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Abstract

Cloud computing is an emerging technology in the field of computing that provides access to a wide range of
shared resources. The rapid growth of cloud computing has led to establishing numerous data centers around the
world. As data centers consume huge amounts of power, enhancing their power efficiency has become a major
challenge in cloud computing. This paper surveys previous studies and researches that aimed to improve power
efficiency of virtualized data centers. This survey is a valuable guide for researchers in the field of power efficiency
in virtualized data centers following the cloud computing model.
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Introduction
Cloud computing is an emerging model that delivers ser-
vices over the Internet by providing access to a wide
range of shared computational resources hosted in data
centers. The growth of cloud computing model has led
to establishing numerous data centers around the world
that consume huge amounts of power. Therefore, elim-
inating any waste of power in cloud data centers is very
necessary. This can be achieved by observing how power
is delivered to the data centers’ resources, and how these
resources are utilized to serve users’ jobs. Hence, the
need for improving the existing resource allocation and
management algorithms in cloud data centers, as well as
proposing new ones, is highly required. This paper pre-
sents previous research works that aimed to improve
power efficiency of virtualized data centers. It is a valu-
able guide for understanding the state of the art of how
to manage the power consumed in such environments.
Additionally, it leads to suggesting and adding new pro-
posals for further enhancement.
This paper is structured as follows. The motivations

and objectives of the paper are stated in the next section.
Power and Energy section defines the terminology used
throughout the paper. Power Consumption section ex-
plains the sources of power consumption. The section
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titled Power Efficiency Metrics lists and describes some
power efficiency metrics. State of the Art in Power Man-
agement section describes the power management tech-
niques in details. Finally, conclusions are drawn in the
last section.
Motivations and objectives
Recently, numerous data centers were established around
the world. These data centers consume large amount of
energy.
In general, the consumed energy amount is resulting

in:

1) Operating costs,
2) Carbon dioxide (CO2) emissions.

This amount was estimated to be between 1.1 and
1.5 % of the total electricity use in 2010. It has increased
by 56 % from 2005, and it will continue to increase in a
rapid manner unless advanced energy efficient resource
management algorithms are proposed [1, 2]. Beside, CO2

emissions of the Information and Communication Tech-
nology (ICT) industry were accounted to be 2 % of the
total global emissions. However, the CO2 emissions
affect the global warming [1].
Addressing the problem of high energy use is a signifi-

cant issue due to its financial and environmental effects.
So, it is important to improve the resource allocation al-
gorithms and proposing new management approaches
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Fig. 1 Power consumption types
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which aim to enhance the power efficiency in the data
centers.
This survey is a guideline for researchers in designing

the energy aware algorithms that execute the users’ jobs
in cloud data centers.

Power and energy
In order to fully understand the relation between power
and energy, and to comprehend their management tech-
niques, some related terminology must be identified. So,
fundamental terms are defined in this survey [3]:
Charge: charge is the quantity of electricity responsible

for electric phenomena, expressed in Coulomb (C).
Current: current is the flow of electric charge transferred

by a circuit per time unit, measured in Amperes (A):

a ¼ Δc
Δt

ð1Þ

Voltage: voltage is the work or energy required to
move an electric charge, measured in Volt (V):

v ¼ Δw
Δc

ð2Þ

Power: power is the rate at which the work is per-
formed by the system, measured in Watt (W):

P ¼ Δw
Δt

ð3Þ

Accordingly, power is calculated by multiplying the
element current by element voltage:

P ¼ Δw
Δt

¼ Δw
Δc

� Δc
Δt

¼ v � a ð4Þ

Energy: energy is the total amount of work performed
over a period of time, measured in Watt-hour (Wh):

E ¼ P � Δt ð5Þ
From (4) and (5), it is obvious that both power and en-

ergy are defined in terms of the work that a system per-
forms. It is very important to note the difference between
power and energy. The reduction of power consumption
does not necessarily lead to a reduction of the amount of
energy consumed. For example, lowering the CPU per-
formance by decreasing its voltage and/or frequency can
result in a decrease in power consumption. In this case,
completing the program execution may take a longer
time. However, the consumed energy may not be de-
creased even by decreasing power consumption [1].
As discussed in detail in the following sections, power

consumption can be reduced by applying Static Power
Management (SPM), Dynamic Power Management
(DPM), or even by applying both solutions to the system.
Power consumption
Generally, the power that any system consumes consists
of two main parts [1, 4]: Static Power Consumption
(SPC) and Dynamic Power Consumption, as shown in
Fig. 1. A description of these two terms is presented in
the following two sections.

Static Power Consumption (SPC)
Static power consumption is the power consumed by
the system components. SPC is caused by leakage
currents of the active circuits in the powered system.
It is independent of clock rates and does not rely on
usage scenarios. Instead, it is fundamentally specified
by the type of transistors and the technology applied
to the processor of the system.
The reduction of SPC requires reducing the leakage

current, and this can be done in three ways [5]:

1) Reducing the supplied voltage. The renowned
technique that has been applied to system
components (e.g. CPUs, cache memories) is called
Supply Voltage Reduction (SVR),

2) Reducing the size of the circuit in the system, either
by designing circuits with fewer transistors, or by
cutting the power supplies to idle components to
reduce the effective transistor count,

3) Cooling the system by applying cooling
technologies. Cooling technologies can reduce the
leakage power by allowing circuits to work faster
as electricity encounters less resistance at lower
temperatures. Also, they eliminate some negative
effects of high temperatures, specifically the



Table 1 A summary of power consumption types

Consumption
Type

SPC DPC

Results from: The system components The usage of the system
components

Source: The type of transistors and
processor technology.

The short circuit current
and switched capacitance.

Reason: The leakage currents that
are present in any active
circuit of the powered
system.

The circuit activity, Usage
scenario, Clock rates, and
I/O activity

Reduction: Reducing the supplied
voltage, Reducing the size
of the circuits, Cooling the
computer system.

Reducing the physical
capacitance, Reducing the
switching activity,
Reducing the clock
frequency, Reducing the
supply voltage.
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degradation of a chip’s reliability and life
expectancy.

The above three mentioned methods require improv-
ing the low-level system design, which lead to power re-
duction in SPC.

Dynamic Power Consumption (DPC)
Power consumption in this type results from the usage
of system components. DPC is resulted by circuit activ-
ity. Mainly, DPC depends on clock rates, I/O activity,
and the usage scenario. There are two sources of DPC;
Switched Capacitance (SCDPC) and Short Circuit
Current (SCCDPC) [5].

