
RPL-RP: RPL with Route Projection for
Transversal Routing

Iliar Rabet∗, Hossein Fotouhi ∗, Maryam Vahabi ∗, Mário Alves†, Mats Björkman∗
†Politécnico do Porto, (ISEP) Portugal

Email: ∗{iliar.rabet, hossein.fotouhi, maryam.vahabi, mats.bjorkman}@mdh.se, †mjf@isep.ipp.pt

Abstract—Routing Protocol for Low-Power and Lossy Networks
(RPL) as the most widely used routing protocol for constrained
Internet of Things (IoT) devices optimizes the number of routing
states that nodes maintain to minimize resource consumption.
Given that the routes are optimized for data collection, this leads
to selecting sub-optimal routes, particularly in case of east-west
or ”transversal” traffic. Additionally, RPL neglects interactions
with a central entity in the network for monitoring or managing
routes and enabling more flexibility and responsiveness to the
system.

In this paper, we present RPL with Route Projection (RPL-RP)
that enables collecting siblings’ relations at the root node in order
to inject routing states to the routers. This backward-compatible
RPL extension still favors collection-based traffic patterns but it
enriches the way routing protocol handles other flow directions.
We address different advantages of RPL-RP in contrast to
standard RPL and evaluate its overhead and improvements in
terms of end-to-end delay, control overhead and packet delivery
ratio. Overall, RPL-RP halves the end-to-end delay and increases
network reliability by 5% while increasing network overhead by
only 3%.

Index Terms—Wireless Sensor Networks, Routing Protocol for
Low-Power and Lossy Networks, RPL, Internet of Things, Route
Projection

I. INTRODUCTION

The current developments in the field of Internet of Things
(IoT) promise to expand the applications with traffic patterns
that are more complex than simple data collection that tra-
ditional networks are designed for. Hence, bringing ease-of-
management and flexibility to the underlying infrastructure on
top of which they operate is of utmost importance. However,
the common protocol stack implementations barely support
such features.

Low-Power and Lossy Networks (LLNs) are key compo-
nents of IoT and provide wireless communication between
sensors and actuators. IPv6 Routing Protocol for Low-power
and lossy networks (RPL) [1] has long been adopted by LLNs
for its energy efficiency and minimum resource requirements.
LLNs are characterized by high loss and fluctuations in the
links and applications that mandate low data rates and high
scalability. Different IETF working groups have designed a
stack of protocols including IPv6 over Low-power Wireless
Personal Area Networks (6LoWPAN) that defines header
compression for IPv6 on top of IEEE 802.15.4 Medium Access
schemes. This protocol stack was not initially designed for
ease-of-interaction with a central network manager since the

Identify applicable funding agency here. If none, delete this.

nodes were independent entities running a distributed control
plane.

RPL maintains a data structure named Destination Oriented
Directed Acyclic Graph (DODAG) and the functionality starts
with a root node transmitting a DODAG Information Object
(DIO) packet. All the receiving nodes will choose the best
parent towards the root based on an objective function and
will transmit new DIO packets to further increase the range
of DODAG. The upward flow from the nodes to the root
can start once a DIO packet is received but for downward
communication, the root needs to wait to receive a Destination
Advertisement Object (DAO) packet.

There are some limitations inherent to the design of the
RPL that are biased to the upward collection-based traffic and
all the other traffic directions are restricted to transmit only
along the DAG resulting in “stretched” routes. For downward
communication or any-to-any communication, the nodes in
RPL are programmed to be either in Storing or Non-Storing
mode, where the former requires more memory for keeping
track of the nodes in the sub-trees of each node. For routing
between two non-storing nodes in the network, the packets
have to be transmitted all the way up to the root and back
down to the destination. Even in the storing mode, they have
to find a common ancestor, which is not necessarily the
optimal path. Figure 1 exhibits how different modes of RPL
stretch the routes while siblings can promote point-to-point
routing. Besides the routing mode, the common metrics used
by the RPL’s objective function prefer the routes that have a
better upward connectivity while links can show asymmetric
behavior in different directions [2].

Extensively computing all the routes for any-to-any com-
munication does not abide by the resource constraints of the
low-power nodes. A reasonable compromise is to have the
root node injecting a handful of routing states into some of
the in-network nodes when it perceives a partial yet sufficient
knowledge of the network topology.

