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ABSTRACT
The IEEE Time-Sensitive Networking (TSN) standards’ amendment
802.1Qbv provides real-time guarantees for Scheduled Traffic (ST)
streams by the Time Aware Shaper (TAS) mechanism. In this paper,
we develop offline schedule optimization objective functions to
configure the TAS for ST streams, which can be effective to achieve
a high Quality of Service (QoS) of lower priority Best-Effort (BE)
traffic. This becomes useful if real-time streams from legacy proto-
cols are configured to be carried by the BE class or if the BE class is
used for value-added (but non-critical) services. We present three
alternative objective functions, namely Maximization, Sparse and
Evenly Sparse, followed by a set of constraints on ST streams. Based
on simulated stream traces in OMNeT++/INET TSN NeSTiNg simu-
lator, we compare our proposed schemes with a most commonly
applied objective function in terms of overall maximum end-to-end
delay and deadline misses of BE streams. The results confirm that
changing the schedule synthesis objective to our proposed schemes
ensures timely delivery and lower end-to-end delays in BE streams.
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1 INTRODUCTION
Recent functionality advancements and innovation in the appli-
cations of embedded systems, especially in the automotive and
automation domains, require high-bandwidth and low-latency com-
munications. To meet these communication requirements, the IEEE
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802.1 TSN task group1 took an initiative to develop a set of Time-
Sensitive Networking (TSN) standards over the switched Ethernet.
Notable features of TSN include: clock synchronization (IEEE Std
802.1AS-2020) [17], Time-Aware Shaper (TAS) for offline scheduled
time-triggered traffic (IEEE 802.1Qbv), Credit-based Shaper (CBS)
and bandwidth reservation (IEEE Std 802.1Qav), frame preemp-
tion (IEEE Std 802.1Qbu), among others, which are rolled into the
IEEE 802.1Q-2018 standard [16].

The queuing and forwarding mechanism in the TSN standards
distinguishes between critical and non-critical traffic classes. The
critical traffic classes are defined as Classes A and B. Where Class
A has a higher priority than Class B. Whereas, the non-critical
traffic class is defined as the best-effort (BE) traffic class with the
lowest priority. In addition, the scheduled traffic (ST) enhancement
in the TSN standard defines an ST traffic class with strict temporal
isolation. The temporal isolation is achieved by a gate mechanism
following the TAS mechanism, where the traffic transmission is
allowed only when the gate for a queue is open. The gates operation
follows a pre-defined gate control list (GCL) that repeats period-
ically defining which gate on the queues should be open at each
time slot.

Currently the use of TSN in industrial systems is gaining a signif-
icant momentum [19, 20]. However, redesigning and replacing the
existing communication systems is a relatively costly process. For
example, many industrial systems use different Ethernet commu-
nication protocols, e.g., EtherCAT2, with very different interfaces
and message format compared to that of TSN. Therefore, one of
the main challenges is to replace the existing networks with TSN
making as little as possible changes in the end stations. Within this
context, a non-trivial task is to map the existing network traffic to
the TSN traffic classes such that the previous properties, e.g., jitter
and delay, still hold. One of the straightforward solutions is to map
all time-critical traffic into the ST traffic class to ensure the low
jitter and low-latency transmission for the traffic. However, there
are traffic that do not have strict deadlines to meet, yet achieving an
acceptable level of Quality of Service (QoS) for them is expected. For
example, diagnostic signals, network status checks and software
update signals are among less time-critical traffic, which usually
have soft real-time requirements. Frequent violation of the tim-
ing requirements for such traffic can hamper the corresponding
functionalities. These type of traffic are often mapped to the BE
class that requires no change in the network interfaces of the end
stations.

Many works in the literature address the problem of ST traffic
scheduling, which is known as an NP-hard problem. Most of the
solutions formulate the problem as an optimization problem (es-
sentially a bin-packing problem) that is solved by defining a set
1https://1.ieee802.org/tsn/
2https://www.ethercat.org/
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of constraints, e.g., [4, 26]. The main requirement for the solver in
these solutions is to provide a feasible schedule taking jitter and
delay of the ST traffic into account. There are also a few works that
consider different optimization goals such as maximizing porosity
on the network links [25] to allow fast schedule updates in the case
of faults in the network. There are a few solutions based on meta-
heuristic algorithms, e.g., the solution in [22] that uses the genetic
algorithm. Nevertheless, the proposed ST scheduling solutions in
the literature strictly consider the timing requirements for the ST
traffic, with an exception in [15] that considers schedulability of
classes A and B while defining a routing mechanism for the ST
traffic. To the best of our knowledge, none of the existing ST sched-
uling solutions take into account QoS for the BE traffic that has soft
real-time requirements, e.g., legacy diagnostic signals or network
status checks. In this paper, we propose a solution to synthesize
feasible schedules for the ST traffic, while providing a high level
of QoS for the BE traffic. To the extent of our knowledge, existing
analytical schedulability analysis methods do not provide support
for schedulability analysis of low priority BE traffic in IEEE TSN
standards. Therefore, we use a simulation method to evaluate our
proposed solutions.

