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Abstract—
Passive testing continuously observes the system or system

execution logs without any interference or instrumentation to test
diverse combinations of functions, resulting in a more thorough
evaluation over time. However, reaching a working solution to
passive testing is not without challenges. While there have been
some efforts to extract information from system requirements
to create passive test cases, to our knowledge, no such efforts
are mature enough to be applied in a real, industrial safety-
critical context. Our passive testing approach uses the Timed -
Easy Approach to Requirements Syntax (T-EARS) specification
language and its accompanying tool-chain. This study reports
challenges and solutions to introducing system-level passive
testing for a vehicular safety-critical system through industrial
data analysis, including 116 safety-related requirements. Our
results show that passive testing using the T-EARS language and
its tool-chain can be used for system-level testing in an industrial
setting for 64% of the studied requirements. We identified several
sources of false positive results and show how to tune test cases
to reduce such false positives systematically. Finally, we show the
requirement coverage achieved by a manual test session and that
passive testing using T-EARS can find a set of injected faults that
are considered hard to find with other test techniques.

Index Terms—software testing; passive testing; test case au-
tomation;

I. INTRODUCTION

Faulty software in safety-critical systems may cause eco-
nomic damage and, in some cases, loss of human lives. At the
same time, the embedded software in today’s safety-critical
systems grows more and more complex, which emphasizes
the importance of efficient and realistic testing. One of the
methods suggested allowing that is passive testing [1]. The
idea is to only observe the system under test, which allows,
e.g., parallel execution of test cases. In this approach, test
cases only monitor the system under test (SUT) and do not
alter the state of the system at all. Instead, requirements
are verified whenever appropriate, independently of the input
stimuli sequence. Cavalli et al. [2] give a more general in-depth
review of passive testing methods in various domains related
to networked systems. Notably, most of these approaches
target non-critical software testing, such as protocol testing
in, e.g., web applications and telecom applications. Such
applications often involve sending and receiving complex data.
While the current passive testing methods have a long history
for these applications, the safety-critical software we address
does not require handling comprehensive data transfers and
complex state machines. Further, due to the complexity of
the data and the state machines in the original domain, the

specification languages used are very complex and often based
on mathematical expressions. While it has been successfully
used, e.g., in protocol testing [2], its practical use has been
limited by its reliance on formal specifications [3], [4], [5].

Although there have been attempts to introduce passive
testing to the system-level testing of safety-critical systems [6],
[7], [8], [9], these studies are all somewhat limited when it
comes to industrial validation and adoption. Also, these do
not consider practical issues and tooling requirements.

Gustafsson et al. [7] previously introduced the concept of
independent guarded assertions (G/As) as an approach for
passive testing at the system level in the vehicular software
domain. As in contemporary passive testing, the idea is to
treat the input stimuli (that affects the system state) and
the test oracle (i.e., that decides if a system requirement is
fulfilled or not) independently. An G/A describes such an
oracle by defining a guard, G, that decides whether one
or more assertions, A, are expected to be fulfilled or not.
Given some of the recent advances, the question we ask is
if passive testing now mature enough for industrial adoption?
Using our previous work with the T-EARS (Timed - Easy
Approach to Requirements Syntax) Specification language and
the SAGA (Situation Aware Guarded Assertions) tool-chain
([10], [11]), this paper presents a new study of introducing
passive testing at the system level in an industrial safety-
related vehicular software system. The issues and benefits
encountered during practical deployment of passive testing are
of particular interest.

The main contributions of this paper are:
• An industrial case study of introducing passive testing

at the system level showing how this technique can be
adopted and deployed in the safety-critical domain,

• Experiences in using the T-EARS language with its
accompanying tool-set as a means of expressing concrete
passive test cases running at the system level,

• Challenges concerning industrial adoption maturity for
writing passive test cases, and

• A systematic process of tuning passive test cases con-
cerning false positive outcomes.

The rest of the paper is organized as follows. In Section II, we
describe the T-EARS language and its tool-chain for passive
testing. In Section III we outline the method used in this
industrial case study while in Section IV we report the results
before we outline the related work in Section V and conclude
this paper in Section VI.



II. BACKGROUND TO T-EARS AND ITS TOOL CHAIN

T-EARS, short for, Timed - Easy Approach to Requirements
Syntax [11] was introduced in 2017 as an easy to use specifi-
cation language for expressing passive test cases and has been
continuously improved since then. The basic structure of the
language and the goal of simplicity are inherited from EARS
(Easy Approach to Requirements Syntax) [12].

1 ’Bp-1*’ = while true shall I
2 ’Bp-2*’ = while I1 shall I2
3 ’Bp-3’ = while I1 shall I2 within t
4 ’Bp-4*’ = when P shall I
5 ’Bp-4’ = when P1 shall P2 within tw
6 ’Bp-6’ = when P shall I for tf within tw
7 ’Bp-7’ = when P shall I within tw for tf

Listing 1: T-EARS Boiler Plates (P = Events, I = Intervals,
and t, tw, tf denotes a time specification, e.g., 250ms

T-EARS relies on five cornerstones: Boilerplates, Data
Types, Expressions, Timing and Structural Elements. The boil-
erplates are shown in Listing 1 and describe different ways to
form a passive test case (G/A) in T-EARS. Their purpose is
to cover the most commonly occurring test case structures
rather than being canonical, e.g., BP-1 and BP-2 are indeed
special-cases of BP-3 if only considering the grammar, but
yet, representing different requirement constructs. The second
cornerstone is the Data Type. While EARS requirements are
expressed in natural language, corresponding G/As need to use
machine-readable entities. Examples of data types are Signal,
Intervals and Events. The data types allow the third cor-
nerstone, Expressions. Expressions combine data types using
Boolean and mathematical operators as well as functions such
as absolute values, bitmasking, and edge detection. The fourth
cornerstone is Timing and allows e.g. accepting a delayed
response, specifying required length of a response or filter
intervals based on length in time. Finally, the last cornerstone
Structural Elements allows hiding complex expressions and
map abstract signals to the implementation using keywords
like def, const, and alias.

