
Hosting functional safety applications in factory
networks through Time-Sensitive Networking

Sascha Gent∗, Pablo Gutiérrez Peón†, Thomas Frühwirth∗‡, and Dieter Etz∗‡
∗Austrian Competence Center for Digital Production (CDP), Seestadtstrasse 27 / 16, A-1220 Vienna, Austria

Email: sascha.gent@acdp.at
†TTTech Computertechnik AG, Schoenbrunner Strasse 7, A-1040 Vienna, Austria

Email: pablo.gutierrez-peon@tttech.com
‡Institute of Computer Engineering, TU Wien, Treitlstrasse 1-3 / 4. Floor / E191-03, A-1040 Vienna, Austria

Email: thomas.fruehwirth@tuwien.ac.at and dieter.etz@tuwien.ac.at

Abstract—Transmitting time-critical data like safety applica-
tions over the traditionally not real-time capable Ethernet stan-
dard (IEEE 802.1) requires modifications. Compared to devices,
individually connected by signal wires, ”network-attached” safety
components offer more flexibility in their usage by making their
data available to all factory entities instead of just one counter
partner.

openSAFETY – open-source standard for safety-related appli-
cations – enables functional safety, that can be integrated in any
network with deterministic behavior. Time-Sensitive Networking
(TSN) – a set of IEEE standards that can be applied to
IEEE 802 networks – offers the possibility to run Ethernet traffic
with real-time requirements without the traditional problems of
Ethernet like frame dropping or timing issues.

This paper proofs the concept of these two technologies being
a suitable combination to transmit time-critical safety data and
non-priority traffic within a single Ethernet-based network. Sev-
eral tests were made to show how TSN can host an openSAFETY-
application in different scenarios including background traffic.
The results show adequate performance of this system in terms of
reliability under worst possible conditions like external broadcast
traffic blocking the entire bandwidth.

Index Terms—TSN, openSAFETY, real-time factory network,
safety application, scheduling, priority classes.

I. INTRODUCTION

Modern industrial applications usually contain several inde-

pendent machines carrying out different tasks in a collaborat-

ing manner to achieve a final goal (see Fig. 1). A typical

example would be the production of a specific product or

the packaging process of such including – in a simple and

illustrating factory – two conveyor belts (line 1 and 2) and a

robot. Line 1 transports final products to the robot while line 2

provides the packaging. These ”Pick-and-Place”-applications

can be found in most modern factories, no matter what kind of

industry they are related to. They all have in common the need

for coordination between collaborating machines, especially

regarding safety functions protecting human staff. Focusing

on a collaborating production line like scenario 1 shows that

if one of these emergency mechanisms is activated the whole

production line has to react, which therefore requires hard-

wiring between all machines.
This is inflexible in case of factory re-design, re-certification

and the reason for increased use of Ethernet-based safety net-

works. Connecting each component to the factory network is

enough to enable central monitoring of all safety mechanisms.

There are two big problems with this approach:

1) Vendor dependencies for standards and components

2) Timing requirements in safety networks

Using a vendor dependent ecosystem like Siemens

PROFINET/PROFIsafe or B&R s POWERLINK solves the

problems above, but only to a certain extent.

Line 1 Line 2

Robot

Ethernet-based factory network

Fig. 1. Scenario 1 with network-attached safety components

Both offer safety implementations based on aged Ethernet

standards with the downside of not being compatible to each

other or to any other standards. The result is a rather inflexible

factory network again, tightly bound to vendor s equipment

and the application it was constructed for.

This paper shows how TSN (Time-Sensitive Networking)

represents a vendor independent alternative to mentioned en-

trenched solutions. It is a set of network standards that offers

real-time capabilities for Ethernet networks to host safety

applications, like those of the open-source openSAFETY-

standard besides other traffic in a busy factory network without

losing the real-time requirements.

II. TECHNICAL BACKGROUND

This section deals with detailed information about TSN,

openSAFETY and their combination to realize real-time

safety-traffic.