Another common limitation of RPL is the poor performance
upon employing mobile nodes [3]–[5]. The Trickle algorithm
[6] controls the frequency of transmission of RPL’s DIO by
trying to adapt its transmission rate to the level of stability
in the network. Tuning more frequent transmission of DIO
packets can update the routes in a timely manner but it will
drain the battery power. In case a controller is aware of the
real-time position of a mobile node, for example, a robot
controlled by the devices at the edge, RPL has no standard
way of manipulating the routing state in the nodes that are



R

BA

R

D BA

R

B

C

A

(a) (b) (c)

Fig. 1. Examples of data transmission strategies for sending packets from
node A to node B. (a) RPL’s non-storing mode that requires passing through
the root. (b) RPL’s storing mode that permits passing through a common
ancestor. (c) A shorter route including siblings.

multiple hops away from the root.
A recent effort by IETF ROLL group [7] has also focused

on the above-mentioned problems. The draft on the ”root
initiated routing state in RPL” defines new control packet types
and control packet options that provide backward-compatible
mechanisms for the RPL root to collect more information and
install the so-called projected routes on the selected nodes.
The projected routes are of a higher priority to the nodes.

In this paper, we present RPL-RP, an open-source imple-
mentation of the RPL with route projection, over Contiki-NG
operating system along with a dashboard for monitoring the
links. We also analyze its applicability to some of the scenarios
that are challenging to the traditional RPL.

The paper is organized as the following: Section II reviews
the related work and outlines the gaps in the literature. In
section III, we explain some of the details of the implemented
system and then evaluate it in terms of overheads and im-
provements in section IV. Finally, section V concludes the
paper and outlines prominent research directions.

II. RELATED WORK

A substantial body of knowledge belongs to centralized
management in constrained networks. Sensor OpenFlow [8] is
one of the earliest efforts for offloading the network control in
order to bring about more flexibility against dynamic policies
and ease of management. In a similar approach, SDN-WISE
[9] defines its own Topology Discovery layer in the con-
strained nodes to enable cross-layer operations. An integration
with the ONOS [10] controller, allows MAC layer scheduling
as specified by TSCH mode of IEEE 802.15.4 and increases
connectivity for mobile nodes [11].

In µSDN [12], the authors argue that a centralized controller
needs to be compatible with legacy RPL nodes and intro-
duces some optimizations that allow µSDN to overcome the
constraints that are common to IoT nodes. Optimizations can
include avoiding packet fragmentation, source-routed control
packets, configuring update timers. Hydro [13] was another
effort to improve the distributed DAG formation with central-
ized primitives.

Not all the efforts to support any-to-any routing in RPL
use a centralized entity. Authors of ORPL [14] combine RPL

with opportunistic routing which means that traffic can be
forwarded to any node based on the information about its
sub-tree. Bitmaps and bloom filter are used to represent this
information in a compressed format to avoid memory overflow.
Bacceli et al. [15] introduced on-demand mechanisms to dis-
cover routes based on flooding control packets. RFC6997 [16]
documents a standardized version of P2P-RPL that defines a
new operation mode in which the Origin creates a temporary
DAG along the main DODAG.

In an earlier work [17], we introduced an extension to RPL
in which a centralized entity monitors the link qualities for a
mobile node and defines some thresholds and timers to update
the routes accordingly. Such solutions can also enable the
networks to benefit from the computation capacity in the edge
nodes to implement tracking algorithms such as particle filter
and Unscented Kalman Filter to predict the future position of
the mobile nodes and starting the handover process prior to
link disconnection [18].

Thubert et. al [19] proposes a framework for an SDN-based
TSCH scheduler that meets the requirements of deterministic
networking. The authors claimed that the key to improving
reliability and mitigating interference is diversity. Diversity
can be achieved in different domains as spatial diversity is
leveraged with multi-path routing, temporal diversity by re-
transmissions, and frequency diversity using channel hopping.

