
An Automated Configuration Framework for
TSN Networks

Bahar Houtan, Albert Bergström, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen
Mälardalen University, Sweden

{bahar.houtan, mohammad.ashjaei, masoud.daneshtalab, mikael.sjodin, saad.mubeen}@mdh.se

Abstract—Designing and simulating large networks, based
on the Time Sensitive Networking (TSN) standards, require
complex and demanding configuration at the design and pre-
simulation phases. Existing configuration and simulation frame-
works support only manual configuration of TSN networks. This
hampers the applicability of these frameworks to large-sized
TSN networks, especially in complex industrial embedded system
applications. This paper proposes a modular framework to auto-
mate offline scheduling in TSN networks to facilitate the design-
time and pre-simulation automated network configurations as
well as interpretation of the simulations. To demonstrate and
evaluate the applicability of the proposed framework, a large
TSN network is automatically configured and its performance is
evaluated by measuring end-to-end delays of time-critical flows
in a state-of-the-art simulation framework, namely NeSTiNg.

I. INTRODUCTION

Time-Sensitive Networking (TSN) is a set of standards,
developed by the IEEE 802.1 TSN task group [1], to support
high-bandwidth, time-critical, and low-latency communication
over the switched Ethernet. These standards offer several novel
features, e.g., a common notion of time through clock syn-
chronization, resource reservation for various types of traffic,
traffic shaping, scheduled traffic support, frame preemption,
and much more. There is a huge interest in utilizing TSN in
time-critical applications, in particular in the automotive [2]
and industrial automation domains [3]. However, there are
several challenges that are encountered when utilizing TSN in
industrial applications. One core challenge is to perform the
TSN network configuration during the design, analysis and
simulation phases, while taking the applications’ timing re-
quirements into account. These applications often require com-
plex configuration measures at the design and pre-simulation
phases, such as creating offline schedules for the scheduled
traffic. The existing network design and simulation frame-
works for TSN lack automation in the network configuration.
Manually configuring a large number of parameters associated
to various types of traffic in TSN can be time consuming, error
prone and cumbersome for the network designers.

To address this challenge, this paper proposes an automated
framework that facilitates the design-time and pre-simulation
network configuration of TSN networks. The proposed frame-
work uses one of the state-of-the-art open-source TSN simu-
lation platforms, namely NeSTiNg [4], [5]. The source code
for the proposed framework is openly provided in gitlab1.
The proposed framework is desinged in a modular way and it

1https://gitlab.com/Scipsybee/automated-tsn-configuration-plugin

uses the Extensible Markup Language (XML) format for the
information exchange, which allow the framework to be easily
adapted to other simulation platforms. The main contributions
in the proposed framework are as follows:
• integrating the traffic generation and optimized network

schedule synthesis to the NeSTiNg open-source simulation
framework for TSN;

• addressing the flow configuration complexity by automati-
cally translating configuration for the scheduled flows’ into
the NeSTiNg syntax compliant configuration;

• addressing the gate states configuration complexity by au-
tomatically translating the synthesized schedules into the
NeSTiNg syntax compliant configuration; and

• finally, allowing to automatically configure the configuration
files by a Graphical User Interface (GUI) that is integrated
into the simulation framework.

II. BACKGROUND AND RELATED WORK

The Time-Aware Shaper (TAS) mechanism in the IEEE
802.1Qbv standard allows arbitration of various types of
traffic based on priorities at a TSN switch’s egress port. TSN
composes eight traffic priorities that are encoded by a 3-bit
priority code point (PCP), which is associated with the index
of 8 priority queues at TSN switch’s egress port. For example,
to reserve the switch bandwidth for the highest priority real-
time class, the Scheduled Traffic (ST) with PCP = 7, a time-
division multiple access transmission selection algorithm is
used. Egress data flow from each priority queue is controlled
by a gate. Based on this algorithm, the offline schedules must
be time-stamped in a Gate Control List (GCL), which contains
the starting and finishing times of allowed time slots for each
queue and associated configuration of the gate states (GS).