A. openSAFETY

Functional safety in industry describes a system that ensures

the absence of unacceptable risk concerning physical injury

and damage to the health of people either directly or indirectly

(through damage to property or the environment) [1]. In

order to integrate a variety of safety features (for example

an emergency stop button or light-barriers) into an industrial

application without individual hard-wiring, a data network

has to be established. Real-time capabilities are additionally

required in case of parallel usage of this network for non-

priority traffic.

openSAFETY is a bus-independent communication protocol

[2] used to transmit information that is crucial for safe

operation of machinery. It offers the possibility of a flexible

industrial system where safety related elements can be added

and removed on demand just by connecting/disconnecting

them from the network and some changes in its configu-

ration. openSAFETY uses the black channel principle; its

characteristics are completely independent from the underlying

transport layer. All safety-oriented mechanisms are therefore

implemented on application level.

Fig. 2. Example of an openSAFETY-topology

A safety related topology realized with openSAFETY is

based upon three basic building blocks:

1) Safety Node (SN) A SN is a device or just a single

safety feature of such and identified by a unique physical

address, the Unique Device Identification (UDID), and

a logical address, the openSAFETY Address (SADR)

which ranges from 1 to 1023. Device specific firmware,

the Unique Device Identification (UDID), and the Device

Vendor Information (DVI) are stored permanently on the

device.

2) Safety Domain (SD) Each SN is part of a

openSAFETY-network, referred to as safety domain (SD)

[3] which consists of up to 1023 SNs.

3) Safety Configuration Manager (SCM) One SN

within a SD has to act as SCM which provides a central

configuration service. It manages the assignment and

verification of the SADRs, the verification of unique

UDIDs, verification of the expected parameters and DVI

of the SNs, and sends a periodic life guard signal to all

SNs within the SD.

Verification-
process

Verification-
process

Operational-
state

Safe-
state

e.g Life guard signal lost

e.g. Connection to SCM
re-established

Fig. 3. Simplified state machine of a SN

Fig. 2 shows the topology of a typical openSAFETY-

network. Several SNs within one SD where one specific SN

acts as the SCM. Simple applications do not require more than

one SD which covers the entire network. In more complex

situations it is possible to introduce more SDs to split the

safety network/application into task related sections – e.g.

emergency stop buttons which are actively pressed and for

example supervisory components like light barriers.

The application itself and corresponding parameters will

be stored on the SCM only or directly in the corresponding

device, depending on its capabilities. After power-on, the SCM

loads its parameters from memory. Afterwards it switches

to operational-state. When switching to operational-state, the

SCM starts the UDID/SADR verification of all configured

nodes. If the verification of a SN is successful, it will be set

to operational-state.

Operational SNs get a cyclic life guard signal to keep them

in operational-state (see state machine in Fig. 3, simplified to

just life guard signal related state switches). Whenever this

signal does not arrive in time the affected SN will switch

from operational-state to safe-state. This indicates that the

connection is lost – how this safe-state looks like depends

on the application itself. It could be safe to cut the power-

connection completely to a machine or to just activate the

emergency breaks on a robot.

Referring to the setup used later in testing (see section

V-A), a very basic topology with just two SNs – one acting

as the SCM – transmits, besides some single frames of

minor importance, 4 periodic messages between its entities:

2 request-messages from the SCM to the safe-I/Os – IDs 0x001

and 0x004 – and 2 follow-up-messages in the reverse direction

– IDs 0x002 and 0x003 (see Fig. 10). This type of communica-

tion between a master and a slave is called node-polling and it

describes a connection where the master always requests the

data before the slave sends it back in a follow-up-message.

The first pair of a request- and response-messages carry a

heartbeat-signal and the second one the data itself.

0 data1

1 data2

6 data3

2 data

Priority - class

…
.

GATE

GATE

GATE

Tr
an

sm
iss

io
n

Se
le

ct
io

n
&

 O
ut

pu
t P

or
t

In
pu

t P
or

t

Queues for traffic-classes 0…7

Schedule

Fig. 4. Message queuing and gate mechanism in a TNS-enabled switching device with 802.1Qbv

B. TSN

TSN-networks have special requirements concerning the

order in which messages and data-packages are transmitted

between network components. TSN is a set of different IEEE

standards [4] – each of them offering functionalities that can

be applied to IEEE 802 networks, including the well-known

802.3 ”Ethernet” – rather than being a single standard itself.