1) SCDPC: SCDPC is the major source of DPC. In this
case, the consumed power is a byproduct of
charging and discharging capacitors in circuits.

2) SCCDPC: SCCDPC is the minor source of DPC.
The consumed power here results from the current
switching between transistors. It approximately
causes about 10–15 % of the total power
consumption. However, this amount cannot be
reduced without violating the system.

So, DPC can be defined as [1, 5–7]:

PDynamic ¼ aCV 2f ð6Þ

where α represents the switching activity in the sys-
tem, C is the physical capacitance, V is the voltage,
and f is the CPU clock frequency of the system. The
values of α and C are determined in the system de-
sign stage.
The DPC can be reduced by four methods [5]:

1) Reducing the switching activity.
2) Reducing the physical capacitance which depends

on low level design parameters such as transistors
sizes.

3) Reducing the supply voltage.
4) Reducing the clock frequency.

The core idea of the widely used DPM technique,
called Dynamic Voltage and Frequency Scaling (DVFS),
relies on a combined reduction of the supply voltage
and/or clock frequency in a dynamical manner. This
technique scales down the CPU performance by decreas-
ing the voltage and frequency of the CPU when it is not
fully utilized [8]. Most CPUs in modern systems (e.g.
mobile, laptop, desktop, and server systems) support
DVFS techniques.
Table 1 is a summary of the power consumption types

[1, 4-5].
Power efficiency metrics
Different metrics are used to measure the power effi-
ciency in data centers. Cloud providers have to use one
or more metrics to estimate consumed power and over-
all performance. The researchers assessed the impact of
applying their proposed strategies and algorithms in
power management of data centers. These metrics can
be classified as [9]:

1) Resource usage metrics: refer to the utilization of
a certain resource (e.g. CPU, memory, bandwidth,
storage capacity, etc.), concerning a component
(node) or a set of components (node-group,
rack).

2) Heat-aware metrics: use temperature as the main
indicator for the behavior of a specific data center.

3) Energy-based metrics: refer to the amount of
energy consumption during a certain period of
time.

4) Impact metrics: that are used to assess the
performance of data center in environmental and
economic terms.

The following are examples of some metrics with their
definitions:

i. Total Energy Consumption: Total energy
consumption refers to the total power consumed by
the data center over a certain period of time. It was
measured in (W/h) and defined as:

TEDC ¼
Z t2

t1
TPDC tð Þdt ð7Þ

while TEDC is the total energy consumed over a

certain period of time, TPDC is the total power
consumed at a specific time.



Fig. 2 Power management types

Table 2 A summary of power management types

Management
Type

SPM DPM

Level: At the design of logic,
circuits, and
architecture levels

At the knowledge of the
resource usage and
application workloads

Reduction: It is permanent It is temporary

Implementation: At the hardware level At the hardware and software
levels
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ii. Power Usage Effectiveness (PUE): Power Usage
Effectiveness refers to the ratio of the total power
consumption in the data center and the power used
by the IT equipment. PUE becomes the industry-
preferred metric for measuring infrastructure energy
efficiency for data centers, it is measured as [10]:

PUEDC ¼ TEDC

TEIT
ð8Þ

iii. Carbon Emission (CE): carbon emission gives an
indication about the amount of CO2 emission in the
data center. It uses Carbon Emissions Factor (CEF)
and converts the total energy consumed to CO2

emissions metric. CEF is a function of the
participation of the different energy sources (e.g.
carbon, gas, wind, solar, biomass, nuclear, etc.)
which affect total electricity generation and the
efficiency of conversion. Thus, this factor is different
from one data center to another. CE is measured in
kg CO2 and can be defined as:

CE ¼ TEDC � CEF ð9Þ
iv. Electricity Cost (EC): electricity cost converts the total

energy consumed in the data center to a cost value by
multiplying it by the price of electricity that differs
from one data center to another. EC is measured in
currencies (e.g. $, €, and £) and can defined as:

EC ¼ TEDC � Price ð10Þ

State of the art in power management
Many research works have been done in the area of
power management. Power management techniques can
be divided into two main parts as shown in Fig. 2.
These techniques are discussed in more details in the

next two sections.
Table 2 is a summary of the power management types

[5, 11-14].

Static Power Management (SPM)
SPM determines the efficiency of the usage of the hard-
ware components (e.g. CPU, memory, disk storage, net-
work devices, and power supplies). The reduction in SPM
is permanent. It includes all the optimization methods
that are applied at the design of the logic, circuits, and
architecture levels of the system [5].
Logic level optimization attempts to optimize the

power of the switching activity of combinational and
sequential circuits.
Circuit level optimization reduces the power of the

switching activity of individual logic gates and transis-
tors. This is usually done by utilizing a sophisticated gate
design and transistor sizing.
Architecture level optimization is achieved by mapping
a high-level problem specification to a low-level design.
Low-power components are designed to save power and

keep the system at an acceptable level of performance.
Many studies and SPM techniques have been pro-

posed. The authors in [11] defined a novel system archi-
tecture, called fast array of wimpy nodes (FAWN).
FAWN designed for low-power data intensive comput-
ing. In the proposed architecture, low-power CPUs com-
bined with small amounts of local flash storage. The
authors stated that such combination provides an effi-
cient parallel data access in the system. In [12], the
authors evaluated FAWN experimentally on various
workloads. The results showed that the nodes with low-
power CPUs are more efficient than conventional high-
performance CPUs from the energy perspective. In [13],
the authors defined a novel architecture, called Gordon, of
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low-power data-centric applications. Gordon can reduce
the power consumption by utilizing low-power processors
and flash memory. More details about the SPM tech-
niques are available in [14].
In addition to the optimization in hardware-level sys-

tem design, it is very important to carefully consider the
implementation of programs that are to be executed on
the system. Inaccurate software design can adversely
affect the performance and may lead to power loss, even
with perfectly designed hardware. Therefore, the code
generation, the instructions used in the code, and the
order of these instructions must be carefully selected, as
they affect performance as well as power consumption.
Generally, it is impossible to analyze power consump-

tion caused by any software at the hardware level [1, 15,
16]. However, the power management solution applied
at the hardware level design is not within the scope of
this survey.

Dynamic Power Management (DPM)
DPM optimizes energy consumption by utilizing a con-
venient knowledge of:

1) The available resources in the system and their
usage.

2) The application workloads to optimize energy
consumption.