The main contributions in this paper are as follows:

• we mathematically model and present optimization constraints
to consider the QoS for the BE traffic;

• we propose new optimization objective functions to obtain a
feasible ST schedule while improving the QoS of the BE traffic;

• we show that the commonly used objective function (minimizing
the ST offsets) in the existing works leads to poor QoS for any
lower priority traffic class; and

• we evaluate the proposed solutions with a set of experiments
using the OMNeT++ simulation platform. We use Z3 SMT/OMT
solver to implement the proposed constraints and objective func-
tions. Then, we compare the proposed solutions with the existing
solutions to show their effectiveness in providing a high level of
QoS for the BE traffic.

2 BACKGROUND AND RELATEDWORK
2.1 The gate mechanism in TSN
The IEEE 802.1Qbv standard (rolled into IEEE 802.1Q-2018) defines
a gate mechanism following the TAS mechanism to allow the ST
traffic being transmitted without any interference. According to this
mechanism, the class types are recognized by a 3-bit Priority Code
Point (PCP) value in the IEEE TSN 802.1Q compatible frame headers.
The example in Figure 1 illustrates a simplified gate mechanism,
in which Q0, Q1, Q2 and Q3 correspond to classes ST, A, B and
BE, respectively. A Gate Control List (GCL) contains an array of
time-stamped vectors to control the output of each queue. The list
is repeating periodically. At the specified times in the time-stamped
vector, the data in the vector is sent to the gate drivers, which enable
or disable the transmission of the associated class. In this example,
the value "1" represents open state to enable transmission, while
"0" closes the gate to disable the transmission in certain queues.
Note that only classes A and B undergo the CBS shaper.

Figure 1: Gate mechanism block diagram.

2.2 Schedule Synthesis
The schedule synthesis approaches can be grouped into two branches
as shown in Figure 2: (i) Satisfiability Modulo Theorems (SMT) and
Optimization Modulo Theorem (OMT), and (ii) heuristics and meta-
heuristic approaches. Most of the works in schedule synthesis were
using SMT solvers to search all the possibilities for optimal schedule.
SMT solvers are automated theorem provers to prove satisfiability
and validity of first-order logical statements by examining each
possible combination of variables in the search space. The out-
put of the SMT solvers is a random value for the SMT variable
that satisfies the specified constraints. To improve scalability, some
works have either used a new type of optimized SMT solver called
OMT or Mixed-Integer Programming (MIP). The OMT Solvers have
become popular as they enable optimizing SMT Solver variables
based on user-defined objective functions and allow to solve linear
optimization problems over satisfiable SMT formulas [1].

The majority of the previous works were concentrated on the
synthesis of feasible schedules for the high priority critical traffic
based on a work by Steiner et al. [29]. In the series of works by Craci-
unas et al. [2–6, 27] the network was modelled by directed graphs
that indicate relations between end stations and switches via links.
In [4], schedule optimization constraints were derived from TTEth-
ernet scheduling constraints to address the specifications of IEEE
802.1Qbv. The generic constraints of the solution include: frame,
link, stream and end-to-end delay timing constraints. Schneider et
al. [7, 28, 31] introduced an SMT-based ST schedule synthesizer tool,
named TSNSched, which modeled TSN network via data structures.

Steiner et al.[30] introduced five strategies to enable porous
(or blank) schedule synthesis. These strategies include: a) a priori
schedule variation to force blank schedules, b) a posteriori schedule
variation with less computational time-complexity, c) combined
schedule variation in order to assure the least overhead, d) interpre-
tation approach to change the timeline into equal time slots defining
minimum size for blanks, and e) combined schedule variation with
the above steps [30].

In the same line of research, the work by Pozo et al. [25] inves-
tigated the generation of porous link schedules, which can help in
achieving extra time spans to react to possible link failures. The pro-
posed method takes advantage of a link reparation post-processing
procedure to find alternative paths that do not pass through the
failed links. In addition, the work by Gavrilut et al. [15] proposed
a two-stage approach for scheduling ST traffic considering an
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Figure 2: Overview of the schedule synthesis approaches.

optimum routing for the ST traffic, while taking into account the
schedulability of the AVB traffic (i.e., A and B).

A series of works considered different approaches than only fit-
ting the ST traffic into time-slots. For example, the work by Reusch
et al. [26] proposed a window-based schedule synthesis approach
that maximizes the bandwidth allocated for lower priorities. Their
solutions require exclusion of deadline miss constraints for the
ST schedule. Therefore, a post-processing iterative optimization
heuristic was presented to shift slack windows in a manner to save
deadline misses due to schedules made by a gap synthesis. There-
after, the proposed method is evaluated by the worst-case delay
analysis proposed in [33]. Another similar work by Mi et al. [21]
considered two-stage gap synthesis. The purpose of the work is
to create porous schedules to reduce the transmission delay and
jitter of other real-time traffic. Moreover, the works by Hashemi
et al. [10–14] adopted an ontology-based approach, utilizing logic
programming in Prolog programming language, to show properties
and the relations between network entities and components.

Considering the solutions based on heuristics and meta-heuristic
we can find several works in the research community. For instance,
the work by Pahlevan et al. [22–24] investigated heuristic/GA-based
solutions to overcome time consuming constraint solving processes.
However, the proposed solution was not compared with the SMT-
based solutions. Moreover, Dürr et al. [8] proposed a Tabu search-
based approach to find feasible schedules of the ST traffic. The
authors proposed a bandwidth utilization by means of scheduling
the ST frames close to each other.