The combination of standards may differ between applications

and have to meet given requirements like time-critical com-

munication or reliability.

INGRESSINGRESS

EGRESSEGRESS 7
6

5

4
3
2

1
0

7
6

5

4
3
2

1
0

7
6

5

4
3
2

1
0

Priority
-

Queues

7
6

5

4
3
2

1
0

Priority
-

Queues

EGRESS 7
6

5

4
3
2

1
0

Priority
-

Queues

Physical Ports

Physical Ports

Switching Mechanism

Port-related
Buffer

Fig. 5. Ingress and Egress of a TSN-enabled switching device

There are applications with different criticality that can be

assigned to priorities in network frames. The IEEE ”802.1Qbv

- Enhancements for Scheduled Traffic” standard [5] is based on

a queuing-system positioned between INGRESS and EGRESS

of a TSN-enabled switching device (see Fig. 5). This system

includes 8 queues with controllable gates on their outgoing

side (see Fig. 4). In order to prioritize certain traffic, the header

of theses frames has to be modified. Within the 802.1Q-Tag

of Ethernet frames, 12 bits at the end of the Tag-Control-

Information are reserved for the VLAN-ID [6]. According

to this VLAN-ID, the package will be added to one of the

8 queues – normally a first-in-first-out system – to wait for

its transmission to the next hop or to its final destination.

Note that even though TSN offers other standards to achieve

comparable results, Qbv is a suitable solution due to its low

complexity.

Since more than 8 different VLAN-IDs are possible a

manual mapping has to be done beforehand that tells the

switch which ID goes to which queue and therefore represents

which priority class – like for example VLAN-ID 20 assigns

to queue 5 or VLAN-ID 122 goes to queue 1. Gates can be in

one of two possible states: open or closed. Switching the state

is based on a predefined communication schedule created by

the user, which should guarantee the required time-slots and

bandwidth for high-priority packages in their corresponding

queues. The implementation of such a schedule is a compli-

cated task since a lot of parameters and requirements have to

be taken into account. This is especially the case with multi-

hop networks where several links have to be scheduled over

multiple hops. There are already scheduling solutions like [7]

that configure this TSN mechanism easily. The transmission

selection sits on the very end of the switch and is responsible

for selecting the next frame out of one of the queues to be

sent through the output-port.

It is only possible to select frames from queues with gates in

open-state – defined by the schedule – for further transmission.

If more than one gate is in open-state, the transmission

selection mechanism has to choose the next frame to be sent

according to the predefined selection process. For example, it

could always send frames from the highest priority queue first

as long as it is not empty.

Scheduled traffic introduces an important topic in TSN-

networks with more than one scheduled switching point: clock

synchronization. If several devices within one network run

time-critical and precise schedules, they have to have the same

notion of time. Since this paper features just one TSN-switch

in the following sections, ”IEEE 802.1AS” [5], which is a

standard dealing with this topic should be mentioned here but

will not be discussed in detail.

Safety is the major topics of this paper, so fault tolerance

of TSN should also be discussed briefly. The “Path Control

and Reservation” amendment (IEEE 802.1Qca) calculates the

shortest route for frames through a network with a cost-

based system where the shortest route represents the one with

the lowest costs. When discovering two or more paths with

equal costs a copy of the data frame is sent on each of

them. With proper tuning to the mechanism it is possible

to implement a second optional route (e.g. next cheapest)

for replicated frames permanently. The mechanisms described

in the “Frame Replication and Elimination for Reliability”

amendment (IEEE 802.1CB) then are responsible to discard

duplicated data frames taking different paths at the switches

in which their routes merge.

III. STATE-OF-THE-ART

While basics about openSAFETY and TSN were discussed

in previous parts, this section deals with references to projects

that have a relevant connection to this paper.