Techniques in DPM allow a dynamic adjustment of
the system's power states based on the system's current
behavior. Additionally, they assume that the prediction
of the workloads requirements is possible passable,
which enables the adaptation of the future system behav-
ior leading to perform the appropriate actions according
to these requirements.
Thus, the reduction in DPM is temporary in the system,

and it would last for an indefinite period of time according
to the available resources and current workloads.
These techniques are distinguished by the level they

are applied: hardware level or software level, as further
explained in the next two sections.

Hardware Level Solutions
DPM techniques that are applied at the hardware level
aim at reconfiguring the systems dynamically by design-
ing methodologies to provide the requested services with
a minimum number of active components or a mini-
mum load on such components. The DPM techniques at
a hardware level can selectively turn off the idle system
components or reduce the performance of the partially
unexploited ones. Also, it is possible to switch some
components, such as the CPU, between active and idle
modes to save energy [17, 18].
DPM at a hardware level can be divided into:
1) Dynamic System Component Deactivation (DSCD):
which is subdivided into:

2) Dynamic System Performance Scaling (DSPS):
DSPS techniques adjust the performance of the
components dynamically according to the system
state and the resources demands. These can be
applied to system components to support the
dynamic adjustment of their performance in a
proportional manner with the power
consumption. In addition to a complete
deactivation approach, some components in the
system (e.g. CPU) support increase or decrease in
clock frequency along with adjustments of the
supply voltage when the resource is not fully
utilized. An example of DSPS is the DVFS
technique [19] that is widely adopted in modern
systems.
i. Partial Dynamic System Component Deactivation

(PDSCD): techniques are based on the idea of
clock gating of parts of an electronic component.

ii. Complete Dynamic System Component
Deactivation (CDSCD): techniques are based on
the idea of complete disabling for the
components during periods of inactivity.

Software Level Solutions
A hardware level solution is very sophisticated. It is diffi-
cult to implement any modification or reconfiguration at
this level. Therefore, shifting to the software level solu-
tions is highly demanded.
There have been some proposed solutions for man-

aging power consumption, such as Advanced Power
Management (APM) performed by Basic Input/Output
System (BIOS), firmware based, and platform-specific
power management systems. But these solutions are
hardware and platform-dependent.
The first attempt to address a software solution was

made in 1996, when the first version of the Advanced
Configuration and Power Interface (ACPI) was pro-
posed. ACPI was a platform-independent interface. It
improved the existing power and configuration stan-
dards for hardware devices and allowed operating sys-
tems to control power management and efficiently
configured the hardware platform they ran on. ACPI
has been widely accepted as a standard that brings
DPM into the operating system (OS) control of all as-
pects of power management and device configuration
[20, 21].
ACPI defines a number of power states. These states

can be enabled in the system at runtime. Also, it gives
software developers the ability to leverage the flexibility
in adjusting the system’s power states [1].
The states which are relevant in the context of DPM

are:
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i. C-states: C-states are the CPU power states C0, C1,
C2, and C3. They denote the Operating State, Halt,
Stop-Clock, and Sleep Mode respectively. Recently,
deep power down states (e.g. C4, C5, C6, and C7)
were introduced to define different levels of lower
activity.

ii. P-states: P-states are the power-performance states
when the processor is operating. P-states can be one
of several states, and each state represents a specific
combination setting of DVFS values. They are
implementation-dependent, but P0 is always the
highest performance one. If there is implementation-
specific limit of n, then P1 to Pn are successively
lower performance states.

As mentioned earlier, data centers consume huge
amounts of electrical power. Although DVFS technique
can provide an efficient direction in managing power
consumption of the CPU, more power reduction is re-
quired. The server consumes over 50 % of its actual peak
power and up to 70 % in some cases, even when it is
completely idle [22]. Switching PMs off is the only pos-
sible way to eliminate their SPC. These circumstances
led to propose some solutions which are suit the data
centers environment. Those solutions aimed to consoli-
date the workload to fewer PMs and deactivating the idle
ones. The consolidation is a complicated problem. The
performance of the applications can be affected from un-
necessary consolidation. Therefore Quality of Service
(QoS) requirements restricts consolidation. In general,
QoS are defined in terms of Service Level Agreement
(SLA) between cloud users (or their brokers) and cloud
providers.
Many studies and approaches have been dedicated to

enhance the power-efficiency in virtualized data centers.
Management techniques that take into account the

concept of virtualized systems were first explored by
Nathuji and Schwan in 2007 [23]. The authors examined
ways of integrating power management mechanisms into
the virtualized data center environments and presented
a power management model for such environments,
called VirtualPower, which controlled the power con-
sumption of underlying platforms. A new technique,
called “soft resource scaling”, was applied in the model
of that study. This technique emulated hardware scaling
by providing less time for the VM to utilize a resource.
It is a very efficient technique when hardware scaling is
not supported. VirtualPower provided a set of virtualized
power states, called VirtualPower Management (VPM)
states, which were taken into account in all management
actions. VirtualPower was able to modify model-specific
registers (MSRs) in the PM and change the power states.
Thus, an abstraction of (VPM) channels could be cre-
ated. The channels then delivered guest VM power
management actions as a set of ‘soft’ states that provided
a virtual layer for application-aware management.
In the same year, Nathuji, Isci, and Gorbatov [24] pio-

neered in exploiting platform heterogeneity to improve
the power management, while taking into account the
emergence of the virtualization concept. They defined an
intelligent workload allocation system that efficiently
mapped workloads to the best fitted resources in hetero-
geneous platforms. The model consisted of three compo-
nents: platform/workload descriptors, power/performance
predictor, and allocator. The workload descriptor con-
sisted of modules labeled by attributes, and a list of values
for these attributes was provided. The platform descriptor
consisted of individual modules representing system com-
ponents that were used to convey information according
to the PM's power management and hardware capabilities.
The power/performance predictor used these descriptors
to estimate the performance and power savings in the data
center. Finally, the allocator used these predictions to map
workloads to a specific type of platform. The allocator of
the study evaluated the power efficiency tradeoffs of
assigning a workload to many kinds of platforms, while
each kind of platforms was associated with a cost metric.
Jobs of the workloads were queued according to the values
of the cost metric. Then, a mapping process was per-
formed based on this queue with priority given to the job
with the highest cost.
In [25], the authors investigated several previous solu-

tions to the problem of high power consumption in data
centers. Until then, there had not been any correspond-
ing work on coordinating all these solutions. Hence, the
authors characterized the existing solutions and classi-
fied them into hardware/software and local/global levels.
Then, the authors proposed their solution which was a