Consider the following illustrative example of a safety-
critical requirement: “when doors are open, traction shall
be disabled” and its representation in T-EARS, shown in
Listing 2.

1 while Doors_are_open == true
2 shall
3 Traction_enabled == false within 300ms

Listing 2: Example Guarded Assertion

1 alias Traction_enabled =
2 MWT.xxx.yyy,EnTrMio
3 def intervals Doors_are_open =
4 MWT.xxxxx.yyyy.LtfDrCldLck == false and
5 MWT.xxxxx.yyyy.RgtDrCldLck == false

Listing 3: Signal Mapping Example

The guard expression at line 1 in Listing 2 decides whether
the doors are open or not (a sequence of time intervals where
the guard is true), and the assertion expression at line 3
would evaluate to true whenever traction is allowed. For each
guard interval, as long as the assertion expression evaluates

to true, the test is considered to be passed. Conversely, if
the assertion expression evaluates to false any time during
the guard interval, the test has failed during those intervals.
In a large (often distributed) system, signals are naturally
delayed. Fail intervals due to such delays can be masked
out using the within clause on line 3, allowing a delayed
response of max 300ms. Outside the guard intervals, the result
of the assertion expression is not evaluated. Using the above
example on a real log requires mapping the logical signals
(e.g., Doors_are_open) to real (technical) signals in the
log file. Such mapping is done in a definition file, as shown
in Listing 3. The first line shows a trivial alias that can
be defined at any number of levels. The second line shows
a logical signal that requires two technical signals from the
implementation.

The T-EARS tool-chain was first introduced in [11] as the
SAGA tool. It has, together with the language, been continu-
ously updated after an industrial evaluation in [13]. The tool’s
purpose is to support the entire process of writing, tuning, and
finally evaluating passive test cases. The key features are:

• Signal Exploration- The tool allows logs of different for-
mats to be loaded one by one or merged for comparison.
The logged signals can be viewed, zoomed, and panned
individually or in groups using a synchronized signal plot
view.

• Interactive Text Editing - A text editor supporting code
completion and abstract signal lookup is provided. A key
feature is the ability to evaluate the current expression on
a loaded log file interactively. Further, sub-expressions are
shown as signal plots beneath the editor.

• Interactive Signal Editing - The ability to create editable
abstract signals as well as editing existing signals is key
when debugging complex expressions. The evaluation
of the current expression is interactively updated when
editing signals. The evaluation result is then overlaid on
all plots.

• Batch Evaluation and Tuning - The evaluation core is
capable of evaluating sets of passive test cases over sets
of log files as well as creating overviews that allow each
evaluation (with the corresponding files) to be opened in
the SAGA Tool with a mouse click.

The process of using the language and the tool to translate
natural language requirements to G/As was outlined in [10],
having the main activities:

• Requirement analysis: Identify guard and assertion ex-
pressions using logical signals and values.

• Abstract G/A construction: Construct abstract G/As
through high-level (logical) signal and values represent-
ing states and events.

• Implementation analysis: Identify the design documenta-
tion to resolve abstract signals and values to concrete.

• Concretization: Refine constructed G/As and signal map-
ping to be evaluated on system logs.

• Tuning & validation: Examine and fine-tune the guard
and assertion expressions.



We follow these steps in this paper to show the encountered
challenges and the solutions used to make passive testing ap-
plicable in industrial-scale safety-critical system development.

III. METHOD

In this section, we outline the case study we performed in
an industrial setting, following [14].

A. Study Objective

The objective is to study the practical implications of
adopting passive testing using T-EARS and the accompanying
tool-chain to a safety grade industrial context. In particular, we
analyze the challenges encountered and our solutions to those
challenges when writing, executing, and analyzing passive
tests written in T-EARS and its accompanying tool-chain. The
study’s context is the system level testing in an embedded
vehicular software system.

B. Case organization & Unit of Analysis

The studied case organization is responsible for developing
TCMS (Train Control and Management System), an embedded
safety-critical system controlling and monitoring software and
hardware systems in a train. The different functions of a
TCMS system constitute safety-related parts (SAFE), con-
trolling safety-related functions, and non-safety-related parts
(REGULAR) for non-safe control and monitoring functions
written using the IEC 61131-3 programming language [15].
The focus of this study is on the safety-critical part (SAFE)
of TCMS. The engineering processes of TCMS software
development are performed according to safety standards and
regulations (e.g., EN 50128 [16]). Testing can be performed
on a real train or different configurations of a simulated
virtual train environment, illustrated in Figure 1. The “Train”
includes everything required to perform end-to-end testing
of the system under test (SUT). Typically either simulated
systems and train environment or a hardware (HIL-Rig) are
used. In either case, the automated and manual test cases
are not changed. Such tests can either be performed by a
tester (in manual testing) or implemented as automated test
scripts (performing the same sequence of actions and reaction
checks as the manual tester would have done). Both manual
and automated test cases can be used to log signals using
the same logger, which is vital for applying a passive testing
approach.

The unit of analysis is the set of safety-related requirements,
implementation and system-level tests for a Safety Integrity
Level 2 (SIL2)1 compliant TCMS application.

C. Safety Related Requirements

The system-level test cases are primarily written in natural
language for manual test execution. These must be carefully
written and reviewed to ensure that they cover all requirements
and combinations and are feasible for testing in the intended
test environment (i.e., the actual train). These tests take hours

1EN 50126 - Railway applications - The specification and demonstration
of Reliability, Availability, Maintainability and Safety (RAMS)

Train
(SIL / HIL- Rig)

TCMS

SAFEREGULAR

Logger

Testers
(Manual)

Test 
Framework

Automated
Test Cases

Fig. 1: Conceptual Overview, TCMS Testing Environment

of manual labor to complete. However, while these manual
tests provide valuable information about irregularities and
contradicting results that would be hard to observe by strictly
automated test cases, intermittent failures in unexpected situ-
ations are still difficult to catch with such a traditional testing
approach.

