogonal concepts; 1.e., communica-
tion may or may not be synchronized. Figure 5 shows a
precedence graph for the use-case i1n the train example
that takes snapshots of the state of the environment. §,, 1s
the task that encapsulates the segment object at segment
computer n. The idea 1s that each segment computer i1s
supposed to take a snapshot of the trains’ position at
roughly the same time. When the snapshot has been taken
the information is sent to the TAC task which encapsulates
the traffic area controller object.

FIG. 5. The precedence graph for the use-case snapshot.

The corresponding interaction graph is shown 1n Fig. 6.
In this example, the communication is synchronized; 1.e.,
each precedence relation has an associated interaction re-
lation.

The precedence graph, the period time of the use-case,
and the tasks’ temporal attributes are related, as seen In
the following example.

ExampLE 3.1. The time between two consecutive acti-
vations of the tasks in the precedence graph i1s specified
by the period time of the use-case. Assume that a period
time of 500 ms has been derived from the requirements
specification to obtain the needed observation frequency.
The precision on each observation requires that the obser-
vation of each segment object is done within 100 ms. The
precision requirement can be specified by the release time
and deadline attribute of each task. In this case, the release
time could be specified as 0 ms for the segment tasks
(51 ... S4). The deadlines for each segment task then has
to be specified to 100 ms to fulfill the precision requirement.

In many applications, sensors are read with a much
higher frequency than the control loop executes to enable
signal processing [25]. Therefore it must be possible to
specify the communication between a task in the control
loop’s use-case and the producing signal’s processing task.
This is specified in the same way as for tasks communicat-
ing within one use-case, 1.e., by connecting the producing
task’s out-port to the consumer’s in-port. There 1s no differ-
ence between these two cases from the modelling point of
view but the translation to a resource structure will be
different. This translation will be described in Section 6.5.1.

FIG. 6. The interaction graph for the use-case snapshot.

AN OVERVIEW OF REALTIMETALK 71

RTT

Component

Mode

Transition

FIG. 7. Class hierarchy.

3.3.3. Supporting Class Hierarchy. The RTT class hier-
archy supports objects such as modes, mode transitions,
use-cases, and ports. An application engineer uses these
classes when developing his system. Furthermore these
objects are mapped to the resource structure to reflect the
design; i.e., one can easily follow the high-level specifica-
tion all the way down to implementation. An example of
such a hierarchy can be seen in Fig. 7.

3.4. The Soft Real-Time Model

The reason for introducing a soft real-time model is that
most applications of a reasonable size have both hard and
soft functionality. The question is: why not implement the
sott functions as hard? There are several reasons:

* If resources for a soft tunction 1s allocated pre-run-
time, the period time and the maximum execution time
must be considered. If a short response time 1s required
for an event, the period time must be relatively short. This,
however, gives a poor utilization if the event occurs seldom.
On the other hand, i1f one would like to increase the utiliza-
tion the period time must be increased but then the respon-
stveness will decrease. If the function instead is imple-
mented 1n the soft real-time part the assumption is that
the system in the average case will have an acceptable
response time. However, one should keep in mind that no
guarantee 1s provided.

* Sometimes it 1s very difficult to model a inherently
event-triggered function 1n a time-triggered model.

* If the hard and softt functions are implemented in sepa-
rate parts, the effort that must be spent on verification and
validation of timing requirements will decrease. Many hard
real-time functions are also safety critical and if the safety
critical functions are separated from the rest of the system,
the verification and validation of the safety requirements
will be simpler [17].

Another reason for having both hard and soft capabilities
1s that this can be used to give the hard part an increased
flexibility. For instance, making on-line modifications to a
system, e.g., installing a new schedule and modified code.
When the soft part has loaded the alterations to the system,
the hard part would be informed and a change to the
new schedule could be made at an appropriate time. This
functionality would be very expensive to implement with
just the hard part because, as mentioned earlier, the re-
sources to accomplish this have to be pre-allocated and
this functionality will be used seldom.

In the case, where the hard and soft part has to cooper-
ate, 1.e., exchange information and/or control, there must
be clear definitions how to perform this cooperation with-
out jeopardizing the temporal requirements for the hard
real-time part and the consistency of data for both the
hard and the soft parts. The information that is passed
between the soft and hard parts is, as defined earlier, resid-
ing in objects. The responsibility of the interface could
either be delegated to each object that holds the informa-
tion, or to special interface objects, acting as a fire wall
between the two parts. The benefit with mapping the inter-
face direct to objects 1s that the object-oriented paradigm
1s not suppressed. The disadvantage of this approach is
that failures in the soft part more easily could intrude on
the hard real-time part. If special interface objects are used
instead, the object-oriented approach could not be fully
utilized because shared information has to be spread out
on several objects. The advantage is that the separation
of the two parts are distinct.

Independent of which model 1s adopted, data consis-
tency must be maintained in both directions. How to
achieve this has been investigated by, for example, Thijssen
et al. [19].

Depending on the application to develop both ap-
proaches could be considered. If there are high demands

72 ERIKSSON ET AL.

on safety the fire wall approach should be used. On the
other hand if the application does not have high demands
on safety but instead have a high structural complexity the
interface on the object level is preferred to minimize the
suppression of the object-oriented paradigm. In RTT, both
these approaches are available so the developer could
choose the appropriate one.

4. PROGRAMMING IN THE SMALL—
THE RTT LANGUAGE

4.]. Introduction

The RTT language is primarily targeted toward the code
for the hard real-time part and we will discuss the language
from this point of view. Naturally one could use RTT
also for the soft real-time part, without the restrictions
discussed in this section.

A feature brought over from the Smalltalk community 1s
the notion of frameworks, i.e., predefined class hierarchies
with support for different application areas. This will speed
up the development of applications and promote high qual-
ity code and reuse.