model of multiple feedback controllers at various levels.
The solution implemented in a distributed manner. Be-
ing the core level of that model, the Efficiency Controller
(EC) was implemented in the system that served as a
“container”. This container was used as a reference to
the controller depending on the desired part of its cap-
acity. There was also a sensor to compare the value with
the actual utilization of the container. By managing the
actual resource utilization in the system and the refer-
ence value of the container, EC dynamically “resized the
container”. EC also monitored previous/former resource
utilization and adjusted a processor P-state accordingly
in order to match estimated demand. In this case, the
consumed power was adapted to the total resource de-
mand of the workloads in real time fashion. The second
controller in that model, called Server Manager (SM),
implemented the server level power capping. It mea-
sured the consumed power in the server and compared it
with the power budget. The third controller, called Enclos-
ure Manager (EM), implemented enclosure-level power
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capping. It monitored the total power consumption of the
code enclosure and compared it with an enclosure-level
power budget periodically. The forth controller, which im-
plemented the group-level power capping, was called
Group Manager (GM). It worked at either the rack level
or the data center level. GM function is to compare the
actual power consumption of the group with the group
power budget. The final controller in the model was the
Virtual Machine Controller (VMC). The function of VMC
is to collect the resource utilizations of the individual
VMs in the system and performed a new VM-to-Servers
mapping to minimize the total power based on the
utilization information. That model provided a feedback
control loop to federate multiple power management so-
lutions at different levels. However, the proposed architec-
ture needs an extension to include coordination with
other solutions in the performance domains.
The authors investigated the design and implementa-

tion of a power-aware application placement model
under heterogeneous virtualized server environment in
[26]. When matching the application containers to the
PMs, the placement model considered the power and
migration costs.
The authors divided this work into two parts: The first

part presented methods to implement the placement of
cost-aware application on real servers, while the second
one presented an application placement framework,
called (pMapper), to solve the problem of high power
consumption and reduce this amount as much as pos-
sible. The architecture of that framework consisted of
three managers (Performance Manager, Power Manager,
and Migration Manager) and an Arbitrator. Performance
Manager monitored the behavior of the workload and
rearranged the VMs while taking into account both the
current resource requirements and SLAs. It consulted a
knowledge base for an application performance in
addition to the cost of its VM migration from one ma-
chine to another. Power Manager monitored the current
power consumption and adjusted hardware power states.
It used the power model in the knowledge base to deter-
mine the placement, and thus could estimate the power
for every placement scenario and suggest the server
throttling. Migration Manager estimated the cost of
moving from a given placement to a new one and is-
sues instructions for VM live migration to consolidate
the overall VMs of the application. Arbitrator, which
was the central intelligence part in pMapper, received
the estimations from the three managers, configured
a space for the VM placements, computed the best
VMs sizes, and implemented an algorithm to choose
the best VM placement. Once the Arbitrator decided
on the new configuration, the three managers exe-
cuted the following operations respectively: VM siz-
ing, server throttling and live migration.
The authors in [27] implemented a dynamic resource
provisioning of VMs for web applications in virtualized
server environments. In this study, the provisioning
problem was defined as sequential optimization under
uncertainty. The authors proposed a framework called
Limited Look-ahead Control (LLC) to solve this prob-
lem. The framework monitored the process of VMs pro-
visioning and calculated the switching costs resulting
from this provisioning, then it encoded the correspond-
ing cost value in the optimization problem. In order to
reduce power consumption and maintain the SLA that
was defined in term of the processing rate for each ap-
plication, the work proposed an online controller to de-
cide the number of PMs and VMs to be allocated to
each job in the workload. In this case, it is possible to
turn the PMs on and off upon the controller’s decision
which may vary according to workload types.
In [28], the authors designed a trace-based workload

placement controller to optimize the VMs allocation
based on historical information, while maintaining spe-
cific QoS requirements. Then, they proactively mapped
the workload periodically to the PMs. The work traded
off between the consumed power of the required re-
sources and the number of migrations that may occur
after VMs placement. This approach was based on the
fact that the historic traces of any application offer a
model for describing the future application behavior.
Traces were used to decide how to consolidate the VMs
workloads to the PMs. The workload trace-based ap-
proach was considered a proactive controller that caused
the VMs of the workloads migration among PMs in
order to consolidate the system periodically. In this
work, the optimization algorithm was enhanced by redu-
cing the total number of migrations that occurred dur-
ing successive control intervals. In addition to the
proactive controller, the study also introduced a reactive
migration controller. It detected the overload/under-load
conditions in the PM and initiated the VMs migration. It
dynamically added and removed PMs to maintain a bal-
ance of supply and demand resources by turning PMs
on and off. The controller’s act was based on the real-
time data collected from the resource usage. However,
during the workload placement approach, this work did
not consider the effect of cache sharing on power
efficiency.
The authors in [29] proposed novel techniques for

placement and power consolidation of VMs in the vir-
tualized data centers. Most hypervisors (e.g. Xen and
VMware) provide administrators that are able to adjust
the minimum number of the required resources (min)
and the maximum number of allowable resources for a
VM (max). Values such as (min) and (max) are very use-
ful in ensuring the intelligent distribution of resources
between different workloads. Hence, this study leverages
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min, max and the shares parameters supported in
virtualization technologies. The proposed techniques
provided a tradeoff mechanism for power and perform-
ance when running heterogeneous workloads in data
centers. They involved sorting physical machines (PMs)
in an increasing order of the power cost per unit of cap-
acity, wherein the objective function included power
consumption and the utilization resulted from the exe-
cution of a specific VM, which was a priori assumption.
The placement strategy then is to place all the VMs at
their maximum resource requirements in a first-fit man-
ner. An amount of 10 % of the capacity is leaved as a
spare to handle any future growth of the resource usage.
The authors in [30] proposed a solution that facilitated

coordination between the virtualization concept and the
loosely couple platforms in data centers. This solution,
known as vManage, provided an execution policy for
better virtualization management. The design of vMana-
ger, which consisted of registry and proxy mechanisms,
had several features such as a unified monitoring over
platform and virtualization domains, the coordinators
are able to interface with existing management control-
lers, easy portable across different hardware platforms
with an independent implementation, and flexibility and
extensibility in allowing new management solutions to
participate in a “plug-and-play” manner. vManager is
based on the concept of estimating “stability.” In other
words, it is based on the probability that a proposed VM
reallocation will stay efficient for an appropriate future
period of time. The predictions of future resource de-
mands are computed using a probability function. This
study provided an example of stability management and
coordinated VM placement in the data center called the
stabilizer, which is a plug-in’ component. The VM place-
ment policy considers the platform requirements as well
as the requirements of the VM including CPU, memory,
and network constraints. However, the proposed solu-
tion needs to be extended for larger scale data centers.
In [31], the authors tackled the problem of optimizing

