
Journal of Systems Architecture 117 (2021) 102137

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Time-Sensitive Networking in automotive embedded systems: State of the art
and research opportunities
Mohammad Ashjaei a, Lucia Lo Bello b, Masoud Daneshtalab a, Gaetano Patti b, Sergio Saponara c,
Saad Mubeen a,∗

a Mälardalen University, Sweden
b University of Catania, Italy
c University of Pisa, Italy

A R T I C L E I N F O

Keywords:
Time-Sensitive Networking
TSN
Automotive embedded systems

A B S T R A C T

The functionality advancements and novel customer features that are currently found in modern automo-
tive systems require high-bandwidth and low-latency in-vehicle communications, which become even more
compelling for autonomous vehicles. In a recent effort to meet these requirements, the IEEE Time-Sensitive
Networking (TSN) task group has developed a set of standards that introduce novel features in Switched
Ethernet. TSN standards offer, for example, a common notion of time through accurate and reliable clock
synchronization, delay bounds for real-time traffic, time-driven transmissions, improved reliability, and much
more. In order to fully utilize the potential of these novel protocols in the automotive domain, TSN should
be seamlessly integrated into the state-of-the-art and state-of-practice model-based development processes
for automotive embedded systems. Some of the core phases in these processes include software architecture
modeling, timing predictability verification, simulation, and hardware realization and deployment. Moreover,
throughout the development of automotive embedded systems, the safety and security requirements specified
on these systems need to be duly taken into account. In this context, this work provides an overview of TSN in
automotive applications and discusses the recent technological developments relevant to the adoption of TSN
in automotive embedded systems. The work also points at the open challenges and future research directions.
1. Introduction

Embedded software has recently been the key enabler for advanced
functionality and features in automotive systems, including on-road
vehicles such as modern cars and off-road vehicles such as construction
vehicles, mining vehicles, forest machines, recycling cranes, to mention
a few [1–3]. One major consequence of the increasing demand for
new software-based features in these systems is the drastic increase
in size and complexity of the automotive software, which makes its
development a challenging task. For example, the size of the software
in a modern premium car has already reached the order of 100 million
source lines of code (SLOC) that can be translated to over 1 GB of
software code [1,4]. Already today, Original Equipment Manufacturers
(OEMs) are estimating 1 billion SLOC in the future driver-less cars,
according to Jaguar Land Rover [5].

Many automotive embedded systems are constrained by stringent
timing requirements. Hence, developers of these systems have to not

∗ Corresponding author.
E-mail address: saad.mubeen@mdh.se (S. Mubeen).

1 https://1.ieee802.org/tsn

only manage the software complexity, but also verify timing predictabil-
ity during their development. A system is considered timing predictable
if it is possible to prove or demonstrate, at the design time, that it
will meet all the specified timing requirements when executed [8–10].
Another dimension of complexity in these systems is the distribution
of the software over several tens of Electronic Control Units (ECUs)
that can be connected to five or more different types of in-vehicle
networks. The traditional networks include Controller Area Network
(CAN), CAN-FD, CAN XL, Local Interconnect Network (LIN), Media
Oriented System Transport (MOST), FlexRay, Ethernet, among oth-
ers [11]. Furthermore, there are several higher-level protocols in the
automotive domain that are used on top of some of these protocols
like CAN, including CANopen, MilCAN, HCAN, J1939 and AUTOSAR
Com [12]. Modern vehicles use sophisticated sensors, cameras and
Lidars to be able to support extensive and advanced functionalities.
These sensors generate hundreds of megabytes of data per second
that needs to be communicated among the onboard computing units
vailable online 10 April 2021
383-7621/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sysarc.2021.102137
Received 31 October 2020; Received in revised form 25 February 2021; Accepted 6
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

April 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:saad.mubeen@mdh.se
https://1.ieee802.org/tsn
https://doi.org/10.1016/j.sysarc.2021.102137
https://doi.org/10.1016/j.sysarc.2021.102137
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102137&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.

c

Table 1
Data-rates supported by the low-latency in-vehicle communication protocols.
In-vehicle Communication Protocol Maximum Data-rate

Local Interconnect Network (LIN) 20 kbit/s
Controller Area Network (CAN) 1 Mbit/s
CAN-FD (Flexible Data) 5 Mbit/s (data),

1 Mbit/s (arbitration, ack)
CAN XL 10 Mbit/s (data)a, 1 Mbit/s (arbitration, ack)
FlexRAY 10 Mbit/s
Ethernet with Time-Sensitive Networking 100 Mbit/s to 10 Gbit/s

aThe recommended maximum data-rate for CAN XL in the data phase is 10 Mbit/s. However, the data-
rate can be higher depending upon the CAN transceiver capabilities and characteristics of physical layer
components [6,7].
with predictable low latencies (microseconds to milliseconds range).
Although the traditional in-vehicle networks provide low-latency com-
munications, they do not meet the high-bandwidth requirements. The
maximum data-rates supported by these low-latency networks range
from 10 kbit/s to 10 Mbit/s as depicted in Table 1. Due to this lim-
itation, a high-bandwidth and low-latency network protocol is needed
to support the backbone in-vehicle communications in modern vehi-
cles. The IEEE Time Sensitive Networking (TSN) task group1 provided
a set of standards to meet the high-bandwidth and low-latency in-
vehicle communications requirements. Among those advancements in
the TSN standards we can mention support for clock synchronization,
resource reservation for different types of traffic, various traffic shapers,
scheduled traffic support, frame preemption, and network management
mechanisms. This paper deals with in-vehicle communications based
on the TSN standards. Consequently, here the focus is on the TSN stan-
dards only, while the integration of TSN with other technologies is not
in the scope of this work. Interested readers can refer to [13] to learn
about the integration of TSN with other communication technologies,
e.g., 5G. Moreover, among the TSN standards, only the ones relevant
to automotive communications will be considered.

Model-based Engineering (MBE) [14,15] and Component-based
Software Engineering (CBSE) [16], complemented by real-time schedul-
ing and schedulability analysis [17–19], are proving effective in dealing
with the challenges of software complexity and ensuring timing pre-
dictability during the development of automotive embedded systems.
MBE uses models to describe functions, structures and design artifacts
throughout the software development, whereas CBSE allows to build
large software systems by reusing pre-existing software components
(SWCs)2 and their architectures. Benefits of model- and component-
based software development in the automotive domain include software
reuse, early model-based timing predictability verification [20–22],
refinement of software architectures based on timing verification [23–
25], to mention a few. According to an estimate in the segment of heavy
trucks, up to 90% of automotive software can be reused from previous
releases or other projects if MBE and CBSE are used [3,26].

In order to fully utilize the potential and benefits of MBE and
CBSE for the development of automotive embedded systems, the mod-
eling of in-vehicle networks such as TSN should be supported at the
abstraction level where software architectures of the systems are mod-
eled. For example, consider the software architecture of the two-node
automotive embedded system that is shown in Fig. 1. Development
techniques based on MBE and CBSE facilitate the modeling of network
communications in the software architecture of the system, modeling
of timing properties in the network, and specification of end-to-end
timing requirements and constraints (e.g., age and reaction constraints
according to the AUTOSAR standard [27]). Moreover, the end-to-end
timing models can be automatically extracted from the software ar-
chitectures and fed to the timing analysis frameworks and tools. An
end-to-end timing model consists of timing models of nodes, network

2 SWC is the lowest-level hierarchical entity in a software architecture. It
orresponds to a schedulable entity at runtime, e.g., an operating system task.
2

timing model, linking model that models distributed chains consisting
of SWCs and network messages (e.g., shown with red-dashed arrows in
Fig. 1), and timing requirements model. We refer the reader to [20,28–
30] for further details about the timing models. The analysis frame-
works and tools verify the timing predictability of the automotive
software architectures. The analysis results are then back-propagated
to adjust or refine the software architectures to meet the specified
requirements or to optimize the architectures based on other resource
constraints specified on the automotive systems. The timing verified
and refined software architectures can be deployed on nodes or ECUs
that are connected to a TSN network. The TSN network may contain
commercial-off-the-shelf (COTS) switches or fully parameterized and
modular Intellectual Property (IP) TSN switches realized on Field Pro-
grammable Gate Arrays (FPGAs). Other important aspects that govern
the development of automotive embedded systems are the safety and
security requirements in these systems, which need to be considered
throughout the development process.

1.1. Paper contribution

This paper addresses the core aspects in the model-based develop-
ment of automotive embedded systems, as depicted in Fig. 1, while
focusing the discussion on utilizing TSN in these systems. In this
context, the paper reviews the state of the art, provides an overview
of the recent technological developments relevant to the adoption of
TSN in automotive embedded systems, and discusses open challenges
and future research directions. The following core topics are discussed:

1. Evolution of Ethernet and TSN in automotive embedded system
applications;

2. Model-based software development of automotive distributed
embedded systems that utilize TSN;

3. Scheduling and schedulability analysis of TSN;
4. Simulation platforms for TSN, including OMNeT-based TSN sim-

ulation models and their evolution;
5. Hardware evolution in TSN, addressing implementations in

FPGA technology and in heterogeneous platforms like Zynq;
6. Safety and security in TSN.

1.2. Paper layout

The rest of the paper is organized as follows. Section 2 addresses the
role of Ethernet and TSN in the automotive domain. Section 3 discusses
the support for modeling TSN communications within the model-based
software development of automotive embedded systems. Section 4
presents the recent advancement in scheduling and schedulability of
TSN. Section 5 provides a discussion on simulation frameworks for TSN.
Section 6 discusses hardware realization for TSN. Section 7 presents
the safety and security aspects of TSN. Finally, Section 8 concludes the

paper.



Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
Fig. 1. Key aspects and flow in model-based development of automotive embedded systems.
2. Ethernet and time-sensitive networking in automotive applica-
tions

The TSN family of standards is a tool set that offers reliability,
determinism and time synchronization to safety-critical automotive
communications over Ethernet links. The TSN standards leverage on
the previous work done within the IEEE 802.1 Working Group on the
IEEE Audio Video Bridging (AVB).

The AVB standards offer several features. The first one is a common
notion of time. This is achieved through a suite of clock synchronization
protocols that allow end stations and switches (called bridges in the
IEEE terminology) to synchronize their local clocks to each other (IEEE
802.1AS-2011) provided that they are time-aware nodes, i.e., systems
that make explicit reference to time. The standard defines a Best Master
Clock Algorithm (BMCA) to select the time reference node, and a
Generalized Precision Time Protocol (gPTP), to synchronize the clock
of nodes providing them the clock value of the reference node, called
Grand Master (GM).

The second feature offered by AVB is bandwidth reservation for real-
time classes. This is obtained through the Stream Reservation Protocol
3

(SRP), which allows for the reservation of resources within the bridges
on the path between the source and the destination (IEEE 802.1Qat).

Finally, the third feature provided by AVB standards is prioritization
and traffic shaping for real-time flows to prevent traffic bursts. This is
achieved by means of a Credit-Based Shaper (CBS) at the output ports of
bridges and end nodes, which guarantees bounded latency to real-time
classes (called Stream Reservation Classes) (IEEE 802.1Qav).

On top of the AVB protocol suite, TSN provides a flexible toolbox,
consisting of protocols adding several additional features that networks
designers can combine to obtain the properties required to meet the
application needs. Fig. 2 shows the main TSN standards that are
relevant to the context here addressed, i.e., in-vehicle communications.

Roughly speaking, TSN standards target one or more of the follow-
ing four design aims, i.e., bounded low latency, timing and synchro-
nization, high reliability, and resource management.

Bounded low latency is achieved by many standards. Among them,
we find the already mentioned IEEE 802.1Qav and Qat from the AVB
protocol suite, that are now enrolled in the 802.1Q-2018 standard [31],
but there are many others. For example, the IEEE 802.1Qbv, that
introduces the so-called enhancements for scheduled traffic, which



Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
Fig. 2. Main TSN standards relevant to in-vehicle communications.
leverage on a transmission gate mechanism that is applied to the egress
queues of a switch port to allow for transmitting traffic according to a
predefined time schedule, implemented as a list of timed gate opera-
tions that cyclically repeats, called a gate control list. Another standard
that is relevant to bounded low latency is the IEEE 802.1Qbu that,
in combination with the IEEE 802.3br, allows for frame preemption
to intersperse express (i.e. real-time) frames among best-effort ones.
Moreover, the IEEE 802.1Qch, called Cyclic Queuing and Forwarding,
introduces a mechanism according to which frames are received and
transmitted alternately for a fixed interval of time, called a cycle time.
This way, real-time frames are accumulated during a cycle and trans-
mitted in the following one, thus minimizing the transmission jitter and
guaranteeing bounded end-to-end delays. Finally, the IEEE 802.1Qcr-
2020 standard defines the Asynchronous Traffic Shaping (ATS) stream
selection. The ATS enables the transmission of mixed real-time traffic
types, such as periodic, rate-constrained, and event-driven (sporadic).
The protocol works over the port transmission queues at a stream level.
The main concept of the ATS is to realize a traffic shaping through
a token bucket that limits the burst size of a given traffic class. To
accomplish this, an eligibility time is assigned to each received frame.
When the current time is higher than or equal to the eligibility time for
a given frame, the latter can be queued in the transmission queue and
then transmitted.

