A Model-Based Approach to Document Software
Toolchains for Supporting a Safety Analysis

Stephan Baumgart*, Yin Chen', Rasmus Hamrén?, Sasikumar Punnekkat®
* Volvo Autonomous Solutions, Eskilstuna, Sweden. Mail: stephan.baumgart@volvo.com
TABB, Visteras, Sweden. Email: yin.chen@se.abb.com
1 Nordic Electronic Partner, Visteras, Sweden. Email: rasmus.hamren @nepartner.se
§ Malardalen University, Visteras, Sweden. Email: sasikumar.punnekkat@mdh.se

Abstract—The increasing use of embedded systems to provide
new functionality and customer experience requires developing
the embedded systems carefully. As a new challenge, autonomous
systems are developed to be working in a fleet to provide
production workflows. Developing such a system-of-systems re-
quires utilizing various software tools to manage the complexity.
One task in developing safety-critical products, in general, is
to analyze if the applied tools can introduce failures into the
final product. Today’s functional safety standards consider only
single software tools for analysis. In our industrial work, we can
observe a trend towards supporting product lines. A common
configurable platform is developed to support a range of different
products. Developing such a platform and supporting variability,
a toolchain is created where software tools are glued together
using scripts to support product lines and automatically generate
compiled code. The current functional safety standards do not
straight forward support this. This paper discusses how software
tools need to support functional safety and show limitations by
providing an industrial case. We provide a model-based approach
to describe a toolchain and show its application to an industrial
case. To analyze potential failures in the toolchain, we utilize the
HAZOP method and show its application.

Index Terms—Hazard Analysis, Toolchain, HAZOP, Safety,
Model-based, System-of-Systems

I. INTRODUCTION

Developing customer products requires ensuring and show
that local regulations for different markets are fulfilled. To
meet these regulations, specific standards have been developed
to support developers in choosing the appropriate design and
apply proven methods and processes. In this work, we solely
focus on functional safety, which is described as the “absence
of unreasonable risk due to hazards caused by malfunctioning
behavior of E/E systems” [1]. Functional safety standards like
the general standard IEC 61508 [2] or the domain-specific
standards like ISO 26262 [1] for the automotive domain
or ISO 13849 [3] and ISO 19014 [4] for the earth-moving
machinery domain, describe processes and methods on how
to develop the E/E system for safety-critical products. All
possibilities that can lead to failure in the embedded system
must be identified and possible mitigation is required to
be implemented. Apart from requirements on the design of
software and electronic hardware, the software tools applied
in this process need to be analyzed. It is possible, that the
correct programming code is leading to failures in the targeted
embedded systems because of a malfunctioning compiler.

The list of software tools used in an industrial development
process can become long, integrating in-house-developed tools
and third-party tools. Furthermore, these software tools are
rarely applied in a stand-alone manner. Instead, these tools
are connected to a complex toolchain by additional in-house-
developed scripts for automation. The purpose of such au-
tomation can be to reduce the risk for human errors when
creating the input for tools like compilers. Another reason to
automate the toolchain is the high variability of the products to
be supported. It is challenging to oversee all possible failures
and dependencies and their impact on the generated software.
The above-mentioned functional safety standards state require-
ments on a single tool and programming languages, but lack
clarity on toolchains with a high degree of automation. There
is a lack of guidance for practitioners on how to document
the toolchain appropriately and analyze it for potential failures
to meet the requirements from the relevant functional safety
standards.

In this paper, we provide insights from our industrial
work with the development of system-of-systems and provide
practical guidance on how to document a toolchain. We utilize
the hazard and operability study (HAZOP) [5] as an analysis
method for studying the toolchain. We furthermore discuss our
results concerning functional safety standard compliance.

This paper is structured as follows. We provide the back-
ground to our work in section II and describe an industrial
case in section IV. Our approach to describe a toolchain to
aid safety analysis is presented in section V. We discuss our
findings and conclude our paper in section VI.