The IETF draft on DAO projection [7] defines some primi-
tives to involve the central border router in the distributed oper-
ation of RPL and classifies route projection into Storing Mode
Projected Route (SMPR) and Non-Storing Mode Projected
Routes (NMPR). The mode for projected routes is independent
of RPL’s operation mode, meaning that the network can
consist of storing mode RPL working with non-storing route
projection or vice versa. NMPR uses source routing for the
data packets but in SMPR root node asks the source node
to update the routing state in all the intermediate nodes. The
ROLL working group is currently actively working on this
document and to the best of our knowledge there is not any
available implementation to compare with. In both modes of
DAO projection, getting acknowledgement from either source
or destination would suffice. We suggest a reform to put all
the intermediate nodes in direct connection with the controller
rather than getting an acknowledgement only from source or
destination of the path. This will ease troubleshooting since the
controller gets to know which link in the path is troublesome.

III. DESIGN AND IMPLEMENTATION OF RPL-RP

In this section, we explain how RPL-RP extends the RPL
protocol to fulfill the following requirements:

• Installing point-to-point routes to optimize the path length
• Collecting sibling information besides parent-child rela-

tions in the RPL root to be used in a topology viewer
dashboard or a controller

• Designing real-time interaction with a manual or auto-
matic controller.

• Reducing the routing header by eliminating the source
routing header or loose source routing.



Track 
ID Flags Reser

ved

DAO 
Sequ
ence

IPv6 address of Track Options

1 
Octet

1 
Octet

1 
Octet

1 
Octet 16 Octets VIO/SIO

Type + 
length Flags Segment SRH-

LoRH VIA Address 1 …. VIA Address n

2 
Octet 1 Octet 3 Octet 2 

Octet
2 to 16 bytes as indicated by 

compression type

VIO Packet Format

Type + 
length Flags Opaque

Step 
of 

Rank
Sibling DODAG ID Sibling Address

2 Octet 1 Octet(including 
Compression Type

1 Octet 
(For LQI 
possibly)

1 
Octet

2 to 16 bytes as indicated by 
compression type

2 to 16 bytes as indicated 
by compression type

SIO Packet Format

Fig. 2. The packet format for DAO packet including VIO option for P-DAO
or SIO for upward DAO packets.

RPL-RP is supposed to provide routes along a track, which
is an ordered set of addresses that data packets are supposed to
go through. A track is formed to include a single source (track
ingress) and destination (the track egress). It is maintained by
a local instance of RPL and gets the IP address of the RPL
instance as its track ID. A complex track can also be defined
to append two or more segments. A track can be installed in
the main (Global) instance of RPL to enable routes to the root
with different objectives or within other instances of RPL, as
for transversal routing.

The new control message types that are introduced are
Projected DAO (P-DAO), P-DAO Request (PDR) and P-
DAO-ACK. As the name suggests, PDR is used to ask the
root to install the routes towards the track egress for a
requested lifetime. It is usually sent by the source of the
track. The controller responds by sending a sequence of P-
DAO messages comprised of Via Information Option (VIO)
that can be acknowledged using P-DAO-ACK. VIO is a new
Control Message Option designed to be included in the P-DAO
packets, which is a sequence of IPv6 addresses of possible next
hops. Figure 2 illustrates the packet format for P-DAO, which
is identical to the DAO, except for the VIO option. P-DAO
packets carry exactly one VIO option.

Figure 3 presents a sequence diagram of the control packets
that enable route projection. The root node initiates the process
by sending DIO and consecutively other nodes broadcast their
objective function and in turn DAO packets are sent to the root.
At this stage, point-to-point routing is performed through the
root node. Projected routes can only be installed after initial
bootstrapping since they rely on the infrastructure that RPL
provides. After exchanging the PDR and Projected DAO, the
data packets can be disseminated through siblings.

To achieve low overhead in RPL-RP, routers store the IP
addresses of their parents only, as their default route and
point of attachment to the root node. This is on the ground
that RPL was primarily designed for collecting data. For
transversal routing, the traffic is delivered upward (to the root

Fig. 3. RPL converges to a set of routes that only include parents. Exchanging
the P-DAO allows the in-network nodes to leverage more optimized paths not
necessarily limited to parents.

or a common ancestor in non-storing mode or storing mode
respectively), and then downward towards the destination.