The standards relevant to timing and synchronization are the al-
ready mentioned IEEE 802.1AS-2011 and its 2020 revision, the IEEE
802.1AS-2020, that improves the clock synchronization reliability and
solves some issues of the former standard. For example, the IEEE
802.1AS-2020 standard provides replication mechanisms to limit the
probability of decreasing the synchronization accuracy in case of bridge
fault or frame loss.

Reliability is the focus of the IEEE 802.1CB, that deals with frame
replication and elimination for reliability. By leveraging on frame iden-
tification capability, the IEEE 802.1CB standard allows for duplicating
frames and sending them over multiple disjoint routes in order to
increase the probability that at least one of the replicas will eventually
reach the final destination. The first replica that is delivered to the des-
tination is considered correct, so the remaining ones will be discarded.
In the case the end stations are not able to implement this capability,
frame duplication and elimination will be up to the closest switches,
4

that will transparently act as proxies.
Another standard that goes in the direction of improving reliability
is the IEEE 802.1Qci, which introduces support for per-stream metering
and monitoring, error detection and error mitigation, by blocking a
stream or a port to enforce the error containment so that it will not
propagate on the network. The IEEE 802.1Qci can also apply ingress
policing and filtering to improve security, blocking a traffic source
when an unforeseen or not compliant traffic is detected.

Resource management and network configuration are accomplished
thanks to the already mentioned IEEE 802.1Qat standard, which defines
the SRP, and the IEEE 802.1Qcc, that extends the capabilities of SRP.
In particular, the IEEE 802.1Qcc describes protocols to provide support
for Configurable Stream Reservation classes and streams.

The main difference between the protocols in the IEEE 802.1Qcc
compared to the SRP is that the SRP is a simple admission protocol in
which a talker announces the traffic for transmission and depending on
the available resources it can get granted. Conversely, the new proto-
cols in the IEEE 802.1Qcc deal with more complex configurations with
TAS and preemption mechanisms. The main idea is that a User Network
Interface (UNI) specifies the requirements for sending a stream, while
the network analyzes this information to check whether the switches
can meet the requirements. To realize this, three different network
configuration methods are presented, i.e., a fully distributed, a cen-
tralized network/distributed user model, and a fully centralized model.
Another interesting effort within the standardization is to support a
data modeling language that is defined by the Internet Engineering
Task Force (IETF) [32], known as YANG model, to be used for the
network configuration (NETCONF). Similar to the YANG model, NET-
CONF is also developed within the IETF [32] to create a configuration
management that can easily push new configurations to the network
devices using a global knowledge of the network [33]. NETCONF
defines a client/server model in which the servers are the end stations,
while the client is a policy manager located in the Centralized Network
Configuration (CNC) unit.

Finally, it is worth mentioning an ongoing project within the Time-
Sensitive Networking Task Group of IEEE 802.1, i.e., the P802.1DG
Draft,3 titled Time-Sensitive Networking Profile for Automotive In-
Vehicle Ethernet Communications. This document aims at specifying

3 https://1.ieee802.org/tsn/802-1dg

https://1.ieee802.org/tsn/802-1dg


Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.

l
a
E
e
t
i
o
w
a
a
m
h
c
o
c
T
g
M
a
f
t
s
p
a
d
c
C
s
b

t

profiles for automotive in-vehicle switched Ethernet networks based
on TSN and the IEEE 802.1 Security standards. The motivation for
the project is to provide ‘‘profiles for designers and implementers of
deterministic IEEE 802.3 Ethernet networks that support the entire
range of in-vehicle applications, including those requiring security,
high availability and reliability, maintainability, and bounded latency".

2.1. Novel trends for in-vehicle networks

Thanks to the novel features introduced by the TSN standards,
nowadays Automotive Ethernet is unanimously considered the key
solution towards a homogeneous in-vehicle network that will replace
the multiple small networks connected via gateways used in today’s
cars.

The Ethernet success in automotive applications stems from several
factors, such as, the higher bandwidth comparing with current in-car
networks, the support offered to the Internet Protocol (IP) stack, the
IEEE standardization, and the availability of a broad range of datarates
for automotive usage [34].

Fig. 3 shows, in chronological order, the published IEEE stan-
dards that refer to Ethernet Physical Layers (PHYs) for automotive
applications. The supported datarates are:

• 100 Mbps, standardized as IEEE 802.3bw-2015, which defines the
100BASE-T1 PHY specifications.

• 1 Gbps, standardized as IEEE 802.3bp-2016, which adds point-to-
point 1 Gbps PHY specifications.

• 10 Mbps, standardized as IEEE 802.3cg-2019, also known as
10Base-T1S, which specifies additions to add 10 Mbps PHY spec-
ifications. This standard is commonly referred as 10Base-T1S.

• 2.5, 5 and 10 Gbps, Multi-Gig Automotive Ethernet PHY, ap-
proved in June 2020 as IEEE 802.3ch-2020, which adds PHY
specifications for 2.5 Gbps, 5 Gbps, and 10 Gbps operation for
automotive applications.

Nowadays, in-vehicle networks have begun the transition from
egacy domain-based electrical and electronic architectures to zonal
rchitectures [35,36]. Domain-based architectures have many separate
CUs and different networks for each automotive subsystem (e.g., pow-
rtrain, body electronics, multimedia/infotainment, to mention a few)
hat require complex gateways. Conversely, zonal architectures consol-
date many of these cross-domain ECU functions into a small number
f supercomputer-level ECUs (called zonal controllers) that are net-
orked through a backbone consisting of Ethernet switches working
t ultra-high speeds (e.g., greater than 10 Gbps). Zonal architectures
re a concept for the future in-vehicle architectures, where less, but
ore powerful ECUs, with High Performance Computing abilities and
igh data storage available, will carry on computationally-intensive
ontrol tasks. Zonal architectures are expected to facilitate service-
riented operation, in which services will be provided by application
omponents through a communication protocol over the network.
heir implementation in vehicles can be realized using local Ethernet
ateways (or switches) per zone (working at speeds of 10 Mbps, 100
bps, 1 Gbps, 5 Gbps, up to 10 Gpbs), which connect to legacy

utomotive buses (e.g., LIN, CAN, CAN FD, FlexRAY), running some
ast control function in the periphery of the vehicle and basic functions
o convert legacy automotive networks, which are signal-based to
ervice-based on Ethernet, and vice versa. This architectural concept
rovides high flexibility and scalability, as a large number of sensors
nd actuators can be added to the vehicle, but they do not need to be
irectly connected via the zonal controllers, as each zonal controller
an be connected to traditional in-vehicle networks, like CAN and LIN.
ommunication between zones takes place via a secured ultra-high
peed Ethernet backbone (from 10 to 25 Gbps). This way, Ethernet will
ecome the dominating network technology in future vehicles.

This design change has generated the need for data rates greater
5

han 10 Gbps in the automotive environment. However, the IEEE
Standard 802.3 does not currently support rates greater than 10 Gbps
for automotive usage. In this direction, work is currently in progress
within the IEEE (802.3ch) on 25, 50 and 100 Gbps – with the P802.3cy
project,4 i.e., ‘‘Greater than 10 Gbps Electrical Automotive Ethernet’’.

In zonal designs, legacy network technologies, e.g., CAN and LIN,
will still be used to connect many electronic components. However, it
is well understood that the Ethernet 10Base-T1S technology will be a
competitor of CAN, CAN-FD, and CAN XL. The latter is an upcoming
CAN data link layer backward compatible with CAN-FD that will pro-
vide ‘‘extra large’’ payloads of up 2048 bytes and a data rate of 10+
Mbps.

3. Model-based software development of automotive systems uti-
lizing TSN

The research community has developed several domain-specific
modeling languages and methodologies that are used for model- and
component-based software development of automotive embedded sys-
tems. Examples of these languages and methodologies include AU-
TOSAR [27], EAST-ADL [37], AMALTHEA,5 AMALTHEA4public,6
Rubus Component Model [38,39], ProCom Model [40], CORBA [41],
COMDES [42], to mention a few. However, a large majority of these
languages and methodologies support modeling of traditional in-vehicle
networks, such as CAN, LIN and FlexRay [28,43,44]. There are very
few works, such as [45], that model high-bandwidth in-vehicle net-
works that are based on switched Ethernet (e.g., AVB) in the software
architectures of these systems. AUTOSAR, supported by the SymTA/S
approach [43] and corresponding tool,7 also models automotive Eth-
ernet at the software architecture abstraction, but the support for
modeling TSN is still missing. Furthermore, SymTA/S tool does not ex-
pose any details about the underlying techniques, as it is a commercial
tool. There are several works that model configuration of TSN, such
as [46–48], but they do not support TSN modeling in the software
architectures of these systems. A work in progress on developing an
approach for the TSN configuration and formal verification of the
modeled configuration is discussed in [49].

The first comprehensive modeling approach for TSN has been re-
cently developed in [50], which allows integration of TSN models into
a model- and component-based software development environment for
automotive embedded systems. This modeling approach is expressive
enough to allow extraction of end-to-end timing models from the
software architectures of automotive embedded systems that use TSN
for in-vehicle communications. The proof-of-concept for the approach
is provided in an existing industrial component model and corre-
sponding tool chain, namely the Rubus Component Model (RCM) [38]
and Rubus-ICE,8 respectively. The usability of the modeling approach
is demonstrated by modeling and analyzing an automotive applica-
tion use case from the industry. Although RCM exposes the under-
lying concepts and techniques to the scientific community [39], it
is a commercial model and tool chain, and therefore it is not freely
available.

This calls for the research community to develop open source or
freely available modeling solutions for TSN that can be integrated
into the existing automotive software development frameworks. In this
regard, promising prospective solutions include developing a domain-
specific profile of the Unified Modeling Language (UML) and extending
the UML MARTE [51] profile to support TSN. Another research di-
rection is the integration of the evolving timing analysis techniques
for TSN (discussed in Section 4) in the above mentioned software
development frameworks and tools for automotive embedded systems.

4 https://standards.ieee.org/project/802_3cy.html
5 http://www.amalthea-project.org
6 https://itea3.org/project/amalthea4public.html
7 SymTA/S is now acquired by Luxoft (https://www.luxoft.com).
8
 https://www.arcticus-systems.com/products/

https://standards.ieee.org/project/802_3cy.html
http://www.amalthea-project.org
https://itea3.org/project/amalthea4public.html
https://www.luxoft.com
https://www.arcticus-systems.com/products/


Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
Fig. 3. The IEEE published standards relevant to Ethernet PHY for automotive applications.
4. Scheduling and schedulability analysis of TSN

This section provides a review on the works that have been done
so far on two main aspects of designing distributed embedded systems
using TSN networks. The first aspect has to do with creating an offline
schedule for TSN scheduled traffic, which is known to be an NP-
complete problem. The second aspect has to do with verifying and
guaranteeing the traffic timeliness in TSN networks. The majority of
the considered works proposed solutions and methods for generic ap-
plications and only few of them motivated and evaluated their solutions
for automotive use cases.

4.1. Scheduling algorithms

Time-triggered communication [52] is an established paradigm in
industrial communications that is very suitable for systems that have
strict timing requirements on delays and jitter. In time-triggered com-
munications, the time is divided into time-slots and each frame is trans-
mitted within a dedicated time-slot, thus leading to a contention-free
communication. The transmission plan of frames within the predefined
time-slots, that is called a time-triggered schedule, has to be computed
offline for a system. The time-triggered schedule is a bin-packing prob-
lem that is known as NP-complete, in particular for multi-hop networks
that require path-independent schedule for frames. One of the earliest
solutions to extract a time-triggered schedule for a multi-hop Ethernet
network was presented in [53]. The work uses the Satisfiability Modulo
Theories (SMT) solver to find a solution based on a set of scheduling
and timing constraints. The extension of the work to consider co-
scheduling of tasks and frames in a network was presented in [54].
However, the above-mentioned works are in the context of the Time-
Triggered Ethernet (TTE) protocol [55]. It is worth mentioning that
TTE was developed for time-critical and mission-critical applications,
including the automotive domain. As there are similarities between TTE
and the enhancements for scheduled traffic in TSN networks defined in
the IEEE 802.1Qbv amendment, several recent works provided schedule
for TSN traffic using the same model used for TTE, i.e., the same
timing and scheduling constraints. In order to provide scheduling for
TSN networks, several algorithms and approaches have been taken
by different research groups so far. A taxonomy of the solutions is
presented in Fig. 4.

In the area of the TSN enhancements for scheduled traffic, the
optimization technique based on an SMT solver and the concept of
OMT (Optimization Modulo Theories) is developed in [56]. The SMT
solver can find multiple solutions to fulfill the scheduling and timing
6

constraints. The OMT module, however, can define an optimization
problem, e.g., minimizing the end-to-end delays of frames. The proposal
in [56] uses the OMT module to minimize the number of queues
per port for the scheduled traffic. In the presented work the main
requirements are on frame latency and jitter, whereas tailoring of the
schedules for device-specific properties is missing. The main step that
would naturally come after finding a schedule is to map it to the gate
control list per network port. The work in [57] uses the first-order
theory of arrays to formalize the scheduling and timing constraints to
optimize the solution. The solution can be applied directly to the gate
control list. The overview of the challenges and scheduling mechanisms
is presented in [58]. The work in [59] proposed an optimization
method to schedule the gate control list as windows for transmission
leading to a better schedule for networks. There are also few works with
different optimization goals than minimizing the end-to-end delays,
e.g., making larger porosity on the network links [60], [61]. Moreover,
a Tabu search algorithm is proposed in [62] to provide a no-wait packet
schedule for TSN where the number of guard bands are minimized in
the given schedule.