II. BACKGROUND AND RELATED WORK

When developing safety-critical products, it is necessary to
understand how failing product features can lead to critical
situations with risk for health and safety. It needs to be
understood how these features can fail and their causes. One
way to introduce failure is a malfunctioning behavior of a
software tool used to develop or verify the product. A software
tool is a computer program used to assist the development,
testing, or analysis. Examples of such software tools include
compilers, automated code generators, and verification tools.
It is necessary to analyze each applied tool in the development
and verification processes for developing safety-critical prod-

ucts if malfunctioning of the tool or incorrect use of a tool
can introduce faults in the final product.

Currently, tool qualification requirements are stated in dif-
ferent functional safety standards. However, these require-
ments are valid for single tools, not for a chain of tools. Fur-
thermore, the product in this context is a single system and not
a system-of-systems. A practicable qualification approach for
a chain of tools is necessary and is beneficial for the complete
process. In the following, we describe the requirements from
relevant functional safety standards.

A. Tool Qualification - Functional Safety Standards

In general, different functional safety standards state re-
quirements for tool qualification, such as ISO 26262 [1]
or IEC 61058 [2]. Other functional safety standards like
ISO 13849 [3], state rather vague requirements on tools
focusing on proven in use. The argument “proven in use”,
requires that the tools are already used in previous develop-
ment processes. This is not always possible since tools are
also evolving or replaced.

1) IEC 61508: Generally, the functional safety standard
IEC 61508 differentiates between if specific software support
tools are applied either during the development and verification
processes or during the product’s run-time. Software tools
applied during development and verification activities are
referred to as software off-line support tools. Software on-line
support tools “can directly influence the safety-related system
during its run time” [2]. Such on-line tools shall be considered
a software element of the safety-related system and shall be
developed accordingly. In this work, we focus on software
off-line support tools. To focus on the critical tools, each tool
shall be classified by focusing on the possibility of introducing
errors in the targeted code or by failing to detect errors.

o T1 (Support Tool): Category T1 covers all software tools
with no direct or indirect impact on the code. Examples
of T1 tools are text editors or requirements management
tools.

e T2 (Verification Tool): In Category T2, all those tools are
collected, which cannot change or affect the code of the
safety-related system but can fail to identify defects in
the code or the targeted E/E system. Typically, these can
be verification tools that are failing to detect failures in
the target.

o T3 (Development Tool): The category T3 covers those
software tools which can generate or manipulate the
code for the targeted safety-related system or an indirect
impact on the code or its generation. Typical examples
are compilers, which translate and optimize the source
code.

A thorough analysis is required for all tools to identify if and
how each tool impacts the safety-related system.

Each of the tools is seen as stand-alone, while the in-
teraction between tools, automation of toolchains, or the
impact on a system-of-systems is not considered. There are
no requirements or guidelines on how a chain of tools shall
be documented or analyzed in a structured way.

2) I1SO 26262: 1SO 26262 is providing a similar approach
as IEC 61508 described above. The ISO 26262 utilizes two
parameters to calculate a tool confidence level (TCL) for a
software tool. The tool classification in ISO 26262 is based
on the tool impact (TI) and tool error detection (TD).

Tool Impact (TI): The tool impact parameter is used to
classify the software tools if they can have an impact on the
safety-related system or not.

e TI1 contains all those software tools, where there is an
argument that they are not in T2.

e TI2 contains all software tools directly or indirectly
impacting the safety-related system or failing to detect
failures.

Tool Error Detection (TD): The parameter TD covers the
controllability dimension of risks related to tools, i.e., if the
user of a tool has the possibility to detect a failure of the tool.
TDI1 contains those tools with a high probability for the user
to detect a failure of the tool, while TD3 contains all those
tools, with no possibility to identify a failure of a tool.

Both parameters are used to calculate the Tool Classification
Level (TCL). The TCL is the highest (TLC3) for those
tools, directly or indirectly contributing to the safety-related
system’s software and where the tool’s potential failures are
not detected. The same approach as described in IEC 61508
is used to state-specific requirements on tools of different
criticality levels. No guidance is provided on how to deal with
toolchains with a high degree of automation.