resource allocation for multitier applications in consoli-
dated server environments. This was achieved by explor-
ing a runtime cost-sensitive adaptation engine that
weighed the potential benefits of automatic reconfigur-
ation and their corresponding costs. The study suggested
an offline cost model for each application to decide
when and how to reconfigure the VMs. The model esti-
mated the cost according to the changes in the utility for
the application, which was a function of the response time
for that application. This model improved the application
response time and ameliorated the period over which the
system remained functional in the new VM configuration.
In order to optimize resource allocation in data

centers, the authors in [32] presented a multi-tiered
resource scheduling scheme in that environment. This
scheme, named RAINBOW, automatically provided
on-demand capacities via resources flowing that indi-
cated which resources were released by some VMs to
be allocated to other VMs. The resource flowing was
modeled using optimization theory and was resolved
by the Simplex Method. Based on this model, the au-
thors proposed a scheduling algorithm to optimize re-
source allocation and to ensure performance of some
critical services, leading to reduction in consumed
power. The proposed scheduling algorithm had three
levels. The first was Application-Level scheduler:
which dispatched requests across the VMs by apply-
ing VM migration; the second was Local-Level sched-
uler: which allocated resources of a PM to VMs
according to their priorities; and the third was
Global-level scheduler: which controlled the flow of
resources among the applications.
In order to meet the QoS in this study, the resources

were allocated to the applications according to the appli-
cation priorities. In case of limited resources, the re-
sources of low priority applications would be allocated
to critical ones. The authors stated that performance of
critical applications was guaranteed using this scenario.
However, there is a need to analyze the effect and over-
head caused by each tier of the proposed multi-tiered re-
source scheduling.
In [33], Stillwell, Schanzenbach, Vivien, and Casanova

demonstrated the utilization of resource allocation man-
agement systems in virtualization technology for sharing
parallel computing resources among competing jobs.
The model focused on HPC applications. The authors
defined the resource allocation problem considering a
number of underlying assumptions and determined the
complexity of each one. They also proposed a more gen-
eral approach by eliminating some assumptions. The
problem of resource allocation was formally defined as
Mixed Integer Programming (MIP) model. The design
of this model was based on two assumptions: first, the
application required only one VM instance, and second,
the computational power and memory requirements
needed by the application were static. However, estimat-
ing accurate job resource requirements for jobs is a weak
point in this work.
In [34], the authors investigated the problem of high

power consumption in cloud data centers. They pro-
posed an energy-aware resource provisioning that
mapped the resources to the applications while meet-
ing the SLA between the provider and the users. The
study proposed visions, challenges, principles, and an
architectural framework for energy-efficient model in
virtualized data center environments. It focused on
providing resources dynamically and how allocation algo-
rithms could be improved via managing consumed energy
among various data center infrastructures. The proposed
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framework consisted of three levels; User level: at this
level, users or their brokers submit their service requests
to the cloud. Allocator level: which acts as an interface be-
tween users and the cloud infrastructure. Data center
level: represents the VMs and PMs.
The VM allocation process was divided into two parts.

The first part was receiving new requests for VM provi-
sioning. All VMs were sorted in decreasing order ac-
cording to their current utilization, and then allocated
each VM to a PM that expanded the minimum amount
of increment in the consumed energy. The second part
was optimizing the current allocation of VMs, which
was further divided into two steps: selecting the VMs to
be migrated and placing the selected VMs on new PMs.
In that study, the selection of the migrating VMs was

heuristically achieved. Four heuristics were used; the first
one was based upon setting an upper utilization thresh-
old for PMs. The VMs were allocated to a PM when the
placement process kept the total CPU utilization below
that threshold. The other three heuristics were based on
the idea of setting two thresholds for utilization, upper
and lower. The total CPU utilization by all VMs had to
remain between the setting two thresholds.
The four heuristics relied on three policies: the first

was migrating the least number of VMs to minimize mi-
gration overhead. The second was migrating VMs that
had the lowest usage of CPU to maintain utilization.
The third policy was selecting the necessary number of
VMs based on a uniformly distributed random variable.
In [35], the authors analyzed the cost of energy in vir-

tualized data center environments. The virtualization
concept inspired the authors to propose an energy-
efficient framework dedicated to cloud architecture, and
they called it Green Open Cloud (GOC). GOC was pro-
posed for the next generation of Cloud data centers that
support extra facilities, such as advanced reservation.
GOC has the ability to aggregate the workload by nego-
tiating with users. In this case, the idle PMs can be
switched off for a longer period of time without the need
for further negotiations with the users.
In [36], the paper presented the design and implemen-

tation of two VM management solutions: Distributed
Resource Scheduler (DRS) and Distributed Power Man-
agement (DPM).
DRS managed the allocation of physical resources

to a set of VMs by mapping these VMs to PMs. Add-
itionally; it performed intelligent load balancing in
order to enhance the performance. DRS provided a
“what-if” mode to handle any changes in workloads
or PM configuration. DRS solution performed four
key resource-management operations: Computes the
amount of resources requested by a VM based on the
reservation, periodically balanced load across PMs by
performing VM migrations, saved power by benefiting
from DPM, and performed initial placement of VMs
onto PMs.
DPM surpassed DRS in its ability to reduce the con-

sumed power by consolidating VMs onto fewer number
of PMs. DPM is able to power a PM off when the CPU
and memory resources have low utilization. At the same
time, it is able to power a PM on appropriately when de-
mand on resources increases, or in order to maintain
the constraints.
The researchers in [37] investigated the resource frag-

ments which resulted from the imbalanced use of the
PM resources. They mentioned that the problem of
VMs to PMs placement should be solved according to a
resource-balanced strategy. To characterize the resource
usage of each PM, the authors proposed a multi-
dimensional space model, while each dimension of the
space corresponds to one dimensional resource. The
whole space is partitioned into three domains, each with
particular features, to elucidate the appropriateness of
resource utilization for each VM placement process. The
proposed model can be used as a guide in designing the
resource-balanced VM placement algorithms. Based on
this model, the researchers proposed their own energy
efficient VM placement algorithm and called it (EAGLE).
EAGLE was based on a tradeoff at each time-slot between
balancing multi-dimensional resource utilization and re-
ducing the total number of PMs during VMs placement.
EAGLE checks the next resource usage state for each
available PM and chooses the most suitable one. A new
PM could be turned on to avoid any excessive resource
fragments. This would decrease excessive resource frag-
ments and further reduce the number of PMs on the long
run. This algorithm resulted in a better utilization of re-
sources, introduced less resource fragments and saved
energy.
The trade-off between energy efficiency and SLA con-