Although there are several solutions to schedule ST traffic in
TSN networks, as reviewed above, most of them considered only

the timing properties of the ST traffic in their scheduling solutions.
The exception is the work in [15] and [25], where in the former
the schedulability of AVB traffic was considered and in the latter
repairability of the links after failures was the main aim. In our
work, we propose a set of constraints and three objective functions
to schedule the ST traffic while improving the QoS of the BE traffic
in the network considering that they have soft real-time properties
due to legacy network support. We base our solution on the work
presented in [4].

3 SYSTEM MODEL
The systemmodel considered in this paper is inspired by the system
model in [4]. Note that the paper focuses only on the ST and BE
traffic classes. The network model, as shown in Figure 3, is repre-
sented by a directed graph, G(V ,L). The vertices V represent end
stations and switches in the network. The links, represented by L,
are modeled as two-directional edges connecting a set of vertices. A
two-directional link between the end stationsva ∈ V andvb ∈ V is
represented by [va ,vb ] ∈ L. The link attributes are denoted by the
tuple ⟨speed,d,mt⟩, where the parameters speed , d andmt indicate
the link’s speed, link propagation delay and macrotick, respectively.
The model is flexible such that each link can accept different speed
and propagation delay. The macrotick serves for the scalar gran-
ularity of the schedule time-line. For example, macrotick of 1µs
indicates that the schedule time unit is in the order of microseconds.

The set of streams in the network are represented by S . A uni-
cast stream with ID i belonging to S is represented by si , i.e.,
si ∈ S . The path taken by a stream from the source end station,
vs , to the destination end station, vd , through a set of switches is
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Figure 3: System model parameters.

shown by si .path = [[vs ,vs+1], . . . , [vd−1,vd ]], where [vs ,vs+1]
and [vd−1,vd ] indicate the first and last links along the path of the
stream. The stream’s attributes are defined by the tuple, ⟨e2e, Size,T ,p⟩.
Where, e2e is the timing constraint on the end-to-end delay of the
stream, i.e., the maximum end-to-end delay shall not exceed the
value assigned to the e2e attribute. Size is transmission time of
the stream on the link, which is the time it takes to transmit a full
stream on the link in the scale of macroticks. The parameters, T
and p, are stream’s period and priority, respectively. The parameter,
p, obtains a value from the set p = {BE, ST }, where BE shows the
best-effort class and ST shows the ST class. Note that in case of BE
class, T is the minimum inter-arrival time and e2e is the deadline
for the BE stream.

A streammay containn number of frames, i.e., si = { fi,1, . . . , fi,n }.
A frame at the hop between the end station or switch va and the
end station or switch vb is represented by f

[va,vb ]
i, j , where the first

subscript i represents the stream ID and the second subscript j
represents the frame ID. Because a stream may contain large data,
according to the Ethernet protocols, the data has to be fragmented
into frames. The maximum allowed Ethernet frame is limited by
the Maximum Transmission Unit (MTU). In this model, each stream
can be fragmented into several frames. Note that if the stream size
does not exceed the MTU size, then all data is fitted in one frame.
Each frame has the attributes ⟨T ,Len,ϕ⟩, where T is the frame’s
period inherited from the parent stream. The transmission time of
the frame over the link [va ,vb ] is represented by f

[va,vb ]
i, j .Len. If

a stream belongs to the class ST , f [va,vb ]i, j .ϕ represents the offset
of jth frame of the ith stream on the link [va ,vb ]. There are no
offsets for BE frames, hence ϕ is not applicable for the BE frames.
Moreover, each BE frame is assumed to arrive at the start of its
period, which in turn generates the worst-case situation for the BE
frames. The parameters for the frames belonging to a ST stream
and their attributes are shown in Figure 3 for one period of the
stream si over one link [va ,vb ].

4 NETWORK CONSTRAINTS
In this section, we first give an overview of the existing optimiza-
tion to schedule ST traffic in TSN networks, then we present the
proposed additional constraints to improve the QoS of the BE traffic
in TSN networks.

4.1 Existing Constraints
We base our work on the ST schedule synthesis constraints in [4]
that defines six different constraints to find a feasible schedule.
These constraints include: (i) frame constraint, (ii) link constraint,

(iii) stream constraint, (iv) end-to-end constraint, (v) stream iso-
lation constraint, and (vi) frame isolation constraint. Below, we
present these constraints in detail.

4.1.1 Frame Constraint. This constraint ensures that the offset of
each ST frame is at or after time zero. Also, the transmission of the
frame must be finished at or before the start of its next period.

∀si ∈ S, si .p = ST ,∀[Va ,Vb ] ∈ L,∀f [Va,Vb ]i, j ∈ s
[Va,Vb ]
i :

(f
[Va,Vb ]
i, j .ϕ >= 0) ∧ (f

[Va,Vb ]
i, j .ϕ <= f

[Va,Vb ]
i, j .T − f

[Va,Vb ]
i, j .Len)

(1)

4.1.2 Link Constraint. The constraint on links guarantees that only
one frame at a time can be transmitted on a link within the path
taken by the stream;

∀si , sj ∈ S, si .p = ST , sj .p = ST , i , j,∀[Va ,Vb ] ∈ L,

∀f [Va,Vb ]i,k ∈ s
[Va,Vb ]
i ,∀f [Va,Vb ]j,l ∈ s

[Va,Vb ]
j ,

∀α ∈ [0, lcm(si .T ,sj .T )
si .T − 1],∀β ∈ [0, lcm(si .T ,sj .T )

sj .T − 1] :

(f
[Va,Vb ]
j,l .ϕ + (β × f

[Va,Vb ]
j,l .T ) + f

[Va,Vb ]
j,l .Len ≤

f
[Va,Vb ]
i,k .ϕ + (α × f

[Va,Vb ]
i,k .T ))∨

(f
[Va,Vb ]
i,k .ϕ + (α × f

[Va,Vb ]
i,k .T ) + f

[Va,Vb ]
i,k .Len ≤

f
[Va,Vb ]
j,l .ϕ + (β × f

[Va,Vb ]
j,l .T ))

(2)

where, α and β are indices to calculate the offsets of multiple frames
within the hyper periods of the streams. The hyper period is calcu-
lated by the function lcm() that receives the streams pair by pair as
inputs and gives the least common multiple of the frames’ periods.