An underlying design philosophy in RTT 1s to let the
designer produce a prototype within a Smalltalk develop-
ment environment, and with limited concern for temporal
aspects. The prototype can be implemented and modified
quickly. This prototyping environment helps the program-
mer to focus on a reasonable functional solution to the
problem at hand. Later, when the designer is satisfied, the
code is fed to the RTT compiler which provides informa-
tion about execution times for each task to the RTT sched-
uler, which in turn tries to find a feasible schedule.

4.2. Syntax and Semantics

Although the syntax of RTT is the same as of Smalltalk,
the semantics of some programming constructs have been
changed to make applications predictable:

1. Recursion is not allowed because of the problem of
determining the recursive depth of a data dependent re-
cursion [9].

2. Loops have to be bounded. Constructs in Smalltalk
like

[...] whileTrue: {...].

with no upper bound on the number of iterations have 1n
RTT been replaced with

whileTrue: [...] maxIterations: m.

[...]
These and other similar constructs are defined in RTT and
may not be changed by the application programmer. For
a detailed description, please see [9].

3. Dynamic creation or changes of classes and methods
are not allowed at run-time. This 1s necessary to guarantee
time determinism of applications.

4. Data structures have to be limited in size; e.g., linked
lists of indefinite length are ruled out.

4.3. The Effect of Polymorphism

RTT shares Smalltalk’s dynamic typing; 1.e., types are
associated with values rather than variables. Dynamic typ-
ing is generally considered more flexible than static typing
and also relives the programmer from having to declare
the types of variables; this is a benefit, especially during
the prototyping phase.

However, because of the lack of typing information at
compile time, the compiler must make pessimistic assump-
tions regarding which method will be invoked for a certain
message sent at run-time. This leads to an over-estimation
in the calculation of the MAXTCs. A more serious problem
is the risk of getting ‘“message not understood” at run-
time; i.e., the receiving object does not implement a method
for the message. This is of course disastrous in a hard real-
time system.

One ad hoc way of dealing with this problem 1s to system-
atically rename methods so that it will always be clear by
looking at the program text which method will be invoked
for a particular message. This, however, is against the very
idea of polymorphism. Another alternative is to obtain
information about which class the receiver ot the message
is an instance of. This can be arranged by letting the pro-
erammer provide type declarations. However, we would
like to be able to use as many Smalltalk programs as possi-
ble ‘““as they are,” keeping manual conversion chores to a
minimum. We also believe that type declarations are a
burden to the programmer, especially during the prototyp-
ing phase.

Instead, we are currently in the process of designing a
type inference system for RTT [10]. The purpose of this
system is to annotate each variable occurrence 1n the pro-
gram with a type. We define a type as a set of class names
{C,, ..., C,} that represents the classes that a variable occur-
rence can be an instance of at run-time.

With type inference, RTT can be used ““typeless” in the
prototyping phase. Later, when the product is ready to run,
type inference is used to detect type errors and optimize the
execution (Fig. 8).

With type information at hand, the compiler can

 Reduce over-estimations of MAXTC calculations.
When a receiver is known to be an instance of a set of
classes, the MAXTC calculation i1s limited to these classes.
 Guarantee statically type-safe programs. Once types
are inferred, the compiler can verify statically that all mes-
sages will be understood at run-time and that arguments

Untyped | Typed
Program | System

FIG. 8. Type inference in RTT program development.

Design

72 ERIKSSON ET AL.

on safety the fire wall approach should be used. On the
other hand if the application does not have high demands
on safety but instead have a high structural complexity the
interface on the object level is preferred to minimize the
suppression of the object-oriented paradigm. In RTT, both
these approaches are available so the developer could
choose the appropriate one.

4. PROGRAMMING IN THE SMALL—
THE RTT LANGUAGE

4.1. Introduction

The RTT language is primarily targeted toward the code
for the hard real-time part and we will discuss the language
from this point of view. Naturally one could use RTT
also for the soft real-time part, without the restrictions
discussed in this section.

A feature brought over from the Smalltalk community 1s
the notion of frameworks, i.e., predefined class hierarchies
with support for different application areas. This will speed
up the development of applications and promote high qual-
ity code and reuse.

An underlying design philosophy in RTT 1is to let the
designer produce a prototype within a Smalltalk develop-
ment environment, and with limited concern for temporal
aspects. The prototype can be implemented and modified
quickly. This prototyping environment helps the program-
mer to focus on a reasonable functional solution to the
problem at hand. Later, when the designer is satisfied, the
code is fed to the RTT compiler which provides informa-
tion about execution times for each task to the RTT sched-
uler, which in turn tries to find a feasible schedule.

4.2. Syntax and Semantics

Although the syntax of RTT is the same as of Smalltalk,
the semantics of some programming constructs have been
changed to make applications predictable:

1. Recursion is not allowed because of the problem of
determining the recursive depth of a data dependent re-
cursion [9].

2. Loops have to be bounded. Constructs in Smalltalk
like

whileTrue: {...].

[...]

with no upper bound on the number of iterations have 1n
RTT been replaced with

whileTrue: [...] maxIterations: m.

[...]
These and other similar constructs are defined in RTT and
may not be changed by the application programmer. For
a detailed description, please see [9].

3. Dynamic creation or changes of classes and methods
are not allowed at run-time. This 1s necessary to guarantee
time determinism of applications.

4. Data structures have to be limited in size; e.g., linked
lists of indefinite length are ruled out.

4.3. The Effect of Polymorphism

RTT shares Smalltalk’s dynamic typing; 1.e., types are
associated with values rather than variables. Dynamic typ-
ing is generally considered more flexible than static typing
and also relives the programmer from having to declare
the types of variables; this is a benefit, especially during
the prototyping phase.