There are several works that discuss automatic synthesis of
optimized gate schedules in TSN by using solvers like the
Satisfiability/Optimized Modulo Theorem (S/OMT), e.g., the
works by Craciunas et al. [6], Hashemi et al. [7], Schneider and
Santos et al. [8], and Gavrilut et al. [9]. The work by Pahle-
van et al [10] uses the Genetic Algorithm to automatically
synthesize the gate schedules. There are several simulation
frameworks for pre-implementation evaluation of TSN net-
works. OMNeT++ is an open-source discrete event simulation
platform, primarily used for constructing simulations of net-
works2. INET3 is another widely used open-source simulation

2https://omnetpp.org/
3https://inet.omnetpp.org/

978-1-7281-5730-6/21/$31.00 ©2021 IEEE 771

20
21

 2
2n

d
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
du

st
ria

l T
ec

hn
ol

og
y

(I
C

IT
) |

 9
78

-1
-7

28
1-

57
30

-6
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IT
46

57
3.

20
21

.9
45

36
28

framework that models wired, wireless and mobile networks.
Core4INET [11] is an open-source TSN simulation framework
that is built on OMNeT++. Core4INET allows simulation of
TSN networks based on various standards, e.g., IEEE 802.1Q,
IEEE P802.1p VLANs and Priorities, IEEE 802.1 AVB and
TTEthernet (AS6802). Another notable example of the TSN
simulation frameworks is NeSTiNg [4]. NeSTiNg supports
several TSN features, inlcuding the scheduled traffic (IEEE
802.1Qbv), frame preemption (IEEE Std 802.1Qbu and IEEE
Std 802.3br), credit-based shaper (IEEE Std 802.1Qav), time
synchronization (IEEE Std 802.1AS). Schedule and routing in
NesTiNg can be done through insertion of XML files, with a
strict syntax. This feature allows NesTiNg to be seamlessly
integrated to the proposed framework. Hence, the network
simulations with NesTiNg can be facilitated by automatic
generation of XML configuration files for flow schedules,
flow attributes and gate states. Both Core4INET and NeSTiNg
require significant amount of manual configurations at the pre-
simulation phase as well as for interpretation of the simulation
results. The framework proposed in this paper augments
automation in these frameworks by means of an automated
configuration framework for TSN.

III. AUTOMATED CONFIGURATION FRAMEWORK

A. Configuration Complexity in TSN

This subsection demonstrates the level of complexity in
the configuration of TSN networks, in particular, the config-
uration that is required to simulate TSN networks using the
NeSTiNg framework. We demonstrate various configuration
parameters by an example shown in Fig. 1. The exam-
ple illustrates a TSN network consisting of two transmitter
end stations, ST1 and ST2, and two receiver end stations,
ST3 and ST4. The end stations are connected via two TSN
switches, SW1 and SW2. ST1 transmits a periodic flow to
ST3. Whereas, ST2 sends a periodic flow to ST4. The period
of ST2’s flow is double the period of ST1’s flow.

The network configuration is performed in three steps:
(i) configuration of offline schedules for the scheduled traffic
on each link, (ii) configuration of gate states in egress queues
of each TSN switch port, and (iii) configuration of switch
routing tables.

1) Configuration of the Source Link Schedules: In the
example shown in Fig. 1, source link schedules are specified
by the text in the box (a). In general, there are 27 lines in
the flow configuration file. Subsequently, 14 and 7 lines of
code are needed to indicate the traffic characteristics of the
data flows transmitted from ST1 and ST2. One drawback of
the current configuration method is that the traffic settings
should be assigned based on the flow generating source end
stations. This method becomes challenging when a source
end station needs to transmit scheduled traffic with different
periods, different data size of flows and via different queues
to different destination end stations.

The NeSTiNg configuration approach does not support
convenient modelling for TSN flows. In the current modelling
perspective, traffic flows must be specified based on the flow

generating source end station. Hence, the flow schedules from
each source end station should be specified based on the flow
offsets in chronological order in an XML file. The bottleneck
in this method is the extra effort for the network designers
at the traffic configuration stage. Because in case of having
different flow profiles from a source end station, it is necessary
to add each periodic instance of every flow4 until hyper period
of the flows as a new schedule entry to the XML configuration
file. The hyper period of the flows is the least common
multiple of periods of all flows. It is extremely laborious, time-
consuming and error-prone to perform manual configuration of
a large number of activation times of the flow instances, even
in the case of small networks.