As long as any cab door is not closed and locked, start inhibit
shall be set.
INPUT:

- (MIO-S): Cab doors closed and locked in cab x = false
or invalid (both redundant signals from any cab in train)

OUTPUT:
- (IP) ‘Start inhibit reason’ includes ‘Cab doors not

closed’
- (internal): Start inhibit = true

Fig. 2: Example Requirement (slightly adjusted for readability)

The studied requirements are described in a semi-formal
format, as shown in Figure 2. Since there are two cab com-
partments for the train driver, A1 and A2, these are typically
referred to as Cab x, meaning that the requirement applies to
both Cab A1 and Cab A2. The example in Figure 2 starts
with a natural language description of the requirements. The
SAFE requirements have an additional semi-formal descrip-
tion, starting with an INPUT section, describing the condition
under which the requirement shall be fulfilled. The condition
includes a list of logical input signals, their respective values,
and logical relations. In this example, the means of communi-
cation (e.g., MIO-S or IP) is also given to provide a bridge to
the concrete system. This structure corresponds quite well to a
guard in the G/A concept. The OUTPUT section lists logical
signals and expected values (response) to the INPUT section’s
conditions. This part corresponds well to an assertion in the
G/A concept.

Safety-critical requirements typically summarize these logi-
cal INPUT and OUTPUT signals, so the same names are used
throughout an entire function or system.



D. Case Study Procedure

The study is carried out in three phases. In the first phase, a
gold standard is set, and a set of requirements are chosen. This
gold standard is used for evaluating a successful translation
of the requirements to passive tests (G/As) concerning false
positives. The absence of such false positives is the stopping
criterion for the second phase, the adoption of the translation
process [10] using T-EARS and its accompanying tool-chain.
Although the core of this paper refers to the implications of
adopting and deploying passive testing in practice, the third
phase is an evaluation that the results are applicable, the
produced G/As do not elicit false positives, and are capable
of finding faults that are hard to find using the existing tests.

1) Phase 1, Gold Standard and Requirements Selection:
The first phase, setting the gold standard, requires selecting a
set of requirements to translate and a set of existing test cases
testing those requirements. The following steps are followed:

• First, the TCMS system requirements are analyzed to
find automated test cases and, ultimately, a set of log
files, serving as the gold standard. The chosen test cases
shall stem from a system that is well tested, sufficiently
observable, and also offer reliable automated test scripts.
Automation is key here since it should be possible to re-
execute the test cases with any extra logging required by
the G/As.

• Second, a set of requirements is selected where the
selected automated test cases test each requirement, and
dependent signals are observable from the selected set of
test cases.

This phase’s outcome is a set of automated test cases and
a set of requirements to be translated into passive test cases
(G/As).

2) Phase II, Process Adoption: This phase’s starting point
is the T-EARS language and its accompanying tool-chain,
together with the proposed process of translating natural
language requirements to passive test cases as G/As [10]. The
purpose of this step is to explore how to apply this in practice
in an industrial safety-critical context.

Inputs to this phase are a set of automated test cases for a set
of well-tested system functions and a set of requirements tested
by those test cases. During the adoption procedure iterations,
requirements are translated using the translation process [10]
and compared to the gold standard. Iterations could cover
the entire process from the requirement to tuned G/A or a
particular step in the process, meeting a particular challenge.
This iterative adoption procedure is based on the work of
Staron [17]. Each iteration contains the following activities:

• Diagnosing: Observations and analysis of challenges met
during the different steps of the translation process.

• Action-Planning: Discussions with other industry experts
on possible solutions.

• Action-Taking: Implementation or stubbing of suggested
features.

• Evaluation: Occurs at each iteration that ends with a set
of tuned G/As. The resulting G/As are evaluated against
the set of correct logs.

• Learning: Information and reflections on the work per-
formed are collected. The notes are then analyzed and
structured into a process, and tests are executed.

This phase’s result is a set of improvements to the original
process, a set of challenges that could not be solved or
requirements on new tools, and a set of tuned G/As, translated
from the requirements using the improved process.

3) Phase III, Final Evaluation: The last phase in the case
study is the final evaluation.

• The complete set of 116 SAFE requirements is analyzed
given the improvements from phase two. The suggestions
are implemented to see the extent to which the final
results are useful.

• Further, the resulting G/As from the second phase are
evaluated over two signal logs from a manual test session
with an expert.

The results of this phase are a measurement of false positives
from a well-tested system, as well as means to assess the
degree to which the produced G/As can find injected faults
that are hard to find using existing test cases.

IV. RESULTS AND DISCUSSION

The results of the case study’s three phases are outlined as
follows: Section IV-A presents the Phase 1 - Gold Standard
and Requirements Selection, Phase II - Process Adoption is
presented in the Sections IV-B to IV-F, and finally, Phase III
Final Evaluation is presented in the Section IV-G.

A. Phase I - Gold Standard and Requirements Selection

The first phase aims to identify a set of automated test
cases to use as a reference gold standard when translating a
subset of the requirements to G/As and a set of requirements
to translate. We identified 14 automated regression test cases
from the Drive-and-Brake Functions, fulfilling our criteria on
automation, observability, and priority by the case organiza-
tion. The tested requirements were selected for translation,
while the final evaluation is done over 116 SAFE requirements
from the overall TCMS system.

As described in Section III, the translation process [10] we
earlier outlined is used as a starting point and framework for
structuring the results. Further, since one of the potential draw-
backs of the method is the risk of false positives [13], we use a
subset of the regression test log files from a well-tested system
as a gold-standard. Sixteen of the tested requirements were
translated and tuned until all false positives were removed, and
no remaining problems were left unresolved. We then analyzed
each challenge and possible solution and formed a generalized
workflow.

B. Phase II - Requirement Analysis Results

Given the choice of the Drive-and-Brake Functions in
Section IV-A, the expected result of this activity is the set of



requirements concerning the Drive-and-Brake Functions, de-
pendencies, and a list of logical signals. Typically, these logical
signals result from the harmonization activity [10]. However,
using logical signals already in the requirements is common
in safety-related requirements. Such standardization radically
reduced effort in the later steps of the translation process. We
argue that writing requirements this way is worthwhile on non-
safe requirements as well. Besides speeding up the translation
work, using logical signals disconnects the passive test cases
from a particular release of the system, which was imperative
since signals tend to be frequently reallocated between data
buses or modules, especially in early releases. Finally, since
the list of used signals is known at an early stage, the
implementation analysis can start in parallel, so logging of the
required signals can be done early, which ultimately reduces
the time spent in the concretization step (Section IV-E). The
ability to transparently observe this mapping while translating
the requirement was beneficial since the test engineer is more
confident in the technical signals’ meaning.