The demand for an integrated safety architecture within

existing factory networks is high due to its promised advan-

tages. [8] has a similar approach to this paper and focuses

on using OPC Unified Architecture (OPC UA), instead of

openSAFETY, alongside with TSN – all vendor-neutral tech-

nologies – to achieve this goal. It shows how to define a

safety information model for OPC UA enabling devices in

future developments to ”offer” their safety functions to the

network and therefore make them easier accessible. While both

of these papers mainly cover two different priority classes –

priority or not – a third class is discussed in [9]. Besides

Time-Triggered (TT) and Best-Effort (BE) communication,

Audio-Video-Bridging (AVB) streams with bounded end-to-

end latency are introduced. It proposes a GCL synthesis

approach based on a Greedy Randomized Adaptive Search

Procedure, which takes the AVB-traffic into account, such that

both TT and the AVB-traffic are schedulable.

Future tasks will be dealing with the re-configuration of

these safety networks since all safety-features integrated into

a factory have to follow the changes of flexible adapting

production lines. Both, [10] and [11], contribute their informa-

tion to this topic, but with different approaches. [10] focuses

on a dynamic configuration process for the IEEE 802.1Qcc

standard by implementing a fully centralized model for the

dynamic configuration of safety-critical systems using the

Riverbed Modeler simulation framework. Therefore, especially

the re-configuration of TSN in a changing network topology is

discussed and how to recognize these changes as fast as pos-

sible. In contrast to that, [11] focuses on reducing expensive

downtime of machines while re-configuration by presenting a

method of self-configuration. It shows how the requirements

for such a process look like and emphasis how it allows a

convenient re-configuration of safety functions. The potential

for mistakes compared to manual configuration would be

reduced significantly while also offering the possibility to

configure safety features directly on the machine.

IV. HOSTING OPENSAFETY WITH TSN

The capabilities of TSN described in section II show its po-

tential to be a suitable platform for openSAFETY-applications.

802.1Qbv should act as an illustration of one possible that

fits the mentioned requirements. Both of its functionalities

– scheduling and prioritization – enable the network to fast

forward important data like the openSAFETY-messages and

reserve free bandwidth for periodic scheduled traffic. This

paper will focus on Qbv, but it is worth mentioning that

there are various TSN-standards supporting the demands that

openSAFETY has to its transportation medium. QCB [4] is a

promising candidate for future integration since it describes a

way to increase reliability. Frames are duplicated and sent over

different paths through the network which creates a second

virtual connection between two openSAFETY-endpoints. If

one of these connections breaks or one of the duplicated

frames gets lost there is no impact to the safety application

itself because of openSAFETY�s black channel principal. In

addition the TSN-frame-replication feature described in II-B

adds another layer of fault tolerance to the underlying com-

munication technology.

The topology of openSAFETY described in section II-A is a

virtual one since a single physical device can contain multiple

SNs - one for each safety feature for example. Therefore it

does not have to be exactly the same as the physical topology

defined by Ethernet. It is possible to define VLANs and

configure the schedule on the devices� port to support the

logical topology openSAFETY requires.

V. TEST ENVIRONMENT

After summarizing relevant theory, this section introduces

the testing setup used for a practical evaluation under realistic

circumstances. It contains details about its topology, included

components and all software implementations running on the

hardware, including the required configuration and scheduling

of the network.

A. Topology and Components

All tests were performed on a setup shown in figure 6.

It contains two separate networks – 1 and 2 – and a TSN-

capable switching device (MFN-100 by TTTech, blue lines) in

between which acts as the network-connector. Both networks

are equipped with industrial CPUs (B&R-X20-series indus-

trial CPU (X20CP1585)). An additional B&R-X20-series-

component is connected to CPU 1, which acts as the SCM and

CPU 1

SCM

CPU 1

SCM

CPU 1

SCM

TSN-Switch
(MFN-100)

BC1 BC2

TSN TSN

Network 1 Network 2

CPU 2

Safe
I/Os

CPU 2

Safe
I/Os

CPU 2

Safe
I/Os

Disturber

TSN

Fig. 6. Topology and components of testing-setup

B&R-X20-series-safe-I/O-ports connected to CPU 2 represent

a SN constantly communication with the SCM.