2) Network Gate State Configuration: In order to guarantee
timely transmission of the ST flows in the network, the gate
opening and closing times in the egress ports of each TSN
switch must be assigned, while taking the timing requirements
on the flows into account. The TAS provides a mechanism
of opening and closing gates of the egress queues, which
creates reserved time slots on the egress link. These time slots
assign the link capacity to the flows, which are scheduled to
pass through the egress link. There are 8 traffic classes that
correspond to a gate in the TAS. In order to calculate the
reserved time slots on the link, the trace of all the frames
passing through the link must be arranged and defined as gate
states at the egress port of the TSN switch connected to that
link. To specify the ST frame transmission slots on the link, it
is necessary to calculate the offset of the frames until the hyper
period of the crossing flows from the link. Assigning the gate
states can become very complex due to increase in the number
of slots that need to be reserved on the link. Conventionally,
the gate states can be assigned by manually drawing the
network trace and inspecting the arrival times of the ST flows
on each link. The box (b) in Fig. 1 shows a sample trace of
the two flows on egress link 1 from SW1 and egress links
2 and 3 from SW2. The gate states in the example shown
in Fig. 1 can be manually configured by drawing the traces
of the network. However, manually performing the gate-states
configurations for large-sized networks that include a large
number of flows of different traffic classes is impractical, time-
consuming and error prone. Even if the schedules for the flows
are calculated using optimized schedule generation engines,
manual translation of the generated schedules to comply with
the input configuration syntax for the simulation frameworks
(like NeSTiNg) requires a massive pre-simulation effort.

3) Switch Routing Table Configuration: A routing table
statically defines the paths to forward traffic from the source
end station to the destination end station’s address. The box
(c) in Fig. 1 shows the routing table configurations. In case of
larger networks, there might be multiple paths to a destination
end station, which calls for configuring the routing table of
each switch. This requires the designer to acquire knowledge
of all the connections between switches and switch port
numbers connected to each end station.

4A flow instance is represented by a frame

772

Fig. 1: Various sources of the configuration complexity.

It can be seen from the above discussion that simulation of
TSN networks requires complex pre-simulation configurations
of various parameters. In the case of large TSN networks,
manually setting up these configurations becomes time con-
suming, error prone and impractical. Therefore, an automatic
configuration framework is essential, in particular for design-
ing, simulating and evaluating large industrial network.

B. Modular Architecture of the Proposed Framework

This subsection presents the modular architecture of the
proposed automatic configuration framework as depicted in
Fig. 2. The proposed framework consists of four modules:
(i) traffic generator, (ii) schedule synthesizer, (iii) automated
configurator, and (iv) output and results interpreter.

1) Traffic Generator: The traffic generator module gener-
ates attributes of the TSN flows that are required for traffic
configuration in the simulator. This module provides flow-
based traffic configuration input to the simulator. In this
module, periodic flows (a.k.a. streams) are represented by a
tuple, S. Each flow si, in the set of flows, is represented by

Eq. (1):

S := 〈{s1, . . . , s|S|},∀[Va, Vb] ∈ L : hp[Va,Vb]〉 (1)

where, Va and Vb specify a pair of end stations/switches
connected via a link denoted by [Va, Vb], which is a member of
the network link set, denoted by L. The parameter, hp[Va,Vb],
represents the hyper period of the set of flows, which is the
least common multiple of periods of flows crossing the link
[Va, Vb]. Furthermore, the flow profiles are characterized by
Eq. (2):

si := 〈srci, ti, di, li, pi, ri, desti〉 (2)

where, i is the unique ID of each flow. The transmitter end
station’s ID is represented by srci. The source end station
transmits flows of data to the destination end station with the
ID desti. The period and deadline of the flow are represented
by ti and di, respectively. The parameter li stores the trans-
mission duration of the flow. The flow priority is denoted by
pi. Finally, ri holds the list of switches in the path from the
source end station to the destination end station.