For requirements that contain more complex expressions
such as sequence, many signals, or negated logical expres-
sions, we can manually create examples signals to facilitate
the next step, namely the Abstract G/A Construction. Due to
observability limitations in the testing framework available to
us, we selected 16 of the identified Drive-and-Brake require-
ments for translation. In parallel with this step, parts of the
Implementation Analysis (as described in Section IV-D) and
Concretization (as described in Section IV-E) were performed.
In short, the required technical signals were identified and
added to the regression test cases to create the gold standard
log files. Further, the mapping from logical to technical signals
was prepared.

Throughout the upcoming sections, we use these logs to
show the progression from a drafted G/A to a tuned G/A with
a minimum of false positives.

C. Phase II - Abstract G/A Construction Results

The expected outcome from this step is a G/A that is
complete with respect to its logical guard and assertion ex-
pressions, but using logical signals. The main steps in this
activity are [10] a) Language Harmonization, b) Extraction
Of G/A information, c) Pattern Selection, and d) Abstract G/A
Formalization. Since (a) and (b) steps are already given by the
semi-formal notation of the requirement, we focus on (c) and
(d) steps.

One observed challenge, also shown in Figure 2, is the case
when there are alternative states for the guard (from any cab in
the train), which in this case is cab A1 or cab A2. We observed
that, when possible, splitting the passive test into one G/A
for each OR expression allows a more fine-grained test, e.g.,
allowing each cab to be tested separately. Further, when the
validity of a signal S (i.e., S and valid_S) is important
to test, (S or not(valid_S) could be used to create
two tests as previously mentioned. The use of standardized
logical signals from the previous step allows a straight forward
translation of the requirement shown in Figure 2.
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REQ-248 - - - - - - - - [F] - - - - -
REQ-253 - [F] - - - - - - - - - - - -
REQ-254 - - [P] - - - - - - - - - - -
REQ-255 - - - [P] - - - - - - - - - -
REQ-258 [P] - - - - - - - - - - - - -
REQ-259 [F] - - - - - - - - - - - - -
REQ-260 - - - - [F] - - - - - - - - -
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REQ-283 F F F F F F F F F [F] F F F F
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REQ-290-A2 F F F F F F F F F F [F] F F F
REQ-349 F F F F F [F] F F F F F F F F
REQ-350 - - - [F] - - - - - - - - - -
REQ-456-A1 - - - - - - - F - - - - P [F]
REQ-456-A2 - - - - - - - - - - - - - [-]

Fig. 3: Initial Translation evaluated over a set of passed logs

Listing 4 shows how the G/A at Line 2-7 can be split
into one G/A for each cab. The example requirement did
not contain any timing information. We note here that it is
not always possible to have precise timing information for
each requirement at this level. Often such timing behavior
is described in separate non-functional requirements covering
one or more functional requirements. Even if a requirement
contains sufficient timing information, valuable information
can be obtained by observing the results of a G/A without
timing specifications added.

1 // Short but does not fail for particular cab
2 ’REQ-246’ = while
3 MIOS_IN_Cab_drs_closed_and_locked_cab_A1 == false
4 or
5 MIOS_IN_Cab_drs_closed_and_locked_cab_A2 == false
6 shall
7 start_inhibit_reason_includes_cab_door_open
8 // Split G/A may give more details on fails.
9 ’REQ-246-A1’ = while

10 MIOS_IN_Cab_drs_closed_and_locked_cab_A1 == false
11 shall
12 start_inhibit_reason_includes_cab_door_open
13 ’REQ-246-A2’ = while
14 MIOS_IN_Cab_drs_closed_and_locked_cab_A2 == false
15 shall
16 start_inhibit_reason_includes_cab_door_open

Listing 4: Abstract G/A

Each requirement was translated to one or more G/As
using the requirements’ INPUT/OUTPUT sections and the
list of logical signals. No timing information was specified
yet. Where necessary, we will add timing to the G/As during
the upcoming tuning session. The G/As were evaluated on the
set of gold standard log files, and the result is presented in
Figure 3. The rows show the G/As are named according to the
requirement (e.g., REQ-245) to maintain traceability. Some
requirements result in more than one G/A. We use a suffix for
those G/As (e.g., -A1, -A2 to denote testing Cab A1 and Cab
A2, respectively). For each TC-G/A combination, a P, F, or -



denotes passed2, failed or not-activated, respectively. For each
log, the tested requirements (G/As) are marked with a bracket
[ ]. For example, TC-001 tests requirement number 259. The
corresponding G/A REQ-259 is thus expected to be activated
(and passed). Since all logs stem from passed regression test
cases of a well-tested system, we expect all such cells with
a bracket to carry a [P]. However, without any adaptation, it
turned out that a) conditions for all expected G/A were not
present in the test data set ([-]) and b) several G/A failed,
although the test data was expected to show passed ([F]), and
c) some G/A failed in all test runs (F). In our case, any fails
or ([-]) are false positives since we use reliable logs from
a well-tested system. The systematic work of analyzing the
cause and eliminating these false positives is described in
Section IV-F.

D. Phase II - Implementation Analysis Results

This step’s expected outcome is a mapping between the
abstract (logical) signals and the concrete (technical) signals
that can be used for directly evaluating the abstract G/As. We
performed this step concurrently with the requirement analysis
step in Section IV-B to facilitate the translation in the previous
section.