We can also find few solutions that do not follow the common
optimization tools, such as the OMT and Integer Linear Programming
(ILP). For instance, the solution in [63] is based on genetic algorithms
to find a schedule for the scheduled traffic with lower time-complexity
compared to the SMT-based solutions. In addition, the work in [64]
proposed a heuristic, called a heuristic list scheduler (HLS), to generate
valid schedules considering both routing and scheduling constraints.
The work in [65] addressed the problem of time-triggered scheduling
considering the minimum queue utilization where the solution is based
on a multi-objective combinatorial optimization problem with several
strategies, such as ILP, heuristic, and metaheuristic strategies. In addi-
tion, the work in [66] proposed a method to co-schedule the traffic and
routing in a TSN network.

The above-mentioned solutions mostly focus on the schedule syn-
thesis of the scheduled traffic in the TSN networks. There are a few
works that consider other constraints besides the timing requirements.
For instance, the work in [67] not only considers the timing constraints,
but also provides redundant paths for traffic to obtain a fault-tolerant
network. Moreover, the work in [68] proposes a solution to schedule
the scheduled traffic in a TSN network considering the schedulability of
the lower priority classes, i.e., classes A, B and best effort. The solution
is extended in [69] for routing and scheduling optimization considering
the AVB traffic. The scheduler that is proposed in [70] considers a
quality of service level for best-effort traffic, while scheduling the ST
frames. The work in [46] studied the co-routing and co-scheduling of



Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
Fig. 4. A taxonomy of TSN scheduling algorithms.
hard real-time flows and best-effort audio video-bridging flows. In the
proposed method, the co-scheduling problem is solved by using ILP and
the co-routing problem is solved by proposing an adaptive heuristic
search. Finally, the work in [71] proposed a solution based on a tabu-
search metaheuristic to find a feasible schedule for a mixed-critical
system in which both hard and soft real-time traffic co-exist.

In addition to the proposed solutions for extracting the best (and
possibly the optimum) schedule for the scheduled traffic in a TSN
network, there are several works in the literature to automate parts
of the TSN configuration. For instance, the work in [72] uses a graph-
based solution to generate the constraints for the schedule. Moreover, a
tool named TSNSCHED is developed in [73] to automatically generate
a schedule based on the SMT solver to fulfill the timing constraints. An
interesting work in [74] provided a method to dynamically reconfigure
the time-aware shaper configuration depending on the requirements.
The method is supported by the IEEE 802.1Qcc standard based on
centralized and distributed network control within TSN networks.

Previously in this work we reviewed the literature relevant to the
time-aware shaper in TSN standards. In addition, there are few works
aimed at evaluating the performance of the asynchronous traffic shaper
(ATS). For instance, the work in [75] compares the TAS and ATS
shapers to evaluate whether the ATS can obtain the same level of
performance as the TAS in industrial networks. Although the scope
of the work is not in the automotive industry, the evaluation results
can give insights about the TAS usage in automotive use cases. In
addition, the work in [76] presents a performance evaluation of the
ATS shaper. The work shows that there is a trade-off in using the TAS
shaper, while it can achieve an effective traffic shaping and switching.
The main advantage of the ATS shaper is that it does not need clock
synchronization in the network, thus reducing the network complexity.
The paper [77] proposes the urgency-based scheduler (UBS) and an
optimum scheduling algorithm (based on SMT) to solve the synthesis
problem for it.

The review above presented shows that so far the challenge of find-
ing a feasible schedule in a TSN network has been deeply addressed in
the literature mostly using SMT and OMT solvers. Although such solvers
proved to work efficiently even for industrial-size TSN networks, one
of their main drawbacks is their time-complexity, in particular, when
they are applied to larger networks with routing planning together with
schedule synthesis. In addition, the recent advancements in the TSN
configuration management allow dynamic configuration or even self-
configuration of a TSN network. In this type of networks, a schedule
or route can be dynamically updated according to any change in the
system or environment during the system run-time. In this context, so-
lutions to find an optimum schedule with lower time-complexity might
be required. Consequently, deep investigation and comparative study
7

of search-based, meta-heuristics and heuristic solutions are essential
to achieve a solution with low time-complexity, such as a sub-optimal
schedule suitable for online use. Another line of work that has received
little attention so far is considering the quality of service provided to
the AVB traffic classes when scheduling and routing the TSN traffic.
One interesting observation is that the majority of the above men-
tioned solutions is evaluated on example or synthetic network topology,
e.g., in [63] with grid and mesh topology or in [64] with ring and mesh
topology. The work in [67] evaluated the proposed solution using five
case studies provided by General Motors. Nevertheless, the mentioned
works lack of real use cases, especially within the automotive domain,
to address the performance of the solutions.

4.2. Schedulability analysis of traffic in TSN networks

The TSN standards are becoming accepted solutions in complex
time-critical systems, such as in the automation and automotive in-
dustries. In a time-critical system, it is essential to verify the timing
predictability of the system during the design phase, i.e., verify the
timing requirements that are specified on the system. Schedulability
analysis techniques are used to verify whether the system is schedu-
lable under given scheduling algorithms and that the specified timing
requirements are satisfied [78,79].

Various schedulability analysis techniques have been already pro-
posed in the TSN research community to calculate the worst-case delay
of traffic crossing through a TSN network. Many of these techniques
focus on the analysis of worst-case delays for classes A and B solely
under the CBS. We can mention the analysis presented in [80,81]
and [82], where the first work adopts delay computation and the latter
two works exploit Network Calculus. The above cited works compute
the worst-case delays per traffic class without providing upper bounds
on the delays of individual frames. However, in a time-critical system it
is essential to verify the timing requirement on each individual frame.
Consequently, several works started to compute the worst-case delays
of the classes A and B frames, e.g., the technique in [83] and the
improved technique given in [84]. Interestingly, different approaches
have been taken by different research groups to verify the timing
requirements in TSN networks. Among these approaches, the work
in [85] proposes a technique based on the trajectory approach to
compute the delays of classes A and B. The technique obtains tighter
bounds on the frame delays compared to the previous techniques [83].
Later, the work in [86] proposed the notion of eligible interval, which
could provide a bound for per-frame delays, thus leading to tighter
analysis. Note that providing a tight analysis is important for such
systems that are limited in resources. As an intuitive fact we know that
considering more resources (e.g. network bandwidth) allows to allocate



Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
more schedulable frames in the network. However, as an optimum
design on one hand we would like to minimize the resources being used
in the system, and on the other hand to use more schedulable frames.
Thus, a tight analysis for the schedulability test allows us to prevent
pessimistic design and achieve better utilization of the available re-
sources. Two works by the same authors in [87] and [88] showed that it
is possible to use machine learning techniques to partially evaluate the
feasibility of TSN networks. The techniques can be used when a large
state space of TSN configuration should be checked, thus conventional
feasibility checks are slower, while machine learning techniques may
result in less accurate predication.

The above-mentioned works solely consider the CBS. There are a
very few works that provide schedulability analysis for TSN considering
other traffic shapers. For instance, the proposal in [89] presents an
analysis technique based on the network calculus considering a TSN
shaper, called the Burst Limiting Shaper (BLS). The work is extended
in [90] to evaluate the proposal for realistic avionics case studies.

As it was mentioned before, the TSN standards define the gate mech-
anism to provide support for scheduled traffic, and therefore several
works modified previous schedulability analysis techniques so as to
consider the gate mechanism. For instance, the technique that is pro-
posed in [91] computes the worst-case delay of classes A and B in a TSN
network considering both the CBS and the gate mechanism. However,
the analysis technique is proposed for a single-switch network, which
could be a limitation as many industrial networks consist of multiple
switches. Consequently, later works attempt to provide schedulability
analysis techniques for larger networks. The work in [92] provides an
analysis technique based on calculating accumulating delays, whereas
the works in [93] and [94] use network calculus to check the schedu-
lability of the system. In addition, the technique in [95] presents a
response time analysis for classes A and B traffic considering the CBS
and the support for scheduled traffic that is proposed in [96]. The
traffic forwarding and shaping model in the latter work is different from
the TSN standard models, as it was proposed before the finalization
of the first TSN draft. A comparative evaluation of the two models
is performed in [95]. In addition to the evaluation, the work in [95]
presents an efficient solution for network bandwidth allocation to frame
sets. The proposal is further modified in [97], where an efficient per-
link per-class bandwidth allocation is extracted using an algorithm to
optimize the network resource utilization.

Another research direction in the context schedulability analysis
for TSN is to consider the preemption support in TSN networks along
with the CBS and the gate mechanism. The progress in this direc-
tion is limited to few recent works, which require improvement to
reduce pessimism in the analysis. It should be noted that few works
have addressed the preemption model and its improvements, e.g., [98]
and [99]. However, there is currently no analysis technique considering
the proposed novel preemption models. The work in [100] proposes a
technique to perform an analysis considering the preemption support
under the IEEE802.3br standard. Further, the work in [101] presents an
analysis considering multiple classes of traffic instead of only classes A
and B. In addition, the latter work considers the CBS, gate mechanism,
and preemption. A recent work in [102] proposes a response time
analysis for classes A and B, while taking the CBS, gate mechanism
and preemption in the TSN networks into account. The work considers
various preemption modes, including the hold and release mechanism
and its effects on the jitter of the scheduled traffic in the network.

In light of the above discussion, it can be concluded that the
schedulability analysis techniques for TSN, that solely consider the
CBS, have gained relatively high level of maturity. Furthermore, some
of these techniques can compute tight upper bounds on the frame
delays, e.g., the technique that uses the eligible interval approach [86].
However, these technique are not extended to other TSN mechanisms,
e.g., the gate mechanism and preemption. When it comes to the analysis
techniques that consider the CBS along with the gate mechanism and
8

preemption, we observe that there are very few works and they are
pessimistic. An interesting research direction is to perform a compara-
tive evaluation of the existing works and reduce the pessimism in their
calculations. Another point is that the existing works consider several
restrictions in their system models, e.g., they consider one scheduled
traffic queue of the express type (i.e. non-preemptable), while the other
classes (A, B and BE) are low-priority and preemptable. For example,
the approach in [102] considers two preemption modes (i.e., with and
without hold and release mechanism), but the model could be extended
to have multiple scheduled traffic flows that are not necessarily mapped
on the highest priority queues. The above analysis techniques are
mainly evaluated using synthetic network examples, not fully verified
for automotive use cases. The works that evaluated analysis techniques
using some realistic automotive case studies are the ones in [85,95,101]
and [102]. The lack of evaluations performed in realistic case studies
represents one of the major limitations of the current literature, in
particular for automotive industries.

Another limitation of the existing works is the lack of support for
other traffic shapers, such as the IEEE 802.1Qch Cyclic Queuing and
Forwarding (now rolled into the IEEE 802.1Q-2018 standard) and the
IEEE 802.1Qcr-2020 Asynchronous Traffic Shaping. Consequently, this
research direction is also worth of investigation.

4.3. Integration of analysis techniques into software development frame-
works

In practice, the proposed timing analysis techniques should be in-
tegrated into model-based software development frameworks and tools
to assist the automotive software developers in automatically verifying
the timing behavior of the modeled systems. Some notable industrial
tools that support automatic timing analysis of automotive software
architectures include Rubus-ICE and SymTA/S. Within the context of
the above discussion, three core steps in the model-based software
development of automotive embedded systems are shown in Fig. 5. The
software architecture of a system consisting of software components
and their inter-connections is developed in step a. Afterwards, the
timing properties and requirements of the system are extracted from
the software architecture in step b. There is a step in this process
to validate the timing requirements and constraints specified on the
system, which is based on the schedulability analysis techniques. The
analysis techniques are implemented in the analysis engine, which is
integrated in the software architecture modeling tool (step c). The
analysis results do not only verify the system’ timing requirements, but
they also provide a feedback to the system developers regarding the
bottlenecks, e.g., which traffic is not schedulable on which port in the
network (step d).

There are very few works that have addressed the challenges in-
volved in the integration of schedulability analysis techniques with
the model-based software development frameworks and tools for au-
tomotive systems. The work in [45] proposed an integration process
for TSN networks considering only the credit-based shaper, while the
work in [50] complemented the integration with other TSN features,
e.g., gate mechanism and frame preemption. The integration method-
ology in both cases was realized in an industrial tool, Rubus-ICE.
Note that the other commercial software development tools, such as
SymTA/S, do not expose any detail about the integration techniques
for the timing analysis. The methodology for integrating these analysis
techniques with industrial or academic software development tools did
not get any attention in the TSN research community. This opens a
new research opportunity that can gain a momentum as an essential
requirement for the commercialization of the proposed theoretical anal-
yses. In addition to this line of research, the TSN network configuration
and scheduling algorithms are not integrated into the existing software
development tools. This integration requires new software modeling
techniques as well as modifications in existing system models to allow

the designers to configure TSN networks efficiently.



Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
Fig. 5. Software development process.
5. Simulation platforms for TSN

Nowadays, network simulators are widely adopted in industry and
academia. Simulation helps designers in decision-making of network
configuration problems and in the quantitative performance assessment
of a network design. Due to the complexity of TSN networks design,
performance evaluation at design time is challenging, as the network
behavior is affected by multiple parameters, e.g., the maximum frame
size, the network topology, traffic scheduling and routing, etc. For these
reasons, the adoption of network simulators is a good option to assess
the performance of a TSN network design. In fact, network simulators
provide fast network modeling and the ability to test the network with
several configuration parameters in a simple way. Network simulation
frameworks typically adopt a discrete event simulation model in which
events are organized on a time basis. In such a type of simulation
frameworks, events are collected in a queue and ordered based on their
execution times. The simulation engine cyclically extracts the event
with the lowest execution time and processes it. Most of the network
simulation frameworks (e.g., OMNeT++ [103,104], NS3 [105], etc.)
adopt this approach, as it allows for fast simulation runs.

OMNeT++ is one of the most widely used simulation frameworks
for TSN networks in academic settings. Thanks to its open-source
license, several TSN simulation models based on OMNeT++ are found
in the literature, for both industrial [95,106] and automotive [107,108]
scenarios.

The following subsections present an overview of simulation models
for TSN. Table 2 summarizes and compares the TSN features imple-
mented by each framework.

5.1. TSN simulation models based on OMNeT++

TSN simulation models are mainly developed using the OMNeT++
platform, as it provides a modular framework. Modules implement
specific component behaviors and can be assembled into larger com-
ponents and models.

The NeSTiNg [109] TSN simulation model, which is based on the
INET framework for OMNeT++, is the model suggested by the IEEE
TSN Task Group. NeSTiNg models both the enhancements for scheduled
traffic mechanisms (as defined in the IEEE 802.1Q-2018) and the
Ethernet frame preemption (as defined in the IEEE 802.1Q-2018 and
IEEE 802.3br standards). As far as the main TSN standards suitable for
automotive applications are concerned, the NeSTiNg model currently
lacks of the implementation of (i) the IEEE 802.1AS-2011 or IEEE
802.1AS-2020 standards for clock synchronization, (ii) the per-stream
filtering and policing mechanism defined in the IEEE 802.1Q-2018
standard, (iii) the IEEE 802.1CB standard, and (iv) complete support
for the CBS. NeSTiNg is based on the INET library, which is the main
model library implemented for OMNeT++. Thanks to the INET support,
NeSTiNg has a low learning curve for OMNeT++ users. Finally, NeST-
iNg design offers ease for extensions supporting clock synchronization
models.

Another popular OMNeT++ TSN simulation model is CoRE4INET
[110], which is also based on the INET libraries. It models real-time
Ethernet protocols like TTEthernet (AS6802 standard) and the main
9

TSN standards. Core4INET was mainly created to support TTEthernet
simulation models [111] and later on it was extended to support the
IEEE 802.1Q protocols, such as AVB and TSN. The current version
of CoRE4INET models the CBS, the Stream Reservation Protocol for
network configuration, the enhancements for scheduled traffic, and
the per-stream filtering and policing defined in the IEEE 802.1Q-
2018 standard. However, CoRE4INET provides no simulation models
for Ethernet frame preemption, the IEEE 802.1AS-2011/802.1AS-2020
clock synchronization protocols and the IEEE 802.1CB standard for
reliability.

An extension of CoRE4INET is presented in [112], which introduces
the clock synchronization model (based on a draft version of the IEEE
802.1AS-2020) and provides an implementation of the enhancements
for scheduled traffic.

It is also worth mentioning TSimNet [113], which is an OMNeT-
based TSN simulation model that provides per-stream filtering and
policing mechanisms, the IEEE 802.1CB mechanisms for frame repli-
cation and elimination, and frame preemption according to the IEEE
802.1Qbu and IEEE 802.3br amendments. However, TSimNet does not
offer models to simulate the CBS and the enhancements for scheduled
traffic.

5.2. Other TSN simulation platforms

Alhough the OMNeT++ framework is widely adopted for simulating
TSN networks, there are several TSN simulation models that are based
on other frameworks and legacy simulation platforms. In particular,
in [114] a simulation model implemented with the OPNET [115]
framework (now called Riverbed Modeler) is presented. The model
supports the enhancements for scheduled traffic mechanisms, the per-
stream filtering and policing mechanisms, the IEEE 802.1CB standard
for reliability, and the IEEE 802.1AS clock synchronization protocol.
Moreover, it offers reconfiguration support [116]. However, the code
of this simulation platform is not publicly available.

TCN TimeAnalysis [117] is a software platform devised for network
designers to assess the performance of TSN network configurations.
This platform supports the simulation of the CBS and the enhancements
for scheduled traffic mechanisms. However, TCN TimeAnalysis is not
a network simulation framework, and therefore it does not allow
implementing extensions with new features or new protocols.

Thanks to the wide use of open-source TSN simulation models,
a large number of TSN standards is currently supported by different
simulation models. However, to the best of our knowledge, there is no
a single model supporting all of them. An open challenge is therefore
integrating all the developed models in a single open-source model
(e.g., in the INET framework developed on top of OMNeT++), so as
to provide the network designers and researchers with a versatile and
common simulation model.

6. Hardware evolution in TSN

A field-programmable gate array (FPGA) is a promising
programmable hardware platform for many industrial applications,
thanks to low energy consumption, re-programmability, and recon-

figurability. Besides, FPGAs offer a better time-to-market compared



Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.

A
t
t
d
p

e
r
t
m
p
e
p
l
i
a
p
o
e
e
s
i
n
l
a
e
a
f

f
w
p
e
d
f
p
m

Table 2
TSN features implemented in the addressed simulation platforms.
Feature OMNeT++ models Other models

NeSTiNg CoRE4INET TSimNet OPNET Model TCN

Credit-Based Shaper ✓ ✓

Scheduled Traffic ✓ ✓ ✓ ✓

Clock Sync. ✓

Frame Preemption ✓ ✓ N.A.
Per-stream Filtering and Policing ✓ ✓ ✓ N.A.
Frame Replication and Elimination ✓ ✓ N.A.
Configuration Protocols ✓ ✓ N.A.
to Application-Specific-Integrated-Circuit (ASIC) solutions [118]. TSN
switches are implemented with FPGA fabrics for the following features:

• Reconfigurability: The design can be easily upgraded and/or re-
placed with the new TSN protocols. This feature highly reduces
the cost of design for any upgrades.

• Parallel designs: FPGAs can be used to implement multiple data
processing pipelines in parallel to increase the throughput. This
can facilitate developing time-predictable designs.

• Security: FPGA provides hardware-level security through inte-
grated security features, such as differential power analysis pro-
tection, cryptography IP-cores, and advanced encryption stan-
dards [119].

• Energy efficiency: FPGAs are an energy-efficient solution com-
pared to other computing fabrics, such as Graphics Processing
Units (GPUs) and CPUs [120].

It is expected that, when TSN will reach a large diffusion, the
SIC solutions will be needed to address the adoption at low-cost in

he automotive large-volume market. To this aim, it is worth noting
hat FPGAs today are integrable in ASIC as embedded FPGA tiles and
irect FPGA to ASIC conversion is made available by FPGA technology
roviders.

FPGAs are widely used in Ethernet networks [121–123]. How-
ver, there are only a few works that have addressed the hardware
ealization of TSN. A TSN architecture is designed in [124], where
he computationally-intensive and time-sensitive functions are imple-
ented in dedicated hardware modules to mitigate the CPU load. The
roposed solution allows the network functions to be implemented
ntirely in hardware or software, based on the dynamic load. The ex-
erimental performance results show a significant reduction in the CPU
oad compared to a fully software implementation. TrustNode [125]
s another proposed hardware architecture for low-latency switching
nd routing. The architecture is the integration of a standard x86-64
rocessor and an FPGA for Ethernet and TSN switches. It does not
nly facilitate frequency synchronization across networks, but it is also
asily extendable. OpenTSN [126] is an open-source project which
nables design-time rapid customization of application-specific TSN
ystem on FPGAs. It is composed of hardware and software components
n which the hardware components are designed for switches and
etwork interfaces, while the software components control the under-
ying devices in a centralized manner. TSN-Builder [127], is another
pplication-specific TSN design framework for customizing resource-
fficient switches at design time. However, none of these works have
ddressed the run-time adaptivity and scalability of the TSN switch
abric.

One open challenge in this regard is to design the TSN switch
abric as a parameterized and modular hardware IP core with hard-
are description languages (e.g., VHDL or Verilog). The modular and
arameterized design can help to update the TSN IP core to match the
volving TSN standards quickly, while enabling engineers to meet the
esign requirements of the evolving automotive industry. The switch
abric IP core can be equipped with optimized memory modules sup-
orting the present and up-coming types of memory. Using a portable
10

emory controller for data storing might improve performance. The
TSN scheduler is implemented as part of the IP core in hardware with
interfaces for communication with switch ports and the processor. The
switch fabric’s run-time reconfigurability is a vital feature that enables
the switch to adjust to the application requirements. Such automatic
adjustment avoids the customization overhead needed at design time
(addressed in [126,127]) and efficiently utilizes the fabric resources
with a reasonable energy footprint.

The scalability is another challenging open issue of switch fabrics
in general when the number of input and output ports increases. In
particular, in automotive systems, each platform requires a different
configuration (e.g., topology, number of ports) depending on the de-
sign and bandwidth requirements. Conventional crossbar switches are
not scalable to support applications with different bandwidth require-
ments. Such a bottleneck would open the door to studying new switch
architectures for TSN systems.

7. Safety and security in TSN

7.1. Safety in TSN

The development of TSN networking technology discussed in pre-
vious sections is a key enabling technology to improve safety in
high performance computing systems in the automotive domain. Mod-
ern automotive applications require high computational performance
with strong real-time constraints, e.g., autonomous cars and Advanced
Driver Assistance Systems (ADAS). Indeed, automotive ECUs are evolv-
ing from simple microcontrollers to complex MPSoCs [128]. However,
with the adoption of massively parallel platforms, it is challenging
to predict task execution times, because of different processing ele-
ments competing for shared on-chip and off-chip resources. Moreover,
in-vehicle networks are in a transition from legacy domain-based
electronic architectures to zonal architectures. As discussed in Section 2
and in [36] this architecture uses Ethernet (100Base-T1, 1000Base-
T1) as the backbone network to integrate zone-level subsystems, such
as driver, chassis, body, multimedia, and powertrain subsystems. In
these architectures, TSN offers a promising solution for the backbone
in-vehicle network.

In the above mentioned networking scenario, domain-based ar-
chitectures with many simple and separate ECUs will be used for
commodity automotive subsystems, while for high-performance tasks
(e.g. sensor fusion, navigation and planning) a small number of super-
computers is needed. This evolution poses several challenges in terms
of safety, since general-purpose and high-performance computing units
suffer from poor timing predictability and high latency for contention
when accessing to shared resources (memories, I/O, bus). Moreover, in
the case of ADAS, large amounts of data have to be acquired and pro-
cessed from high-bandwidth sensors (e.g., radars, Lidars, ultrasonics,
videocameras, among others) within strict timing constraints. Lastly,
high-performance automotive computing units using hypervisor tech-
nology [129] will concurrently sustain both safety-critical functions
(e.g., for ADAS) and non-critical functions (e.g., infotainment).

While the timing predictability issue for on-chip execution of mul-
tiple tasks in multi-core architectures is addressed by frameworks like
PRedictable Execution Models (PREM) [130] and by designing corre-

sponding schedulers, the current TSN developments try to overcome the



Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.

7

v
f
t
1
t
s
t
a
E
i
f

t
v
w
m
w
e
g
I
a
t
b
t
a
d

c
F
b
n
t
t
s
f
r
b
p

limits in the state of the art for what off-chip connectivity is concerned.
To improve the safety of the platform, the features addressed by the
current TSN development efforts, and already discussed in previous
Sections, are the following:

• Sustaining data rates of at least 1 Gbps, already standardized in
IEEE 802.3bp-2016, and moving to 2.5, 5 and 10 Gbps, in Multi-
Gig Automotive Ethernet PHY, approved in June 2020 as IEEE
802.3ch-2020;

• Providing a suite of clock-synchronization protocols that allow
end stations and switches to synchronize their local clocks to each
other in order to have a common notion of time;

• Reserving bandwidth for real-time functions thanks to the de-
velopment of the SRP, which allows for the reservation of re-
sources within the bridges on the path between the source and
the destination;

• Prioritization and traffic shaping for real-time flows to prevent
traffic bursts, by means of the CBS at the output ports of bridges
and end nodes, which guarantees bounded latency to real-time
classes;

• Schedulability analysis techniques to verify whether the system
is schedulable, under given scheduling algorithms such those re-
viewed in Section 4.1, and that the specified timing requirements
are satisfied

.2. Security in TSN

In automotive embedded systems, the increased complexity of in-
ehicle networking and the increased connectivity of vehicles with in-
rastructures, pedestrians, vehicles (the so-called V2X-vehicle to every-
hing scenario) is increasing the surface exposed to cyber-attacks [131,
32]. Hence, in new car generations with distributed control systems,
he likelihood and severity of security attacks will increase. A further
ource of security issues for embedded vehicle systems is due to the
rend of updating the firmware/software of ECUs through over-the-
ir (OTA) remote techniques. For this purpose, new Attribute-Based
ncryption (ABE) techniques are proposed in the literature [133] to
ncrease the strength of public key cryptographic schemes for OTA
irmware/software updates in automotive embedded systems.