However, because of the lack of typing information at
compile time, the compiler must make pessimistic assump-
tions regarding which method will be invoked for a certain
message sent at run-time. This leads to an over-estimation
in the calculation of the MAXTCs. A more serious problem
is the risk of getting ‘“message not understood’ at run-
time;i.e., the receiving object does not implement a method
for the message. This is of course disastrous in a hard real-
time system.

One ad hoc way of dealing with this problem 1s to system-
atically rename methods so that it will always be clear by
looking at the program text which method will be invoked
for a particular message. This, however, 1s against the very
idea of polymorphism. Another alternative is to obtain
information about which class the receiver of the message
is an instance of. This can be arranged by letting the pro-
erammer provide type declarations. However, we would
like to be able to use as many Smalltalk programs as possi-
ble ‘““as they are,” keeping manual conversion chores to a
minimum. We also believe that type declarations are a
burden to the programmer, especially during the prototyp-
ing phase.

Instead, we are currently in the process of designing a
type inference system for RTT [10]. The purpose of this
system is to annotate each variable occurrence 1n the pro-
gram with a type. We define a type as a set of class names
{C,, ..., C,} that represents the classes that a variable occur-
rence can be an instance of at run-time.

With type inference, RTT can be used ““typeless” 1n the
prototyping phase. Later, when the product is ready to run,
type inference is used to detect type errors and optimize the
execution (Fig. 8).

With type information at hand, the compiler can

 Reduce over-estimations of MAXTC calculations.
When a receiver is known to be an instance of a set of
classes, the MAXTC calculation is limited to these classes.
 Guarantee statically type-safe programs. Once types
are inferred, the compiler can verify statically that all mes-
sages will be understood at run-time and that arguments

r;)esi :__ ~__{Untyped Typed
: 5 Program System

FIG. 8. Type inference in RTT program development.

to system builtins have the proper type. Of course, the
compiler may be overly pessimistic and reject a program
that would avoid an offending construct at execution.

* Eliminate run-time type checking. When programs are
type-safe, there is no need for builtin primitives to check
the type of arguments before using them. This will reduce
run-time overhead.

e Produce more efficient code. When a receiver 1s known
to be an instance of one class only, method lookup can be
replaced with a function call. This in turn enables other
optimizations, e.g., inlining. Efficiency can sometimes also
be improved even if the receiver could be an instance of
more than one class [10].

 Characterize polymorphic recursion. In object-ori-
ented languages, recursion has a deeper meaning, com-
pared to other languages, since a function (a method) is
identified not only by the name of the function, but also
by the receiving object. Suppose an instance / sends a
message m. Then we can differentiate between three kinds
of recursion, in ascending order of generality:

—Instance recursion: when the execution of m in-
vokes the method for m in I again (perhaps transitively).

—Class recursion: when the execution of m invokes
a method for m in an instance of the same class as /.

—Polymorphic recursion: when the execution of m
invokes a method for m in some other instance (perhaps
I). Thus, polymorphic recursion may not be recursive at all!

With type information, polymorphic recursion can some-
times be classified as non-recursive and therefore be al-
lowed in RTT.

5. PRINCIPLES OF THE RUN-TIME ENVIRONMENT

5.1. Introduction

The run-time environment provides a platform for run-
ning RTT applications and consists of a set of nodes that
are interconnected via a communication network.

The run-time environment contains both strictly hard-
ware contained functions as well as software functions.
However, many functions 1s a result of cooperation be-
tween hardware and software. In addition, a lot of the
functions could either be implemented directly in hardware
or software. Therefore, we do not separate the run-time
environment into a hardware and a software part.

Most hardware components used 1n run-time environ-
ments today are designed to be used 1n systems with the
goal of maximizing the average performance. As observed
by Stankovic [22] these components have shortcomings
when used in hard real-time hardware architectures.
Therefore when designing efficient hard real-time run-time
environments a lot of effort has to be spent on evaluating
the predictability and the dynamics of existing components,
design of new components, and study how the components
fit together.

5.2. Functionality of the Run-Time Environment

The platform has to support execution of hard real-time
modes according to a pre-run-time generated schedule.
This schedule could consist of a number of subschedules,
e.g., one subschedule for each node and one for the com-
munication network. These subschedules have to run syn-
chronized to behave as one system schedule. This requires
that the clocks on each node are synchronized with a known
accuracy. To mintmize the damage in case of a timing fault,
the deadlines of the use-cases in the current mode must
be supervised.

Since RTT applications not only consist of hard real-
time functionality the run-time environment has to provide
a base for running the soft part of an RTT application.
The soft part of an RTT application is as mentioned betore
scheduled on-line and should fulfill the timing require-
ments on a best effort basis. This feature should by no
means jeopardize the temporal behavior of the hard real-
time part of an RTT application.

The RTT framework put no demands on the topology
of the communication network. For the hard real-time part
of an RTT application, the communication services must
support bounded end to end message transfer times. In
analogy with the execution of an application there must
exist communication services for soft real-time messages
which does not interfere with hard real-time messages.

In object-oriented systems, as mentioned earlier, there
are a number of basic features that could give variance 1n
program execution and thus would give a poor utilization
of the hardware resource. The two features which contri-
butes the most to poor utilization are garbage collection
and method dispatching. To be able to run real-time object-
oriented applications, the run-time environment must have
implementations of these features that are both predictable
and have low variance in execution time.

5.3. Structure of the Run-Time Environment

If the run-time environment is divided into parts and
each part has a strict functionality, for example, applica-
tion, communication, method dispatcher, garbage collec-
tion, I/0O, operating system, debugging, and monitoring
parts, many benefits are provided. The following benefits
was identified by Stankovic [22]

It will be simpler to map an application to the resource
structure because the application part could be isolated
from unpredictable interrupts generated by the nondeter-
ministic environment.