In RPL non-storing mode for point-to-point routing, data
packets are equipped with a source routing header that contains
the address for all the intermediate nodes in the path. Although
this approach enlarges the routing header, intermediate nodes
are not required to maintain the routing information and only
the root node keeps the state of parent-child relationships.

However, in RPL storing mode, every single node in the
path is stateful and needs to maintain consistency with other
nodes and update data packet’s next hop using the Hop-
By-Hop option. Storing mode is often criticized for higher
memory footprint and routing state inconsistency between the
nodes. On the plus side, data packets only contain one IPv6
address in the header.

Projected routes also face a similar trade-off whether to
choose source routing or hop-by-hop routing header. Currently
RPL-RP works with Hop-By-Hop option mode for data pack-
ets. The controller needs to send a P-DAO to all the hops in the
track once it receives a PDR from track source. For example
as illustrated in Figure 4, node 26 starts a flow to node 24
and transmits a PDR to the border router. In response border
router establishes a connection to the nodes in the path (except
for the track egress), rather than asking the track ingress to
forward the P-DAO as in SMRP in [7]. Thereupon, nodes
number 26 and 25 receive the P-DAO and install an entry for
the projected routes in the routing table with a higher priority
than the default upward routes.

On the plus side, sending the P-DAO to multiple nodes,
allows the controller to become more resilient against link
failures since it gets a separate confirmation from each hop
and identifies the failed node in the track by getting P-
DAO-ACK containing the error code. Additionally, the data
packet’s header does not expand with the number of hops.
Another advantage is the constrained track ingress nodes are
not required to implement the logic for handling the errors
and installing the projected routes. Although this design is
likely to marginally increase the number of P-DAO packets,



22 17 12 7 2

23 18 13 8 3

24 19 14 9 4

25 20 15 10 5

26 21 16 11 6

Border Router

Node Router

Parent

Sibling

PDR

P-DAO

Dest Next Hop

24 25 (projected)

Default 20

Dest Next Hop

24 24 (projected)

Default 19

Node 25

Node 26

1

Fig. 4. Simulation topology with 25 routers, where for a traffic from node
24 to node 26, the border router projects the routes after receiving the PDR
packet from node 24, assuming that nodes have previously informed the border
router of their siblings using SIO option in DAO packets.

our simulation results will show that the additional overhead
is negligible.

To collect the extra information at the root node, another
option is added to the DAO packets, namely Sibling Infor-
mation Option (SIO). This option contains the IP address
of the neighbors and the corresponding link qualities. The
number of siblings can be huge, especially in dense networks.
In that case, it is not possible to inform the root of all the
siblings without an oversized DAO packet, and thus it requires
limiting the number of addresses to be included in the SIO. A
considerable future work is studying the process of selecting
the siblings to include in the SIO option in a dense network
or allowing fragmentation of big P-DAO packets. Based on
the compression method that is indicated in the flags field for
SIO or in the SRH-LoRH field for VIO, the addresses can
be of different size from 2 to 16 bytes. Our measurements
were based on full form of addresses in VIO, but due to the
high number of siblings, we used 8 bytes compressed format
in SIO. We defined a maximum number of 3 SIO options
to avoid MAC layer fragmentation. The process of selecting
the siblings is random. Most probably, choosing more siblings
with lower Received Signal Strength Indicator (RSSI) will help
in increasing the coverage of the network, though destabilizing
the projected routes. It is important to note that devising a
smart algorithm for selecting siblings is out of the scope of
this paper.

The root node can be co-located with the controller but
in this work, these nodes are separate entities, communicating
through a JSON-based south-bound API. The root node parses
the JSON file and sends P-DAO packets once it gets triggered
through a web API or receives a PDR packet. Implementation
of the web-based API simplifies further integration with a

standard controller such as ONOS. The dashboard is using
JavaScript’s D3 library [20] to visualize the topology. We
make our source code and demo available for the sake of
reproducibility1.

The standard however does not specify any means of
learning the capabilities of the nodes or how and which routes
should be calculated. It can for example optimize the NP-
complete problem of flow maximization or only find the single
source or all-pairs shortest path. This is up to the application
that is running on top of the controller.

