
Pushing IoT Mobility Management to the Edge:
Granting RPL Accurate Localization and Routing

Iliar Rabet∗, Shunmuga Priyan Selvaraju ∗, Mohammad Hassan Adeli⋆, Hossein Fotouhi ∗

Ali Balador ∗, Maryam Vahabi ∗, Mário Alves†, Mats Björkman∗

†Politécnico do Porto, (ISEP) Portugal
Email: ∗{iliar.rabet, shunmuga.selvaraju, hossein.fotouhi, ali.balador, maryam.vahabi, mats.bjorkman}@mdh.se,

⋆h.adeli@eng.uk.ac.ir, †mjf@isep.ipp.pt

Abstract—Accurate and timely mobility support in Internet of
Things (IoT) applications is a challenging issue, considering the
inherent scarce resources of IoT devices. However, the computa-
tional, memory and communication burden may be pushed into
more ”muscled” Software Defined Network (SDN) controllers. A
centralised controller can exploit its global view of the network
and predict the handovers and update the routing tables just in
time to keep the mobile nodes connected. Although it is required
to design mechanisms to enhance the mobility solution with
extra link quality information to estimate the distance between
mobile and static nodes and to avoid collision between the
extra packets for localization and other communications in the
network. In this work we present SDMob, an SDN-based mobility
management architecture that lifts the burden of computation
intensive filtering algorithms from resource constrained nodes
and achieves accurate and fast handovers upon nodes’ mobility
under RPL/6LoWPAN (Routing Protocol for Lossy Low-power
Networks, IPv6 over Low-Power Wireless Personal Area Networks).
We show that SDMob improves the baseline RPL and the state-
of-the-art mRPL in terms of packet delivery ratio leveraging
more reliable routing. Applying Particle filter and variations of
Kalman filter on radio signal strength data enables more accurate
localization for complex real world trajectories.

Index Terms—Internet of Things, Software Defined Network-
ing (SDN), Mobility management, Localization, Kalman filter,
Particle filter, Contiki, COOJA, Linux, RPL, 6LoWPAN.

I. INTRODUCTION

There is an increasing demand for mobility support in
Internet of Things (IoT) applications such as in healthcare,
industrial automation and environmental monitoring. Never-
theless, the de facto protocol stack for low power and lossy
networks (LLN) - RPL/6LoWPAN have not been designed for
coping with a dynamic toplogy. In fact, they cannot provide a
timely and accurate response to constant and fast topological
changes in the network.

It has been shown that different mobility models affect the
behavior of RPL in distinct ways [1], but it is believed that the
baseline RPL protocol has proven to degrade quality-of-service
upon mobility [2]. In the standard RPL, the Trickle algorithm
is responsible for adapting the transmission frequency of con-
trol packets to the rate of changes in the topology. Increasing
control packet’s rate could result in better resiliency against
mobility, but at the cost of higher communication and energy
overheads. Nevertheless, since no predictive measure is taken,
mobile node routes are only updated after disconnection,

This work was supported by the Swedish Foundation for Strategic Research
via the FiC project, and by the Swedish Research Council (Vetenskapsrådet),
through the MobiFog starting grant, and by the Swedish Knowledge Founda-
tion (KKS) through the FlexiHealth Prospekt, and the EU Celtic Plus/Vinnova
project, Health5G (Future eHealth powered by 5G).

leading to network inaccessibility periods that will cause
packet loss/delay.

A proactive approach to support seamless handoff could
rely on Bayesian filters (such as a Kalman filters) or other
predictive data processing techniques to forecast the future
localization of mobile nodes. Here, a filter is referred to the
methods that estimate the state of a temporal variable, which
is usually observed under noisy measurements [3].

It is common to have a priori knowledge of the number
of static nodes (in fixed positions) and the mobile nodes
being assisted by an Inertial Measurement Unit (IMU). In
such a scenario, it is practical to exploit statistical Bayesian
prediction models (like Kalman and Particle filters) to fuse
these two sources of information and, thereby, benefit from an
accurate localization which leads to improvement in network
responsiveness.