To enable TSN a buscoupler (B&R X20-series buscouplers

(X20BC008T-E01)) for each CPU is introduced – BC1 and

BC2 – to realize the connection to the TSN-network. All

connections run the Gigabit-Ethernet standard shown with grey

and blue lines. The topology of the network therefore includes

just one switching point, the MFN-100 where traffic has to

be organized according to the TSN-standards. The schedule

needed for this is stored on the MFN-Switch.

B. Test application

The hardware runs an openSAFETY-application. Its behav-

ior and feedback helps to visualize reliability and functionality

during the testing process. This includes checking the status

of an emergency-stop-button via a B&R safe-input and the

illustration of its value with a LED, powered by a B&R safe-

output. Figure 6 shows how the safety application is split

over both networks. The safe I/Os are located in the second

network, while the SCM is connected to the first one. By

choosing a rather short openSAFETY-cycle time of 500μs for

the final test, the system is kept very sensitive to disturbance

showing any transmission errors immediately. Therefore, not

losing the openSAFETY-connection in this test between these

two networks and their components at any point in time

while stressing the network is an indicator for a successful

implementation.

Testing was performed in 2 steps: basic functionality test

of TSN-gate-closing mechanism and using TSN as a black

channel for the openSAFETY-application running between

SCM and safe I/Os – both tests will be covered in the results-

section (see section VI).

C. Background traffic - ”Disturber”

The Disturber is an application running on a separate

computer and is introduced into the network to flood it with

data/background traffic. This application is directly connected

to the TSN-switch via the computer it is running on and

broadcasts data packages which is non priority traffic into the

network and therefore to each networking device. The amount

of data can be set to any value between 0 an the maximum

bandwidth the network standard is capable of – in this case 1

Gbit/s.

D. VLAN-Tagging

Since both networks in the test-setup are not TSN-capable,

the buscouplers BC1 and BC2 are used to tag and untag

priority traffic coming from the networks.

BC1

TSNNetwork 1

Set VLAN-ID to 5

Reset VLAN-ID to 0

Fig. 7. VLAN-tagging and untagging of priority traffic within the buscouplers

Figure 7 shows - with BC1 as example - how each bus-

coupler sits at the border between two network sections: the

standard Ethernet networks including the components that run

the openSAFETY-application and the TSN-capable part with

the TSN-switch. Each frame coming from either network 1 or

2 entering one of the buscouplers will be tagged with VLAN-

ID 5 in its header which is mapped to queue 5 in the TSN-

switch representing the ”priority queue” in this setup instead of

queue 0 which contains standard/non-priority traffic. In reverse

direction - coming from the TSN-switch into network 1 or 2 -

the frames will be untagged meaning VLAN-ID will be reset

to 0 so that they can be processed by the CPU. VLAN-tagged

traffic would be dropped by the CPU since it is not assigned

to a specific VLAN.

E. Scheduling

Focusing on the TSN-switch in this setup shows that incom-

ing frames can have two different VLAN-IDs in their headers:

- 0 for standard/best-effort traffic or

- 5 for priority traffic

The goal of this system is to reserve bandwidth for im-

portant periodic traffic within a network that also transmits

other traffic with low priority. Reserved bandwidth in terms

of TSN can be translated to a specific time slot within the

TSN-schedule.

100μs 66μs 100μs 100μs66μs 66μs

Schedule cycle-time (498μs)

all gates open only gate 5 open (priority traffic)

Fig. 8. TSN schedule for priority traffic

A TSN-schedule can be designed individually and perfectly

tailored to the requirements of an application. Normally, a

special tool takes care of creating a schedule but since the

setup in this paper is that simple it was done by hand. The

schedule cycle time describes the total time span in which

gates can be opened and closed according to a programmed

pattern before a new cycle and therefore also the pattern starts

again from the beginning (see Fig. 8). The test setup runs a

498μs schedule cycle time starting with all gates open (grey)

for 100μs before all of them but gate 5 (priority traffic) will

be closed for 66μs (blue) to ensure all priority frames can

be transmitted within their timing requirements. This pattern

repeats two more times before the cycle time ends and the

schedule starts again. All chosen values are based on empirical

tests to maximize the time span in which all gates are open

and minimize the time of traffic restrictions without losing a

priority traffic frame. The chosen cycle time is kept as close

as possible to the cycle time of the openSAFETY-application

– which is set to 500μs – to prevent the schedule from

overlapping more than one openSAFETY-cycle.