In addition to setting the flow attributes, this module enables

773

Fig. 2: Modular Design of the proposed automated configuration framework.

editing of the link attributes, which affect the transmission
duration of frames and synchronization of the transmitter and
receiver end stations. Eq. (3) specifies the link attributes.

∀[Va, Vb] ∈ L := 〈speed, delay, tick, queue〉 (3)

The parameter, speed, indicates the maximum allowed band-
width on the link in bit/s. The propagation delay on the
link is denoted by delay. tick is the synchronization factor
of the physical layer, according to IEEE 802.1AS. Finally,
the maximum number of queues is represented by queue.
The traffic generator module receives a graph topology of the
network. The outputs of this module are flow profiles that are
stored in a Comma Separated Vector (CSV) file to be used by
the other framework modules.

2) Schedule Synthesizer: The schedule synthesizer is a
constraint-based solver that is intended to find solution of a
scheduling optimization objective function and a set of real-
time constraints on the ST flows. The schedule synthesis
module produces offsets that ensure the timing requirements
of the time-triggered ST traffic at each hop in the flow’s
path are satisfied. We specifically employ an open-source
S/OMT solver, namely Z35 that features both satisfiability
and optimization solvers. These solvers are automated theorem
provers that search for solutions by examining the satisfiability
of possible combination of solutions in a search tree. This
module receives a CSV file containing the standard flow set
and link set specifications presented by Eq. (1), Eq. (2) and
Eq. (3). The schedule synthesis module specifies transmission

5https://pypi.org/project/z3-solver/

time of each ST flow on each link. In this work, we apply the
network modelling approach presented in [6]. Where, frame i
in the kth flow is indicated by fi,k. The path from a transmitter
end station, Va, to a receiver end station, Vb, is shown as the
set, [[Va, V1], [V1, V2], ..., [Vi, Vj], ..., [Vn−2, Vn−1], [Vn, Vb]].
The transmission gate schedules on each link must be defined
by a set of well-defined tuples to be readable by the automatic
configuration generation module. Therefore, we consider the
following attributes for each frame f

[Vi,Vj]
i,k , < φ, Len >.

Where, φ represents the transmission time, and Len indicates
the allowed margin on the link for complete transmissions of
the frame. As a results, the list of gate transaction time stamps
of each TSN switch is shown in Eq. (4):

∀[Va, Vb] ∈ L,∀s{1,...,|S|} ∈ S, ∀f [Va,Vb]
i,k ∈ s

[Va,Vb]
i :

[f
[Va,Vb]
i,k .φ, f

[Va,Vb]
i,k .φ+ f

[Va,Vb]
i,k .Len]

(4)

where, the list of gate states at a switch’s egress port is
defined by the set of allowed time margins to transmit frames
on the associated egress link. The start and length of the
time margins are denoted by the flow’s frame offset and a
predefined window size respectively.

3) Automated Configurator: The automated configuration
module is realized as a plug-in for the OMNET++ TSN
simulation framework. Hence, it is easliy integrable with the
NeSTiNg simulation framework. The plug-in consists of two
main sub-modules.

• Graphical User Interface (GUI): Through the GUI sub-
module, the flows, schedules, routing settings and gate states

774

can be created and modified manually.
• Automated Configuration Generator: This sub-module re-

ceives the simulation setting files from the traffic genera-
tion and schedule synthesis modules. The settings are then
translated into the NeSTiNg configuration files.
The NeSTiNg XML schedule and routing configuration files

can be edited both by the GUI and Automated Configuration
Generator. If the XML files contain flow entries, they can be
parsed by the load sub-module, which can be further edited
and visualized in the GUI. Also, new entries can be written
on the files through the GUI or the Automated Configuration
Generator. The save sub-module translates the received con-
figurations into the NeSTiNg compliant configurations.