4.1.3 Stream Constraint. In order to constrain the orderly transmis-
sion and reception of frames within a stream through the path, the
sequence of the frames should be considered according to Eq. (3);

∀si ∈ S, si .p = ST ,∀[Va ,Vx ], [Vx ,Vb ] ∈ L,

f
[Va,Vx ]
i, j ∈ s

[Va,Vx ]
i , f

[Vx ,Vb ]
i, j ∈ s

[Vx ,Vb ]
i :

((f
[Vx ,Vb ]
i, j .ϕ × [Vx ,Vb ].mt) − [Vx ,Vb ].d − δ ) ≥

((f
[Va,Vx ]
i, j .ϕ + f

[Va,Vx ]
i, j .Len) × [Va ,Vx ].mt)

(3)

The stream constraint is dependent on synchronization of clocks
in the source and destination end stations. Where, δ is the synchro-
nization factor, denoting the worst-case drift between the clocks.
We assume identical clocks in the source and destination end sta-
tions.

4.1.4 End-to-end Constraint. In order to meet the timing require-
ments of ST streams, the ST streams must not be delivered after
their deadlines. Therefore, we need to ensure that the stream’s
last frame is delivered to the destination end station before the
end-to-end deadline. Additionally, the constraint in Eq. (4) takes
into account the delay of the links in the path to the destination
end station and the worst-case difference between macro ticks of
the local clocks of the source and destination end stations. Note
that fi,1 and fi, |si | denote the first and last frames in the stream,
si . Moreover, [vs ,vs+1] defines the first link in the stream from the
source while [vd−1,vd ] represents the last link in the stream to
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the destination end stations. Hence, f [vd−1,vd ]i, |si |
represents the last

frame in the stream si at the destination end station.

∀si ∈ S, si .p = ST , fi, j ∈ si :
(f

[vs ,vs+1]
i,1 .ϕ × [vs ,vs+1].mt) + si .e2e ≥

(f
[vd−1,vd ]
i, |si |

.ϕ + f
[vd−1,vd ]
i, |si |

.Len) × [vd−1,vd ].mt

(4)

4.1.5 Stream Isolation Constraint. The transmission of multiple
streams via the same queue can cause variations in the arrival times
of the frames belonging to different streams. To ensure deterministic
arrival of the streams, the offsets of all frames in a stream must
be constrained to be less than the offset of the first frame in every
other stream. Figure 4 shows an example of the case where stream
isolation constraint is applicable. In this example, two streams si
and sj are transmitted to the end station va forwarding to the same
end station vb . The stream isolation constraint ensures that when
the first frame of a stream, sj in this example, is scheduled for
transmission no other frames of other streams, si in this example,
is scheduled until all frames of sj are dispatched. In Figure 4, for
simplicity of illustration we assumed that the periods of si and sj
are the same, hence the hyper period of them are the same as their
periods. This constraint is presented in Eq. (5).

∀[Va ,Vb ] ∈ L,∀s[Va,Vb ]i ∈ S, s
[Va,Vb ]
j ∈ S, si .p = ST , sj .p = ST , i , j,

f
[Va,Vb ]
i,k ∈ s

[Va,Vb ]
i , f

[Va,Vb ]
i,l ∈ s

[Va,Vb ]
i ,

∀α ∈ [0, lcm(si .T ,sj .T )
si .T − 1],∀β ∈ [0, lcm(si .T ,sj .T )

sj .T − 1] :

((f
[Va,Vb ]
j, |sj |

.ϕ × [Va ,Vb ].mt) + f
[Va,Vb ]
j, |sj |

.Len + (β × sj .T ) + δ ≤

(f
[Vx ,Va ]
i,1 .ϕ × [Vx ,Va ].mt) + (α × si .T ) + [Vx ,Va ].d)∨

((f
[Va,Vb ]
i, |si |

.ϕ × [Va ,Vb ].mt) + f
[Va,Vb ]
i, |si |

.Len + (α × si .T ) + δ ≤

(f
[Vy,Va ]
j,1 .ϕ × [Vy ,Va ].mt) + (β × sj .T ) + [Vy ,Va ].d)

(5)

Figure 4: Stream isolation constraint.