straints were analyzed in [38]. The authors studied the
users’ utilization patterns and introduced a dynamic re-
source provisioning mechanism to over-allocate capacity
in cloud data centers. The core concept of the proposed
mechanism was to employ the resource utilization pat-
terns of each user to eliminate any potential waste in
utilization that might result from overestimation of re-
sources requests. The over-allocate algorithm in this
mechanism considered two different parameters: the
predicted resource utilization based on historical data,
and dynamic occupation to determine the maximum
number of resources that could be allocated over the ac-
tual PM capacity. The PM capacity was calculated based
on the cost-benefit analysis of deploying a specific in-
stance into a particular server. It also allowed consolidat-
ing additional VMs in the same PM. A compensation
mechanism to adjust resource allocation in cases of
underestimation was also discussed in this study.
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In his thesis [1], Anton Beloglazov proposed novel al-
gorithms for distributed dynamic consolidation of VMs
in virtualized cloud data centers. The thesis reduced
amount of the total energy consumption under different
workload requirements. Energy consumption was re-
duced by dynamically switching PMs on and off to meet
the current resource demand. The author suggested a
data center model and applied a VM placement algo-
rithm that worked in this model. The data center model
consisted of numerous PMs and had two types of man-
agers to coordinate the VM management. The local
manager residing on each PM as a module of the virtual
machine management (VMM) and the global manager
that resided as a master for a specific number of PMs.
The decision to place the VM on a specific PM was
made individually according to the communication be-
tween the local manager on the PM and the global
managers.
The thesis also presented a novel approach that opti-

mally solved the problem of host overload detection by
maximizing mean inter-migration time. This approach
was based on a Markov chain model and worked for any
fixed workload and a given state configuration.
The authors in [39] investigated the VM provision-

ing as an essential technique in cloud computing. VM
provisioning refers to providing VMs upon users’ re-
quests. The work proposed a power-aware VM provi-
sioning model for both hard and soft real-time
services. A real-time service (such as financial ana-
lysis, distributed databases, and image processing) was
presented as real-time VM requests. It included many
tasks, and each task was defined by some parameters.
Therefore, when users made their requests to the
cloud computing environment, appropriate VMs were
allocated for executing those requests. Brokers were
responsible for finding VMs for the users’ requests.
The requirements of the requested VMs were called
Real-Time Virtual Machine (RT-VM) in this paper.
Each RT-VM Vi included three parameters: utilization
ui, Million Instruction Per Second (MIPS) mi , and
deadline di. Such requirements imply that the real-
time service is guaranteed if the allocated VM keeps
providing a processing capacity of ui ×mi amount by
the specified deadline di. After defining their power
model, the authors proposed a power aware frame-
work including the following five steps: Requesting a
VM, generating the RT-VM from real-time applica-
tions, requesting a real-time VM, mapping the phys-
ical processors, and finally, executing the real-time
applications.
This study suggested the variable wi as the remaining

service time. The initial value of wi is defined by ui ×
mi × (di - ts), at the submission time ts. If Vi is provided
with qi MIPS rate for the period tp, then, the value wi is
decreased by qi × tp. In such case, Vi finishes its service
when wi becomes zero.
When a datacenter receives a RT-VM request from

users or their brokers, it returns the price of providing
the RT-VM service if it can provide real-time VMs for
that request. Then, the users or brokers can select the
VM with the minimum price among available VMs pro-
vided by the datacenters. Thus, the provisioning policy
in this work was selecting the processing element with
the minimum price to maximize user/broker profits. If
the process element is able to schedule Vi, it estimates
provisioning energy and cost. As the provisioning policy
aimed to provide a lower price for the user, the proposed
algorithm in this paper discovered the minimum-price
processor. For the same price, less energy is preferable
because it produces higher profit. Finally, a VM is
mapped if Vi is schedulable on the datacenter. However,
in this study, the soft real-time VM provisioning did not
considered.
The authors in [40] stated the previous real time

job scheduling algorithms were running in uncertain
cloud environments. Those algorithms assumed that
cloud computing environments were deterministic,
and there were statistical pre-computed schedule de-
cisions to be followed during the schedule execution.
So this study introduced the interval number theory
to describe the uncertainty of the cloud computing
environment and the impact of uncertainty on the
scheduling quality in a cloud data center. Accordingly,
a novel scheduling algorithm, called Proactive and Re-
active Scheduling (PRS), was presented. It dynamically
exploited proactive and reactive scheduling methods
for scheduling real-time jobs.
The proactive scheduling was used to build baseline

schedules depending on redundancy, where a protective
time cushion between jobs’ finish time lower bounds
and their deadlines was added to guarantee job dead-
lines. The reactive scheduling was triggered to generate
proactive baseline schedules in order to account for vari-
ous disruptions during the course of executions.
Some strategies were presented to scale the system’s

computing resources up and down according to work-
load to improve resource utilization and to reduce en-
ergy consumption for the cloud data center. These
strategies were proposed to treat the following five
events as disruptions:

1) a new job arrives;
2) the system becomes overloaded;
3) a new urgent job arrives or the waiting jobs become

urgent;
4) a VM finishes a job;
5) some VMs’ idle time exceeds the pre-established

threshold.
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However, estimating job execution time is main factor
in the scheduling model proposed in this work. So, im-
proving the precision of estimated job execution time
may lead to better scheduling decisions.
The authors in [41] presented two scheduling algo-

rithms for precedence-constrained parallel VMs in a vir-
tualized data center. The proposed algorithms used a
new insertion policy to insert VMs among previously
scheduled ones. The new policy inserted VMs into
already switched on low utilized PMs to increase their
utilization, thus reducing the total number of switched
on PMs that served the VMs, and therefore enhancing
energy efficiency.
The first algorithm, called Virtualized Homogeneous

Earliest Start Time (VHEST), was an extension of the
well-known HEFT algorithm. HEFT scheduled VMs ac-
cording to the non-overlapping insertion policy. VHEST
was modified to use overlapping insertion policy to
minimize the makespan.
It had two major stages: VM selection and PM Selec-

tion. At the first stage, VMs were sorted according to
their priority, and then the VM with the highest priority
was selected to be placed on PM. At the second stage,
the selected VM was placed in the best PM that mini-
mized the VM’s start time by applying an overlapping-
insertion policy.
The second algorithm, called Energy-Aware Scheduling

Algorithm (EASA), solved a multi-objective problem. It
improved the utilization of PMs and minimized the make-
span. EASA also had two major stages: Local optimization
and Global Optimization. The local optimization stage im-
proved the utilization of the PMs. The global optimization
stage reduced the number of switched on PMs by switch-
ing off the underutilized ones. However, the work did not
support heterogeneous data centers.
An energy-aware resource provisioning framework for

cloud data centers was proposed in [42]. The main func-
tions of the proposed framework can be summarized
into three points:

1) Predicting the upcoming number of the (VM)
requests that would arrive to the cloud data
center in a certain future period, associated with
the requirements for each VM. The prediction
approach relied upon monitoring past workload
variations during a period of time. It combines
machine learning clustering and stochastic theory
to predict the number of the upcoming VM
requests along with required resources associated
with each request.