Kalman filter is proved to be unbiased (average error across
all the recursive runs is zero), consistent (filter is neither
overconfident nor under-confident) and optimal (minimum
estimation error) [3]. However, in Kalman filter the posterior
distribution (after the observations) can be computed in closed
form only when the relation between states and observations
is linear and the measurement and prediction noise follow
a Gaussian distribution [4]. To tackle the nonlinear system
models, Extended Kalman Filters (EKF) may be preferred;
they use Taylor series to linearize the equations, trading for a
negligible approximation error. On the other hand, Unscented
Kalman Filter (UKF) and Particle filters have shown higher
accuracy in prediction with bi-modal distribution of the error
[3].

Implementing accurate predictive models may require
higher computation capacity than mainstream IoT devices
can afford. Resource-constrained nodes can hardly support
lightweight filters (such as Kalman filters), provided that the
position of the static nodes is hardcoded (in the mobile node).
These limitations can be alleviated by offloading the computa-
tion burden to some external entity, such as a Software Defined
Networking (SDN) controller. This can raise many challenges
since the extra control packets between the SDN controller and
the nodes lead to an extra traffic load. In this paper, we propose
SDMob, an SDN-based mobility management architecture that
relies on simple yet accurate localization mechanisms running
in the SDN controller.

The main contributions of this work are listed below:

• Design of an SDN-based mobility management archi-
tecture –dubbed as SDMob– for seamless, reliable and

timely mobility support.
• Implementation and fine tuning two filters (Particle filter

and UKF) to determine mobile node position within a
non-linear trajectory to enhance predictive routing.

• Implementation, integration and evaluation of the SDMob
architecture into the RPL/6LoWPAN protocol, over a
Contiki/COOJA + Linux ecosystem, comparing it against
a benchmark non-SDN-based mobility solution (mRPL
[5]).

This paper builds on our previous work [6], where we
provided an analytical model of the proactive handoff mecha-
nism using a Particle Filter. The model demonstrated how the
expected probability of packet loss decreases with the seamless
handoff managed by the controller.

The rest of the paper is organized as follows: Section II
provides a brief description of the limitations of RPL upon mo-
bility, and outlines efforts to improve this behaviour, namely
through SDN-based IoT network/mobility management frame-
works; it also sheds some light on the benefits of using
Bayesian filters for improving location estimation and handoff
decisions. Section III describes the SDMob architecture and
the used filters. Section IV shows the details of SDMob
implementation and test environment. Moreover, SDMob com-
parison with mRPL will be shown and discussed. Finally, in
Section V we conclude the paper.

II. RELATED WORK

Mobility-aware RPL routing. Mobility management can
be performed at different layers of the protocol stack. There
is substantial body of research exploring detecting of radio link
failure and network disconnection in IPv6 Neighbor Discovery
or in the MAC layer. Nevertheless, to avoid routing loops,
mobility management should also be considered at the routing
layer [7].

RPL is considered as the de facto routing protocol for IoT.
While it naturally supports joining and leaving of nodes, it
performs poorly upon the dynamics imposed to the network
topology. RPL maintains a distributed data structure named
Destination Oriented Directed Acyclic Graph (DODAG). The
process starts with the root transmitting a DODAG Information
Object (DIO) that embeds the needed information to construct
a routing tree towards the root.

RPL allows two modes of operation –storing and non-
storing– for downstream traffic. In non-storing mode, it is only
the root that maintains the downward routes. This mode scales
better since the memory footprint at intermediate nodes does
not increase with the size of network. It should be pointed
out that in RPL it is more challenging to support mobility for
downstream traffic since a mobile node must notify the root
(rather than only updating its parent for upstream traffic).

The authors in [7] classify RPL enhancements to support
mobility into scenarios with networks including only mobile
nodes (e.g. VANETs) and networks with both static and mobile
nodes. For the former, the recommendations of the RPL
standard to not setting the mobile nodes as routers cannot be
respected. In this case, Tian et. al [8] try to adjust the Trickle
timer according to mobile nodes’ velocity and utilize geo-
graphical information as RPL metric. In case the mobile node
is not equipped with IMU sensors, it is possible to estimate
its position through the Doppler Effect, as explained in [9].

The most suitable model to predict the handoff depends on the
available sources of data. For instance, a Deep Learning-based
Long Short Term Memory (LSTM) model could be preferred,
if a supervised data set exists for the model to learn from [10].

Location prediction models for proactive handoff. In
[11], authors have proposed Kalman RPL, in which a mobile
node transmits a beacon that includes its velocity information
in specific intervals. After a positioning phase that estimates
the current position of the mobile node using three static nodes
in its vicinity, it can predict the future position of the node.