4.1.6 Frame Isolation Constraint. In order to relax the stream iso-
lation constraint by allowing frame interleaving between different

streams an alternative constraint can be defined. The frame isola-
tion constraint allows interleaving of frames from different streams
considering that there are only frames of one stream in the queue at
a time. When two source end stations Vx and Vy transmit streams
via one or more shared switches within their path, the interleaving
of frames in the same queue of the shared switch can cause non-
deterministic delays of frames. For example, a stream with a higher
period can cause long delays to a shorter period stream in case in-
terleaving of frames occurs between these two streams. The frame
isolation constraint, shown in Eq. (6), isolates the transmission of
every frame of different streams in the queue. In other words, it
guarantees that the offset plus the transmission time of each frame
belonging to a stream (si transmitted from nodeVx ) is smaller than
or equal to the offset of each frame belonging to another stream (sj
transmitted from node Vy ) or vice versa. This scenario is depicted
in Figure 5 assuming that both si and sj have the same periods,
hence the same hyper period on link [va ,vb ] with two possible
schedules where one of them shows an interleaving of frames from
the two streams.

∀[Va ,Vb ] ∈ L,∀s[Va,Vb ]i ∈ S, s
[Va,Vb ]
j ∈ S, si .p = ST , sj .p = ST , i , j,

f
[Va,Vb ]
i,k ∈ s

[Va,Vb ]
i , f

[Va,Vb ]
i,l ∈ s

[Va,Vb ]
i ,

∀α ∈ [0, lcm(si .T ,sj .T )
si .T − 1],∀β ∈ [0, lcm(si .T ,sj .T )

sj .T − 1] :

((f
[Va,Vb ]
j,l .ϕ × [Va ,Vb ].mt) + f

[Va,Vb ]
j,l .Len + (β × sj .T ) + δ ≤

(f
[Vx ,Va ]
i,k .ϕ × [Vx ,Va ].mt) + (α × si .T ) + [Vx ,Va ].d)∨

((f
[Va,Vb ]
i,k .ϕ × [Va ,Vb ].mt) + f

[Va,Vb ]
i,k .Len + (α × si .T ) + δ ≤

(f
[Vy,Va ]
j,l .ϕ × [Vy ,Va ].mt) + (β × sj .T ) + [Vy ,Va ].d)

(6)

Figure 5: Frame isolation constraint.

4.2 Proposed Constraints
In this section, the problem that motivates the contributions of this
paper is presented by an example, shown in Figure 6. In Figure 6(a)
time stamps [0,T0], [T1,T2] and [T3,T4] are reserved for ST frames.
The time slots represented by white boxes in Figure 6(a) indicate the
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times when the gates are open for transmission of BE frames. Based
on this schedule, ST frames that are packed subsequently within the
time slot [T1,T2], cause deadline miss for the BE frame, BE3. On the
other hand, Figure 6(b) shows the sparsification of ST frames within
time stamp [T1,T2] from the previous example into new scheduled
time stamps [T1,T2], [T3,T4] and [T5,T6]. Consequently, with a few
more gate state changes, the BE frame meets its deadline.

Figure 6: Example of schedule bin-packing and the effect on
schedulability of BE traffic.

In order to obtain sparsity in the ST schedules in favor of BE
frames, we propose a notion of slack after each ST frame trans-
mission. Slack is a time interval after transmission of a ST frame,
during which no ST frame can occupy the link’s bandwidth. This
prevents back-to-back transmission of ST frames [30]. We denote
the slack per frame per link by f

[va,vb ]
i, j .slack . Figure 7 illustrates

the proposed slack property of a frame per link. The goal is to find
a feasible ST schedule such that a desired slack per frame per link
is obtained. The realization of slacks for all frames leads to imple-
menting spaces between ST frames. The size of slack is defined by
the proposed constraints.

Figure 7: Illustration of the proposed slack property of a
frame per link.

4.2.1 Porous Link Constraint. In order to incorporate the slack, the
existing link constraints should be modified. The link constraint
presented in Eq. (2) only restricted the timing overlap and placement
of subsequent frames on the link. The constraint presented in Eq. (2)
should be adapted into Eq. (7); the reason for this modification is
that the original link constraint only restricted the timing overlap
and subsequent placement of frames on the link.

∀si , sj ∈ S, si .p = ST , sj .p = ST ,∀[Va ,Vb ] ∈ L,

∀s[Va,Vb ]i , s
[Va,Vb ]
j , i , j, f

[Va,Vb ]
i,k ∈ s

[Va,Vb ]
i , f

[Va,Vb ]
i,l ∈ s

[Va,Vb ]
j ,

∀α ∈ [0, lcm(si .T ,sj .T )
si .T − 1],∀β ∈ [0, lcm(si .T ,sj .T )

sj .T − 1] :

(f
[Va,Vb ]
j,l .ϕ + (β × f

[Va,Vb ]
j,l .T ) + f

[Va,Vb ]
j,l .Len + f

[Va,Vb ]
j,l .slack ≤

f
[Va,Vb ]
i,k .ϕ + (α × f

[Va,Vb ]
i,k .T ))∨

(f
[Va,Vb ]
i,k .ϕ + (α × f

[Va,Vb ]
i,k .T ) + f

[Va,Vb ]
i,k .Len + f

[Va,Vb ]
i,k .slack ≤

f
[Va,Vb ]
j,l .ϕ + (β × f

[Va,Vb ]
j,l .T ))

(7)

4.2.2 Slack Size Constraint. The slack size constraint asserts the
allowed slacks size for each frame scheduled on the link. The slack
must be greater than or equal to zero but less than or equal to the
difference between the frame period and its transmission time as
follows:

∀si ∈ S, si .p = ST ,∀[Va ,Vb ] ∈ L,∀f [Va,Vb ]i, j ∈ s
[Va,Vb ]
i :

(f
[va,vb ]
i, j .slack ≥ 0)∧

(f
[va,vb ]
i, j .slack ≤ f

[va,vb ]
i, j .T − f

[va,vb ]
i, j .Len)

(8)

The size of slacks on a link must be correlated with the num-
ber of ST frames scheduled on the link. Eq. (9) is the summation
formulation of the frame slacks on each link. Figure 8 presents an
example of the slack spaces after two frames from different streams
scheduled on the link [Va ,Vb ].