VI. RESULTS

This section covers the detailed structure and results of both

tests already mentioned in section V-B.

A. Test 1: Basic functionality test

The basic functionality test starts with CPU 1 sending single

data-packages containing a timestamp and a package-ID to

CPU 2 over the TSN-Switch. By creating a schedule for the

gates that closes all gates at specific point in time, the loss of

connection could be tested (see Fig. 9).

This figure shows the time gap between two consecutively

arriving packages by subtracting the time stamp of the previous

package from the latest. A total number of 5000 packages were

sent. Since an interval of 2ms is set on the sending side, most

of the packages also arrive in this interval on the other side.

Package 95 was the last one to make it through the TSN-switch

before all gates were closed which can be seen in the time

gap between ID 95 and ID 96 that jumps up to 10s – the time

for which the gates were closed before opened again. After

reopening the packets that have queued up in the meantime are

sent immediately in a burst, therefore the time gap between

46
10

46
20

46
30

46
40

Package-ID

Ti
m
e
ga
p
to
pr
ev
.[
s]

0.002

0.00001

0.0001

0.01

0.1

1

10

0 50 96 15
0

Gates closed Connection
re-established

Fig. 9. Test of gate-closing mechanism

them drops significantly to around 100μs. Packages 127 to

4624 (90% of total amount) were dropped by the TSN-switch

– no data points for these IDs – due to the blocked gates and

filled up buffer of the queues. From package 4624 on, the

process starts to normalize again and returns to the sending

interval of 2ms which proofs the functionality of the TSN-

gate-mechanism.

B. Test 2: TSN hosting openSAFETY

The second test – where TSN is used as black channel for

openSAFETY – is split into 3 consecutive sections showing

how each step impacts the systems performance and how the

final setup proofs the overall concept of this paper:

1) Normal traffic without Disturber or priority traffic

2) Start of Disturber

3) Activation of TSN-schedule

At the beginning of the test both networks are connected to

the TSN-switch exchanging data that is tagged and untagged

by the buscouplers when entering/leaving the networks. Since

there is only one SN together with the SCM in the system,

4 periodic messages which are described in section II-A and

figure 10 represent the entire traffic of the network.

Figure 11 summarizes all three test stages and shows how

many follow-up-messages of each type (ID 0x002 or ID 0x003

- see Fig. 10) arrive within one time interval of 50ms at the

TSN-switch. These numbers are a good representation of the

communication quality and if it works or not since follow-up-

messages only occur after a request of the master.

The figure shows a red area below 10 messages per interval

where the connection quality is too low for the strict timing

requirements of the openSAFETY-application. This threshold

– the minimum messages per interval or in other words

the maximum time for follow-up-messages to arrive at the

SCM after a request – can be set to any value and depends

on the system the application is running on. Especially the

 Heartbeat-Request (ID 0x001)

 Data-Request (ID 0x004)

 Heartbeat-Response (ID 0x002)

 Data-Response (ID 0x003)

SCM SN

Fig. 10. Sequence of periodic openSAFETY-messages

transmission delays and processing time on each device within

the communication chain which adds up to a so called total

safety function response times (SFRT) [12] should be taken

into consideration when choosing this time limit. The lower

this time limit is, the quicker the system has to respond and the

faster a failure like the loss of connection can be detected. The

problem with a value too low is the more frequent occurrence

of situations where a slight transmission delay leads to a

complete system being set to safe-mode, even though there

was no major problem, just a few frames arriving 1ms or less

too late. Even though the time limit for this test was set to

a rather low value of 5ms (10 messages/interval) to keep the

system sensitive to disturbance and delays which gives a better

picture of the TSN-performance.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

Time [s]
(Inverval 0.05s=50ms)