B. Documenting Usage of Tools

The functional safety standard ISO 26262 [1] is, for ex-
ample, requiring knowledge about the intended purpose of
a software tool, relevant inputs and outputs, and information
about how the tools are used, including relevant constraints.
Hillebrand et al. [6] have proposed a structured way of how
to document tools. The authors utilize spreadsheets to list the
tools, inputs, and outputs for each development phase in the
V-Model. The authors do not consider the interaction of tools
or automation of toolchains. Furthermore, the question of how
to identify the critical system effects of the introduced faults
is not discussed. Barner et al. [7] describe a toolchain for
developing mixed-criticality systems. The purpose of the paper
is not to discuss how to document a toolchain for conducting
a safety analysis. Nonetheless, the toolchain is described as a
process flow, which is different from the spreadsheet approach.

C. System-of-Systems

In our work, we focus, among others, on system-of-systems.
ISO 26262 defines the term system as a “set of components or
subsystems that relates at least a sensor, a controller, and an
actuator with one another” [1]. The term system-of-systems is
defined as “a set or arrangement of interdependent systems that
are related or connected to provide a given capability” [8]. The
standard ISO 21841 defines that system-of-systems consists of
a “set of systems or system elements that interact to provide
a unique capability that none of the constituent systems
can accomplish on its own” [9]. A constituent system in

this context is an “independent system that forms part of a
system-of-systems (SoS)” [9]. By integrating and connecting
independent systems to system-of-systems, new dangers and
risks may arise [10]. This means that even if integrating
safety-certified systems into a system-of-systems, new hazards
may result from the integration. Therefore, it is necessary
to identify, analyze and capture those emergent hazards and
review the integrated systems if undiscovered failures may lead
to accidents with another constituent system.

III. RESEARCH QUESTIONS

In this work, we focus on complex toolchains for developing
safety-critical products. The following research questions are
answered as a contribution to this research.

RQ1 How can complex toolchains be documented using a
model-based approach for enabling a safety analysis?

RQ2 How to identify failures introduced by the toolchain
in the context of developing a system-of-systems?

IV. A CASE STUDY FROM INDUSTRY

In this section, we present two case studies. The first case
study covers the complex toolchain when developing embed-
ded systems. In the second case, we describe the development
process for a system-of-systems and explain the complex
toolchain’s specific challenges.

A. Casel: Development of Embedded Systems

With each new generation of products, the software tools
used for developing the products are evolving. Furthermore,
the industrial practice we study in our work is using a product
line approach. This means that a configurable common plat-
form is developed, used by several application projects, which
develop the final products. Apart from the common software
and common electronic hardware the platform provides, a
toolchain is provided. These tools enable a configuration of
the platform to the required needs.

To reduce the toolchain’s complexity, it is important to
group tools in process steps as shown in Figure 1. Each process
step contains a set of connected tools, which are set up in
a process. These processes can contain further steps, which
may contain more details. Specifically, we can identify the
following types of tools.

3rd Party Tools Third-party tools are all tools used in the
toolchain provided by suppliers. Typically this can be tools like
compilers, code checkers, and similar. For safety-critical tools,
additional evidence may need to be provided by the supplier
on how the software tool is developed and how risks related
to the tool’s usage have been considered during development.

In-house Tools Not all tools may be developed by suppliers.
In-house developed tools can provide specific features to
support the development processes.

In-house Developed Scripts Scripts are used to glue the
tools together and provide the toolchain’s features. By au-
tomating the inputs for all tools, the risk for user errors is
reduced.s

Toolchain
Stepl > Step2 — Step3
Fig. 1. Industrial case study - toolchain general

Characteristics of the industrial toolchain studied in this

works:

e Variability: Support for product lines, the platform is
configurable based on the needs of the targeted products

« Reducing Probability User Errors: Use of scripts to glue
the tools together to reduce the risk for human errors
when applying the tools.

« Evolution: Supporting, for example, new products or new
electronic hardware makes it necessary to adjust parts of
the platform

Information about third-party tools is available, including

required inputs, target configuration, and outputs. Most inter-
esting are the gluing scripts used for creating the toolchain.