∀si ∈ S, si .p = ST ,∀[Va ,Vb ] ∈ L,∀f [Va,Vb ]i, j ∈ s
[Va,Vb ]
i :

hopSum[va,vb ] =
∑

f
[va,vb ]
i, j .slack (9)

Figure 8: The allowed range for slacks on a link.

4.2.3 Hop Slacks Constraint. In order to bound the total amount
of slacks allowed on the link, the constraints in Eq. (10) and Eq. (12)
enforce the valid ranges of hopSum. TheminPorosity parameter is
considered as the lower bound for hopSum summation formulation,
as shown in Eq. (10).

∀si ∈ S, si .p = ST ,∀[Va ,Vb ] ∈ L,∀f [Va,Vb ]i, j ∈ s
[Va,Vb ]
i ,

hopSum[va,vb ] ≥ minPorosity
(10)

where,minPorosity can be any value from 0, however, if the value is
selected between 0 and the frame size, assuming that the preemption
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is disabled, the slack after each frame is not enough for transmission
of any BE frames.

Moreover, the sparse spaces on each link need to be specified per
link, since the load of BE streams, converged with ST frames, varies
on different links. The ST load on the link [va ,vb ] is specified by
[va ,vb ].utilST and is calculated by the equation:

∀[Va ,Vb ] ∈ L,∀si ∈ S, si .p = ST :

[Va ,Vb ].utilST =
∑ s

[va ,vb ]

i .Size

s
[va ,vb ]

i .T

(11)

Furthermore, the upper bound of the hopSum is presented in
another constraint to ensure that slacks do not cause the porous
link schedule to exceed the hyper period. Eq. (12) ensures that
hopSum is less than or equal to the total load that is left after the
scheduled time for the ST frames on the link.

∀si ∈ S, si .p = ST ,∀[Va ,Vb ] ∈ L,∀f [Va,Vb ]i, j ∈ s
[Va,Vb ]
i ,

hopSum[va,vb ] ≤ lcm(S) × (1 − [va ,vb ].utilST )
(12)

4.2.4 Equal Slack Constraint. Equal slack is an optional constraint
to evenly distribute slacks on a link by adjusting equal slack sizes, as
defined by Eq. (13). Note that the optimization time can be shortened
by constraining equal-sized slacks due to limiting the options for
the ST schedules. As a result, this constraint enables a selection
trade-off between the freedom to choose ST schedules, enhancing
arrival of periodic BE and optimization time.

∀si , sj ∈ S, si .p = ST , sj .p = ST ,∀[Va ,Vb ] ∈ L,

∀f [Va,Vb ]j,l ∈ s
[Va,Vb ]
j ,∀f [Va,Vb ]i,k ∈ s

[Va,Vb ]
i , i , j :

f
[va,vb ]
i,k .slack = f

[va,vb ]
j,l .slack

(13)

4.3 Objective Functions
Minimizing the offsets of the ST frames’ offsets is the objective
function that is considered in all the previous works concerning
the schedule synthesis, such as the work in [8]. The minimization
objective function, given in Eq. (14), generates offsets that pack the
ST frames to the beginning of the schedule subject to the generic
constraints presented in Section 4.1.

minimize
∑

∀[va,vb ]∈L

∑
∀si ∈S

∑
∀fi, j ∈si

f
[va,vb ]
i, j .ϕ

subject to : {(1), (2), (3), (4), (5)OR(6)}
(14)

The minimization approach can be convenient to secure both
schedulability and timeliness of ST traffic. Some of the lower pri-
ority streams, including the BE, may be constrained by timing
requirements. In order to address these requirements, three new
objective functions are proposed as alternatives to the widely used
minimization optimization objective function.

4.3.1 Maximization. This optimization objective function still packs
ST frames together, but in contrast to the minimization objective
function, it schedules the transmission of the ST frames as close as
possible to their deadlines. As the number of ST frames increases,
the ST reserved time slots on the link also increases. This can in-
crease the maximum end-to-end delay of the BE frames, which in
turn, may cause deadline misses. If we maximize the ST schedules,

we allow the majority of open bandwidth for BE frames in the be-
ginning of the schedule, increasing the likelihood of transmission of
the BE frames before the scheduled transmission of the ST frames.
This can improve the schedulability of the BE frames that may have
deadlines shorter than those of the ST frames. Eq. (15) defines the
maximization objective function subject to the generic constraints
presented in Section 4.1.

maximize
∑

∀[va,vb ]∈L

∑
∀si ∈S

∑
∀fi, j ∈si

f
[va,vb ]
i, j .ϕ

subject to : {(1), (2), (3), (4), (5)OR(6)}
(15)

4.3.2 Sparse Schedule. In order to increase the porosity of the
ST schedules on each link, we propose sparse objective function
by Eq. (16). The sparse objective function adjusts the ST offsets
implicitly by maximizing the sum of slacks between subsequent
frames, that are scheduled on the same link. As a result, the ST
frames are scheduled in a sparse manner to create unequal slacks for
the transmission of the lower priority frames. The sparse objective
function is subject to the generic constraints as well as the newly
proposed constraints.