EKF-RPL [12] takes a similar approach but it employs
EKF within RPL to support non-linear trajectories. There are
also some efforts on adopting on-demand routing strategies
when a node starts searching for a route for transmitting data.
The Lightweight On-Demand Adhoc Distance-vector routing
protocol - Next Generation (LOADng) [13] is one such proto-
col specifically designed to support any-to-any communication
in LLNs, although it is not as well-studied as RPL. EKF-
LOADng [14] predicts RSSI after a trilateration positioning.
In the triangulation phase, a mobile node broadcasts a mes-
sage asking for packets from its static neighbors. Responses
from static nodes experience a random waiting time to avoid
collision. Another challenge is that the mobile node has to be
programmed with the position information of the anchors and
perform the sophisticated filter on its own.

Particle filter leads to more accurate results and better re-
siliency against nonlinear moving trajectory and non-Gaussian
noise compared to EKF [3]. Particle filter also known as
Sequential Monte Carlo uses hundreds to thousands of samples
to predict the future state and fuse the measurement, hence
requiring a higher computation capacity than most constrained
IoT nodes can provide.

Particle filter has been extensively used to support mobility
in Unmanned Aerial Vehicle (UAV) assisted networks [15]
or cellular communications as in [16] which also proposes a
Rao-Blackwellised particle filter as a lightweight alternative to
the baseline particle filter. There are fundamental differences
between cellular networks and LLNs such as density of the
network deployment, range of transmission and speed of
mobile nodes.

SDN-enabled IoT network architectures. There is a
growing popularity in using SDN-enabled solutions in IoT
networks. It is too expensive in terms of to simply integrate
the common SDN solutions and standards within constrained
IoT networks without re-designing the SDN to consider IoT
limitations [17]. Therefore, there is a requirement for devising
solutions targeting IoT networks with reduced complexity and
operational cost.

Efforts have been made (including by standardization bod-
ies) to design solutions for managing IoT network. The
Internet Engineering Task Force (IETF) has a recent draft
for infusing data routes into the network that is called DAO
projection [18]. It defines a framework for the root node
to initialize some options in DODAG Advertisement Objects
(DAO) through new control messages, namely Project DAO
Request (PDR) and PDR-Acknowledgement (PDR-ACK). This
enables the root node to install routes in either the source
or intermediate nodes along the path. The mechanism is a
low-overhead substitute for implementing centralized network
management in IoT networks.

Coral SDN [19] is another RPL-based solutions which al-
lows an SDN controller to manipulate RPL routing parameters
such as the interval used by the Trickle timer. The interval
is the duration between successive DIS messages from a
leaf node, which is an important configuration to adapt the
responsiveness of the network.

MobiFog [20] is our previous work on centralised mobility
management, where the discovery of alternative parents is
performed using the actual data packets instead of dedicated
control packets (beacons).

Overall, the literature in IoT networks mostly neglect
more sophisticated and computation-intensive filters for net-
work/mobility management, as well as SDN-based architec-
tures. We believe that SDMob paves the ground for employing
more accurate filter/localization algorithms at the SDN con-
troller, towards improved performance upon mobility in IoT
networks.

III. SDMOB ARCHITECTURE

In this section, we present the proposed SDMob architecture
in two subsections. First we describe the filter/localization
process. Then, we outline the SDMob architecture with the
mobility management mechanism.

A. Filter design

Filters help with the prediction of future position of Mobile
Node (MN), based on radio signal strength data and velocity.
A more accurate localization of the MN improves network
connectivity through proactive handoff. Filters model the states
(positions) and observations as a Hidden Markov Model like
the one illustrated in Figure 1. Within the model, the Marko-
vian property holds true, meaning that each state (k-th) at a
given time only depends on the state before (k−1-th) and the
states can be estimated not directly but through some noisy
observations.