Another aspect that needs to be considered is the possible

changes that can happen over time:

« Changes in a script: A script is changed to improve the
toolchain’s provided functionality.

« Changes in software tool (internal, external): A software
tool is changed, leading to changes in the toolchain.

« Changes in a process step: If a process step is changed,
this may impact the complete toolchain.

Each of these changes may have an impact on the targeted
product. Therefore, it is necessary to revisit the risk assessment
of the toolchain as soon as changes are made. A structured
method is necessary to support both the toolchain documen-
tation and impact analysis in case of a change.

B. Case2: Development of System-of-Systems

We can observe a paradigm shift in the industry from
developing single and human-operated machines towards de-
veloping autonomous vehicles used in a system-of-systems.

In Figure 2 we present a simplified view of the connected
control systems. The autonomous vehicles, called TA1S5, are
used to transport rocks or gravel in open-surface mines like
quarries [11], [12], [13]. A central server coordinates the fleet
of autonomous vehicles with a control system called Fleet
Control. The TA15 machines are loaded with material using
a human-operated Wheel Loader. Furthermore, a single TA15
can be controlled using a remote control. The communication
between the server, the autonomous machines, and the Wheel
Loader control system is realized through the wireless infras-
tructure.

When developing each control system by itself without
considering integrating it into the system-of-systems, there is
a risk of missing possible failures. It is important to identify
which signals are critical and consider them when analyzing
the toolchain.

V. TOOLCHAIN - DOCUMENTATION AND ANALYSIS

In this section, we describe our method to specify the
toolchain.

In Figure 3 we present the general process we propose
to manage and document a software toolchain to conduct a
safety analysis. This process contains three major parts. The
first part is about where information about the software tools
is stored. The second part focuses on how to document the
toolchain. The last part is utilizing the information to feed
a Hazop Analysis to identify hazards and risks related to the
toolchain. One important input to the HAZOP Analysis comes
from the product risk assessment. The critical system effects
that shall be avoided are necessary input for finding critical
software tools in the toolchain.

A. Tool Data from Database

The data about all types of tools are located in a separate
database. The versions of 3rd party tools are fixed until a
new version is accepted for the development process. In-house
developed tools and the developed scripts are changing ver-
sions more often during the development progress. Therefore,
it is necessary to provide versions of tools and input/output
information to the modeling of the toolchain.

B. Documenting Toolchain

In this section, we specify what needs to be described

3rd Party Tools Third-party tools are all tools used in
the toolchain provided by suppliers. Typically, this can
be tools like compilers, code checkers, and similar.

In-house Tools Not all tools may be developed by
suppliers. In-house developed tools and scripts may
be used to provide required features to support the
development processes.

Process Steps To reduce the complexity of the toolchain,
it is important to group tools in process steps.

Process Files Process files are those files that are only
used internally.

Input Files To analyze if the tool can introduce faults
in the code, it is important to understand which files are
used as input.

Output Files The same goes for the output files. It is
important to understand what the tool is doing with the
provided input files and which outputs are generated.

Unused Files Specifically 3rd party tools may provide
a set of output files, which may not be used within the
process. Nonetheless, such files may provide additional
information, which can be used to verify the other outputs
if required.

In Figure 4 we provide an example how to document the
toolchain using SySML Block diagrams [14].

It is depicted which inputs are used in a certain tool or group
of tools and generated. It is possible to describe a hierarchy
of tools, which are refined on the next abstraction level. The
process Merge shown in Figure 3 is not refined further, while
the process Generator Scripts is further refined. Information
about each tool’s purpose can be added automatically by the
direct connection to the tool database.

C. Hazard Analysis

We aim to analyze a complex process and utilize the Hazard,
and Operability Studies (HAZOP) [5] as a method to identify
critical tools in the toolchain. The main idea of the HAZOP
analysis is to utilize guide words to structure the analysis
efforts. The Hazop analysis as a method has its origin in the
chemical industry [15], where complex processes need to be
analyzed to identify critical scenarios. The method is used to
identify the potential for system deviations from the intended
operation.