maximize
∑

[va,vb ]∈L

hopSum[va,vb ]

subject to : {(1), (3), (4), (5)OR(6), (7), (8), (10), (12)}
(16)

4.3.3 Evenly Sparse Schedule. The proposed sparse schedule ob-
jective function can be manipulated by an additional constraint, in
Eq. (17), to create evenly distributed ST frames, or in other words
equally-sized slacks on the links.

maximize
∑

[va,vb ]∈L

hopSum[va,vb ]

subject to : {(1), (3), (4), (5)OR(6), (7), (8), (10), (12), (13)}
(17)

In crux, the minimization and maximization objective functions
send ST frames with less number of gate state change, by packing
the frames in shared transmission slots. On the other hand, these
constraints do not consider slacks between ST frames, thus they
cause long queuing times for BE frames either in the beginning
or at the end of the hyper period. The sparse and evenly sparse
objective functions take advantage of new optimization variables
that define slacks after each ST frame on a link. This causes porosity
in bandwidth used by the ST frames on each link. Consequently,
the BE frames can be fitted in adequate slacks created along the
scheduled times for ST frames. The sparse and even sparse objec-
tive functions also provide the freedom to squeeze the ST schedule
search space by constraining the size of slacks, which is simulta-
neously beneficial to reduce the optimization time and control the
distribution pattern of the slacks.

5 EXPERIMENTAL EVALUATION
In this section, we present the evaluation setup followed by a
simulation-based experimental evaluation to show the effects of
proposed objective functions on the QoS of the BE frames.
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5.1 Evaluation Setup
In order to perform the evaluation, we consider amulti-hop network
topology that consists of six end stations. The end stations are
connected via two TSN switches as shown in Figure 9.

Figure 9: Evaluation setup.

To evaluate the QoS of BE frames we use the NeSTiNg TSN sim-
ulation tool [9], which is based on the OMNeT++/INET framework.
NeSTiNg facilitates the simulation of networks that are based on
the TSN standards. It supports all traffic classes and the TAS mech-
anism. We developed a plug-in3 for the NeSTiNg simulation tool
that facilitates the insertion of streams, configurations of the gates’
states setting and extraction of the simulation results.

In this experiment, we generate random sets of streams, where
each stream contains one framewith themaximum size of 1542 Bytes
(including the frame header). The source and destination end sta-
tions of the streams are selected randomly among the stations
shown in the network topology (Figure 9). The streams’ periods are
selected randomly from the set [200, 500, 1000, 2000, 5000] µs to
generate a realistic data set according to the real-world automotive
benchmarks [18]. We assume that the network speed is 1 Gbit/s in
this example. Using the network speed, the transmission time of
each frame with 1542 Bytes of frame size is equal to 12.336 µs . The
link macrotick for all links is assumed to be 1 µs and we neglect the
link propagation delay. The generated streams are selected among
ST and BE classes. Three different scenarios are considered in this
experiment, where 10 sets of streams are randomly generated in
each scenario. Each set contains a mix of BE and ST streams. The
three scenarios are as follows:
• Scenario (1) : 10 random streams with 0.5 probability of ST
streams and 0.5 probability of BE streams.

• Scenario (2) : 10 random streams with 0.6 probability of ST
streams and 0.4 probability of BE streams.

• Scenario (3) : 10 random streams with 0.8 probability of ST
streams and 0.2 probability of BE streams.
To schedule the ST streams we consider the four proposed opti-

mization objectives including: (i) minimization; (ii) maximization;
(iii) sparse; and (iv) evenly sparse schedule; In the case of sparse
and evenly sparse objective functions,minPorosity is assumed to
be zero to make the schedules as flexible as possible. Note that
increasing theminPorosity value can reduce the number of feasible
schedules, while at the same time it can produce larger slacks for
transmission of BE frames. The network is simulated according to
3https://gitlab.com/abbelini/TSN-plugin

the schedules generated by the four different objective functions.
The two main metrics, measured during the simulations, include
the maximum end-to-end delays and deadline misses of the BE
frames.

The objective functions and constraints are implemented in
Python and solved by Z3’s [32] OMT optimization module. The
optimizations and simulations were run on an HP Elite Book 820
running Ubuntu OS 18.04.4 LTS with CPU Core i5, 4 × 2.20 GHz
Cores and of 16 GB RAM.

5.2 Results discussion
The maximum end-to-end delay of the generated BE streams are
measured during the simulation given that the ST streams are
scheduled according to the schedules generated by the proposed
objective functions. Figure 10 illustrates the measured maximum
end-to-end delays of the BE streams for the three scenarios, i.e,
Scenario (1) in Figure 10a, Scenario (2) in Figure 10b, and Scenario
(3) in Figure 10c.

Each bar in the graph shows the measured maximum end-to-end
delays of all BE streams in the 10 generated sets by highlighting
the minimum, average and maximum of these values. For instance,
in Scenario (1) 10 sets of streams were generated randomly where
each set consists of 10 streams. The chance of the streams becoming
ST or BE were 50% in this scenario. Therefore, we have 10 sets with
possibly 5 streams per set belong to the BE class. Consequently,
the Sparse bar in Figure 10a, for example, shows the maximum
end-to-end delays of possibly 50 BE streams, where the average,
maximum and minimum values of the measured maximum end-
to-end delays among these 50 BE streams are 50.6µs , 98.3µs and
24.5µs , respectively.