* The system would be more manageable due to the
separation. It should be noted that each part must have
its own resources to make the separation strict.

To be able to utilize any part efficiently there must be
a small variation in execution time for each basic operation.
For example the data moved in a move instruction could
be accessible in cache memory or in the ordinary RAM.

74 ERIKSSON ET AL.

This will give a big variation and when calculating the
execution time for a real-time program the MAXTC has
to be considered which will lead to poor utilization. A
basic operation could also for example be a context switch.

To simplify the communication system 1t 1s preferable
to use a broadcast bus topology. In such a topology, no
relaying nodes have to be used in communication between
nodes 1n the same network. Using such an approach, only
one bus slot 1s used when sending one frame. This will
simplify the tools that allocates bus bandwidth to the appli-
cation.

In Section 6, we will present a prototype of the run-
time environment.

6. AN RTT PROTOTYPE SYSTEM

6.1. Introduction

In this section we will briefly present some of the tools
and solutions to the proposed models discussed earlier.

First, we will present a prototype of the run-time envi-
ronment, thereafter a few words about the RTT compiler
followed by a short description of the MAXTC Tool.
Thereafter, we will present the principles of the configura-
tion compiler, 1.€., the resource mapping tool.

6.2. The RTT Prototype Run-Time Environment

6.2.1. Introduction. The run-time environment consists
of a number of nodes. Each node is structurally partitioned
into three separate units, one application unit, one commiu-
nication unit, and one time handling unit. The two first
units have their own resources such as CPU and memory.
These two units communicate through a dual port memory.
The time handling unit is implemented directly in hardware
and thus also has its own resources.

The memory in the communication and application units
are protected by a memory protection unit. This unit is
developed especially for this architecture and will ensure
that the tasks can only access memory to which they have
been reserved rights. The reason for developing this unit
1s that commercial available memory management units
have unpredictable timing behavior [22].

The communication and application unit also includes
a real-time garbage collector [13].

0.2.2. The Application Unit. The application unit exe-
cutes the application tasks and 1s responsible for the appli-
cation I/0O. The task execution platform is provided by the
Rubus real-time operating system {1]. It contains guaran-
teed services (hard real-time) and best effort services (soft
real-time). Rubus is divided into two executives, the hard
real-time and the soft real-time executive.

* The hard real-time executive 1s based on the time-
triggered execution paradigm and is dispatching tasks ac-
cording to a pre-run-time generated schedule. It is also
handles deadline supervision and takes care of deadline

violations. The deadline control 1s made in cooperation
with the time handling unit.

* The soft real-time executive 1s based on the event-
triggered execution paradigm where a priority based sched-
uling policy 1s used. The hard real-time executive will al-
ways preempt the soft real-time executive when it 1s time
to dispatch a hard real-time task.

6.2.3. The Communication Unit. The communication
unit 1n each node 1s connected to a broadcast bus, in this
case a CAN bus (ISO/DIS 11519, unit 1). This unit is
responsible for the network communication and handles
all messages sent to and from the application unit. It also
handles group membership protocols [5].

The RTT communication protocol is implemented as an
application layer on top of the data link layer of the CAN
protocol. This protocol makes a distinction between hard
and soft real-time messages. To fulfill timing requirements,
hard real-time messages are scheduled pre run-time.

The protocol 1s based on the TDMA paradigm,; i.e., the
network bandwidth i1s divided into time slots. There is a
maximum number of frames that can be sent in one bus
slot. A frame corresponds to a CAN message. The nodes
have a consistent view of the bus slots since there exists
an approximate global time base.

TDMA based protocols usually allocate one bus slot per
node. In its bus slot, the node can either send a frame or
leave the bus slot unused. This leads to an inefficient use of
network bandwidth. In the RTT communication protocol,
several nodes can transmit frames in a bus slot according
to the pre-run-time generated schedule. This is possible
due to the collision avoidance arbitration mechanism pro-
vided by the CAN protocol.

Each node knows when all hard real-time frames have
been sent every node listen to the traffic on the bus and
has knowledge about the schedule. When all the hard real-
time frames in a bus slot has been sent, soft real-time
frames will be transmitted until the end of the bus slot.
This makes it possible to get a high utilization of the net-
work bandwidth.

6.2.4. The Time Handling Unit. 'The time handling unit
includes separate timers for the communication and appli-
cation units. The timers for each unit handles dispatching
and deadline supervision of hard tasks and dispatching of
soft tasks. Furthermore, this unit provides an approximate
global time that could be read by the other two units. To be
able to provide such a global time, a clock synchronization
algorithm 1s implemented in the RTT communication pro-
tocol.

0.3. Compiler

The present version of the RTT compiler generates C-
code which has to be compiled and linked with C-tools to
generate a run-time system, as described in [9]. In this

AN OVERVIEW OF REALTIMETALK 75

Times for different paths

AN\ —

| —
0 MINTC MINT MAXT MAXTC time

AVET

FIG. 9. Execution times for a program.

version, dynamic types are used, which may cause some
problems, as mentioned in Section 4.3. The next version
of the RTT compiler will attempt to solve these problems
by using type inference. This compiler will also generate
optimized assembly code, yielding a better utilization of re-
SOurces.

6.4. The MAXTC Tool

The execution times for a program may vary depending
on the path taken in the control graph. In Fig. 9, the
following time measures are shown:

e MINT = real minimum execution time

e MAXT = real maximum execution time

e MINTC = calculated minimum execution time

e MAXTC = calculated maximum execution time

» AVET = 2%_,T;/n = pathwise average execution time
of a program.

e OF = MAXTC/MAXT = overreservation factor.

e D = MAXT/MINT = dynamic factor.