This step’s most significant challenges concern consistency,
technical signal identification, observability, maintenance, and
signal scoping. In an initial attempt, as a preparation for
this case study using other requirements without standardized
logical signals, the mapping consistency quickly eroded into
multiple/duplicate definitions and resulted in constant updates
of the automated test cases to obtain the required signals
logged. Identifying the correct signal among the tens of
thousands available was another challenge aside from the
experienced observability issues. Some requirements include
non-observable internal signals. Often, other signals could be
used as a proxy. The challenge is to understand how the
non-observable signal affects the observable signal. The next
challenge is maintaining the mappings when the implementa-
tion changes, such as an updated source, emitting the signal.
Lastly, there are always more signals available in the general
case than it is possible to log. For a practical application of
passive testing, this has a significant impact on the method’s
usefulness. If a single signal is missing, a whole passive test
case is rendered useless and will not even evaluate, resulting
in a potential false positive. Further, for each set of signals to
log, all the test cases need to be executed. Keeping track of
the log-sets by hand was tedious and error-prone.

In the upcoming paragraphs, we present identified solutions
to these challenges. Firstly, having a standardized set of logical
signals used for all (at least a relevant subset) requirements
is critical for consistency. Listing 5 shows examples of the
outcome of this step using this strategy.

2Since a G/A may be activated several times during a log, the final result
can be a number fails and passes. We consider pass if no ’fails’ occur, and
at least one pass.

1 // Separating from implementation / versions
2 alias S_DrEnRgtTrLn_P =
3 MWT.xxxxx.C2M22m1In3_S_DrEnRgtTrLn_P
4 alias V_DrEnRgtTrLn_P =
5 MWT.xxxxx.C2M22m1In3_V_DrEnRgtTrLn_P
6 // Abstracting away validity handling
7 def intervals DrEnRgtTrLn_P =
8 S_DrEnRgtTrLn_P == true
9 and valid_DrEnRgtTrLn_P

10 // ...and so on
11 // Redundant validated signals using above aliases
12 def intervals

MIO_S_Safe_door_enable_right_TRUE_and_VALID =
13 (S_DrEnRgtTrLn_P == true and
14 V_DrEnRgtTrLn_P == true) or
15 (S_DrEnRgtTrLn_R == true and
16 V_DrEnRgtTrLn_R == true)

Listing 5: Partially Obfuscated Signal Definitions

Further, Lines 2-3 and 4-5 show a low-level separation of
logical signals and their binding to a particular implemen-
tation. Such low-level separation allows for automating the
logical to technical signal mapping, contributing to solving
the maintenance challenge. In the example, the logical signals
gradually increase the abstraction level (Line 7 and finally,
Lines 12-16). The “final” signal on Line 12-16 is the “stan-
dardized” logical signal used. Theoretically, it would be pos-
sible to use the logical names in the INPUT/OUTPUT section
as-is, but the presence of white-space and the slight variations
(e.g., CCU IP OUT / OUT CCU IP) are deemed to produce
hard to find errors. Hence, the T-EARS name was created
by replacing white-space with an underscore, reformatting
the IN/OUT and BUS info to the same order everywhere.
While translating, the tester copy/pastes the logical signal’s
natural language name into a search view and gets the closest
matching T-EARS names. The above method had a substantial
impact on the translation effort.

In the case study, we identified two approaches for increas-
ing the logging-efficiency and possibly reducing the scoping
challenge. The first approach concerns telegrams where each
bit corresponds to a digital signal. Depending on the logging
framework, logging the telegram rather than the individual
signals may drastically increase the number of logged signals.
If the logged telegram is a 16-bit integer, we can log the
entire telegram and let T-EARS mask out the individual signals
using the bitmask function. Such a mapping can typically be
automated using a template, as shown in Listing 6.
1 // Logging several signals in same telegram
2 // Bitmask out individual signals
3 def interval my_bin_signal =
4 bitmask(TelegramXYZ, my_bin_sig_mask) ==

my_bin_sig_mask
5 // Defining an optional VALID signal
6 def intervals valid_DrEnRgtTrLn_P =
7 select(exists(Valid_DrEnRgtTrLn_P)
8 Valid_DrEnRgtTrLn_P,
9 true)

10 def interval DrEnRgtTrLn_P =
11 S_DrEnRgtTrLn_P and
12 valid_DrEnRgtTrLn_P

Listing 6: Tricks For Increasing Log Information

Using the T-EARS select and exists, the validity signal
of fail-safe signals can be made optional, as shown in Line
6-9 in Listing 6. The defined signal is equal to the validity
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REQ-244 P P F P P P [P] P P P P F [P] P
REQ-245 - - - F - - [F] - - - - - - -
REQ-246 - - - - - - - [P] - - - - P P
REQ-248 - - - - - - - - [F] - - - - -
REQ-253 - [F] - - - - - - - - - - - -
REQ-254 - - [P] - - - - - - - - - - -
REQ-255 - - - [P] - - - - - - - - - -
REQ-258 [P] - - - - - - - - - - - - -
REQ-259 [F] - - - - - - - - - - - - -
REQ-260 - - - - [F] - - - - - - - - -
REQ-281 P P F P F P - - - - - [F] F -
REQ-283 - - - - - - - - - [F] - - - -
REQ-290-A1 - - - - - - - - - - [F] - - -
REQ-290-A2 - - - - - - - - - - [F] - - -
REQ-349 F F F F F [F] F F F F F F F F
REQ-350 - - - [F] - - - - - - - - - -
REQ-456-A1 - - - - - - - F - - - - P [F]
REQ-456-A2 - - - - - - - P - - - - - [F]

Fig. 4: Activation and Startup (ignore) Tuned

signal if it is logged or always true if it is not logged. Using
optional validity signals only works on fail-safe signals with
a guaranteed fail state whenever the validity signal is false.

E. Phase II - Concretization Results

The concretization step’s expected outcome is a G/A evalu-
ated using concrete (technical) signals. Given our suggestions
for the implementation step, this is accomplished by specifying
the signal mapping described in the previous section. We did
not observe any particular challenges in this step.

F. Phase II - Tuning and Validation Results

This step’s expected result is an executable and complete
G/A with a minimum of false positives. A G/A is considered
complete when there are no unknown dependencies that would
cause a wrong verdict. A fictitious example is a G/A only
checking that the brake light is turned off when lifting the
brake pedal, but another subsystem issues a brake order that
causes the test to fail. False positives include such conditions
and G/As are not being activated when supposed to or failing
where there is no underlying fault. In this step, the tester logs
required signals while operating the system to activate the
G/A. Eliminating false positives turned out to be the most
challenging part of the entire process. To find out how to
do this systematically, we tuned our G/As against our gold
standard until no more false positives were encountered. The
result is presented as a systematic process containing the steps
outlined in the following sub-sections.