𝑣𝑥

zzz

States:

Measurements:𝐲 = [𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦]

𝐱 = [𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦]

𝐲𝑘−1 𝐲𝑘 𝐲𝑘+1
𝐱𝑘+1𝐱𝑘𝐱𝑘−1

Fig. 1. Markovian dependencies for the tracking problem

The state vector and measurement vector at k-th time step
are xk = [x y vx vy]

T and yk = [x̃ ỹ ṽx ṽy]
T re-

spectively. x and y are positions within Cartesian coordinates.
Measurements are based on the Received Signal Strength
Indication (RSSI) and IMU observations. Using the path loss
model in Equation 1, the controller estimates the distance
between mobile nodes and three distinct static nodes and then
applies triangulation. In Equation 1, P1 denotes the received
signal strength in a 1 meter distance and α is a constant
describing the radio propagation in the environment [21].

d = 10(RSSI−P1)/10α (1)

The state vector can be related to the previous state (Markov
Property) using the Equation 2 and relation of each state

with the corresponding measurements can be described using
Equation 3. The estimated probability of the current state is
based on the observations up to the current state, formulated
as p(xk|y0, y1, . . . , yk). Then in the prediction step the prob-
ability density p(xk+1|y0, y1, . . . , yk) is computed which is
the probability density of the next state k + 1 knowing the
observations as of the current time step.

xk = F (xk−1) + nk−1, (2)

yk = H(xk) + rk, (3)

In this system model, F is the motion model function
that describes the relationship between states in time, and
H is the function that relates the current state to the noisy
observations at the current time instance. nk and rk are
the prediction and measurement noise respectively. These
two noises are mutually independent. The aforementioned
functions and noises determine applicability of the classic
filters. Kalman Filter is only advantageous in linear functions
and Gaussian noise. Some enhancements such as Enhanced
Kalman Filter (EKF) focus on handling non-linear F and H
functions. However, to counteract non-Gaussian noise under
a non-linear trajectory in the controller, we are compelled to
adopt some other techniques such as UKF or particle filter.

a) Unscented Kalman Filter: Instead of solving the
intractable non-linear equations, UKF picks a number of
deterministic samples that can be processed by the non-linear
functions easily. These samples or Sigma Points and their
corresponding weights satisfy some conditions defined by the
Unscented Transform. Then these sigma points are mapped
by a non-linear function to the new points. Finally, a good
estimate of posterior mean and covariance of the transformed
points is calculated using simple weighted averaging. We have
implemented both filters using the python libraries introduced
by [22].

b) Particle Filter: Particle filter also known as Monte
Carlo Sampling maintains a set of fully random particles,
though the number of samples is expected to be much higher.
The filter can take advantage of any a priori knowledge of
the obstacles and infeasible positions when initializing the
samples. Once it receives the RSSI measurements it updates
their weights and based on the IMU information moves all
the particles together. On the other hand, particle filter has the
feature of defining obstacles or feasible areas for the mobile
node by simply removing the samples that get to be outside
the legit area. In long term some of the samples can turn out to
be irrelevant so particle filter can disregard those improbable
particles and perform a re-sampling mechanism. When the
number of effective samples (their weight crosses some thresh-
old), the filter can take different re-sampling strategies. A
systematic re-sampling in which the new samples are scattered
around the state space is used in our implementation.

B. SDMob architecture

Figure 2 details the SDMob architecture, including an
illustrated topology and the underlying technologies. Within
WSN, network is composed of Mobile Node (MN) and
Static Node (SN). The border-router utilizes the Serial Line
Internet Protocol (SLIP) at border router between WSN and

external SDN-Controller. SLIP converts the radio messages
to a standard for serial links and vice versa, but it involves
some unavoidable delay due to serialization. To interconnect
the controller to the border router, we use Linux kernel pipes.

Chiefly, SNs act as repeaters or forwarders for MNs, and
aid in their localization. We make two assumptions of the
WSN: (i) implementation of RPL/6LowPAN protocols exists
in the SNs and (ii) MNs are equipped with IMU sensors.
In this design, software-defined network management supple-
ments existing RPL/6LoWPAN with programmable network
through route updating anchors which enables logically seam-
less connection for mobile nodes. These functionalities could
be implemented either in the application layer on top of the
protocol stack or integrated in the of RPL/6LoWPAN. Beacons
sent from MN and forwarded by SNs towards SDN controller.
Based on the observations made by beacons, controller pro-
vides route updates. The handover process is carried out in 3
steps, as illustrated in Figure 2.

• Step 1: MN broadcasts control beacon in a upstream with
velocity information from IMU sensor.

• Step 2: All SNs in vicinity of MN receive and relay
beacons with appended RSSI values in upstream towards
the controller.

• Step 3: Controller runs the filter selects the best SN to act
as new best parent, which is transmitted in a downstream
packet towards SNs. Thereafter, only the best node relays
the data packets generated by MN.