The MAXTC calculation tool [9] calculates MAXTC.
Naturally, the overreservation factor (OF) has to be as
close to 1 as possible to avoid reservation of too large CPU
resources in the run-time schedule. The tool also calculates
MINTC. This number can for instance be used to assess
the dynamic factor of a program. It also gives an indication
of the spare capacity left for soft functionality. (Remember
that hard real-time tasks are preallocated, while soft real-
time tasks uses unallocated CPU-time and spare time from
hard real-time tasks.)

Currently, there is a prototype of the tool which cooper-
ates with the current dynamic type version of the RTT
compiler. To be able to solve some problems with this
implementation, the main one being high overreservation,
the next version of the MAXTC tool will exploit the type
information inferred by the compiler.

The method dispatch (or method invocation scheme)
used in Smalltalk makes 1t difficult to calculate the execu-
tion time for a system before run-time. The reason for this
is the linear search for methods which starts at the class
of the receiver and goes up through the inheritance tree.
When execution time is calculated, the time required for
method dispatching must be predictable for every message.
For this reason, a method dispatch table 1s used at run-
time. The method dispatch table 1s built at compile time
using an algorithm called modified two-way coloring
(MTWC) by Huang and Chen [14]. With type information
at hand most of the dynamically bound message sends
could be statically bound. The reason for this i1s that the

use of polymorphism is not used in the extent that one
could believe [4].

6.5. The RTT Configuration Compiler

6.5.1. Introduction. In this section, we will present how
the hard real-time part of an application is translated into
a runnable application. As mentioned betore, the hard
real-time part 1s based on the time-triggered approach and
scheduled prior to run-time. The translation process in-
cludes allocation of both CPU capacity for each node and
bus bandwidth. The output from the translation process 1s
a schedule for each mode and node, plus message space
for the messages sent over the network. This translation
is done by a tool called the RTT configuration compiler.

The configuration compiler requires an architecture spec-
ification and a configuration specification. The architecture
specification lists the number of nodes and gives the charac-
teristics of the nodes and the bus. The configuration speci-
fication describes the application as given by the designer,
1.e., modes, use-cases, tasks.

The configuration compiler consists of two cooperating
tools (Fig. 10): the RTT communication handling tool and
the RTT pre-run-time scheduler.

The communication handling tool automatically inserts
necessary system tasks, communication buffers, and mu-
tual exclusion relationships to make 1t possible for the pre-
run-time schedulers to find a schedule. Many pre-run-time
schedulers only supports communication between tasks

High-level Design Tool

Y v

Configuration Architecture
specification specification

Communication
handling tool

Configuration |
Compiler I

Pre run-time
scheduler

Schedules for each
mode, node, and
configuration data

FI1G. 10. The configuration compiler. A high-level graphical tool is
used to produce the specifications for the compiler.

76 ERIKSSON ET AL.

that have a precedence relationship [20, 16]. These sched-
ulers cannot handle communication between task running
with different period times, a desired property men-
tioned earher.

In this section, we show how communication between
tasks residing in different precedence graphs can be sup-
ported by using mutual exclusion relationships.

6.5.2. Architecture and Configuration Specification. To
be able to transform an application to a resource structure,
an architecture specification must be provided:

* The number of nodes 1n the system.

* The time between two consecutive points where the
kernel may

—explicitly start the execution of a task;
—preempt a task;
—check if a task meets its deadline.

* The length in time of a bus slot. A message that is
sent in one bus slot 1s available for the receiver 1n the next
bus slot.

* The number of hard real-time frames that can be allo-
cated to a bus slot by the scheduler.

* The accuracy of the clock synchronization.

The configuration specification includes synchronization
and communication requirements for each mode of the
application. This specification is generated from the pro-
gramming tool which the user uses when designing an
application. The structure of the configuration specification
is very similar to the structure of an application; i.e., it
includes modes, use-cases and tasks.

6.5.3. Communication Handling Tool. To support the
communication requirements, system tasks are automati-
cally installed by the communication handling tool. For
example, assume two tasks communicating with each other
such that the producer is a predecessor to the consumer
in the precedence graph. Assume furthermore that the
tasks are allocated on the same node. The communication
tools will then install a system task as a successor to the
producer and as a predecessor to the consumer. The role
of the system task 1s to copy the contents from the pro-
ducer’s out-port to the consumer’s in-port.

The reason for installing system tasks 1s that the commu-
nication will be transparent from the sender’s point of
view. S0, for example, if we change the architecture to
support redundant buses, we only have to change the sys-
tem tasks.

Communication between two tasks can be performed
between any two tasks that are defined in

* The same precedence chain and where the consumer
1s a successor to the producer. Multicast and broadcast are
defined as a finite number of producer and consumer rela-
tions.

* The same precedence graph which have no prece-
dence relationship.

* Different precedence graphs.

* The same precedence chain and where communication
from a successor to a predecessor 1s required. This feature
1s useful to have when, for example, a control algorithm
1s implemented.

The communication can, of course, take part between
tasks that are running on either the same node or on differ-
ent nodes. It can either be buffered or unbuffered. When
tasks share resources which do not allow concurrent access,
the tasks must be defined to be mutually exclusive.

When a transformation 1s made, some system tasks are
installed. A system task 1s from the run-time system’s per-
spective a task which has special privileges. For example,
a send task has the right to read from a task’s out-ports.
To be able to handle the communication requirements we
have three types of system tasks:

* sendTask; this task reads a message from a predefined
out-port of a task. Thereafter 1t passes the information to
the communication subsystem. The information on where
to read the information 1s passed to the system task as
an argument when 1t is activated. The feature of passing
information to the task is supported by the real-time kernel
in use, Rubus [1].