As it can be seen in the figure, the minimization objective func-
tion gives the worst results compared to the other objective func-
tions with maximum value of 101.2µs in Scenario (1), 102.5µs in
Scenario (2) and 90.2µs in Scenario (3). Note that all previous works
on the ST scheduling commonly apply the minimization objective
function. In the first glance, it can be seen that the maximization
objective function outperforms the other objective functions. The
main reason is that when the ST schedules are using the time-slots
close to their deadlines, more spaces will be available for transmis-
sion of possible BE frames. This is in contrast to the minimization
objective function that fills the time-slots in the beginning of the ST
schedules, leaving spaces for the BE streams after the transmission
of ST streams that can potentially result in larger end-to-end delays
for the BE frames. However, there are also few extreme cases in
which the measured maximum end-to-end delays of BE streams are
very high when using the maximization objective function. This
is specifically the case in Scenario (2) and Scenario (3). According
to the results, the maximization objective function in Scenario (2)
resulted in a maximum delay for one BE stream up to 112.2µs and
in Scenario (3) up to 212.2µs . These large end-to-end delays are
not seen in the sparse and evenly sparse objective functions. The
main reason to have these cases with the maximization objective
function is that, similar to the minimization objective function, it
can pack the ST frames together and prevent transmission of any
BE frame for a long duration of time depending on the number of ST
frames with close periods. However, the sparse and evenly sparse
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Table 1: Number of deadline misses.

Objective functions Total deadline misses
Scenario (1) Maximization 0

Minimization 2
Evenly sparse 1
Sparse 1

Scenario (2) Maximization 99
Minimization 102
Evenly sparse 2
Sparse 1

Scenario (3) Maximization 0
Minimization 0
Evenly sparse 0
Sparse 0

objective functions can generate porosity in the ST schedules that
can be sufficiently used for the BE frames’ transmission preventing
the long blocking time by the ST frames. Therefore, although on
average, the maximization objective function performs better than
the rest, the sparse and evenly sparse objective functions have their
own benefits in various scenarios, e.g., the one discussed above.

We also measured the deadline misses of BE streams in the gener-
ated scenarios. We consider implicit deadlines, i.e., the deadline for
each BE stream is assumed to be equal to its period. Table 1 shows
the total deadline misses among all generated BE streams within
each scenario and with each objective function. It can be clearly ob-
served that the minimization objective function can produce more
deadline misses compared to the other objective functions, while
the sparse and evenly sparse objective functions resulted in fewer
deadline misses for the BE streams. For instance, in Scenario (2) the
number of deadline misses with minimization and maximization
objective functions are 102 and 99, respectively, whereas it is 1 and
2 for sparse and evenly sparse objective functions, respectively.
Scenario (3) shows no deadline misses, which can be because of less
number of generated BE streams, i.e., 20% chance for the generated
streams to be in BE class.

Although the time that it takes to find a feasible and optimized
schedule depends on the implementation and the utilized solver,
we measured this time in all the experiments. As mentioned before,
we used Z3 SMT/OMT solver for this purpose. The average times
for each scenario and objective function are shown in Figure 11.
An interesting observation is that both sparse and evenly sparse
objective functions are much faster to give an optimized ST sched-
ule compared to both minimization and maximization objective
functions. For instance, in Scenario (3) the amount of time that it
takes to deliver an ST schedule using the sparse objective function
in average was 4.75 seconds. For the same scenario, the amount
of time that it takes to deliver an ST schedule using the minimiza-
tion and maximization objective functions were 314.34 seconds and
1153.52 seconds, respectively.

6 CONCLUSION AND FUTUREWORKS
In this paper, we proposed a set of constraints and objective func-
tions to schedule ST traffic in TSN networks considering the QoS of
the BE traffic. We argued that in many industrial applications one of
the main challenges is to map the legacy traffic into the TSN traffic
classes and often the soft real-time traffic are mapped into the BE
class. Therefore, a required level of QoS for the BE traffic should be
obtained while ensuring a feasible schedule for the hard real-time
ST traffic. The solutions proposed in this paper generate feasible
schedules for the ST traffic and at the same time significantly reduce
the end-to-end delays and the number of deadline misses for the
BE traffic. Using a set of experiments, based on the NeSTiNg TSN
simulation tool, we showed that the proposed objective functions
outperform the state-of-the-art ST scheduling solutions that focus
on minimizing the offsets of the ST traffic. We also showed that
the feasible ST schedules can be obtained much faster with the pro-
posed solution compared to the state-of-the-art solutions. Although
the main focus of the solutions proposed in this paper was on the
QoS of BE traffic, we believe that it can also affect positively on the
performance of classes A and B. However, a deeper investigation
remains for the future as the NeSTiNg simulation tool currently
does not support the TAS and CBS mechanisms at the same time.
We also plan to investigate the effect of enabling preemption on
the quality of service of the BE traffic. Another future research

(a) Scenario (1). (b) Scenario (2). (c) Scenario (3).

Figure 10: Maximum end-to-end delays of the BE streams under various objective functions per traffic distribution case.
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(a) Scenario (1). (b) Scenario (2). (c) Scenario (3).

Figure 11: Duration of schedule synthesis for each distribution pattern per objective function.

direction is to develop schedulability analysis for the BE traffic to
analytically show the performance of the proposed solutions.
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