Seamless hand-off mechanism relies on a robust connection
with the controller. Hence, low-complex design characteristics
has to be involved in implementation of SDN architecture for
WSN, which we detail below:

• Avoidance of collision between control and data pack-
ets. A centralized SDN-based controller introduces an
additional control overhead. This increases the traffic
through basic MAC-layer implementation of WSN, which
is incapable of handling it and eventually more packet
drops are experienced due to collisions. To streamline
the traffic, a reserved period for control packets called
Control Window (CW) has been implemented. CW can
be adjusted based on network dynamics.

• Configuring MN as RPL Aware Leaf (RAL). As
defined by a recent standardization effort to employ
RALs in RPL [23], a leaf in RPL is a host that does
not participate in further advertising the DODAG and
relies on the RPL routers to forward its traffic. SDMob
takes advantage of RALs to avoid excessive DIO packets
as it is a major source of energy consumption when
there is frequent topological changes. Another upside is
reduced memory footprint in the MN. Second, this limits
possibility of distinguishing MN as an intermediate node
for other SNs. Last but not least, it would suffice to only
notify the SNs of the current best parent rather than using
the links to the MN that are much less reliable.

• Sophistication of downward routing. In standard RPL,
upstream data transmission is favored as it is the most
predominant traffic pattern in IoT domain. This extends
to many mobility enhancements made to RPL as they
also have weaker behavior in terms of downward traffic
towards the mobile node. Handovers are treated locally
without briefing the root node SDMob works with the

B

Slip Radio

Static Nodes (SNs)

Mobile Node (MN)

Simulated Environment

Serial Connection

Physical machine

Data Server Control Server

Border Router

Linux pipes

DIRECTION OF MOTION

Flow of Packet Exchange

Order Arrows Description

1 Upstream control packets

2 Downstream control packets

3 Data packets

Radio Environment

Radio IEEE 802.15.4(Freq: 2.4 GHz, Channel: 26,

Tx power: 1 mW, Bandwidth: 128 Kbps)

Type Unit Distance Graph Medium

Tool Contiki Cooja

Fig. 2. SDMob architecture schematic with exchange flow: i) MN broadcasts
beacons in upstream towards controller through SN; ii) controller broadcasts
the new best parent in downstream to SNs; and iii) data communication. Only
B (best parent) handles data packets generated by MN.

non-storing mode of RPL which gathers more routing
information at the root and uses source routing for down-
ward data packets but builds upon the extra localization
to also improve downward traffic towards the MN.

In Figure 3(a), a timeline demonstration of overall handoff
process in SDMob is illustrated. In the data window, MN
broadcasts data packets and selected SN or best parent for-
wards them to the border router. In the control window, MN
only transmits the localization beacon and all static nodes
receiving the control packet will append the measured RSSI
to forward the packet to towards controller with CSMA-based
unicast packets. The controller runs the filter and announces
the new best parent. The old best parent stops forwarding
data once it is notified of the SDN’s most recent choice.
After the CW, data transmission is resumed. Figure 3(b) shows
a timeline of hand-off mechanism in benchmark mRPL. In
mRPL, the Mobile Node (MN) operates in two phases. In the
Data Transmission phase, the APs constantly monitor the link
quality and compare the RSSI value to a threshold Tl. If the
link quality degrades, the APs notify the MN with a beacon
and it stops transmitting data packets and instead it will start
the Discovery Phase by sending DIS packets to ask the APs
to respond with DIO packets. Then the mobile node analyses
the received DIO packets and if the RSSI values from other
APs turn out to be higher than Tl it performs the hand-off and
resumes data transmission, otherwise it continues sending DIS
packets.

IV. SIMULATION SETUP AND ANALYSIS

SDN controller has been implemented using Linux machine
with Python-based filters which connects to C-based Contiki
border router. For the IoT RPL/6LoWPAN network, we rely on
the Contiki-NG/COOJA simulation environment [24]. Contiki-
NG is an open-source embedded operating system which is
easily portable to commodity hardware.