2) Estimating the number of PMs needed in the data
center that will serve the upcoming users’ requests.
This estimation is based on the predictions of such
requests.
3) Turning the unneeded PMs in the data center to the
sleep mode by applying intelligent power
management decisions in order to reduce the
consumed energy.

In addition to the previous studies, various optimization
methods such as, Ant Colony Optimization (ACO), Par-
ticle Swarm Optimization (PSO), and Genetic Algorithms
(GA)) were used to improve resource utilization and re-
duce energy consumption in the virtualized data centers.
In [43], the researchers presented a framework to

manage the VM placement in an IaaS environment.
They defined an initial VM placement strategy and
proposed multi-objective optimization algorithm based
on (ACO) to determine the initial VMs placement.
The proposed algorithm was an optimization method.
It was able to achieve an optimal solution through ef-
ficient convergence by the constantly updated phero-
mone. The optimal solution was selected from a set
of solutions using the exclusion method.
In [44], the authors designed a distributed ACO-based

algorithm for solving the VM consolidation problem
(VMCP). The algorithm iterated over a finite number of
cycle. At each cycle, an item was selected for each ant to
be packed in a bin. If the bin did not have enough space
according to defined constraints, another bin was se-
lected. At the end of each cycle, the best solution found
was saved and pheromone evaporation was triggered to
achieve the VM consolidation.
In [45], the authors proposed a multi-objective ACO

to solve the problem of VM placement. The formu-
lated multi-objective VM placement problem repre-
sented a permutation of VM assignment. The goal
was to efficiently obtain a set of non-dominated solu-
tions that reduced total power consumption resulting
from resource wastage. This proposed model has two
phases; Initialization phase: where the parameters and
the pheromone trails were initialized. Iterative phase:
in this phase, all VM requests were sent to the ants
to start assigning VMs to the selected PMs. This was
done by using a pseudo-random-proportional rule,
which described the way each ant selected a particu-
lar next one VM pack into its current PM. Ants
moved towards the most promising VMs based on in-
formation about the current pheromone concentration
during the movement. Local and global pheromones
were frequently updated. A local pheromone update
was performed once an artificial ant built a move-
ment. Then, a global update was performed with each
solution of the current Pareto set after all ants had
constructed their solutions.
The thesis in [46] focused on the IaaS cloud service

model. This model offered compute infrastructure to
cloud consumers by provisioning VMs on-demand. The
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thesis investigated the challenge of designing, imple-
menting, and evaluating an energy-efficient IaaS cloud
management system for private clouds. The author pro-
posed four contributions:

1) IaaS Cloud Management system (Snooze): It was
based on a self-configuring hierarchical architecture
and performed VM management for distributed
large-scale virtualized data centers by splitting the
data center into independently managed groups of
PMs and VMs. Snooze provided a holistic energy-
efficient VM management solution. Particularly, it
integrated a power management mechanism which
automatically detected idle PMs, transitioned them
into a power-saving state, and woke them up on
demand.

2) VM Placement via ACO: an ACO-based VM place-
ment algorithm was used to solve the problem of
considering only a single resource to evaluate the
PM load and VM resource demands while ignoring
the other resources. In addition, ACO appealed to
the VM placement problem due to its polynomial
time worst-case complexity and convenience of
parallelization.

3) VM Consolidation via Ant Colony Optimization:
VM consolidation algorithms are required in order
to enable continuous consolidation of already placed
VMs on fewer PMs. This consolidation helped avoid
resource fragmentation and further increases the
data center resource utilization. Therefore, the
researcher proposed a consolidation algorithm based
on ACO to achieve both scalability and high data
center utilization by applying VM consolidation.

4) Fully decentralized consolidation system based on an
unstructured peer-to-peer network.

In [47], the authors proposed a VM consolidation
scheme that focused on balanced resource utilization of
servers across different computing resources with the
goal of minimizing power consumption and resource
wastage. This study presented an adaptation and integra-
tion of the ACO met heuristic with a balanced usage of
computing resources. The degree of imbalance in the
current resource utilization of a PM was captured and
represented as a multi-dimensional server resource
utilization, and then resources utilization are balanced
using vector algebra.
The study in [48] proposed a PSO-based algorithm,

which could successfully reduce the energy cost and the
time for searching feasible solutions. The authors pre-
sented an environment of heterogeneous multiproces-
sors, which is similar to the environment of cloud data
center, and they proposed a job to the processor assign-
ment model that would work in that environment. During
assigning jobs to the processors, the velocity of the parti-
cles (that represented the jobs) determined their positions.
This velocity will affect the overall convergence of the
PSO algorithm and the efficiency of the algorithm’s global
searching. The particle’s position updates present the next
position of the job. As the particle position updates, it in-
dicated that it needed to adjust the number of processors
that fit its requirements. Then, the proposed algorithm
optimized the most feasible solution to in order to reduce
energy consumption by assigning jobs to new processors
or by exchanging their corresponding processors. How-
ever, there are many constraint conditions in the work, re-
ducing them will make the work more convenient for
solving the problem of real-time job scheduling.
In [49], the authors proposed a genetic algorithm for

power-aware (GAPA) scheduling to find the optimal so-
lution for the problem of VM allocation. In the proposed
algorithm, a tree structure was used to encode chromo-
some of an individual job. The fitness function of GA
calculated the evaluation value of each chromosome.
The tree had three levels; Level 1: Consisted of a root
node that did not have a significant meaning, Level 2:
Consisted of a collection of nodes that represented a set
of PMs, Level 3: Consisted of a collection of nodes that
represented a set of virtual machines. Using this model,
each instance of tree structure showed the VM to PM
Allocation. However, the computational time of the
GAPA is high, also deadline of jobs did not considered
in the work.
In [50], the authors proposed a distributed parallel