* receiveTask; this task reads a message from the com-
munication subsystem and stores the information at a pre-
defined memory location. Normally, the memory location
1s a task’s in-port.

* localSendTask; this task reads a message from a prede-
fined out-port of a task and thereafter writes the message
to a pre-defined memory location.

The translations for all the different cases can not be de-
scribed here due to the limited space. Rather, we will
describe the translation algorithm for two different cases.
First, we will describe how the communication 1s handled
by two tasks that are defined in the same precedence graph.
Second, we will describe the communication between tasks
that runs with different period times on different nodes.
In the second example, we will also see how the mutual
exclusion relationship can be used. The complete descrip-
tion for the different cases can be found in [7].

ExamrLE 6.1. The producer and consumer is defined
in the same precedence chain and the consumer is a succes-
sor to the producer in the precedence graph. The producer
and consumer are allocated on different nodes (Fig. 11).

a) Specified precedence graph:
o—»@—-@—
P(1) C(2)
b) Transformed precedence graph:

receiveTask(2)

O——>® - —@—

P(1) sendTask(1)

-
C(2)

a®

FIG. 11. The transformation of a precedence graph when the pro-
ducer (P) and the consumer (C) are allocated on different nodes. The
notation C(n) means that the task C is allocated on node n.

AN OVERVIEW OF REALTIMETALK 77

Transformation:

* Install a communication buffer to hold the temporary
message on the producer’s node.

* Install a send task as a predecessor to the consumer.
The send task copies the contents from the producers out-
port to the installed communication butter.

» Install a communication buffer on the receiver’s node.
This buffer holds the contents of the received message.

* Install a receive task on the consumer’s node as a
successor to the abovementioned send task, and as a prede-
cessor to the consumer. The role of the receive task 1s to
copy the received message from the communication bufter
to the consumer’s in-port.

ExaMPLE 6.2. The producer and consumer are defined
in different precedence graphs and allocated on ditferent
nodes. The period time of the producer 1s less than the
period time of the consumer (Fig. 12).

Transformation:

 Install a variable to hold a temporary message on the
producer’s node.

* Install a local send task as a successor to the producer.
The send task copies the contents from the producer’s out-
port to the installed variable.

e Install a communication bufter to hold the temporary
message on the producer’s node.

e Install a communication buffer to hold the message
which was received by the consumer’s node.

* Install a receive task on the consumer’s node as a
predecessor to the consumer. This task copies the message
from the installed communication buffer to the consumer’s
in-port.

* Install a send task on the producer’s node as a prede-
cessor to the installed receive task. This task copies the
message from the temporary variable to the installed com-
munication buffer.

a) Specified precedence graphs:

Period time = X P(1)

O—>@——>O
Pericd time > X :
O J a®

C(2)
b) Transformed precedence graphs:

Period time = X P(l) IGCHISEHdTaSk(l)

O ~—>9 a®,
T
Period time > X L(—)‘l
O— € »@—>@—O
sendtask({1) receiveTask(2) C(2)

FIG. 12. The transformation when the producer’s period time 1s less
than the consumer’s. Dotted lines indicate dataflow.

* Define a mutual exclusion relationship between the
local send task and the send task.

The motivation to install a send task as a predecessor to
the consumer at the producer’s node is to minimize the
traffic on the network. In Fig. 12, the box T'(1) depicts the
temporary variable 7T allocated on node 1. The reason for
defining a mutual exclusion relation between the local send
tasks and the send task is to get a consistent message.

6.5.4. The RTT Scheduler. The scheduler tries to find
a feasible schedule for the specification, using a heuristic
search. The scheduler supports precedence and mutual
exclusion relationships, but requires that tasks are preallo-
cated to nodes. The mutual exclusion relationship 1s a bi-
nary relationship between two tasks (or two groups of
tasks) which means that if one task 1s executing, the other
task is blocked until the executing task terminates. This
relationship is used when, for example, two tasks defined
in different precedence graphs wants to access the same
resource. A resource could for example be a shared object
that is used to transfer information between two tasks. The
scheduler can be configured to support either preemption
or nonpreemption. The scheduler also supports bus alloca-
tion. The bus i1s scheduled by treating the bus as a processor
and each frame i1s mapped to a specific type of task,
named sendTask.

7. RELATED WORK

7.1. Introduction

This section compares RealTimeTalk with the following
system architectures: DROL [23] (an object-oriented pro-
gramming language for distributed real-time systems);
MARS [16] (maintainable real-time systems); CHAOS [3]
(concurrent hierarchical adaptable object system); ARTS
[24] (a distributed real-time operating system) and
DEDOS [12, 11] (dependable distributed operating
system).

MARS and CHAOS describe a complete system archi-
tecture covering all steps from analysis to a running system.
DROL includes an object model and programming model
for distributed real-time systems. ARTS and DEDOS are
focused on distributed operating system architectures. It
should also be mentioned that no hardware details are
covered and that all these systems, with the exception of
MARS, are based on object-orientation;i.e., their language
is based on C++ or an extension thereof. The MARS
language, Modula/R, is a real-time extension of Modula/2.

7.2. DROL

In DROL, the synchronization and program logic 1s sep-
arated by meta-level objects. In RTT, this separation 1s
done with precedence graphs. The advantages ot our sepa-
ration policy has been discussed betore.

DROL can be used for applications with soft real-time

78 ERIKSSON ET AL.

requirements while RTT is geared toward applications with
both hard and soft real-time requirements.

The assumption that the system has no global time seems
a bit strange and it is not clear how a server at another
node can detect if a deadline will be missed or not. Addi-
tionally, it seems difficult to get an upper bound on delays
throughout the system.