Ap
pe

ar
an

ce
 [1

]
(p

er
 ti

m
e-

in
te

rv
al

)

Heartbeat Data

Disturber
started

Schedule
activated

Connection to
SCM lost

Fig. 11. openSAFETY test with Disturber and TSN-scheduling

Starting at 0s the figure shows how the operational-state

looks like with constantly 50 messages of both types arriving

within a 50ms interval. This equals to 1 message/ms, a value

that has been expected having a cycle time of 500μs and the

fact that it takes the openSAFETY-application two full cycles

to send the requests and detect the reception of the follow-

up-messages. At this point all messages leaving one of the

networks are already tagged with VLAN-ID 5, but there is

no active TSN-schedule, which means that the TSN-switch

ignores this tag.

After 10s into the test the Disturber was activated and started

to flood the network with broadcast-messages at maximum

bandwidth. This led to queues being filled up on each network

component and a delay of all messages – also those of the

openSAFETY-application. The amount of arriving messages

between the SCM and the safe-I/Os dropped almost to 0 into

the red area which basically means that the connection broke

immediately and the SN switched to safe-mode.

After 27s the TSN-schedule – mentioned in section V-E

– was activated. From this point on all frames with VLAN-

ID 5 queued up in queue 5 got a 66μs-time-slot every 166μs

which is more than enough for all openSAFETY-messages

to be transmitted in time. This change could be seen in the

figure almost immediately when the value of arrived messages

per interval climbed up to 50 again restoring the former

connection.

During the time without Disturber and afterwards with

Disturber and TSN-schedule activated the performance of the

connection was way better than expected with always 18

and almost all of the time way more messages arriving at

the TSN-switch per time interval. This is far away from the

already in sensitivity-terms critically positioned time-limit of

10 messages/interval.

Since this paper is based on a small and simple test setup

with one switch and two endpoints, a brief look on a more

complex topology is appropriate. There are two different

variables that define the complexity of such a network: the

number of endpoints and the number of switches. To expect a

big impact on the system by adding more network components

seems intuitive, but openSAFETY does not care about what

communication technology is used (black channel principle)

as long as data is delivered before the deadline. The already

mentioned scheduling-tool (see V-E) has an important role

in this process. Its task is to proper allocate resources so

that data arrives on time, as required by openSAFETY. The

scheduler might fail doing that which could be caused by

the topology but also by the algorithms used. It is possible

that one tool is capable of finding a valid solution to a

specific topology/traffic-configuration and another does not,

but discussing this in detail would exceed the scope of this

paper by far. Besides that clock synchronization stays the

crucial part of a TSN-network to offer fundamental capabilities

for at least up to 7 hops to work properly (see II-B).

The final test in this paper shows, that an openSAFETY-

application can be run on an Ethernet network with TSN-

capable devices together with other non-priority traffic without

losing the timing requirements that a real-time dependent

application – like a safety-related – needs.

VII. CONCLUSION

This paper shows how TSN can be used to run an

openSAFETY-application within existing industrial ethernet-

networks together with non-priority traffic.
Referring back to the scenario described at the beginning

(section I), openSAFETY offers the possibility to add and

remove input- and output-devices for safety-related data dur-

ing runtime like the mentioned emergency-stop-button. Using

an Ethernet network instead of hard-wiring for safety-data

transmission reduces the amount of infrastructure required

significantly because these networks already exist in most

companies.
This paper explained how non-TSN-compatible devices can

be connected to a TSN-network by using network-components

like buscouplers, that take over the task of tagging/”marking”

priority-traffic. In this case only these ”tagging-components”

and the switches have to be changed – not the wired infras-

tructure – to realize a real-time enabled industrial network,

that is capable of hosting safety-related traffic together with

non-priority traffic in one network.
The tests in this paper showed that the combination of

these two technologies not only works, but also under ex-

treme conditions with a big amount of background traffic. A

”sensitivity”-threshold of max. 5ms between two heartbeats

could be realized, even though under realistic circumstances

this is not even necessary. The stopping time of a robot

with industrial relevant size for example – like the Universal

Robot UR10e – is around 20ms with just 33% of extension

and 33% of maximum payload [13] – that is 400% longer

than the heartbeat interval. In several papers like [14] the

total reaction time of Ethernet-based safety systems (SFRT)