1) Validating Guard Activation: The expected outcome of
this step is a guard that is activated when expected and
also not activated when not expected. In the general case,
the tester operates the system (while logging the appropriate
signals) until she knows that the system state is correct. For
our gold standard, we already know which G/A should be
active for each log. Thus, this step’s expected outcome is that
each G/A is activated at least once for the logs testing the
G/As requirement. Such expected activations are marked with

brackets in Figure 3. G/A activations for other logs are not
necessary but welcome, as long as they do not produce false
positives. Notably the REQ-456-A2 in Figure 3 has not been
activated when expected.

We identified possible sources of missing activation(s),
including input stimuli sequence, log, signal mapping, and,
requirement. The first source, input stimuli sequence, is the
easiest to investigate. Examining the test case actions should
reveal if the test does not put the system in a testable state (as
it should have). In our case, we know that the logs are correct,
so the cause of the missing activation of TC-068 and REQ-
456-A2 in Figure 3 must be related to some other reason. If
the evaluation completely fails for one log but looks fine for
another, the log probably lacks one or more signals. Another
reason for not activating (or giving a faulty evaluation) may
be that a signal is captured with the right name but with the
wrong values. This may happen if the test framework injects
faults or alter signals for testing purposes. Another common
mistake is that a logical signal is defined with the wrong
technical signal (e.g., a logical signal from cab A1 and cab
A2 are mapped to the same technical signal by mistake). In
this study, we experienced all of the above, mostly due to a
lack of proper automation of these tasks. The last category,
requirement, includes reasons such as the requirement lack of
information to capture the testable state, or the requirement
text is misunderstood. It may also be missing signals or
unknown dependencies as in the example of the brake pedal
in Section IV-F. In our example, it turned out that REQ-456-
A2 suffered from misunderstandings of the requirement text.
Updating the conditions of the guards activated the G/A for
TC-017 and TC-068, as seen in Figure 4. This also shows that
the G/A still fails for TC-068 and more tuning is required for
the G/A.

2) Systematic Issues: This step is applicable if there exists
a set of logs and a suspicion that the false positives are due
to some systematic disturbance. One such observed systematic
disturbance was identified at the beginning of most log files.
Such turbulence may occur in some signals when starting up
and tearing down the environment. This is especially true for
simulated environments and may generate enormous amounts
of false fail indications. A situation as the one in Figure 3
with massive streaks of failed evaluations should lead to the
suspicion of such problems at either system startup or shut
down. However, cutting the log in either end is not without
risks, especially when a passive test case relies on a sequence
to occur or complete. Even trivial sequences like a button
toggle may wreck the entire evaluation of a passive test case,
e.g., if the first press in the log file is ignored, so this activity
must be done in the context of each passive test case.

To investigate whether false positives stem from such startup
problems, we need to bring up a detailed evaluation view over
several logs, preferably from different testing sessions.

Figure 5 illustrates such a view for spotting systematic
fails. The figure shows the evaluation of the G/A REQ-281
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Fig. 5: Systematic Fail Analysis, REQ-281

over six logs3. Each sub-figure shows the evaluation over the
corresponding log file. The plots in each sub-figure show the
guard passes, and fails as binary signals. The gray signal at
the bottom (guard interval) goes high whenever the system
is in a state where the requirement should be validated.
The (red) signal in the middle graphs goes high whenever
the requirement is not met during the guard interval (fail).
Similarly, the topmost (green) signal goes high, where the
requirement is met (pass).

Focusing on the very first part of each log evaluation,
we observe a fail at the very beginning of each evaluation
for REQ-281. Further, the fail interval is too long to be
explained by natural latencies or sampling effects in the
system. According to our domain expert, this requirement was
sensitive to some startup adjustments in the simulator. In this
study, only 4 out of 17 passive test cases were susceptive to
such startup disturbances, emphasizing the recommendation
against a default ignore. For those four test cases, we ignored
the first 32 seconds using the keyword ignore, as shown at
line 2 in Listing 7.

1 // Tuning for Simulated Rig
2 ignore < 0s
3 allow 500ms fail
4 const TIMEOUT = 500ms
5 // ...
6 ’REQ-456-A2’ =
7 while Cab_doors_closed_and_locked_in_cab_A2 == false

and
8 Standstill == true
9 and

10 Bypass_active_in_ready_to_run == true
11 shall
12 Traction_safe_command == false
13 and
14 bitmask(CabDrOp,
15 MWT_traction_block_reason) == CabDrOp
16 and
17 Allow_traction == false
18 within TIMEOUT
19 // ...

Listing 7: Example G/A With Timing Specifications

This removed all confirmed false4-positives during startup.
However, still, many passive test cases failed while they should
pass. The result of this tuning step is presented in Figure 4.

3We could fit six logs into the paper figure. For real, it may be beneficial
to analyze more logs.

4All fails were confirmed to be false positives.
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Fig. 6: Example of Natural Latency Fails of a (Should-Be)
Passing G/A
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REQ-244 P P F P P P [P] P P P P F [P] P
REQ-245 - - - P - - [P] - - - - - - -
REQ-246 - - - - - - - [P] - - - - P P
REQ-248 - - - - - - - - [P] - - - - -
REQ-253 - [P] - - - - - - - - - - - -
REQ-254 - - [P] - - - - - - - - - - -
REQ-255 - - - [P] - - - - - - - - - -
REQ-258 [P] - - - - - - - - - - - - -
REQ-259 [P] - - - - - - - - - - - - -
REQ-260 - - - - [P] - - - - - - - - -
REQ-281 P P P P P P - - - - - [P] P -
REQ-283 - - - - - - - - - [P] - - - -
REQ-290-A1 - - - - - - - - - - [P] - - -
REQ-290-A2 - - - - - - - - - - [P] - - -
REQ-349 P P P P P [P] P P P P P P P P
REQ-350 - - - [P] - - - - - - - - - -
REQ-456-A1 - - - - - - - F - - - - P [F]
REQ-456-A2 - - - - - - - P - - - - - [F]

Fig. 7: Assertion Latency (within) Tuned

3) Latencies and Sampling Effects on Assertions: Aside
from the startup turbulence, one distinct type of false fail,
observed in the study, is shown in Figure 6 at approximately
300s. In the example, the guard starts with a very short fail
period but then passes until the end of the guard period5.