The time polymorphic invocation 1s a novel approach
and it will be interesting to see if it is usable in real applica-
tions.

7.3. MARS

The major differences between MARS and RTT 1s the
model of execution; in MARS, it is based on the process
model, while RTT uses an object-oriented one. Further-
more, the MARS system supports only hard real-time,
while RTT supports both soft and hard real-time.

There are, however, many similarities between the
MARS system and RTT. For example, both systems sepa-
rates the communication and synchronization from the
code. In MARS, the precedence relationship between tasks
are stronger because the precedence relationship includes
both synchronization and communication. In RTT, these
concepts have been separated to support communication
between tasks residing in different precedence graphs and
to allow implementation of feedback controllers in a
straightforward way.

It should also be noted, that within the MARS system,
redundant hardware aspects, dependability analysis, and
testing is covered. These areas have not yet been covered

in RTT.

74. CHAOS

A fundamental difference between CHAOQOS and RTT
is CHAOS’ support of adaptability. Adaptability means
that the system can be changed during run-time to adapt
to changes in the environment not known 1n advance. In
comparison, an RTT system can only adapt to changes
that are known 1n advance.

In the next generation of dynamic and adaptable sys-
tems, some parts of the system must be designed by preallo-
cating all needed resources as in RTT. Furthermore, high-
level features, as for instance planning, must be supported
by an adaptable system. It seems that the dynamic behavior
introduced in CHAOS will make 1t very hard to guarantee
hard real-time requirements.

7.5. ARTS

The ARTS system is an event driven system, while RTT
is a time driven system. The ARTS system can be seen as
an architecture for testing different scheduling theories.
The real-time object model i1s an interesting concept be-
cause it supports temporal encapsulation. Another ditfer-
ence, compared to RTT, is that the synchronization in

ARTS is embedded in the code and thus inheritance anom-
alies could occur [2].

7.6. DEDOS

The DEDOS system is very interesting due to the sup-
port of both hard and soft real-time requirements. One
of the big differences between DEDOS and RTT is the
supported language; DEDOS i1s based on an extension of
C+ + called DEAL, while RTT is based on Smalltalk.

The communication style between the soft and hard
real-time parts in DEDOS have also been used in RTT.
However, in RTT, there is also support for sending events
from the hard real-time part to soft real-time part. RTT
also seems to be more focused on the analysis and design
phase of a system. The explicit use of precedence graphs
will hopefully make the system more easy to understand
and maintain. In DEDOS, the precedence graphs are con-
structed from the program by a tool. When integrating the
functions and synchronization within the code, inheritance
anomalies could occur [2].

It should also be mentioned that DEDOS also immcludes
support for fault-tolerance in both software and hardware.

8. CONCLUSION

We have presented the RealTimeTalk (RTT) system
and how it supports important real-time areas such as syn-
chronization, communication, distribution, timing require-
ments, modelling and programming. The RTT system basi-
cally consists of the following parts:

* Programming in the large.
—A model for designing both hard and soft real-
time functionality.
—Interaction support between hard and soft real-
time parts.
—Support for object-orientation as a mean for design-
ing applications.
* A real-time language.
—A language based on Smalltalk with support for
prototyping of applications.
—Real-time constructs to guarantee a predictable
temporal behavior of an application.
* A run-time environment.
——A distributed hardware architecture.
—An operating system with support for both hard
and soft real-time tasks.
—A communication system with support for both
hard and soft real-time messages.
 Tools for mapping a specification to a resource
structure.
— A compiler, with future support for type inference.
—A MAXTC tool, for calculating the maximum exe-
cution time for tasks.
—A configuration compiler, which synthesize the
communication and synchronization requirements of an
application.

AN OVERVIEW OF REALTIMETALK

The RTT approach has also been compared to other

important real-time systems in the research community.

ACKNOWLEDGMENTS

This work was supported by the National Board for Industrial and
Technical Development (Project 93-3180), the Vistmanlands County Ad-
ministrative Board, and fundings from Mailardalen University and the
Rovyal Institute of Technology. We gratefully acknowledge help from
Arcticus Systems AB on the run-time system.

10.

11.

12.

13.

14,

15.

16.

REFERENCES

. Arcticus Systems AB, Rubus OS Real-Time Operating System Tuto-

rial. Technical report, Arcticus Systems AB Datavidgen 9A, 175 62
Jarfalla, Sweden, 1996.

L. Bergmans and M. Aksit, Composing synchronisation and real-
time constraints. The Object-Oriented Real-Time Workshop, in con-
junction with the 7th IEEE Symposium on Parallel and Distributed
Processing, San Antonio, Texas, Oct. 1995, pp. 108-115.

T. E. Bihari and P. Gopinath, Object-oriented real-time systems:
Concepts and examples. IEEE Computer (Dec. 1992).

E. Brorsson, C. Eriksson, and J. Gustafsson, RealTimeTalk: An ob-
ject-oriented language for hard real-time systems. Intl Workshop on
Real-Time Programming WRTP’92, IFAC/IFIP, Bruges, Belgium,
June 1992.

. C.Eriksson, M. Gustafsson, and H. Thane, A communication protocol

for soft and hard real-time systems. Euromicro Workshop on Real-
Time 96, 1996.

C. Eriksson, R. Hassel, K. Sandstrom, and L. Myrehed, A graphical
design environment for the development of object-oriented hard real-
time systems. TOOLS Europe 95, Paris, Mar. 1995.

C. Eriksson and K. Sandstrom, The translation of an application
configuration to a runnable application by utilising a pre run-time
scheduler. Technical Report CUS95RR02, Dept. of Computer Engi-

neering, University of Milardalen, Sweden, 199).