is calculated by also considering the transmission delays of

every single network-component. For a worst case scenario

and a realistic view on a possible situation within a factory

network these delays, even those of small, non-processing

network components are set to be 10ms – so twice as long

as the minimal heartbeat interval that could be achieved in

this paper.
Summarizing all these facts, the performance of the system

presented in this paper was higher than expected and proofs

the concept. Even under the worst possible conditions within a

network like broadcast-dummy messages on full bandwidth the

TSN-infrastructure guaranteed the connection between safety-

related components spread over two networks and realized the

flawless execution of a real-time-dependent safety-application.

VIII. ACKNOWLEDGMENTS

This work has been partially supported and funded by the

Austrian Research Promotion Agency (FFG) via the “Austrian

Competence Center for Digital Production” (CDP) under the

contract number 854187.

REFERENCES

[1] S. Brown, “Overview of IEC 61508. Design of electri-
cal/electronic/programmable electronic safety-related systems,”
Computing and Control Engineering Journal, vol. 11, no. 1, pp.
6–12, 2000.

[2] EPSG (Ethernet POWERLINK Standardisation Group), openSAFETY
Safety Profile Specification (Working Draft Proposal 304), 1st ed.
Fredersdorf/Germany: EPSG, 2017.

[3] R. Zurawski, Industrial Communication Technology Handbook, ser.
Industrial Information Technology. CRC Press, 2017. [Online].
Available: https://books.google.at/books?id=ppzNBQAAQBAJ

[4] A. Ademaj and P. Loschmidt, “IEEE TSN (Time-Sensitive Networking):
A Deterministic Ethernet Standard,” TTTech Computertechnik AG,
Vienna, Tech. Rep., 2015.

[5] A. Ademaj, P. Loschmidt, and W. Steiner, “TSN Overview,” TTTech
Computertechnik AG, Vienna, Tech. Rep., 2016.

[6] IEEE, IEEE Standard for Local and Metropolitan Area Network–Bridges
and Bridged Networks, 2018.

[7] S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner,
“Scheduling Real-Time Communication in IEEE 802.1Qbv Time
Sensitive Networks,” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, ser. RTNS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, pp.
183–192. [Online]. Available: https://doi.org/10.1145/2997465.2997470

[8] D. Etz, T. Frühwirth, A. Ismail, and W. Kastner, “Simplifying functional
safety communication in modular, heterogeneous production lines,” in
2018 14th IEEE International Workshop on Factory Communication
Systems (WFCS), 2018, pp. 1–4.

[9] V. Gavriluţ and P. Pop, “Scheduling in time sensitive networks (TSN)
for mixed-criticality industrial applications,” in 2018 14th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS), 2018,
pp. 1–4.

[10] M. Pahlevan, J. Schmeck, and R. Obermaisser, “Evaluation of TSN
Dynamic Configuration Model for Safety-Critical Applications,” in 2019
IEEE Intl Conf on Parallel Distributed Processing with Applications,
Big Data Cloud Computing, Sustainable Computing Communications,
Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom),
2019, pp. 566–571.

[11] D. Etz, T. Frühwirth, and W. Kastner, “Self-Configuring Safety Net-
works,” in Kommunikation und Bildverarbeitung in der Automation,
J. Jasperneite and V. Lohweg, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2020, pp. 232–245.

[12] PROFIBUS Nutzerorganisation e.V., “PROFIsafe – Safety Technology
for PROFIBUS and PROFINET,” Karlsruhe, Tech. Rep., 2007.

[13] Universal Robots, “Universal Robots. UR10e/CB3 User manual,” pp.
I–55 – I–58, 2015. [Online]. Available: http://www.universal-robots.
com/media/8764/ur10 user manual en global.pdf

[14] V. Pimentel and B. G. Nickerson, “A safety function response time
model for wireless industrial control,” IECON Proceedings (Industrial
Electronics Conference), pp. 3878–3884, 2014.