This manuscript focuses on in-vehicle networked embedded sys-
ems, hence, the security analysis made in this Section refers to intra-
ehicle networking. Unfortunately, classic automotive intra-vehicle net-
orks, like CAN and FlexRay, were not designed taking security in
ind, hence, they are characterized by several vulnerabilities and
eaknesses, as largely discussed in the literature [3,132,134]. For
xample, the net-spanning exchange of data through several gateways
ives potential access to any vehicular bus from every other bus system.
n principle, each LIN, CAN, FlexRay, or MOST controller on-board

vehicle can send messages to any other existing controller, and
herefore, without adding extra preventive measures, a single attacked
us system could compromise all in-vehicle communications. As CAN is
ypically adopted as a backbone bus in traditional vehicles, successful
ttacks on CAN network may lead to malfunctioning of safety-relevant
riving assistance functions.

Current networks have limits in terms of confidentiality, authenti-
ation, and availability. The broadcast nature of CAN/CAN-FD and of
lexRay is a risk in terms of confidentiality, since an attacked ECU can
e used to monitor all the data passing on the bus. In a CAN network,
ew ECUs can be added in a plug-and-play fashion, just assigning
hem a new ID, without modifying the already installed ECUs. Since
he data link layer does not provide any signature mechanism, CAN
uffers from high risks of authentication vulnerability. The multi-master
eature of CAN, with an arbitration based on identifier priority, poses
isks in terms of availability. In fact, a hacker can attack a bus and
ehave as a new ECU, reading all data on the bus and generating false
ackets. Using a high priority identifier, the malicious ECU can win the
11
arbitration and then continuously send invalid messages, thus making
a jamming attack. Even though these invalid frames will be discarded
by the receiving controllers, the attack makes the bus unavailable to
the other ECUs connected to the bus. The malicious ECU, after reading
a message from the bus, can also impersonate another ECU for replay
attacks, with a potential for harmful consequences for the vehicle occu-
pants. In a CAN network, due to the lack of signature mechanisms for
authentication and transmission encryption, it is easy for an attacker to
emulate a protocol-compliant behavior. As a consequence, controllers
are not able to verify whether an incoming message comes from an
authorized or unauthorized and/or a malicious sender. Controllers just
check rules, e.g. bit stuffing, CRC, and data length code consistency,
which are not relevant to cybersecurity. Moreover, utilizing the CAN
mechanisms for automatic fault localization, malicious CAN frames can
cause the disconnection of every single controller by posting several
well-directed error flags.

Similar to the CAN automatic fault localization, the bus guardian in
FlexRay can be utilized for the well-directed deactivation of any con-
troller by appropriate fake error messages. Attacks on the common time
base, which would make the FlexRay network completely inoperative,
are also feasible by posting proper malicious SYNC messages on the bus.
Moreover, the introduction of well-directed sleep frames deactivates
the corresponding power-saving capable FlexRay controllers.

To face all the above issues of the classic in-vehicle networks, some
strategies should be implemented in emerging TSN networks. First of
all, given the increased available data-rates in TSN (e.g. the Multi-
Gigabit automotive Ethernet), critical data in terms of security may be
transmitted encrypted. However, complete data encryption to prevent
eavesdropping and guarantee message authenticity would cause heavy
use of resources and lead to large latency values, possibly clashing
with timing requirements. Hence the data to be processed should be
divided in security classes with different priorities, where only the crit-
ical ones have to be encrypted. Applying integrity and authentication
mechanisms, such as Message Authentication Codes (MAC), could be
a more efficient approach than complete encryption of all data, for
such use cases. This approach is also connected to the separation of the
networking domain in multiple zones with different trust levels. This
way, non-critical applications (e.g. infotainment) and safety-critical
ones (e.g. ADAS) can be concurrently implemented on the same high-
performance computing platform by assigning them to domains with
different trust levels. Another technique to be adopted in TSN to face
security issues is the implementation of intrusion detection algorithms.
For example, by exploiting some security limitations of the CAN net-
work (e.g. non-encrypted data, priority declared by the transmitting
ECUs, all ECUs being able to always read the traffic data), a malicious
software can take the control of an ECU and easily implement some at-
tacks by impersonating another ECU (e.g. man in the middle, jamming,
. . . ). To avoid this issue, the TSN adoption should be combined with the
implementation of anomaly and intrusion detection techniques where,
in an initial calibration phase (or training phase if AI techniques are
adopted), the features of the incoming traffic are extracted and then
classified to assess the normal behavior of the network. To this aim,
features of both the physical level (e.g. clock skew, voltage levels) and
the cyber-level (e.g. data content, message IDs) are analyzed. Once the
training phase of the network has been completed, then the incoming
traffic can be analyzed, its feature extracted and, if their classification
does not match the ‘‘normal’’ one, a warning for anomalies caused by
an intrusion can be raised. Considering the architecture of in-vehicle
network, the most suitable node to host the intrusion detection system
is the gateway. If AI techniques are adopted to detect intrusion by
classifying normal vs anomaly behaviors the training phase (needing
high computational capability and a huge amount of data) is typically
done off-line, while the inference phase (e.g. applying the intrusion
detection technique to the incoming traffic) can be done in real time.
A proposal from industry (Bosch) for a TSN/AVB compliant intrusion
detection system has been recently presented in [135]. Moreover, with
the promotion of TSN in the design of autonomous vehicles, security-
aware routing and scheduling of real-time automotive applications

have recently become novel new research trends, see [136].



Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
8. Conclusions

This work surveyed recent efforts, challenges and opportunities in
the field of Time-Sensitive Networking to address the requirements
of high-bandwidth and low-latency in-vehicle communications. Among
the standards developed by the IEEE TSN task group, the paper pointed
at those that are relevant to in-vehicle communications, with the aim
of providing the readers with an understanding of the mechanisms
and the properties that make them suitable candidates for that sce-
nario. As practical recipes to improve the sustained data-rate and the
reliability of in-vehicle infrastructures this paper suggested that new
features should be introduced in the in-vehicle networking. One of
them is the support for accurate and reliable clock synchronization,
which enables a common notion of time in the network. Moreover,
other useful properties include the definition of delay bounds for real-
time traffic, the ability to reserve resources to the different traffic
types and to apply traffic prioritization and traffic shaping. To achieve
temporal isolation for jitter-sensitive flows, scheduled traffic support
is needed. At lower data rates, frame preemption is also beneficial.
Moreover, network management mechanisms are sought for the sake of
effectiveness and efficiency. All these add-ons are crucial for the new
generations of vehicles, and especially for those characterized by the
increasing use of advanced assisted driving or even fully autonomous
driving. In addition, to fully exploit their potential in the automotive
domain, TSN protocols should be integrated into the state-of-the-art of
model-based development processes for automotive embedded systems.
As future research direction, one is relevant to the IEEE 802.1Qcr-2020
standard, which is very promising, as it offers bounded latency asyn-
chronous shaping with robustness properties (e.g., integrated policing)
and permits compositional timing analysis.

Declaration of competing interest

As this paper is submitted as a state-of-the-art paper for the Special
Issue on Parallel, Distributed, and Network-Based Processing in Next-
generation Embedded Systems (SI:PDP20), the authors have a conflict
of interest with the guest editors of the special issue.

Acknowledgments

The work in this paper is supported by the Swedish Governmental
Agency for Innovation Systems (VINNOVA) via the DESTINE, PROVI-
DENT and INTERCONNECT projects, the Swedish Knowledge Founda-
tion via the FIESTA, HERO and DPAC projects, the Ministry of Edu-
cation, University and Research (MIUR) Italy via the project Crosslab-
Dipartimenti di Eccellenza, and by the University of Catania via the
CHANCE project.

References

[1] J. Schroeder, C. Berger, A. Knauss, H. Preenja, M. Ali, M. Staron, T. Herpel,
Predicting and evaluating software model growth in the automotive industry, in:
IEEE International Conference on Software Maintenance and Evolution, 2017,
http://dx.doi.org/10.1109/ICSME.2017.41.

[2] P. Pelliccione, E. Knauss, R. Heldal, S.M. Ågren, P. Mallozzi, A. Alminger, D.
Borgentun, Automotive architecture framework: The experience of volvo cars,
J. Syst. Archit. 77 (2017) 83–100.

[3] L. Lo Bello, R. Mariani, S. Mubeen, S. Saponara, Recent advances and trends in
on-board embedded and networked automotive systems, IEEE Trans. Ind. Inf.
15 (2) (2019).

[4] I. Baas, A glimpse into the future of travel and its impact on market-
ing, The Drum (2018) URL http://www.thedrum.com/opinion/2016/01/11/
glimpse-future-travel-and-its-impact-marketing.

[5] T. Shale-Hester, Driverless cars will require one billion lines of code, says Jaguar
Land Rover, AutoExpress (2019) URL https://www.autoexpress.co.uk/car-news/
106617/driverlesscars-will-require-one-billion-lines-of-code-says-jlr.

[6] F. Hartwich, Introducing CAN XL into CAN networks, in: 17th CAN in
Automation Conference, ICC, 2020.

[7] C. Schanze, Future of CAN from the prospective of an OEM, in: 17th CAN in
Automation Conference, ICC, 2020.
12
[8] J.A. Stankovic, K. Ramamritham, What is predictability for real-time
systems? Real-Time Sys. 2 (4) (1990) 247–254.

[9] D. Grund, J. Reineke, R. Wilhelm, A template for predictability definitions
with supporting evidence, in: Bringing Theory To Practice: Predictability and
Performance in Embedded Systems, in: OpenAccess Series in Informatics, vol.
18, Dagstuhl, Germany, 2011, pp. 22–31.

[10] S. Mubeen, E. Lisova, A.V. Feljan, Timing predictability and security in
safety-critical industrial cyber-physical systems: A position paper, in: Applied
Sciences–Special Issue ‘‘Emerging Paradigms and Architectures for Industry 4.0
Applications’’, Vol. 10, (3125) 2020, pp. 1–17.

[11] N. Navet, F. Simonot-Lion, In-Vehicle Communication Networks - a Historical
Perspective and Review, Technical Report, University of Luxembourg, 2013.

[12] S. Mubeen, J. Mäki-Turja, M. Sjödin, Integrating mixed transmission and
practical limitations with the worst-case response-time analysis for Controller
Area Network, J. Syst. Softw. 99 (2015) 66–84.

[13] A. Nasrallah, A.S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, H.
ElBakoury, Ultra-low latency (ULL) networks: The IEEE TSN and IETF detnet
standards and related 5G ULL research, IEEE Commun. Surv. Tutor. 21 (1)
(2019) 88–145.

[14] T.A. Henzinger, J. Sifakis, The embedded systems design challenge, in: 14th
International Symposium on Formal Methods, 2006.

[15] J. Bezivin, O. Gerbe, Towards a precise definition of the OMG/MDA framework,
in: 16th Annual International Conference on Automated Software Engineering,
ASE 2001, 2001, pp. 273–280.

[16] T. Vale, I. Crnkovic, E.S. de Almeida, P.A. da Mota Silveira Neto, Y.C.
Cavalcanti, S.R. de Lemos Meira, Twenty-eight years of component-based
software engineering, J. Syst. Softw. 111 (2016) 128–148.

[17] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T.P. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J.P. Lehoczky, A.K. Mok, Real time scheduling theory: A historical
perspective, Real-Time Syst. 28 (2/3) (2004) 101–155.

[18] N. Feiertag, K. Richter, J. Nordlander, J. Jonsson, A compositional framework
for end-to-end path delay calculation of automotive systems under different
path semantics, in: CRTS Workshop, 2008.

[19] M. Becker, D. Dasari, S. Mubeen, M. Behnam, T. Nolte, End-to-end timing
analysis of cause-effect chains in automotive embedded systems, J. Syst. Archit.
80 (2017) 104–113.

[20] S. Mubeen, J. Mäki-Turja, M. Sjödin, Support for end-to-end response-time and
delay analysis in the industrial tool suite: Issues, experiences and a case study,
Comput. Sci. Inf. Syst. 10 (2013) 453–482.

[21] R.T. Kolagari, D. Chen, A. Lanusse, R. Librino, H. Lönn, N. Mahmud, C.
Mraidha, M.-O. Reiser, S. Torchiaro, S. Tucci-Piergiovanni, T. Wägemann, N.
Yakymets, Model-based analysis and engineering of automotive architectures
with EAST-ADL: Revisited, Int. J. Concept. Struct. Smart Appl. 3 (2) (2015)
25–70, http://dx.doi.org/10.4018/IJCSSA.2015070103.