Simulation setup. We compare the performance of SDMob
with filters (particle filter and UKF) with mRPL as well as with
the default RPL. We consider one two different trajectories
first a linear and second a circular trajectory. The architecture
allows multiple mobile nodes given that controller can run

SN 1

SN2

SN3

MN

Border -

Router

D

Rx

Rx

Rx

D

Rx

B

Rx

Rx

Rx

B

B

B

CSMA

Rx Rx Rx C
Filter

Rx

Rx

Rx

D

Rx

Rx

Rx D

Rx

Control Window (no data TX)

Data packets Upward Control Downward Control Packets Only the best parent

forwards data packets

SN 1

SN2

SN3

MN D

Rx

DIS

DIO

Data Transmission Phase

Data packets DIS DIO

Discovery Phase

D

Rx

RX

RX

RX

D

Rx

RSSI < TlRSSI > Tl

DIO

DIO

RX RX RX

RSSI < Tl

DIS

DIO

RX

RX

RX

DIO

DIO

RX RX RX

RSSI > Tl

(a) (b)

Fig. 3. A timeline diagram of handoff in (a) SDMob (b) and mRPL.

different instances of the filter and differentiate beacons as they
include MN’s IP address. Though due to space limitations, we
share the results regarding a single mobile node with different
moving tracks. The simulations consider different sampling
intervals for data transmission (here the mobile node sends
data packets periodically), path-loss variance and CW. We
have employed mRPL [5] as the benchmark since it provides
a mobility solution for IoT networks using a non-SDN-based
framework. We could not find any available implementation of
those related work with variations of Kalman Filter. The ex-
perimental results considers three main performance metrics,
including (i) packet delivery ratio (PDR) to measure reliability,
(ii) End-to-End (E2E) delay, and (iii) Root Mean Square Error
(RMSE) to measure positioning accuracy . We investigate the
impact of different parameters on these metrics as follows:

Impact of data transmission interval. Data transmission
interval is the time interval between consecutive transmission
of data packets. As shown in Figure 4(a), we analyzed the
E2E delay for data packets. We observed that E2E delay is
in the range of 150 ms with SDMob, while mRPL has much
lower delay (≤ 50 ms), slightly less that RPL’s ≈ 100 ms.
This is important to note that delay in RPL is calculated only
for packets that have been successfully transmitted (≈ 10%).
This means that packets in RPL with mobile node is either
transmitted before parent switching or getting lost due to the
slow parent switching process and lack of preferred parent.
Additional delay in the SDMob can be explained due to:

• CW occupies a specific time interval for control packets,
which postpones the transmission of data packets.

• Serialization delay occurred by SLIP protocol to convey
radio messages to the Linux-based controller. This delay
includes 20ms polling intervals as well as the processing
time.

Unlike mRPL which performs handoff based on the most
recent RSSI averages, performance of handoff in SDMob
is independent of the network traffic – see Figure 4(b).
This robustness and resiliency is achieved at the cost of a
constant control overhead and the incurred delay. For short
data transmission intervals, mRPL provides about 80% PDR
with a decreasing trend for longer intervals surpassing standard
RPL’s poor PDR (≈ 20%). SDMob constantly outperforms
mRPL and RPL with PDR above 95% across different
data rates.

Impact of various filtering methods and trajectories. To
analyze the positioning accuracy of filters, RMSE metric is
mostly used in the literature (compared to the average error).
The reason is that RMSE assigns a higher penalty to large

TABLE I
COMPARING MEMORY FOOTPRINT OF SDMOB WITH CONTIKI-NG’S

DEFAULT RPL IMPLEMENTATION.

Program
SD-Mob mRPL Contiki-NG base

ROM RAM ROM RAM ROM RAM
MN 46 KB 7628 44 KB 7898 43 KB 7394
Data Server 163 KB 7400 46 KB 7916 43 KB 7348
SN 44 KB 7632 45 KB 7928 44 KB 7632

errors. As it is shown in Figure 4(c), particle filter provides
a better positioning error compared to the UKF for both
linear and circular trajectories with different sampling
rates. Increasing the physical speed of mobile node also
deteriorated the metrics as the number of handoffs increases.

Experiments also revealed that SDMob is more resilient
even under path loss variance (not illustrated in the figures)
and provides better PDR. This can be explained by the fusion
of measurements in the filter that takes advantage of IMU
information in parallel with the non-stable RSSI observations.