IV. RESULTS AND DISCUSSION

This section evaluates the performance of RPL-RP in terms
of end-to-end delay, memory footprint and communication
overhead incurred by the newly defined primitives. The sim-
ulation consists of a border router, a grid of 25 Tmote Sky
nodes positioned as in 4 emulated in the Contiki/COOJA
environment. The number of active point-to-point UDP flows
is also controlled by the controller and increases over time.
We gradually increase the number of flows until at least one
transversal flow is running between all the nodes. At the MAC
layer, we use CSMA and data packets are being sent every two
seconds. The controller starts the transversal flows after the
initial convergence. We show that with RPL-RP, a negligible
overhead in the control traffic and a tolerable memory footprint
can be traded for better latency and resiliency in the data plane.

RPL-RP benefits routing in different forms. First and fore-
most, it reduces the number of hops that data packets go
through while lifting the burden of relaying congestion from
the nodes that are closer to the root node and balances the
load and energy consumption of the nodes. Second, by using
the Hop-By-Hop option instead of Source Routing Header in
downward routes, it reduces the header size for data packets.
Last but not least, in case there is a local source of interference,
RPL-RP’s controller has the ability to inject convenient routes
to bypass the lossy links.

Figure 5 demonstrates the end-to-end delay of data packets
measured during the experiment. The end-to-end delay for
data packets is proportional to the number of hops in the
path. Other parameters such as link quality and number of
re-transmissions also matter but RPL-RP accomplishes mostly
through reducing the routing stretch. So performance of RPL-
RP depends considerably on the topology. For instance, a very
deep DODAG can significantly enjoy benefits of projected
routes but a shallow network with long east west distance
may not take advantage of it so much. In our specific grid
topology (same as 4), the routing distance is scaled down
from an average of 8 to 2 hops. In RPL-RP, end-to-end
delay is halved in high traffic scenarios compared with
the default RPL. RPL-RP can also tolerate increasing number
of flows more smoothly and rate of increasing latency is
lower compared to traditional RPL. The confidence intervals
indicate that network jitter follows the same trend as mean
delay indicating another superiority of RPL-RP.

Besides latency, RPL-RP enhances the resiliency of the
routing protocol against different causes of packet loss. In

1https://bit.ly/355DZbj

https://bit.ly/355DZbj


2 4 6 8
Number of Active Flows

0.0

50

100

150

200

250

E2
E 

de
la

y 
(m

ill
is

ec
on

d)
RPL
RPL-RP

Fig. 5. End-to-end delay of RPL-RP and RPL for different number of flows.

1 2 3 4 5 6
Number of Active Flows

40

50

60

70

80

90

100

110

120

PD
R 

(p
er

ce
nt

)

RPL low traffic
RPL high traffic

RPL-RP low traffic
RPL-RP high traffic

Fig. 6. Packet Delivery Ratio for different number of flows.

LLNs, it is very common to encounter packet losses due to
the overflow in the packet queues specially as the closer nodes
to the root get congested. In our tested scenario the loss rates
of all the links are equal, thus reducing the path length would
promote packet delivery ratio. As illustrated in Figure 6, RPL-
RP reduces packet losses significantly both with increasing
number of flows or with increasing traffic within the same
flows. High traffic scenario comprised of 2 packets per second,
which increased the loss rate up to 50 percent for RPL with
6 flows. In low traffic scenario nodes transmit 1 packet per
second and RPL experienced around 80 percent delivery ratio.

RPL-RP provides nearly 100% packet delivery ratio re-
gardless of network traffic due to bypassing the congested
links closer to the root node.

The control traffic is generally governed by two factors:
(i) the frequency of the transmissions and (ii) the packet
size. To study how RPL-RP expands control traffic, it is
important to determine how single packet types evolve within
this protocol, then we explore the accumulated overhead. DIO
and DODAG Information Solicitation (DIS) packets have the
same characteristics for both RPL and RPL-RP, and thus

DAO PDAO PDR DAO-ACK DIO DIS data
(storing 
mode)

data
(source 
routed)

Packet Type

0

20

40

60

80

100

120

Pa
ck

et
 S

iz
e 

(b
yt

es
)

RPL
RPL-RP

Fig. 7. Comparing size of data and control packets in RPL with RPL-RPL.