4) Output and Results Interpreter: While it is possible to
collect certain useful statistics (e.g., end-to-end delays) in
the NeSTiNg framework, the manual inspection of numerous
recorded parameters for each component in large networks is
impractical. The end-to-end delay is a time interval from the
transmission of a frame from its source end station until it
has arrived at the destination end station. Besides, OMNeT++
and NeSTiNg simulation records are frame-based as they use
source-based traffic configuration. Therefore, these simulation
frameworks lack a built-in functionality for extraction of the
TSN flow metrics. Python scripts are suggested by OMNeT++
official technical guide in [12] to retrieve insights from the
simulator’s vector (VEC) files. In order to acquire end-to-
end delays of the frames, a python script is devised, which
constitutes the final sub-module of the framework as shown
in Fig. 2. The script traces the vector files, records the
transmission and reception times of each flow, and calculates
the flow’s end-to-end delay. In addition to the aforementioned
python script, the final module in the proposed framework also
features an OMNeT++ integrated sub-module to extract the
maximum end-to-end delays of the flows. The flow extraction
component of the plug-in also takes the VEC files containing
the transmission and reception times of the flow as input.
Thereafter, a CSV file is created with the maximum end-to-end
delays corresponding to each TSN flow.

IV. IMPLEMENTATION

This section presents a proof-of-concept implementation of
the proposed framework. As shown in Fig. 3, the automated
configuration module performs configurations both in manual
and automatic mode. There are several configuration algo-
rithms that can be utilized to obtain an optimum network
timing behaviour. The proposed framework is implemented as
a TSN plugin, which is integrated to the NeSTiNg simulator
using the OMNeT++ Java application programming interface
and the plug-in development environment in OMNeT++.

A. Framework Configuration Files

1) Pre-simulation Configuration: There is a set of files to
be configured before starting the simulation process. The auto-
matic configuration of the pre-simulation process is performed
by configuring the following model files.

• Simulation initialization (INI) file: this file contains simu-
lator specific configuration options. This file can be either
edited directly or modified in a wizard that is embedded in
the OMNeT++ IDE [13]. Our framework uses this file to
obtain the Media Access Control (MAC) addresses of the
end stations and processing delays in TSN switches.

• Network Topology Description (NED) file: the component
modules, sub-modules, channels and overloaded component
types can be defined in this file. The OMNeT++ IDE allows
setting this file in visual or non-visual modes [13]. Our
framework reads the NED files and obtains information such
as network topology and available paths from the source end
station to the destination end station.

• XML schedule file: transmission schedules for ST flows
must be defined and inserted in the NeSTiNg simulator using
XML files. Our proposed framework enables automated
schedule generation, editing of schedules by a GUI and
visualization of each frame in a flow by accessing this file.

• XML routing file: this file statically defines the paths to
forward traffic according to the destination end station’s ad-
dress. The XML routing file defines the forwarding database
for each switch. By using information from the NED file,
such as topology and available paths from the source end
station to the destination end station, the framework specifies
fixed routes, thereby generating the XML routing file.

• CSV flow file: the set of data received from the traffic gen-
erator module is saved in this file. The file contains flows’
profiles such as queue index, frame size and destination end
station, which are used in the automated mode to further
configure the ST flows in the XML schedule file.

• CSV gate synthesis file: this file contains the set of data
received from the schedule synthesizer, including offset of
frames on each egress link. Accordingly, this file can be
used in the automated mode to set the switch gate states in
the XML schedule file.
2) Post-simulation Files: The NeSTiNg simulator generates

vector outputs of the network event parameters and their
occurrence times after the simulation. These files include:
• Results’ vectors (VEC): after the simulation, the events and

time stamps are recorded in the vector files. The proposed
framework’s post-simulation analysis module uses these files
to obtain end-to-end delay and deadline miss metrics.

• Event logs file (elog): This file stores the frame transmission
traces that can be visualized in OMNeT++ by the GUI. We
refer the reader to [5] for further details about the elog files.

• End-to-end delay and deadline miss log (CSV): this file
contains interpreted results using the simulator’s VEC files.
This file includes the end-to-end delays and the number of
deadline misses experienced by the flows.

B. Configuration of Inputs and GUI Layout

The automatic configuration process supports two modes: (i)
manual; and (ii) automatic. Fig. 3 demonstrates the flowchart
of the manual and automated configuration input methods. In
the manual mode, the GUI allows the user to select input
files from the work space. The manual mode requires the

775

Fig. 3: Automated flow and gate configurator flowchart.