Impact of CW size. Longer control window increases the
stability of the network through longer network monitoring,
which thereby increases the probability of a successful trans-
mission, though it imposes a longer delay on data packets.
As expected, the simulations exhibit an increasing trend both
in PDR and delay while the CW length increases. The CW
only needs to cover the time for a round trip time for control
packets. The average delay for control packets in a two-
hop network including the delays for SDMob’s particle filter
algorithm is about 200 ms. For CW ranging from 0 to 300
ms, we observed average delays from 175 to 220 ms, while
PDR increased linearly from 89 to 100 percent.

Memory footprint. Memory consumption of the nodes is
a measure that can testify to offloading excessive computation
to the SDN controller. Contiki-NG’s implementation of RPL
has optimized its code and since SDMob is based on Contiki-
NG it is unfair to compare it with mRPL, which is based
on Contiki 2.6. As shown in Table I, for the mobile node
and the anchor nodes, SDMob’s MN and SN require about
3% less RAM memory compared to mRPL and not too much
overhead compared to base Contiki-NG (no mobility support).
The server’s memory consumption is much higher than mRPL
but since SDMob’s server is offloaded to the Linux machine,
it will have no negative impact in the IoT network. So overall,
we can argue that SDMob has outsourced the mobility related
computations.

2000 4000 6000 8000 10000
Data tx Interval (milisecond)

0

50

100

150

200

250

300
De

la
y

(m
ilis

ec
on

d)
Speed =0.5m/s, Path Loss Variance=0

SDMob-UKF
SDMob-Particle
mRPL
RPL

0 2000 4000 6000 8000 10000
Data Tx Interval (milisecond)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PD
R

Speed =0.5m/s, Path Loss Variance=0
SDMob-UKF
SDMob-Particle

mRPL
RPL

0.5 1.0
Mobile Node Speed (m/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RM
SE

 (
m

)

SDMob's Accuracy; Data Interval: 1 s,
 Path Loss Variance=0

Particle Linear
Particle Circle
UKF Linear
UKF Circle

(a) (b) (c)

Fig. 4. Simulation results showing (a) E2E delay and (b) PDR for different sampling rates and (c) positioning accuracy for different trajectories.

V. CONCLUSION

In this paper, we have addressed the design and imple-
mentation of SDMob, an SDN-based mobility solution for
IoT RPL/6LoWPAN networks. The proposed architecture is
based on an applying filters to radio signal strength and
velocity measurements captured by the anchor nodes. This
mechanism enables a more accurate prediction of the mobile
nodes and consequently a more precise selection of the best
anchor nodes. Simulation results showed that by using a
periodic beaconing mechanism, SDMob’s PDR and delay are
independent of the network traffic, while mRPL is tightly
coupled with data transmission interval. RPL has shown to
be very low responsive to dynamics in the network, leading
to high packet losses. The CW mechanism and the extra
control packets imposed an overhead that justifies the higher
delay in SDMob. Since real-world environments exhibit more
varying link behavior, future experiments will be based on a
real hardware setup. Further tests on scalability of the system,
impact of node density, number of mobile nodes, trajectory of
movement and dynamic adaptation of CW are also envisaged.

We plan to further extend this work to support adaptive
beacon rates, automatically detect radio characteristics of the
environment and evaluate the scalability in terms of number of
mobile nodes and density of static nodes in our future work.

REFERENCES

[1] B. Safaei, A. Mohammadsalehi, K. T. Khoosani, S. Zarbaf, A. M. H.
Monazzah, F. Samie, L. Bauer, J. Henkel, and A. Ejlali, “Impacts of
mobility models on rpl-based mobile iot infrastructures: An evaluative
comparison and survey,” IEEE Access, vol. 8, pp. 167 779–167 829,
2020.

[2] K. C. Lee, R. Sudhaakar, J. Ning, L. Dai, S. Addepalli, J. Vasseur,
and M. Gerla, “A comprehensive evaluation of RPL under mobility,”
International Journal of vehicular technology, vol. 2012, 2012.

[3] S. Särkkä, Bayesian filtering and smoothing. Cambridge University
Press, 2013, vol. 3.

[4] O. Cappe, S. J. Godsill, and E. Moulines, “An overview of existing
methods and recent advances in sequential Monte Carlo,” Proceedings
of the IEEE, vol. 95, no. 5, pp. 899–924, 2007.

[5] H. Fotouhi, D. Moreira, and M. Alves, “mRPL: Boosting mobility in
the Internet of Things,” Ad Hoc Networks, vol. 26, pp. 17–35, 2015.