they are excluded from the overhead calculation. Frequency
of DAO packet transmission is also unaffected but since we
append the new SIO option (with maximum 3 siblings), this
new option falls into the overhead category. As Figure 7
illustrates, in RPL-RP, we see a slight increase in the size
of DAO packet. This raise depends on the number of siblings
that are being included in the packet (8 bytes for each sibling).
The most significant difference lies in the case of P-DAO, PDR
and P-DAO-ACK (optional), which are solely defined for DAO
projection. In Figure 7, packet types are associated with the
number of bytes each control packet consists of. Fortunately,
none of packet types crosses the threshold of 127 bytes, which
is IEEE 802.15.4’s MTU and there is no need for packet
fragmentation. Another important observation is the shrinkage
in the size of downward data packets in the source routing
header (8 bytes for each hop removed). RPL uses source routed
data packets in non-storing mode and as expected we do not
see any distinction for Hop-By-Hop mode of addressing the
packets.

Now to evaluate the accumulated overhead, it is worth
mentioning that the transmission frequency of the P-DAO is
defined by the controller. For frequency of P-DAO packets, it
will suffice to send P-DAO only when controller gets informed
about a topological change not as frequent as basic primitives
like DIO. P-DAO ACK is obviously following the same trend
as it is sent to acknowledge reception or malfunctioning routes.
In our scenario, the controller initialises the data flows which
does not necessarily hold true for all the applications, but PDR
is also not so frequent since it is only required when asking
for a P-DAO. On the other hand, DIO packets are the most
frequent RPL packets and are ruled by the Trickle algorithm.
Therefore, after initialization of DODAG, there is still a fair
amount of DIO packets in the network. In contrast, DIS and
DAO packets are rarely seen after RPL’s initial convergence.
DIS packets are meant to ask for a DIO from neighbors if the
node does not have any route to the root node. DAO packets
notify the root of the routing state DAO and DIS are usually
exchanged more frequently in the early minutes. To better
visualize the results, Figure 8 presents a logarithmic scale of
control traffic accumulated per minute. DIO packets are the
most dominating element followed by DAO and DIS packets.
P-DAO and PDR packets appear only after four minutes from
the beginning of simulation when the transversal flows start.



0 2 4 6 8 10
Time (minute)

0

5

10

15

20

25

30

35

40
By

te
s 

(l
og

2 
sc

al
e)

DAO
DIO
PDR
PDAO
DIS

Fig. 8. Accumulated overhead of control packets in RPL-RP.

TABLE I
MEMORY FOOTPRINT OF THE ROUTING PROTOCOLS.

RPL-RP RPL
ROM RAM ROM RAM

UDP client 44 KB 7340 KB 43 KB 7460 KB
Border Router 170 KB 70 KB 163 KB 70 KB

At this point, according to the logarithmic scale DIO packets
generated almost 4 orders of magnitude higher amount of
traffic compared to P-DAO and PDR. Collectively, P-DAO
and PDR packets sum up to a 3% of the total control
traffic in RPL-RP.

Furthermore, due to the memory constraints common to
low-power devices, it is important to keep track of the memory
footprint of RPL-RP. As Table I shows, there is only about
1 KB increase both in volatile and nonvolatile memory of
the in-network nodes. The border router can handle more
overhead since it is usually deployed on capable devices.
Overall, the memory footprint of supporting route projection
is inconsequential.

V. CONCLUSION

We presented RPL-RP, an extension to RPL that supports
injecting point-to-point routes on-demand by a centralised
entity. The new system defines new control packet types and
options that collect extra sibling information to be visualized
in a dashboard. This enables the administrator to define
routing states in the in-network nodes. Overall, evaluation of
RPL-RP showed the improvements incurred by the projected
routes can surpass its overheads. Although its performance
highly depends on the quality of the projected routes, we
showed that with a reasonable overhead in control traffic and
memory, RPL-RP achieves an almost perfect packet delivery
for transversal routes with routes that optimized the latency
for hundreds of milliseconds.

Similar to most of the solutions in the related work, RPL-RP
only supports installing routes with highest priority and single
address destinations (not a range of addresses) which satisfies
the requirements of most IoT networks. For the future work,

it is worth considering scenarios in which it is necessary or
at least useful to install not only high priority routes but also
backup routes for fast fail-over as it is supported by OpenFlow.