genetic algorithm (DPGA) of placement strategy for
VMs deployment on cloud platform. The proposed algo-
rithm had two stages: It executed the genetic algorithm
in parallel and in a distributed manner on several se-
lected PMs in the first stage to get several solutions.
Then, it continued to execute the genetic algorithm of
the second stage with solutions obtained from the first
stage as the initial population. A relatively optimal job to
VM mapping was obtained as a result of the second
stage. The fitness value of GA chosen here was perform-
ance per watt.
In [51], the authors introduced a power efficient re-

source allocation algorithm for jobs in cloud computing
data centers. The developed approach was also based on
GA. Resource allocation was performed to optimize job
completion time and data center power consumption.
It considered a static scheduling of independent jobs
on homogeneous single-core resources. The proposed
algorithm, called Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II), was applied to cloud environ-
ments to explore space solutions and efficiently
search for the optimal solution. The data center was
modeled as three-tier fat-tree layers architecture: access,
aggregation, and core layers. The access layer provided



Table 3 Studies of power efficiency improvement in virtualized data centers

Ref. Virtualized Data
Center

Environment All
Workload Types

Power Aware
Scheduling

Resources Approach Scheduling Technology/Method

Single Multiple Homo Hetero Consider
Cost

Consider
Time

CPU Memory Storage Network. Cooling
System

SW HW Offline Online

[23] √ √ √ √ √ √ √ DVFS, SW-based Model, VM Consolidation, On/Off Switching.

[24] √ √ √ √ √ √ √ DVFS, SW-based Model, VM Consolidation, On/Off Switching.

[25] √ √ √ √ √ √ √ √ DVFS, SW-based Model, VM Consolidation, On/Off Switching.

[26] √ √ √ √ √ √ √ √ DVFS, SW-based Model, VM Consolidation, On/Off Switching.

[27] √ √ √ √ √ √ √ WS-based Model, On/Off Switching.

[28] √ √ √ √ √ √ √ VM Consolidation, On/Off Switching.

[29] √ √ √ √ √ √ DVFS, SW-based Model.

[30] √ √ √ √ √ √ √ √ √ SW-based Model, VM Consolidation

[31] √ √ √ √ √ √ √ √ √ SW-based Model

[32] √ √ √ √ √ √ √ SW-based Model

[33] √ √ √ √ √ SW-based Model, VM Consolidation

[34] √ √ √ √ √ √ √ √ DVFS, SW-based Model.

[35] √ √ √ √ √ √ SW-based Model, On/Off Switching.

[36] √ √ √ √ √ √ √ SW-based Model, VM Consolidation, On/Off Switching.

[37] √ √ √ √ √ √ SW-based Model, VM Consolidation.

[38] √ √ √ √ √ √ SW-based Model, VM Consolidation, On/Off Switching.

[1] √ √ √ √ √ √ √ DVFS, SW-based Model, VM Consolidation, On/Off Switching.

[39] √ √ √ √ √ √ √ √ DVFS, SW-based Model.

[40] √ √ √ √ √ √ √ √ SW-based Model.

[41] √ √ √ √ √ √ √ SW-based Model, VM Consolidation.

[42] √ √ √ √ √ √ √ SW-based Model.

[43] √ √ √ √ √ √ √ √ ACO

[44] √ √ √ √ √ √ √ √ √ ACO, VM Consolidation

[45] √ √ √ √ √ √ √ ACO, VM Consolidation

[46] √ √ √ √ √ √ ACO, VM Consolidation, On/Off Switching.

[47] √ √ √ √ √ √ √ √ ACO, VM Consolidation, On/Off Switching.

[48] √ √ √ √ √ √ √ PSO

[49] √ √ √ √ √ √ GA

[50] √ √ √ √ √ √ √ GA

[51] √ √ √ √ √ √ √ √ GA
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connection to servers which were arranged into racks with
each rack being served by a single Top of the rack switch.
Two fitness functions were used here: task completion
time and data center power consumption. When the exe-
cution of the algorithm was completed and optimal Pareto
solutions were obtained, it became possible to fine tune
the trade-off between power consumption and execution
time. Then, by using a procedure called ranking, the
population of solutions were sorted heuristically into dif-
ferent non-domination levels. This procedure was re-
peated for every solution creating different groups or non-
domination; an integer value called rank was assigned to
each non-domination level. When applying selection and
sorting, NSGA-II was able to deal with constraints. The
solution with less constraint violation had a better rank.
Table 3 [1, 23-51] summarizes all the studies and

techniques illustrated in this survey. The table compares
the studies from many perspectives. It shows if the
studies are applied in single or multiple data centers,
Homogenous or heterogeneous environment, Specific or
all types of jobs are used, if any other parameters are
considered with enhancing the energy efficiency, the in-
volved resources in enhancing the energy efficiency, HW
or SW approach is applied with the study, the schedul-
ing is online or offline, and finally, what is the used tech-
nology in each study?

Conclusion
By studying the research works mentioned in this survey
paper, it can be concluded that:

1) In order to improve energy efficiency in DPM
software solutions, the only two issues that have to
be investigated in cloud data centers are: jobs or
tasks to VMs allocation, and VMs to PMs
placement.

2) The utilization of the PMs is a very important factor
to be considered in proposing the resource
management solutions. The PMs utilizations affect
the energy efficiency in the cloud data centers. In
general, the best energy efficiency occurs at optimal
utilization and it drops as utilization decreases.

3) VM migrations usually occur when there is over/
under utilization of the resources. Extra VM
migration may affect the whole system performance,
leading to further power consumption. So, VM
management (e.g VM allocation and VM placement)
is a very critical process that should be optimally
done to avoid unnecessary VM migration.

4) Before proposing the energy aware scheduling
algorithms, it is important to understand the
capacity of the resources and the types of services
provided by the cloud data centers to avoid any
waste of the available resources capacities.
5) When proposing the energy aware algorithms,
identifying the behaviors of cloud users’ requests and
common workloads patterns would improve the
system performance, and therefore, enhance energy
efficiency in the cloud data centers.

6) Although modern advances in hardware
technologies have reduced energy consumption to
some extent, many software approaches have been
proposed for further improvements. The two
directions must be considered as complementary
approaches, and applying both of them (hardware
and software) in any proposed model leads to more
reduction in energy consumption in the cloud data
centers.

We do believe that this survey is a good guideline for
researchers in designing the energy aware algorithms
that execute the users’ jobs in cloud data centers.
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