A typical example in this study is REQ-245; when the doors
are open, a start-inhibit signal should be set. According to our
observations, when the doors are open, it takes a (short) while
until the start-inhibit signal is set. Even though the requirement
contains timing information, using G/As to explore assertion
latencies, together with proper domain knowledge, allows
establishing better, worst, and acceptable latency margins. Fur-
ther, some safety-related signals are only indirectly observable
at the system level, which adds to the specified timing in the
requirement. The tester needs to judge whether the latencies
are reasonable or not, a process that would be facilitated
by such a tool. Although we call it assertion latency, other
probable sources of such delays include sampling issues or
different time-domain effects (e.g., A machine is used to
simulate parts of the system and a real-time simulator other
parts).

A tool that discovers harmless assertion latencies needs to
make sure that the fail starts simultaneously as the guard and
that it is followed by a substantially larger pass period to
rule out other, potentially severe fails. Confirmed harmless
assertion latencies can be ignored by adding the within, as

5Except for a possible guard latency as described in the next section.
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REQ-244 P P P P P P [P] P P P P P [P] P
REQ-245 - - - P - - [P] - - - - - - -
REQ-246 - - - - - - - [P] - - - - P P
REQ-248 - - - - - - - - [P] - - - - -
REQ-253 - [P] - - - - - - - - - - - -
REQ-254 - - [P] - - - - - - - - - - -
REQ-255 - - - [P] - - - - - - - - - -
REQ-258 [P] - - - - - - - - - - - - -
REQ-259 [P] - - - - - - - - - - - - -
REQ-260 - - - - [P] - - - - - - - - -
REQ-281 P P P P P P - - - - - [P] P -
REQ-283 - - - - - - - - - [P] - - - -
REQ-290-A1 - - - - - - - - - - [P] - - -
REQ-290-A2 - - - - - - - - - - [P] - - -
REQ-349 P P P P P [P] P P P P P P P P
REQ-350 - - - [P] - - - - - - - - - -
REQ-456-A1 - - - - - - - P - - - - P [P]
REQ-456-A2 - - - - - - - P - - - - - [P]

Fig. 8: Guard Latency (allow) Tuned

demonstrated on line 18 in Listing 7, the passive test case
ignores latencies fails up to the specified time limit (500ms).
Although it is tempting to use a sizeable global time limit,
this may conceal severe problems in the system. On the other
hand, setting the within too narrow will give false fails due
to variations in the active test case logs. The added within

statements (between 200-500ms) solved all assertion latencies
as defined above and shown in Figure 7. REQ-254 and REQ-
456 are still failing.

4) Latencies and Sampling Effects on Guards: Another
distinct source of false-positives observed in the study is
exemplified in Figure 6 at approximately 180s. The guard
mostly passes, but fails for a tiny part at the end of the guard
interval. It appears as if the guard condition ended too late.
This behavior was observed in, e.g., REQ-245, where traction
seems to be allowed just before the doors were closed and
locked. Again, exploring fail intervals, together with proper
domain knowledge, allows establishing an acceptable range
for guard latencies. Although we call it guard-latency for
simplicity, there may be other sources of such delays as for
the assertion latencies. A tool that automatically finds such
fails would match all fail-intervals within a guard-interval,
immediately preceded by a pass-interval and ending where
the guard ends.

Confirmed harmless guard-latencies can be ignored by
adding the allow, as demonstrated at line 3 in Listing 7.
The keyword specifies to the G/A to ignore guard latencies
up to a specified time limit similar to within, although it is
tempting to use a sizeable global time limit, this may conceal
severe problems in the system. On the other hand, setting the
allow too narrow will give false fails due to variations in the
active-test-case logs.

In our particular case, the engineers concluded that the
delays up to twice the sample time were acceptable. Given an
analysis of the failing G/As, allow was added up to double the
sampling time. The remaining test cases were left unchanged.
The added slack addressed all remaining latency/sampling
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Fig. 9: Fail in test case that requires root cause analysis.

effect problems for all our G/A over the available log files,
as presented in Figure 8.

5) Remaining Issues and Root Cause Analysis: When all
of the above standard procedures fail to explain a fail interval
in a passive test case, the chances are that we are facing a
real bug, unknown feature interaction, or insufficient/faulty
requirement description. In either case, the remaining fails
need to be examined closely. Figure 9 shows such a fail from
an early stage in the translation process. In this case, the failure
turned out to be a misinterpretation of the signal redundancy,
which led to the use of an AND operator instead of an OR
operator.

G. Phase III - Final Evaluation

The 116 SAFE requirements were examined and are es-
timated to be applicable for 74 of the 116 reviewed SAFE
requirements, which is in line with a previous case study using
an early prototype [13].

In the remaining section, we show the results from two
logged manual sessions performed by an expert. The first
session is performed on a well-tested and released system
in a HIL-rig, as opposed to our gold standard produced in
a completely simulated environment. The expert tester’s goal
is to cover as much of the functionality during the session. The
purpose of the first session is to validate that the false positives
have been tuned away and demonstrate how passive test cases
can be used to understand requirement coverage. A fail for
the REQ-246 revealed that the timing was slightly different for
the HIL-rig signals compared to the simulator. After adding an
allowance of 250ms, the G/A passed. The results are presented
in Figure 10. Each row shows the evaluation of a G/A, as
translated in previous sections. A green “P” shows that the
G/A could be evaluated, did not fail, and passed at least once.
The “Evaluation Details” column show how many times the
G/A was activated (guard activations) and the total number
of fails and passes during the logged session. The gray “-
” denotes a G/A that could not be evaluated. In this case,
due to a missing signal. Having missing signals is a common
situation since there is often a restriction on how many and
which signals can be logged. Since the expert did not log
that signal, the corresponding G/As could not be evaluated.
However, the remaining G/As show that the achieved coverage
was at least 9 out of 18 G/As. Since this system was extremely
well tested, the absence of fails shows that the tuning has been
successful. A closer look at REQ-244 in Figure 10 reveals that
the requirement has been tested nine times during the session,
and REQ-281 six times.