NeSTiNg’s INI and NED files, as well as two empty XML
files to be loaded in the fields; “INI file”, “NED file”, “XML
schedule file” and “XML routing file”. Manual entries for
schedule configurations are saved in the associated XML file.
The routing database is saved in the XML routing file based
on existing physical channels, as described in the NED file.
The GUI allows to append the flow path entries through the
“TSN flows insertion” function, which enables to select the
source and destination end stations, as well as the specification
of static route among the switches within the path from
the source end station to the destination end station. After
specifying the flow path, other flow attributes can be viewed
and adjusted in the “TSN flows overview” function. These
attributes include offset, flow size and a dedicated switch
queue for the flow. Furthermore, physical characteristics of
end stations and switches can be adjusted by calling the “Node
Editor GUI” and “Switch Editor GUI” functions. The “TSN
switch gate state GUI” function enables inserting the gate
states for each port in a TSN switch. Besides, it assists to
adjust and modify the gate configurations by visualizing the
gate states specified for a frame scheduled on each link. The
results of the manual GUI are finally saved in the XML files

that are used by the simulation framework.
In the automated configuration mode, insertion of the flow

and gate-state configurations can be performed automatically
by loading well-defined flow entry and gate-state data files,
which must be provided by “.CSV flows” and “.CSV Synthe-
sis” fields in the main GUI along with the rest of the con-
figuration files. We note here that the automated configuration
data are prepared by preceding automated sub-modules: traffic
generator and schedule synthesizer. Therefore, the automated
mode removes the risk of human errors that can be introduced
with manual configurations. After the automatic generation
of the schedules and routing configurations, the output can
be visualized, inspected and adjusted by the manual GUI.
The save sub-module translates configurations to the NeSTiNg
compatible syntax. We refer the reader to [14] for further
details about the implementation and user manual of the GUI.
If the proposed framework is to be integrated to a simulation
platform other than NeSTiNg, the save sub-module can be
adapted to comply with the syntax of the simulation platform.

V. EVALUATION

To evaluate the proposed framework we designed and
configured a TSN network as illustrated in Fig. 4, which

776

is a hybrid ring-mesh topology connecting 12 end stations
through 5 TSN switches. The network speed on each link is
set to 1 Gbit/s. We assume that there are no processing delays
in the TSN switches. Furthermore, the delays on the links
themselves are considered negligible. We generated 40 flows
of the scheduled traffic class in TSN. The periods of the flows
are chosen from the set [1000 µs, 2000 µs, 5000 µs], which
complies with the set of recommended periods in industrial
automotive systems, as presented in the real-world automotive
benchmarks [15]. We assume implicit deadlines for the flows,
i.e., the deadline of each flow is equal to its period. The length
of each frame in all the flows is considered to be equal to the
maximum size of the Ethernet frame, i.e., 1542 Bytes. The use
case topology is input to the schedule synthesis module that
implements a schedule synthesis algorithm presented in [6].
This module is executed for approximately 20 hours on an
HP Elite Book 820 running Ubuntu OS 18.04.4 LTS with CPU
Core i5, 4 * 2.20 GHz Cores and 16 GB RAM.

Fig. 4: The use-case topology.

We can take advantage of the GUI’s visualization feature
to view these large configuration files, as demonstrated in
Fig. 5. The results of the schedule synthesis module provide
offsets to start the transmission of the flows. Hence, there are
40 offset values to set for each ST flow. In case there are
multiple flows from a source end station to multiple destination
end stations, we need to calculate the transmission offsets
of frames transmitted from the same source end station up
to the hyper period of the flows. Therefore, there are going
to be 118 frame entries to configure all ST flow instances.
Fig. 5(a) shows the first instance of each flow from ES1.
There are four flows from ES1 to the destination end stations
ES7, ES8, ES9 and ES10 with periods 2000 µs, 1000 µs,
2000 µs and 5000 µs, respectively. On the link from ES1 to
SW0, [ES1, SW0], the offsets of frames are calculated for the
duration of the hyper period, i.e., 10000 µs. In other words, it
is required to calculate 10 offsets for a flow that has a period
of 1000 µs within a hyper period of 10000 µs. Moreover, the
switch gate states are specified by the scheduled time stamps to

(a) Flow and path visualization with TSN Plug-in.