[22] M. Becker, S. Mubeen, D. Dasari, M. Behnam, T. Nolte, A generic framework
facilitating early analysis of data propagation delays in multi-rate systems
(Invited paper), in: 2017 IEEE 23rd International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA, 2017, pp. 1–11.

[23] S. Mubeen, T. Nolte, J. Lundbäck, M. Gålnander, K.-L. Lundbäck, Refining
timing requirements in extended models of legacy vehicular embedded systems
using early end-to-end timing analysis, in: S. Latifi (Ed.), Information Tech-
nology: New Generations, Springer International Publishing, Cham, 2016, pp.
497–508.

[24] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, K.-L. Lundbäck, Supporting
timing analysis of vehicular embedded systems through the refinement of
timing constraints, Softw. Syst. Model. (2019) 39–69, http://dx.doi.org/10.
1007/s10270-017-0579-8.

[25] A. Bucaioni, L. Addazi, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen, M.
Sjödin, MoVES: A model-driven methodology for vehicular embedded systems,
IEEE Access 6 (2018) 6424–6445.

[26] P. Thorngren, Keynote talk: Experiences from EAST-ADL use, in: EAST-ADL
Open Workshop, Gothenberg, 2013.

[27] AUTOSAR techincal overview, release 4.1, rev. 2, ver. 1.1.0., the AUTOSAR
consortium, 2013, http://autosar.org.

[28] S. Mubeen, J. Mäki-Turja, M. Sjödin, Communications-oriented development of
component- based vehicular distributed real-time embedded systems, J. Syst.
Archit. 60 (2) (2014) 207–220.

[29] S. Mubeen, J. Mäki-Turja, M. Sjödin, Translating timing constraints during ve-
hicular distributed embedded systems development, in: 1st International Work-
shop on Model-Driven Engineering for Component-Based Software Systems,
2014.

[30] S. Mubeen, M. Gålnander, J. Lundbäck, K.-L. Lundbäck, Extracting timing
models from component-based multi-criticality vehicular embedded systems, in:
15th International Conference on Information Technology : New Generations,
2018.

[31] IEEE Std. 802.1Q-2018: IEEE Standard for Local and Metropolitan Area
Networks—Bridges and Bridged Networks, IEEE, 2018.

http://dx.doi.org/10.1109/ICSME.2017.41
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb2
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb2
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb2
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb2
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb2
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb3
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb3
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb3
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb3
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb3
http://www.thedrum.com/opinion/2016/01/11/glimpse-future-travel-and-its-impact-marketing
http://www.thedrum.com/opinion/2016/01/11/glimpse-future-travel-and-its-impact-marketing
http://www.thedrum.com/opinion/2016/01/11/glimpse-future-travel-and-its-impact-marketing
https://www.autoexpress.co.uk/car-news/106617/driverlesscars-will-require-one-billion-lines-of-code-says-jlr
https://www.autoexpress.co.uk/car-news/106617/driverlesscars-will-require-one-billion-lines-of-code-says-jlr
https://www.autoexpress.co.uk/car-news/106617/driverlesscars-will-require-one-billion-lines-of-code-says-jlr
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb8
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb8
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb8
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb9
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb9
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb9
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb9
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb9
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb9
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb9
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb10
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb10
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb10
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb10
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb10
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb10
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb10
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb11
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb11
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb11
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb12
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb12
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb12
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb12
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb12
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb13
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb13
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb13
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb13
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb13
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb13
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb13
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb16
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb16
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb16
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb16
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb16
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb17
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb17
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb17
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb17
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb17
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb19
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb19
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb19
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb19
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb19
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb20
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb20
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb20
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb20
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb20
http://dx.doi.org/10.4018/IJCSSA.2015070103
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb23
http://dx.doi.org/10.1007/s10270-017-0579-8
http://dx.doi.org/10.1007/s10270-017-0579-8
http://dx.doi.org/10.1007/s10270-017-0579-8
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb25
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb25
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb25
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb25
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb25
http://autosar.org
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb28
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb28
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb28
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb28
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb28
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb31
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb31
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb31


Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
[32] R. Enns, M. Björklund, A. Bierman, J. Schönwälder, Network Configuration
Protocol (NETCONF), in: Request for Comments, (6241) RFC Editor, 2011, RFC
6241.

[33] J. Schönwälder, M. Björklund, P. Shafer, Network configuration management
using NETCONF and YANG, IEEE Commun. Mag. 48 (9) (2010) 166–173.

[34] L. Lo Bello, Novel trends in automotive networks: A perspective on Ethernet
and the IEEE audio video bridging, in: Proceedings of the 2014 IEEE Emerging
Technology and Factory Automation (ETFA, 2014, pp. 1–8.

[35] J. Klaus-Wagenbrenner, Zonal EE architecture: Towards a fully automotive
ethernet–based vehicle infrastructure, 2019, URL https://ieee802.org/1/files/
public/docs2019/dg-zinner-automotive-architecture-evolution-0319-v02.pdf.

[36] G. Xie, Y. Li, Y. Han, Y. Xie, G. Zeng, R. Li, Recent advances and future trends
for automotive functional safety design methodologies, IEEE Trans. Ind. Inf. 16
(9) (2020) 5629–5642, http://dx.doi.org/10.1109/TII.2020.2978889.

[37] EAST-ADL domain model specification, V2.1.12, 2013, URL http://www.east-
adl.info/Specification/V2.1.12/EAST-ADLSpecification_V2.1.12.pdf.

[38] K. Hänninen, et al., The rubus component model for resource constrained
real-time systems, in: IEEE Symposium on Industrial Embedded Systems, 2008.

[39] S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, K.L. Lundbäck, Provisioning
of predictable embedded software in the vehicle industry: The rubus approach,
in: IEEE/ACM 4th International Workshop on Software Engineering Research
and Industrial Practice, SER&IP, 2017, pp. 3–9.

[40] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, I. Crnkovic, A component model
for control-intensive distributed embedded systems, in: International Conference
on Component Based Software Engineering, CBSE, 2008, pp. 310–317.

[41] Catalog of specialized CORBA specifications. OMG group, 2011, URL http:
//www.omg.org/technology/documents/.

[42] X. Ke, K. Sierszecki, C. Angelov, COMDES-II: A component-based framework
for generative development of distributed real-time control systems, in: 13th
International Conference on Embedded and Real-Time Computing Systems and
Applications, 2007.

[43] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R. Ernst, System level
performance analysis - the SymTA/S approach, Comput. Digit. Tech. 152 (2)
(2005) 148–166, http://dx.doi.org/10.1049/ip-cdt:20045088.

[44] S. Mubeen, J. Mäki-Turja, M. Sjödin, MPS-CAN analyzer: Integrated implemen-
tation of response-time analyses for Controller Area Network, J. Syst. Archit.
60 (10) (2014) 828–841.

[45] M. Ashjaei, S. Mubeen, J. Lundbäck, M. Gålnander, K. Lundbäck, T. Nolte,
Modeling and timing analysis of vehicle functions distributed over switched
Ethernet, in: 43rd Annual Conference of the IEEE Industrial Electronics Society,
2017.

[46] P. Pop, M.L. Raagaard, S.S. Craciunas, W. Steiner, Design optimisation of
cyber-physical distributed systems using IEEE time-sensitive networks, IET
Cyber-Phys. Syst.: Theory Appl. 1 (1) (2016) 86–94, http://dx.doi.org/10.1049/
iet-cps.2016.0021.

[47] M. Farzaneh, A. Knoll, An ontology-based Plug-and-Play approach for in-vehicle
Time-Sensitive Networking (TSN), in: 7th IEEE Annual Information Technology,
Electronics and Mobile Communication Conference, IEMCON, 2016, pp. 1–8,
http://dx.doi.org/10.1109/IEMCON.2016.7746299.

[48] V. Gavrilut, Design Optimization of IEEE Time-Sensitive Networks (TSN) for
Safety-Critical and Real-Time Applications (Ph.D. thesis: 2018–500), Depart-
ment of Applied Mathematics and Computer Science, Technical University of
Denmark, 2018, 2018.

[49] M. Farzaneh, S. Shafaei, A. Knoll, Formally verifiable modeling of in-vehicle
time-sensitive networks (TSN) based on logic programming, in: IEEE Vehicular
Networking Conference, VNC, 2016, pp. 1–4.

[50] S. Mubeen, M. Ashjaei, M. Sjödin, Holistic modeling of time sensitive net-
working in component-based vehicular embedded systems, in: 45th Euromicro
Conference on Software Engineering and Advanced Applications, SEAA, 2019,
pp. 131–139.

[51] The UML Profile for MARTE: Modeling and Analysis of Real-Time and
Embedded Systems, OMG Group, 2010, URL http://www.omgmarte.org/.

[52] H. Kopetz, G. Bauer, The time-triggered architecture, Proc. IEEE 91 (1) (2003)
112–126.

[53] W. Steiner, An evaluation of SMT-Based schedule synthesis for time-triggered
multi-hop networks, in: 31st IEEE Real-Time Systems Symposium, 2010, pp.
375–384.

[54] S.S. Craciunas, R.S. Oliver, Combined task- and network-level scheduling for
distributed time-triggered systems, Real-Time Syst. 52 (2015) 161–200.

[55] H. Kopetz, A. Ademaj, P. Grillinger, K. Steinhammer, The time-triggered
Ethernet (TTE) design, in: 8th IEEE international symposium on object-oriented
real-time distributed computing, 2005, pp. 22–33.

[56] S.S. Craciunas, R.S. Oliver, M. Chmelík, W. Steiner, Scheduling real-time
communication in IEEE 802.1Qbv time sensitive networks, in: Proceedings of
the 24th International Conference on Real-Time Networks and Systems, RTNS
’16, Association for Computing Machinery, 2016, pp. 183–192.
13
[57] R. Serna Oliver, S.S. Craciunas, W. Steiner, IEEE 802.1Qbv gate control list
synthesis using array theory encoding, in: IEEE Real-Time and Embedded
Technology and Applications Symposium, 2018, pp. 13–24.

[58] S.S. Craciunas, R.S. Oliver, An overview of scheduling mechanisms for
time-sensitive networks, 2017.

[59] N. Reusch, L. Zhao, S.S. Craciunas, P. Pop, Window-based schedule synthesis for
industrial IEEE 802.1Qbv TSN networks, in: 16th IEEE International Conference
on Factory Communication Systems, 2020, pp. 1–4.

[60] F. Pozo, G. Rodriguez-Navas, H. Hansson, Schedule reparability: Enhancing
time-triggered network recovery upon link failures, in: IEEE 24th International
Conference on Embedded and Real-Time Computing Systems and Applications,
2018, pp. 147–156.

[61] Y. Mi, J. Qu, J. Zhang, M. Yao, A scheduling algorithm of maximize the number
of porosity for the time-triggered DIMA system, in: IEEE 3rd International
Conference on Electronics Technology, 2020, pp. 68–73.

[62] F. Dürr, N.G. Nayak, No-wait packet scheduling for IEEE time-sensitive networks
(TSN), in: Proceedings of the 24th International Conference on Real-Time
Networks and Systems, Association for Computing Machinery, New York, NY,
USA, 2016, pp. 203–212, http://dx.doi.org/10.1145/2997465.2997494.

[63] M. Pahlevan, R. Obermaisser, Genetic algorithm for scheduling time-triggered
traffic in time-sensitive networks, in: IEEE 23rd International Conference on
Emerging Technologies and Factory Automation, Vol. 1, 2018, pp. 337–344.

[64] M. Pahlevan, N. Tabassam, R. Obermaisser, Heuristic list scheduler for time
triggered traffic in time sensitive networks, SIGBED Rev. 16 (1) (2019) 15–20.

[65] M.L. Raagaard, P. Pop, Optimization Algorithms for the Scheduling of IEEE
802.1 Time-Sensitive Networking (TSN), Technical Report, Technical University
of Denmark, 2017.

[66] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, Z. Peng, Stability-aware
integrated routing and scheduling for control applications in Ethernet networks,
in: Design, Automation Test in Europe Conference Exhibition, 2018.

[67] V. Gavrilut, B. Zarrin, P. Pop, S. Samii, Fault-tolerant topology and routing
synthesis for IEEE time-sensitive networking, in: 25th International Conference
on Real-Time Networks and Systems, 2017, pp. 267–276, http://dx.doi.org/10.
1145/3139258.3139284.

[68] V. Gavriluţ, P. Pop, Scheduling in time sensitive networks (TSN) for mixed-
criticality industrial applications, in: 14th IEEE International Workshop on
Factory Communication Systems, WFCS, 2018, pp. 1–4.

[69] V. Gavrilut, L. Zhao, M.L. Raagaard, P. Pop, AVB-aware routing and scheduling
of time-triggered traffic for TSN, IEEE Access 6 (2018) 75229–75243.

[70] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Mubeen, Synthesising
schedules to improve QoS of best-effort traffic in TSN networks, in: 29th
International Conference on Real-Time Networks and Systems, 2021.