REFERENCES

[1] T. Winter, P. Thubert, A. Brandt, J. W. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J.-P. Vasseur, R. K. Alexander et al., “Rpl: Ipv6 routing
protocol for low-power and lossy networks.” rfc, vol. 6550, pp. 1–157,
2012.

[2] S. Duquennoy, J. Eriksson, and T. Voigt, “Five-nines reliable downward
routing in rpl,” arXiv preprint arXiv:1710.02324, 2017.

[3] H. Fotouhi, D. Moreira, and M. Alves, “mrpl: Boosting mobility in the
internet of things,” Ad Hoc Networks, vol. 26, pp. 17–35, 2015.

[4] H. Fotouhi, D. Moreira, M. Alves, and P. M. Yomsi, “mrpl+: A mobility
management framework in rpl/6lowpan,” Computer Communications,
vol. 104, pp. 34–54, 2017.

[5] B. Safaei, A. Mohammadsalehi, K. T. Khoosani, S. Zarbaf, A. M. H.
Monazzah, F. Samie, L. Bauer, J. Henkel, and A. Ejlali, “Impacts of
mobility models on rpl-based mobile iot infrastructures: An evaluative
comparison and survey,” IEEE access, vol. 8, pp. 167 779–167 829,
2020.

[6] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The trickle
algorithm,” Internet Engineering Task Force, RFC6206, 2011.

[7] P. Thubert, R. Jadhav, and M. Gillmore, “Root initiated routing
state in RPL,” Internet Requests for Comments, RFC Editor, RFC-
draft 1654, July 2020. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-roll-dao-projection-15

[8] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-
ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[9] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2015, pp. 513–521.

[10] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking, 2014, pp. 1–6.

[11] L. L. Bello, A. Lombardo, S. Milardo, G. Patti, and M. Reno, “Ex-
perimental assessments and analysis of an sdn framework to integrate
mobility management in industrial wireless sensor networks,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5586–5595,
2020.

[12] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, and
D. Simeonidou, “Evolving sdn for low-power iot networks,” in 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft).
IEEE, 2018, pp. 71–79.

[13] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, “Hydro: A hybrid
routing protocol for low-power and lossy networks,” in 2010 First IEEE
International Conference on Smart Grid Communications. IEEE, 2010,
pp. 268–273.

[14] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree bloom:
Scalable opportunistic routing with orpl,” in Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems, 2013, pp.
1–14.

[15] E. Baccelli, M. Philipp, and M. Goyal, “The p2p-rpl routing protocol
for ipv6 sensor networks: Testbed experiments,” in SoftCOM 2011,
19th International Conference on Software, Telecommunications and
Computer Networks. IEEE, 2011, pp. 1–6.

[16] M. Goyal, E. Baccelli, M. Philipp, A. Brandt, and J. Martocci, “Reactive
discovery of point-to-point routes in low power and lossy networks,”
IETF Request For Comments RFC, vol. 6997, 2013.

[17] H. Fotouhi, M. Vahabi, I. Rabet, M. Björkman, and M. Alves, “Mobifog:
Mobility management framework for fog-assisted iot networks,” in 2019
IEEE Global Conference on Internet of Things (GCIoT). IEEE, 2019,
pp. 1–8.

[18] I. Rabet, S. P. Selvaraju, H. Fotouhi, M. Vahabi, and M. Björkman,
“Poster: Particle filter for handoff prediction in sdn-based iot networks.”
in EWSN, 2020, pp. 172–173.

[19] P. Thubert, M. R. Palattella, and T. Engel, “6tisch centralized schedul-
ing: When sdn meet iot,” in 2015 IEEE conference on standards for
communications and networking (CSCN). IEEE, 2015, pp. 42–47.

[20] N. Q. Zhu, Data visualization with D3. js cookbook. Packt Publishing
Ltd, 2013.

https://tools.ietf.org/html/draft-ietf-roll-dao-projection-15
https://tools.ietf.org/html/draft-ietf-roll-dao-projection-15

	Introduction
	Related Work
	Design and implementation of RPL-RP
	Results and discussion
	Conclusion
	References