We utilize the HAZOP method for analyzing the toolchain
to 1) identify critical tools and 2) to identify possible miti-
gations. A mitigation for a specific risk related to a software
tool could require additional verification activities to review a
software tool’s output. A wide range of guide words is listed
in literature [5]. We chose to utilize the guide words “NO”
and “WRONG”.

o The guide word “NO” is used to find those failures, where
a tool is not getting a required input or where an output
file is not generated.

o The guide work “WRONG” is kept rather broad and may
cover various types of failures.

In Figure 5 we provide an example for the use of the HAZOP
analysis method for the toolchain. We use the following rows
in the HAZOP table:

o Process Step: In this row, the main step is captured to
raise awareness for the process currently studied. When
many hundred scripts and software tools need to be
analyzed, there is a risk of losing the overview.

Control Room

o

I

Site Operator

Site Server

A

vt

Fleet Control

Wheel Loader

Infrastructure

WL Control System

A
\/

Remote Control

A

\J

TA15_1

TA15 2

TA15 Control
System

A

Fig. 2. Interaction of control systems in a system-of-systems

Toolchain

Product Risk
Assessment

Stepl —» Step2

>

Development

Database (tools,
scripts with version)

HAZOP Analysis

Fig. 3. Toolchain process

Version: In this row, the versions of the tools to be
analyzed are captured. The analysis is only relevant for a
specific tool or script version. If a new version is provided
or added, this tool’s analysis needs to be repeated to
ensure the new version is not introducing new failures.
Tool/Script: The name of the tool or script is captured.
Input/Output: Clarifying if the tool’s input files are ana-
lyzed or the output files.

File: Looking at the process as shown in Figure 4, the
name of the specific file to be analyzed is captured.
Guide word: In this row, the user guide words are listed.
Cause: Here, we clarify what the possible cause for the
failure is. This includes faults in a tool and a human error

if, for example, a specific input needs to be provided by
a user. The possible error types listed by Hillebrand et
al. [6] are useful for guiding the analysis. The authors
distinguish between user errors or tool internal errors.

« Consequence: In this row, the consequences of found

deviations are listed.

« System Effect: It is important to relate the found software

tool failures to the system level’s possible effects.

o Recommended Action: During the brainstorming in the

HAZOP meetings, possible actions can be identified,
reaching from user educations to change requests.

The list of tools, versions, input, and output files can be

generated from the SysML model shown in Figure 4. During

Color index

D Tool
D Process step File1l D File2 D File3 D XML_Package_In
() mputfite
D Process file | | ||
D Qutput file : | ‘I
! T
[j 3rd party tool : } ‘I 7 dnputFiles»
| | «Input Files» P \'/
L — wnputfiles=— = input Files» | nlnput/ﬁ‘m
: | | e «process»
| "
VvV Y Prebuild::Create
«script process»)
Configuration Scripts (R LD
oo | “«Export Files» prepare.py 1
- | | «Export Files»
-7 | | \
e «Export Files» | V
e ¥ S
- =} «Export Files» «process»
:/«Expnr‘t Filess L _ «Export Filesp- — — — — — — — — — = Merge
| T T
| | |
: : ‘
| | I
Y i «Export
Report D : Fl\esnl
: «3rd party tool»
| XML Creator
| wscript processn ==
| = Generator Scripts " «Export Files»
«Export Files» r
‘l
e I \ \
y 4 | \ N «Export Files»
- ~ |
«Export Filesn «Export Files» «Export Files»
Y - \If > SN XML_Package_Out
Parameters.xyz D Models D .cpp/.hpp-files D
Fig. 4. Toolchain Specification - Example
Process Step |Version |Tool / Script Input/Output [File Guide word Cause Consequence System Effect Recommended Action
Preparing 0.7 prepare.py Input XML Package |NO (input) Human Error |Script does not start None User Education
Connecting 1.0 Comm_stack.py |Output file x WRONG Failure in tool |Configuration Scriptsis |Failurein Change Request: Add

creating wrong Communication

configuration

additional verification layer to
check the output from script

Fig. 5. HAZOP Toolchain - Example

the HAZOP meetings, each tool shall be evaluated. If tools
or scripts are changing, the toolchain model will be updated
accordingly. When exporting this data to the HAZOP table,
we can highlight those tools in the HAZOP table that have
changed or affected depending on how big impact the change
has.