[6] I. Rabet, S. P. Selvaraju, H. Fotouhi, M. Vahabi, and M. Bjorkman,
“Poster: Particle Filter for Handoff Prediction in SDN-based IoT Net-
works,” in EWSN 2020.

[7] P. O. Kamgueu, E. Nataf, T. D. Ndie, P. O. Kamgueu, E. Nataf, T. Djotio,
and N. Survey, “Survey on RPL enhancements : a focus on topology
, security and mobility To cite this version : HAL Id : hal-01713247,”
Computer Communications, 2018.

[8] B. Tian, K. M. Hou, H. Shi, X. Liu, X. Diao, J. Li, Y. Chen, and J.-P.
Chanet, “Application of modified RPL under VANET-WSN communi-
cation architecture,” in 2013 international conference on computational
and information sciences. IEEE, 2013, pp. 1467–1470.

[9] J. Park, K. H. Kim, and K. Kim, “An algorithm for timely transmission
of solicitation messages in RPL for energy-efficient node mobility,”
Sensors (Switzerland), vol. 17, pp. 1–21, 2017.

[10] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A Survey,” IEEE Communications Surveys and
Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.

[11] M. Barcelo, A. Correa, J. L. Vicario, A. Morell, and X. Vilajosana,
“Addressing Mobility in RPL with Position Assisted Metrics,” IEEE
Sensors Journal, vol. 16, no. 7, pp. 2151–2161, 2016.

[12] M. Bouaziz, A. Rachedi, and A. Belghith, “EKF-MRPL: Advanced
mobility support routing protocol for internet of mobile things:
Movement prediction approach,” Future Generation Computer
Systems, vol. 93, pp. 822–832, 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2017.12.015

[13] T. Clausen, J. Yi, and A. C. De Verdiere, “LOADng: Towards aodv
version 2,” in 2012 IEEE Vehicular Technology Conference (VTC Fall).
IEEE, 2012, pp. 1–5.

[14] A. J. Gonçalves, R. A. Rabêlo, J. J. Rodrigues, and L. M. Oliveira, “A
mobility solution for low power and lossy networks using the LOADng
protocol,” Transactions on Emerging Telecommunications Technologies,
no. November 2019, pp. 1–24, 2020.

[15] “pafir: Particle filter routing–a predictive relaying scheme for uav-
assisted iot communications in future innovated networks.”

[16] L. Mihaylova, D. Angelova, S. Honary, D. R. Bull, C. N. Canagarajah,
and B. Ristic, “Mobility tracking in cellular networks using particle
filtering,” IEEE Transactions on Wireless Communications, vol. 6,
no. 10, pp. 3589–3599, 2007.

[17] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang,
“A comprehensive survey of interface protocols for software defined
networks,” Journal of Network and Computer Applications, vol. 156, p.
102563, 2020.

[18] P. Thubert, R. Jadhav, and G. M., “Root initiated routing state
in RPL draft-ietf-roll-dao-projection-09,” 2019. [Online]. Available:
https://datatracker.ietf.org/meeting/106/agenda/roll-drafts.pdf

[19] G. Violettas, S. Petridou, and L. Mamatas, “Routing under Heterogeneity
and Mobility for the Internet of Things: A Centralized Control
Approach,” in 2018 IEEE Global Communications Conference,
GLOBECOM 2018 - Proceedings, 2018. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8647237/

[20] H. Fotouhi, M. Vahabi, I. Rabet, M. Björkman, and M. Alves, “MobiFog:
Mobility Management Framework for Fog-assisted IoT Networks,” in
IEEE Global Conference on Internet of Things GCIoT’19, 04 Dec 2019,
Dubai, United Arab Emirates, 2019.

[21] M. Zuniga and B. Krishnamachari, “Analyzing the transitional region
in low power wireless links,” in 2004 First Annual IEEE Communica-
tions Society Conference on Sensor and Ad Hoc Communications and
Networks, 2004. IEEE SECON 2004. IEEE, 2004, pp. 517–526.

[22] R. Labbe, “Kalman and bayesian filters in python, 2014,” URL
https://github. com/rlabbe/Kalman-and-Bayesian-Filters-in-Python,
2019.

[23] P. Thubert and M. Richardson, “Routing for RPL leaves,” Work in
Progress, draft-thubert-roll-unaware-leaves-05, 2018.

[24] F. Österlind, “A sensor network simulator for the contiki os,” SICS
Research Report, 2006.