[71] V. Gavriluţ, P. Pop, Traffic-type assignment for TSN-based mixed-criticality
cyber-physical systems, ACM Trans. Cyber-Phys. Syst. 4 (2) (2020).

[72] M. Farzaneh, S. Kugele, A. Knoll, A graphical modeling tool supporting
automated schedule synthesis for time-sensitive networking, in: 22nd IEEE
International Conference on Emerging Technologies and Factory Automation,
2017, pp. 1–8.

[73] A.T. d. Santos, B. Schneider, V. Nigam, TSNSCHED: Automated schedule
generation for time sensitive networking, in: Formal Methods in Computer
Aided Design, 2019, pp. 69–77.

[74] A. Nasrallah, V. Balasubramanian, A. Thyagaturu, M. Reisslein, H. ElBakoury,
Reconfiguration algorithms for high precision communications in Time Sensitive
Networks, in: IEEE Globecom Workshops, 2019.

[75] A. Nasrallah, A.S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein,
H. Elbakoury, Performance comparison of IEEE 802.1 TSN time aware shaper
(TAS) and asynchronous traffic shaper (ATS), IEEE Access 7 (2019).

[76] Z. Zhou, M.S. Berger, S.R. Ruepp, Y. Yan, Insight into the IEEE 802 . 1 qcr
asynchronous traffic shaping in time sensitive network, Adv. Sci. Technol. Eng.
Syst. J. 4 (1) (2019) 292–301.

[77] J. Specht, S. Samii, Synthesis of queue and priority assignment for asynchronous
traffic shaping in switched Ethernet, in: IEEE Real-Time Systems Symposium,
RTSS, 2017, pp. 178–187.

[78] G.C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, Kluwer Academic Publishers, Norwell, MA, USA,
1997.

[79] G. Kaczynski, L. Lo Bello, T. Nolte, Deriving exact stochastic response times of
periodic tasks in hybrid priority-driven soft real-time systems, in: 2007 IEEE
Conference on Emerging Technologies and Factory Automation, EFTA 2007,
2007, pp. 101–110.

[80] J. Imtiaz, J. Jasperneite, L. Han, A performance study of Ethernet Audio
Video Bridging (AVB) for industrial real-time communication, in: Conference
on Emerging Technologies Factory Automation, 2009.

[81] K. Lee, S. Lee, M.H. Lee, Worst case communication delay of real-time industrial
switched Ethernet with multiple levels, IEEE Trans. Ind. Electron. (2006).

http://refhub.elsevier.com/S1383-7621(21)00102-8/sb32
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb32
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb32
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb32
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb32
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb33
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb33
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb33
https://ieee802.org/1/files/public/docs2019/dg-zinner-automotive-architecture-evolution-0319-v02.pdf
https://ieee802.org/1/files/public/docs2019/dg-zinner-automotive-architecture-evolution-0319-v02.pdf
https://ieee802.org/1/files/public/docs2019/dg-zinner-automotive-architecture-evolution-0319-v02.pdf
http://dx.doi.org/10.1109/TII.2020.2978889
http://www.east-adl.info/Specification/V2.1.12/EAST-ADLSpecification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADLSpecification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADLSpecification_V2.1.12.pdf
http://www.omg.org/technology/documents/
http://www.omg.org/technology/documents/
http://www.omg.org/technology/documents/
http://dx.doi.org/10.1049/ip-cdt:20045088
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb44
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb44
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb44
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb44
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb44
http://dx.doi.org/10.1049/iet-cps.2016.0021
http://dx.doi.org/10.1049/iet-cps.2016.0021
http://dx.doi.org/10.1049/iet-cps.2016.0021
http://dx.doi.org/10.1109/IEMCON.2016.7746299
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb48
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb48
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb48
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb48
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb48
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb48
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb48
http://www.omgmarte.org/
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb52
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb52
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb52
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb54
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb54
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb54
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb56
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb56
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb56
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb56
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb56
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb56
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb56
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb58
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb58
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb58
http://dx.doi.org/10.1145/2997465.2997494
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb64
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb64
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb64
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb65
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb65
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb65
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb65
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb65
http://dx.doi.org/10.1145/3139258.3139284
http://dx.doi.org/10.1145/3139258.3139284
http://dx.doi.org/10.1145/3139258.3139284
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb69
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb69
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb69
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb71
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb71
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb71
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb73
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb73
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb73
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb73
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb73
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb75
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb75
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb75
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb75
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb75
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb76
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb76
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb76
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb76
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb76
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb78
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb78
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb78
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb78
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb78
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb81
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb81
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb81


Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
[82] J.A.R. De Azua, M. Boyer, Complete modelling of AVB in Network Calculus
framework, in: International Conference on Real-Time Networks and Systems,
2014.

[83] J. Diemer, D. Thiele, R. Ernst, Formal worst-case timing analysis of Ethernet
topologies with strict-priority and AVB switching, in: International Symposium
on Industrial Embedded Systems, 2012.

[84] U.D. Bordoloi, A. Aminifar, P. Eles, Z. Peng, Schedulability Analysis of Ether-
net AVB Switches, in: International Conference on Embedded and Real-Time
Computing Systems and Applications, 2014.

[85] X. Li, L. George, Deterministic delay analysis of AVB Switched Ethernet
networks using an extended trajectory approach, Real-Time Syst. (2017).

[86] J. Cao, P.J.L. Cuijpers, R.J. Bril, J.J. Lukkien, Independent yet Tight WCRT
analysis for individual priority classes in Ethernet AVB, in: International
Conference on Real-Time Networks and Systems, 2016.

[87] T. Mai, N. Navet, J. Migge, A hybrid machine learning and schedulability anal-
ysis method for the verification of TSN networks, in: 15th IEEE International
Workshop on Factory Communication Systems, 2019, pp. 1–8.

[88] T.L. Mai, N. Navet, J. Migge, On the use of supervised machine learning for
assessing schedulability: Application to ethernet TSN, in: 27th International
Conference on Real-Time Networks and Systems, Association for Computing
Machinery, 2019, pp. 143–153.

[89] A. FINZI, A. MIFDAOUI, F. FRANCES, E. LOCHIN, Network calculus-based
timing analysis of AFDX networks with strict priority and TSN/BLS shapers,
in: IEEE 13th International Symposium on Industrial Embedded Systems, SIES,
2018, pp. 1–10.

[90] A. Finzi, A. Mifdaoui, Worst-case timing analysis of AFDX networks with
multiple TSN/BLS shapers, IEEE Access 8 (2020) 106765–106784.

[91] D. Maxim, Y.-Q. Song, Delay analysis of AVB traffic in Time-Sensitive Networks
(TSN), in: International Conference on Real-Time Networks and Systems, 2017.

[92] D. Thiele, R. Ernst, J. Diemer, Formal worst-case timing analysis of Ethernet
TSN’s time-aware and peristaltic shapers, in: Vehicular Networking Conference,
2015.

[93] L. Zhao, P. Pop, Z. Zheng, Q. Li, Timing analysis of AVB traffic in TSN
networks using network calculus, in: Real-Time and Embedded Technology and
Applications Symposium, 2018.

[94] L. Zhao, P. Pop, S. Craciunas, Worst-case latency analysis for IEEE 802.1Qbv
time sensitive networks using network calculus, IEEE Access (2018).

[95] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, L. Lo Bello, Schedulability
analysis of ethernet audio video bridging networks with scheduled traffic
support, Real-Time Syst. 53 (4) (2017) 526–577.

[96] G. Alderisi, G. Patti, L. Lo Bello, Introducing support for scheduled traffic
over IEEE audio video bridging networks, in: IEEE International Conference
on Emerging Technologies and Factory Automation, Cagliari, Italy, 2013.

[97] J. Cao, M. Ashjaei, P.J.L. Cuijpers, R.J. Bril, J.J. Lukkien, An independent yet
efficient analysis of bandwidth reservation for credit-based shaping, in: 14th
IEEE International Workshop on Factory Communication Systems, 2018, pp.
1–10.

[98] M. Ojewale, P.M. Yomsi, B. Nikolić, Multi-level preemption in TSN: Feasibility
and requirements analysis, in: IEEE 23rd International Symposium on Real-Time
Distributed Computing, 2020.

[99] M. Ashjaei, M. Sjödin, S. Mubeen, A novel frame preemption model in TSN
networks, J. Syst. Archit. 116 (2021).

[100] D. Thiele, R. Ernst, Formal worst-case performance analysis of time-sensitive
Ethernet with frame preemption, in: 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation, ETFA, 2016.

[101] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, M. Boyer, Latency analysis of multiple
classes of AVB traffic in TSN with standard credit behavior using network
calculus, 2020, ArXiv.

[102] L. Lo Bello, M. Ashjaei, G. Patti, M. Behnam, Schedulability analysis of time-
sensitive networks with scheduled traffic and preemption support, J. Parallel
Distrib. Comput. 144 (2020) 153–171.

[103] OMNeT++ discrete event simulator, 2020, (Accessed on Sept. 2020), URL
https://omnetpp.org/.

[104] A. Varga, OMNeT++, in: K. Wehrle, M. Güneş, J. Gross (Eds.), Modeling and
Tools for Network Simulation, Springer Berlin Heidelberg, Berlin, Heidelberg,
2010, pp. 35–59, http://dx.doi.org/10.1007/978-3-642-12331-3_{}3.

[105] NS-3: Network simulator, 2020, (Accessed on Sept. 2020), URL https://www.
nsnam.org/.

[106] G. Alderisi, G. Iannizzotto, L. Lo Bello, Towards 802.1 Ethernet AVB for
advanced driver assistance systems: a preliminary assessment, in: IEEE 17th
Conference on Emerging Technologies Factory Automation, Krakow, Poland,
2012.

[107] A. Sabry, A. Omar, M. Hammad, N. Abdelbaki, AVB/TSN protocols in au-
tomotive networking, in: 2020 15th International Conference on Computer
Engineering and Systems, ICCES, 2020, pp. 1–7, http://dx.doi.org/10.1109/
ICCES51560.2020.9334667.
14
[108] G. Alderisi, A. Caltabiano, G. Vasta, G. Iannizzotto, T. Steinbach, L. Lo Bello,
Simulative assessments of IEEE 802.1 Ethernet AVB and Time-Triggered Eth-
ernet for Advanced Driver Assistance Systems and in-car infotainment, in:
Vehicular Networking Conference, VNC, Seoul, South Korea, 2012.

[109] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, K. Rothermel,
NeSTiNg: Simulating IEEE time-sensitive networking (TSN) in OMNeT++, in:
Proceedings of the 2019 International Conference on Networked Systems
(NetSys, Garching b. München, Germany, 2019.

[110] CoRE4INET simulation model, 2020, (Accessed on Sept. 2020), URL https:
//github.com/CoRE-RG/CoRE4INET.

[111] T. Steinbach, H. Dieumo Kenfack, F. Korf, T.C. Schmidt, An extension of the
OMNeT++ INET framework for simulating real-time ethernet with high accu-
racy, in: Proceedings of the 4th International ICST Conference on Simulation
Tools and Techniques, SIMUTools ’11, ICST, Brussels, Belgium, Belgium, 2011,
pp. 375–382.

[112] J. Jiang, Y. Li, S.H. Hong, A. Xu, K. Wang, A time-sensitive networking (TSN)
simulation model based on OMNET++, in: 2018 IEEE International Conference
on Mechatronics and Automation, 2018, pp, 643–648.

[113] P. Heise, F. Geyer, R. Obermaisser, TSimNet: An industrial time sensitive
networking simulation framework based on OMNeT++, in: 2016 8th IFIP
International Conference on New Technologies, Mobility and Security, 2016,
pp. 1–5.

[114] H. Baniabdelghany, R. Obermaisser, A. Khalifeh, Extended synchronization pro-
tocol based on IEEE802.1AS for improved precision in dynamic and asymmetric
TSN hybrid networks, in: 2020 9th Mediterranean Conference on Embedded
Computing, 2020, pp. 1–8.

[115] Riverbed modeler–OPNET, 2020, URL https://www.riverbed.com.
[116] M. Pahlevan, J. Schmeck, R. Obermaisser, Evaluation of TSN dynamic con-

figuration model for safety-critical applications, in: 2019 IEEE Intl Conf on
Parallel Distributed Processing with Applications, Big Data Cloud Comput-
ing, Sustainable Computing Communications, Social Computing Networking,
ISPA/BDCloud/SocialCom/SustainCom, 2019, pp. 566–571.

[117] TCN timeanalysis, 2020, URL https://www.timecriticalnetworks.com/products/
tcn-timeanalysis.

[118] I. Kuon, J. Rose, Measuring the gap between FPGAs and ASICs, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 26 (2) (2007) 203–215.

[119] S. Trimberger, J.J. Moore, FPGA security: Motivations, features, and
applications, Proc. IEEE 102 (8) (2014) 1248–1265.

[120] B. Falsafi, B. Dally, D. Singh, D. Chiou, J.J. Yi, R. Sendag, FPGAs versus GPUs
in data centers, IEEE Micro 37 (1) (2017) 60–72.

[121] T. Uchida, Hardware-based TCP processor for Gigabit Ethernet, IEEE Trans.
Nucl. Sci. 55 (3) (2008) 1631–1637.