(b) Switch gate visualization by the GUI.

Fig. 5: Configuration visualizations with TSN Plug-in.

enable deterministic transmission of the ST flows from egress
ports of the network switches. Table I shows the total number
of gate entries to be configured in the switches for duration
of the hyper period of each link. Since different ST flows
with different profiles might be scheduled on the same link,
the lengths, periods, and egress gate synthesis cycle should
take hyper period of all the periodic ST flows on the link into
account.

TABLE I: Configuration complexity.

Switches Total gate
state changes

Switch 0 135
Switch 1 21
Switch 2 80
Switch 3 123
Switch 4 74

The next step, after obtaining the configuration parameters,
is to insert them to the topology created in the NeSTiNg
simulator using the plug-in module. Accordingly, setting up
the frame’s offsets and gate states by the plug-in GUI is
quite a tedious task, hence we use the plug-in’s automated
mode sub-module and apply the configuration data files from
the traffic generator and schedule synthesis modules. Con-

777

sequently, 867 lines for configuration of scheduled frames,
1964 lines of gate states configurations, and 77 lines for
the switches’ routing tables were automatically generated to
setup the NeSTiNg simulator. Fig. 5(b) demonstrates the gate
states of port “1” at the switch “SW0” connected to ES2
up to the hyper period (5000 µs) of the link from SW0 to
ES2. The Queue8 column in Fig. 5(b) shows the reserved
ST transmission slots on corresponding link. The size of the
frame transmission slot is set to 20 µs because the complete
transmission of an Ethernet frame on a link with 1 Gbit/s speed
is 13 µs. Hence, we assume a 7 µs safety margin for the ST
frame to pass through the link and the switch. We assume that
open state is the default value of the switch gates. Furthermore,
there are five 20 µs slots on the link, [SW0, ES2], which are
reserved for transmission of the five ST frames. This is the link
where the traffic from the source end stations ES3, ES5, ES7,
ES10, ES11 are transmitted, each with a period of 50000 µs.

The framework’s final module, enables extraction of end-
to-end delays of all ST flows after running the simulation for
a desired amount of time. The feasibility of the schedules is
inspected by checking if the maximum end-to-end delay of
each flow is less than or equal to the flow period. Table II
presents the maximum end-to-end delay for each ST flow
retrieved by the results extraction sub-module, where TX and
RX indicate the source end station and the destination end
stations. The results confirm the feasibility and determinism
of the offline schedule.

TABLE II: End-to-end delay per transmitted flow.
ID TX RX Period(µs) Delay(µs)
1 ES0 ES6 5000 52
2 ES1 ES7 2000 52
3 ES1 ES8 1000 52
4 ES1 ES9 2000 92
5 ES1 ES10 5000 37
6 ES2 ES3 1000 93
7 ES2 ES7 1000 82
8 ES3 ES1 5000 81
9 ES3 ES2 5000 64

10 ES3 ES4 2000 24
11 ES3 ES5 2000 37
12 ES4 ES3 5000 53
13 ES4 ES8 1000 65
14 ES4 ES9 1000 92
15 ES4 ES11 5000 53
16 ES5 ES0 2000 1888
17 ES5 ES2 5000 72
18 ES5 ES4 2000 37
19 ES5 ES6 5000 54
20 ES6 ES5 5000 64

ID TX RX Period(µs) Delay(µs)
21 ES6 ES7 5000 34
22 ES6 ES8 2000 24
23 ES7 ES1 5000 57
24 ES7 ES2 5000 77
25 ES7 ES4 1000 72
26 ES8 ES0 2000 158
27 ES8 ES10 1000 72
28 ES8 ES11 5000 75
29 ES9 ES0 5000 970
30 ES9 ES1 5000 53
31 ES9 ES3 5000 37
32 ES10 ES2 5000 61
33 ES10 ES5 5000 73
34 ES10 ES6 1000 112
35 ES10 ES7 5000 136
36 ES10 ES11 5000 37
37 ES11 ES2 5000 61
38 ES11 ES7 1000 97
39 ES11 ES9 5000 45
40 ES11 ES10 5000 49