VI. DISCUSSION AND CONCLUSION

In this paper, we have discussed how software tools need to
support functional safety. In this scope, we have discussed the
limitations of existing concepts proposed in functional safety
standards. The requirements in those standards focus on single
and independent software tools. They do not guide how to
document and analyze a toolchain. We have provided a case
study of two industrial projects, one developing embedded

systems and one developing a system-of-systems. We provide
a model-based approach to describe a toolchain and show its
application to an industrial case. To analyze potential failures
in the toolchain, we utilize a HAZOP method and show its ap-
plication. Since toolchains become more complex, we foresee
the need to tool support for developers and safety engineers.
Managing the number of tools manually and keeping track
of changes, is time-consuming. More research is necessary to
further study the impact of toolchain failures in the context of
system-of-systems.

ACKNOWLEDGEMENT

The authors acknowledge the funding support received for
this research from Vinnova, the KKS-funded ITS-EASY Post
Graduate School for Embedded Software and Systems.

[1]
[2]

[3]

[4]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

International Organization for Standardization, “ISO 26262:2018 - Road
vehicles — Functional safety,” 2018.

International Electrotechnical Comission, “IEC 61508:2010 Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems,” 2010.

International Organization for Standardization, “ISO 13849:2015 Safety
of machinery - Safety related parts of control systems,” 2015.

——, “ISO 19014:2018 Earth-moving machinery - Functional Safety,”
2018.

International Electronical Commission, “IEC 61882:2001 Hazard and
operability studies (HAZOP studies) — Application guide,” 2001.

J. Hillebrand, P. Reichenpfader, I. Mandic, H. Siegl, and C. Peer,
“Establishing confidence in the usage of software tools in context of
ISO 26262, in Computer Safety, Reliability, and Security, ser. Lecture
Notes in Computer Science, F. Flammini, S. Bologna, and V. Vittorini,
Eds., vol. 6894. Springer Berlin / Heidelberg, 2011, pp. 257-269.

S. Barner, A. Diewald, J. Migge, A. Syed, G. Fohler, M. Faugere,
and D. G. Perez, “DREAMS Toolchain: Model-Driven Engineering
of Mixed-Criticality Systems,” in Proceedings - ACM/IEEE 20th In-
ternational Conference on Model Driven Engineering Languages and
Systems, MODELS 2017. Institute of Electrical and Electronics
Engineers Inc., 10 2017, pp. 259-269.

United States Department of Defense, “MIL-STD-882E,” Washington,
DC, USA, 2012.

International Organization for Standardization, “ISO/IEC/IEEE 21841
Systems and software engineering — Taxonomy of systems of systems,”
2019.

P. J. Redmond, “A System of Systems Interface Hazard
Analysis Technique,” Master’s thesis, 2007. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a467343.pdf

S. Baumgart, J. Froberg, and S. Punnekkat, “Analyzing hazards in
system-of-systems: Described in a quarry site automation context,” in
2017 Annual IEEE International Systems Conference (SysCon). 1EEE,
42017, pp. 1-8.

S. Baumgart, J. Froberg, and S. Punnekkat, “A Process to Support Safety
Analysis for a System-of-Systems,” in The 31st International Symposium
on Software Reliability Engineering (ISSRE), 2020.

Volvo Construction Equipment, “Electric Site Project,” 2. [Online].
Available: https://www.volvoce.com/global/en/news-and-events/news-
and-press-releases/2018/carbon-emissions-reduced-by-98-at-volvo-
construction-equipment-and-skanskas-electric-site/

Object Management Group, “SysML-Systems Modeling Language.”
[Online]. Available: https://sysml.org/

D. Macdonald, Practical Hazops, Trips and Alarms, D. Macdonald and
S. Mackay, Eds. Oxford: Newnes, 2004.