G/A Result Evaluation Details
REQ-244 P  9 Guard Activations,9 passes , and, 0 fails
REQ-245 P  2 Guard Activations,2 passes , and, 0 fails
REQ-246 P  2 Guard Activations,2 passes , and, 0 fails
REQ-248 P  1 Guard Activations,1 passes , and, 0 fails
REQ-253  -   "…._NoTcmsEmBr" is not logged.
REQ-254  -   "…._NoTcmsEmBr" is not logged.
REQ-255  -   "…._NoTcmsEmBr" is not logged.
REQ-258  -   "…._NoTcmsEmBr" is not logged.
REQ-259  -   "…._NoTcmsEmBr" is not logged.
REQ-260  -   "…._NoTcmsEmBr" is not logged.
REQ-281 P  6 Guard Activations,6 passes , and, 0 fails
REQ-283  -   "…._NoTcmsEmBr" is not logged.
REQ-290-A1 P  1 Guard Activations,1 passes , and, 0 fails
REQ-290-A2 P  1 Guard Activations,1 passes , and, 0 fails
REQ-349  -   "…._NoTcmsEmBr" is not logged.
REQ-350  -   "…._NoTcmsEmBr" is not logged.
REQ-456-A1 P  1 Guard Activations,1 passes , and, 0 fails
REQ-456-A2 P  1 Guard Activations,1 passes , and, 0 fails

Fig. 10: Resulting G/As, Expert Session I (Well-Tested).

G/A Result Evaluation Details
REQ-244 P 2 Guard Activations,2 passes , and, 0 fails
REQ-245 F  2 Guard Activations,3 passes , and, 1 fails
REQ-246 F  1 Guard Activations,2 passes , and, 1 fails
REQ-248  -  Guard never activated
REQ-253  -   "…._NoTcmsEmBr" is not logged.
REQ-254  -   "…._NoTcmsEmBr" is not logged.
REQ-255  -   "…._NoTcmsEmBr" is not logged.
REQ-258  -   "…._NoTcmsEmBr" is not logged.
REQ-259  -   "…._NoTcmsEmBr" is not logged.
REQ-260  -   "…._NoTcmsEmBr" is not logged.
REQ-281 F  2 Guard Activations,2 passes , and, 1 fails
REQ-283  -   "…._NoTcmsEmBr" is not logged.
REQ-290-A1  -  Guard never activated
REQ-290-A2  -  Guard never activated
REQ-349  -   "…._NoTcmsEmBr" is not logged.
REQ-350  -   "…._NoTcmsEmBr" is not logged.
REQ-456-A1 F  1 Guard Activations,2 passes , and, 1 fails
REQ-456-A2  -  Guard never activated

Fig. 11: Resulting G/As, Expert Session II (Fault-Injected).

In the second session, the test engineer injected two inter-
mittent faults in the system that would be difficult to detect
using traditional scripted testing. The result is presented in
Figure 11. Again, a signal was not logged, so the gray “-
” does not provide any information. There are, however,
some yellow “-” (Guard never activated); a never activated
guard means that the tester has not covered the corresponding
requirement in the session, which was confirmed by the expert
tester in this session. The red “F” shows where the G/A
detected violations of the requirements. Analysis of the failed
requirements (G/As) against the injected faults concluded that
the two faults affected the system in a way that make it violate
exactly these four requirements (G/As) during the short time
the faults were injected.

V. RELATED WORK

This work relies on three areas: a testing paradigm, spec-
ification, and tools supporting the use of this paradigm. In
the first area, the testing paradigm, we rely on the work

of independent guarded assertions [7], [8], introduced as a
means of increasing the parallelism in automotive testing.
This concept is similar to the passive testing approaches listed
in [2] and run-time verification [18], [19]. Using these methods
heavily relies on a formal specification of the test cases.
Although there exist attempts to offer pre-defined patterns and
even graphical representations to facilitate the formalization
of either requirement or test cases [5], [4], they still expose
the underlying formalism. The approach of the suggested T-
EARS language instead strives for being simplistic and close
to the requirements’ text and is based on an Easy Approach
to Requirements Syntax (EARS), created at Rolls-Royce to
improve expressing natural language requirements [12]. The
choice of EARS is motivated by its usefulness for large scale
requirements in multiple domains [20] [21]. Also, in the third
area, there are attempts to overcome practical issues. Related
examples here include specification pattern support [22], [23]
and creating monitors, similar to the guarded assertions in
Matlab [24].

The approach of using guarded assertions has been previ-
ously evaluated in [8] but the guarded assertions were specified
using a model-checker and based on test cases, while this
paper uses T-EARS and translates directly from requirements.
Another similar work by Pudlitz et al. [25] has focused on
making requirements testable by using a markup language
[26]. While this work relies on annotations of natural language
text and the authors are able to analyze how well test cases are
aligned with the requirements, T-EARS supports the temporal
specification of requirements and allows a seamless integration
with a passive testing tool chain (i.e., SAGA tool chain).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we conclude that passive testing is adequate
for testing the studied system-level requirements in a real
industrial setting. In addition, we show how passive testing
can be used to understand requirement coverage and finding
faults. However, we observed a risk that false positives quickly
affect the results without proper tuning of the passive test
cases. Further, our results suggest that mapping of the logical
(abstract) signals to technical (concrete) signals is a major
challenge. Thus, we further improve the translation process’s
test case tuning steps and suggest some lessons learned when
applying passive testing in a real industrial context.

The translation and tuning of requirements are done man-
ually, which can be a time consuming activity, so future
improvements include automating it, e.g., using automated
latency analysis. In addition, more empirical work on the
cost-effectiveness of passive testing in the embedded software
industry is needed as well as further support for industrial
uptake and adoption.
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