VI. CONCLUSIONS

This paper proposed an automated modular framework to
facilitate automated offline scheduling, pre-simulation con-
figurations and interpretation of simulation results in TSN
networks. The proposed framework addresses the challenge
of configuring synthesized schedules to the state-of-the-art
simulation framework, namely NeSTiNg. The proposed frame-
work automatically translates the TSN flow schedules into the
simulation platform’s compatible syntax without any manual
intervention. The proposed framework is implemented as an
open-source TSN plugin, which is integrated to the NeSTiNg
simulation framework. The applicability of the framework

is demonstrated by automatically configuring a large TSN
network and performing the simulation-based evaluation of the
network. The evaluation results show the feasibility of the pro-
posed framework for TSN networks. Furthermore, the results
demonstrate the interoperability of the proposed framework
with the state-of-the art simulation frameworks for TSN. The
benefits of the proposed automated configuration framework
are magnified in the case of large TSN networks, where
manual configurations can be error prone, time-consuming
and very challenging to perform, thus rendering the existing
methods impractical for industrial applications. As the future
work, we aim at integrating the proposed framework with
existing industrial tools for modeling of automotive embedded
systems that use TSN for on-board network communication.

ACKNOWLEDGEMENT

The work in this paper is supported by the Swedish Govern-
mental Agency for Innovation Systems (VINNOVA) through
the projects DESTINE and PROVIDENT, and by the Swedish
Knowledge Foundation (KKS) through the projects DPAC,
HERO & FIESTA. The authors thank all industrial partners,
especially Arcticus Systems, Volvo CE, and HIAB Sweden.

REFERENCES

[1] “IEEE Time-Sensitive Networking (TSN) Task Group.” [Online].
Available: https://1.ieee802.org/tsn

[2] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, 2019.

[3] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, June 2019.

[4] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, “NeSTiNg: Simulating IEEE Time-sensitive Networking
(TSN) in OMNeT++,” in Proceedings of the 2019 International Con-
ference on Networked Systems. IEEE, March 2019.

[5] D. Hellmanns and J. Falk. (2020) Nesting - network simulator for time-
sensitive networking. [Online]. Available: https://gitlab.com/ipvs/nesting

[6] S. S. Craciunas, R. S. Oliver, and T. AG, “An overview of scheduling
mechanisms for time-sensitive networks,” Proceedings of the Real-time
summer school (ETR), 2017.

[7] H. Farzaneh et al., “A modeling framework to facilitate schedule
synthesis of time-sensitive networking,” Ph.D. dissertation, Technische
Universität München, 2019.

[8] A. C. T. dos Santos, B. Schneider, and V. Nigam, “TSNSCHED:
Automated schedule generation for time sensitive networking,” in 2019
Formal Methods in Computer Aided Design. IEEE, 2019.

[9] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop, “AVB-aware routing
and scheduling of time-triggered traffic for TSN,” IEEE Access, 2018.

[10] M. Pahlevan, R. Obermaisser, “Genetic algorithm for scheduling time-
triggered traffic in time-sensitive networks,” in 23rd International Con-
ference on Emerging Technologies and Factory Automation, 2018.

[11] J. Jiang, Y. Li, S. H. Hong, A. Xu, and K. Wang, “A time-sensitive
networking (TSN) simulation model based on OMNET++,” in 2018
IEEE International Conference on Mechatronics and Automation, 2018.

[12] (2020) OMNeT++ technical articles - result analysis with python.
[Online]. Available: https://docs.omnetpp.org/tutorials/pandas/

[13] A Quick Overview of the OMNeT++ Intgrated Development Environ-
ment, 2020, https://doc.omnetpp.org/omnetpp/IDE-Overview.pdf .

[14] A. Bergström, Automatic Generation of Network Configuration in Sim-
ulated Time Sensitive Networking (TSN) Applications, Master Thesis,
School of Innovation, Design and Engineering, Mälardalen University,
Sweden, 2020.

[15] S. Kramer, D. Ziegenbein, and A. Hamann, “Real World Automotive
Benchmarks for Free,” in 6th Int. Workshop on Analysis Tools and
Methodologies for Embedded and Real-Time Systems, 2015.

778

		2022-08-24T13:45:11-0400
	Preflight Ticket Signature