A. Goldberg and D. Robson, Smalltalk-80: The Language. Addison-
Wesley, Reading, MA, 1989.

J. Gustafsson, Calculation of execution times in object-oriented real-
time software—A study focused on RealTimeTalk. Licentiate the-
s1s, 1994,

J. Gustafsson, K. Post, J. Miki-Turja, and E. Brorsson, Benefits of

type inference for an object-oriented real-time language. Object-Ori-
ented Real-Time Workshop, San Antonio, Texas, Oct. 1995,

D. K. Hammer, P. Lemmens, E. Luit, O. S. van Roosmalen, P. van
der Stok. and J. Verhoosel, DEDOS: A distributed environment for
object-oriented real-time systems. IEEE J. Parallel Distrib. Technol
2, 4 (1994).

D. K. Hammer and O. S. van Roosmalen, An object-oriented model
for the construction of dependable distributed systems. 2nd Interna-
tional Workshop on Object Orientation in Operating Systems, 1992.

R. Hassel and K. Sandstrom, Garbage collection 1 realtid. Master’s
thesis, Univ. of Milardalen, Sweden, 1993. [In Swedish]

S. Huang and D. Chen, Efficient algorithms for method dispatch in
object-oriented programming systems. J. Object-Oriented Comput.
(Sept. 1992).

H. Kopetz, Event-triggered versus time-triggered real-time systems.
Lecture Notes in Computer Science, Vol. 563, pp. 87-101. Springer-
Verlag, Berlin/New York, 1991.

H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch.
Senft, and R. Zainlinger, Distributed fault-tolerant real-time systems:
The MARS approach. I[EEE Micro 9, 1 (Feb. 1989), 25-40.

17. N. Leveson, Safeware, System Safety and Computers. A
Wesley, Reading, MA, 1995.

18. A. K. Mok, Fundamental design problems of distributed syst
the hard-real-time environment. Ph.D. thesis, MIT, 1983.

19. P. Thijssen, P.D.V. van der Stok, and L. Somers, Formal ver:
and simulation of a real-time concurrency protocol. Inter.
Workshop on Responsive Computer Systems, 1992,

20. K. Ramamritham, Allocation and scheduling of complex |
tasks. 10th Int. Conf. on Distributed Computing Systems, 1
108-115.

21. J. A. Stancovic, Misconceptions about real-time computing
Computer 21 (Oct. 1988), 10-19.

22. J. A. Stankovic, The Spring architecture. Euromicro Work.
Real-Time, June 1990, pp. 104-113.

23. K. Takashio and M. Tokoro, An object-oriented language for
uted real-time systems. OOPSLA "92, Vancouver, 1992, pp. 1

24. H. Tokuda and C. W. Mercer, ARTS: A distributed real-time
Oper. Systems Rev. 23, 3 (1989).

25. M. Térngren, Modelling and design of distributed real-time
applications. Ph.D. thesis, Dept. of Machine Design, Royal .
of Technology, Stockholm, Sweden, 1995.

CHRISTER ERIKSSON received a B.Sc. in mathematics frc
sala University in 1988 and a licentiate degree from the Royal .
of Technology, Stockholm, Sweden in 1994. He worked for ABB 4
tion AB from 1984 until 1988, primarily on the run-time system {
Master. He is currently a lecturer at Mélardalen University. His -
interests are design of real-time systems, object-oriented progr:
distributed architectures for real-time systems, and real-time o
systems.

JUKKA MAKI-TURJA received a B.Sc. in computer scien
Milardalen University in 1993. Since 1994, he has been a Ph.D.
at the University. His primary research interests are in langue
compilers, especially program analysis. He is currently involve
RealTimeTalk project, working with the RTT language and its ty
ence systemni.

KJELL POST received an M.Sc. in computer engineeri
Linkopings Universitet in 1987 and a Ph.D. in computer science |
University of California, Santa Cruz in 1994. He is currently a pro
Mailardalen University. His research interests are implemental
analysis issues for programming languages.

MIKAEL GUSTAFSSON received an M.Sc. 1n electrical eng
from the Royal Institute of Technology, Stockholm, Sweden
Between 1984 and 1991, he was employed by ABB Automatio
a designer of man-machine communication software used n t
Master process control product family. Since 1991, he has be
Milardalen University, where he is currently a lecturer. His
research interests covers computer architectures, operating syste
data communication protocols for hard real-time systems.

JAN GUSTAFSSON is a senior lecturer at Mélardalen Ul
where he currently is the Head of the Department of Comput
neering. He received a B.Sc. in mathematics, astronomy, and ¢
science in 1974 from Uppsala University and a licentiate degre
chine elements, computer controlled mechanics in 1994 from tt
Institute of Technology in Stockholm. From 1975 to 1985, he +
ABB (then ASEA), working with development of real-time 1
control systems. Since 1985, he has been with Milardalen Ur
where his main topics are programming methodology, object-
programming, and real-time systems.

KRISTIAN SANDSTROM received a B.Sc. in engineering fi
lardalen University, Viisterds, in 1995. Since then, he has been
in the Department of Computer Engineering at Milardalen U

&0 ERIKSSON ET AL.

as a research engineer. His primary research interests are software models
for real-time systems, design of real-time systems, object-oriented pro-
gramming, and scheduling in real-time systems.

ELLUS BRORSSON receive a M.Sc. in mechanical engineering from
the Royal Institute of Technology, Stockholm, Sweden in 1989. Since

Received November 1, 1995; revised February 1, 1996; accepted April
25, 1996

then, he has been with the Mechatronics group in the Department
Machine Design at the Royal Institute of Technology, where he has be
working as a teaching fellow and attending the Ph.D program. Recent
he became a lecturer in the Computer Engineering Department at L
larna University. His primary research interest is real-time systems a

languages for real-time.