[122] N. Alachiotis, S.A. Berger, A. Stamatakis, Efficient PC-FPGA communication
over Gigabit Ethernet, in: 10th IEEE International Conference on Computer and
Information Technology, 2010, pp. 1727–1734.

[123] S. Shreejith, P. Mundhenk, A. Ettner, S.A. Fahmy, S. Steinhorst, M. Lukasiewycz,
S. Chakraborty, VEGa: A high performance vehicular ethernet gateway on
hybrid FPGA, IEEE Trans. Comput. 66 (10) (2017) 1790–1803.

[124] F. Groß, T. Steinbach, F. Korf, T.C. Schmidt, B. Schwarz, A hardware/software
co-design approach for Ethernet controllers to support time-triggered traffic in
the upcoming IEEE TSN standards, in: IEEE Fourth International Conference on
Consumer Electronics Berlin, 2014, pp. 9–13.

[125] C. Liß, M. Ulbricht, U.F. Zia, H. Müller, Architecture of a synchronized
low-latency network node targeted to research and education, in: IEEE 18th
International Conference on High Performance Switching and Routing, 2017,
pp. 1–7.

[126] W. Quan, W. Fu, J. Yan, OpenTSN: an open-source project for time-sensitive
networking system development, CCF Trans. Netw. 3 (2020) 51–65, http:
//dx.doi.org/10.1007/s42045-020-00029-8.

[127] J. Yan, W. Quan, X. Yang, W. Fu, Y. Jiang, H. Yang, Z. Sun, TSN-builder:
Enabling rapid customization of resource-efficient switches for time-sensitive
networking, in: 2020 57th ACM/IEEE Design Automation Conference (DAC,
2020, pp. 1–6.

[128] D. Reinhardt, U. Dannebaum, M. Scheffer, M. Traub, High performance pro-
cessor architecture for automotive large scaled integrated systems within the
European Processor Initiative Research Project, SAE Int. (2019) (Accessed: 15
Oct. 2020).

[129] A.K. Sundar Rajan, A. Feucht, L. Gamer, I. Smaili, N.D. M., Hypervisor for
consolidating real-time automotive control units: Its procedure, implications and
hidden pitfalls, J. Syst. Archit. 82 (2018) 37–48.

[130] R. Tabish, R. Mancuso, S. Wasly, et al., A real-time scratchpad-centric OS with
predictable inter/intra-core communication for multi-core embedded systems,
Real-Time Syst. 55 (2019) 850–888.

[131] C. Corbett, E. Schoch, F. Kargl, F. Preussner, Automotive Ethernet: security
opportunity or challenge? in: M. Meier, D. Reinhardt, S. Wendzel (Eds.),
Sicherheit 2016, Lecture Notes in Informatics (LNI), Sicherheit, Schutz Und

ZuverläSsigkeit, Gesellschaft für Informatik e.V., Bonn, 2016, pp. 45–54.

http://refhub.elsevier.com/S1383-7621(21)00102-8/sb85
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb85
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb85
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb88
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb88
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb88
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb88
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb88
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb88
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb88
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb90
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb90
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb90
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb94
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb94
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb94
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb95
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb95
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb95
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb95
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb95
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb99
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb99
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb99
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb101
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb101
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb101
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb101
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb101
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb102
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb102
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb102
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb102
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb102
https://omnetpp.org/
http://dx.doi.org/10.1007/978-3-642-12331-3_{}3
https://www.nsnam.org/
https://www.nsnam.org/
https://www.nsnam.org/
http://dx.doi.org/10.1109/ICCES51560.2020.9334667
http://dx.doi.org/10.1109/ICCES51560.2020.9334667
http://dx.doi.org/10.1109/ICCES51560.2020.9334667
https://github.com/CoRE-RG/CoRE4INET
https://github.com/CoRE-RG/CoRE4INET
https://github.com/CoRE-RG/CoRE4INET
https://www.riverbed.com
https://www.timecriticalnetworks.com/products/tcn-timeanalysis
https://www.timecriticalnetworks.com/products/tcn-timeanalysis
https://www.timecriticalnetworks.com/products/tcn-timeanalysis
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb118
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb118
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb118
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb119
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb119
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb119
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb120
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb120
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb120
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb121
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb121
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb121
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb123
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb123
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb123
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb123
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb123
http://dx.doi.org/10.1007/s42045-020-00029-8
http://dx.doi.org/10.1007/s42045-020-00029-8
http://dx.doi.org/10.1007/s42045-020-00029-8
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb128
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb128
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb128
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb128
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb128
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb128
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb128
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb129
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb129
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb129
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb129
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb129
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb130
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb130
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb130
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb130
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb130
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb131
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb131
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb131
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb131
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb131
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb131
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb131


Journal of Systems Architecture 117 (2021) 102137M. Ashjaei et al.
[132] L. Baldanzi, L. Crocetti, M. Bertolucci, L. Fanucci, S. Saponara, Analysis of
cybersecurity weakness in automotive in-vehicle networking and hardware
accelerators for real-time cryptography, in: S. Saponara, A. De Gloria (Eds.), Ap-
plications in Electronics Pervading Industry, Environment and Society, Springer
International Publishing, Cham, 2019, pp. 11–18.

[133] M. La Manna, L. Treccozzi, P. Perazzo, S. Saponara, G. Dini, Performance
evaluation of attribute-based encryption in automotive embedded platform for
secure software over-the-air update, Sensors 21 (2) (2021) http://dx.doi.org/
10.3390/s21020515, URL https://www.mdpi.com/1424-8220/21/2/515.

[134] O. Avatefipour, et al., State-of-the-art survey on in-vehicle network communi-
cation CAN-bus security and vulnerabilities, Int. J. Comput. Sci. Netw. 6 (6)
(2017).

[135] R. Alves, et al., A glimpse into the future of travel and its impact
on marketing, in: IEEE-SA Ethernet and IP at Automotive Technology
day (EIPATD), 2019, URL https://standards.ieee.org/content/dam/ieee-
standards/standards/web/documents/other/eipatd-presentations/2019/D2-
01_ALVES-Design_and_Implementation_of_IDS_for_AVB-TSN_Networks.pdf,
(Accessed: 15 Oct. 2020).

[136] R. Mahfouzi, A. Aminifar, S. Samii, P. Eles, Z. Peng, Security-aware routing
and scheduling for control applications on Ethernet TSN networks, ACM Trans.
Des. Autom. Electron. Syst. 25 (1) (2019) http://dx.doi.org/10.1145/3358604.

Mohammad Ashjaei is a senior lecturer in the Com-
plex Real-Time Systems (CORE) and the Heterogeneous
Systems - Hardware Software Co-design (HERO) research
groups at Mälardalen University in Sweden. Mohammad has
received his Ph.D. degree in Computer Science in Novem-
ber 2016 from Mälardalen University. His main research
interests include real-time systems, real-time distributed
systems, scheduling algorithms on networks and processors,
schedulability analysis techniques, resource reservation and
reconfiguration mechanisms for real-time networks. He is
also giving lectures on various topics related to embedded
systems and data communication networks.

Lucia Lo Bello is an Associate Professor at the University
of Catania, Italy. She received the M.S. degree in Electronic
Engineering and the Ph.D. degree in Computer Engineering
in 1994 and 1998, respectively. She was also Guest Professor
at Mälardalen University, Sweden (2014) and a Visiting
Researcher with the Department of Computer Engineering,
Seoul National University, Korea (2000-2001). She authored
or coauthored more than 160 technical papers in the area of
real-time embedded systems, automotive communications,
industrial wireless sensor networks. In 2008 she was the
recipient of the IEEE Industrial Electronics Society Early
Career Award. She is a member of IEC, CENELEC and
CEI and actively participates to standardization activities in
the area of industrial communication. She is the Scientific
Responsible for the University of Catania for several national
and international research projects in the areas of the
factory automation and real-time embedded systems and
networks. She is Senior Member of the IEEE and Associate
Editor of several journals, including the IEEE Transactions
on Industrial Informatics, the Journal of Systems Architec-
ture and the Springer Real-Time Systems journal. She is the
current IES Secretary.

Masoud Daneshtalab is currently a Professor at Mälardalen
University in Sweden. He is co-leading the Heterogeneous
System research group at Mälardalen University (http://
www.es.mdh.se/hero/). Since 2016 he is in Euromicro
board of Director, a faculty member of the HiPEAC network,
and a permanent associate editor of Elsevier MICPRO. His
research interests include interconnection networks, hard-
ware/software co-design, and deep learning acceleration and
optimization. He has published 2 books, 8 book chapters,
and over 200 refereed international journals and conference
papers.
15
Gaetano Patti received the M.S. and the Ph.D. degrees
from the University of Catania, Catania, Italy, in 2013 and
2017, respectively. He is a Postdoctoral Researcher with
the Department of Electrical, Electronics, and Computer
Engineering, University of Catania. Since 2012, he has
been working in the field of real-time industrial networks,
automotive networks, wireless sensor and actuator networks
(WSANs), powerline communications, and networks for mo-
bile robot applications. He coauthored more than 30 papers
published in the proceedings of international conferences
and in important international journals. Dr. Patti is currently
a Member of the IEEE Industrial Electronics Society Tech-
nical Committee on Factory Automation (Subcommittee on
In-Vehicle Embedded Systems)

Sergio Saponara is Full Professor of Electronics at Univer-
sity of Pisa (UNIPI) and IEEE DL. He co-authored about 300
scientific publications and is AE or GE of many journals,
including IEEE TII, IEEE VTM IET EL, and IEEE CEMAG. He
is director of the school ‘‘Enabling Technologies for Indus-
trial IoT", VP of Bachelor and Master Electronic Engineering
degrees, and responsible of the CrossLab Industrial IOT and
I-CAS lab and leader of UNIPI in the European Processor
Initiative (EPI) H2020 project.

Saad Mubeen is an Associate Professor at Mälardalen Uni-
versity, Sweden. He is co-leading the Heterogeneous System
research group at the University (http://www.es.mdh.se/
hero/). He has previously worked in the vehicle industry
as a Senior Software Engineer at Arcticus Systems and as
a Consultant for Volvo Construction Equipment, Sweden.
He is a Senior Member of IEEE and a Co-chair of the
Subcommittee on In-vehicle Embedded Systems within the
IEEE IES Technical Committee on Factory Automation. His
research focus is on model- and component-based devel-
opment of predictable embedded software, modeling and
timing analysis of in-vehicle communication, and endto-end
timing analysis of distributed embedded systems. Within this
context, he has co-authored over 135 publications in peer-
reviewed international journals, conferences and workshops.
He has received several awards, including the IEEE Software
Best Paper Award in 2017. He is a PC member and referee
for several international conferences and journals respec-
tively. He is a guest editor of IEEE Transactions on Industrial
Informatics (TII), Elsevier’s Journal of Systems Architecture
and Microprocessors and Microsystems, ACM SIGBED Re-
view, and Springer’s Computing journal. He has organized
and chaired several special sessions and workshops at the
international conferences such as IECON, ICIT and ETFA.
For more information see http://www.es.mdh.se/staff/280-
Saad_Mubeen.

http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb132
http://dx.doi.org/10.3390/s21020515
http://dx.doi.org/10.3390/s21020515
http://dx.doi.org/10.3390/s21020515
https://www.mdpi.com/1424-8220/21/2/515
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb134
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb134
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb134
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb134
http://refhub.elsevier.com/S1383-7621(21)00102-8/sb134
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/eipatd-presentations/2019/D2-01_ALVES-Design_and_Implementation_of_IDS_for_AVB-TSN_Networks.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/eipatd-presentations/2019/D2-01_ALVES-Design_and_Implementation_of_IDS_for_AVB-TSN_Networks.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/eipatd-presentations/2019/D2-01_ALVES-Design_and_Implementation_of_IDS_for_AVB-TSN_Networks.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/eipatd-presentations/2019/D2-01_ALVES-Design_and_Implementation_of_IDS_for_AVB-TSN_Networks.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/eipatd-presentations/2019/D2-01_ALVES-Design_and_Implementation_of_IDS_for_AVB-TSN_Networks.pdf
http://dx.doi.org/10.1145/3358604
http://www.es.mdh.se/hero/
http://www.es.mdh.se/hero/
http://www.es.mdh.se/hero/
http://www.es.mdh.se/hero/
http://www.es.mdh.se/staff/280-Saad_Mubeen
http://www.es.mdh.se/staff/280-Saad_Mubeen

	Time-Sensitive Networking in automotive embedded systems: State of the art and research opportunities
	Introduction
	Paper contribution
	Paper layout

	Ethernet and time-sensitive networking in automotive applications
	Novel trends for in-vehicle networks

	Model-based software development of automotive systems utilizing TSN
	Scheduling and schedulability analysis of TSN
	Scheduling algorithms
	Schedulability analysis of traffic in TSN networks
	 Integration of analysis techniques into software development frameworks

	Simulation platforms for TSN
	TSN simulation models based on OMNeT++
	Other TSN simulation platforms

	Hardware evolution in TSN
	Safety and security in TSN
	Safety in TSN 
	Security in TSN 

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


