
ing a
 [1].

ather
].

eople
anag-
hange
 is of
s are

trial

-

hange
d
f the
Experience with Change-oriented SCM Tools

Ivica Crnkovic
ABB Industrial Systems AB, 721 67 Västerås, Sweden

E-mail: ivica@sw.seisy.abb.se

Abstract. In the recent years two approaches in Software Configuration Management (SCM)
tools have been emphasized: a Change-oriented model and a Version-model approach. This
paper gives an overview of two Change-oriented SCM tools developed at ABB Industrial Sys-
tems and describes the experience with their usage. The first tool is strictly change-oriented and
it requires formal consistency of the entire software system. The second one is more pragmatic
and less formal. It uses both Version and Change approach. The experience shows that a tool that
supports a Change Management is very important in large software systems, especially in the
verification and maintenance phase. Change Management is not only used as a part of a SCM
tool, but in the entire development/maintenance process; in planning, producing release docu-
mentation, etc. However, a usage of a strictly change-oriented tool has shown that programmers
find the method too complicated and unpredictable. The second tool that controls software com-
ponent versions, but also supports Change Management in the development process appears to
be more effective.

1 Introduction

One of the topics discussed on SCM-6 Workshop was the importance of hav
change-oriented approach in a Software Configuration Management process
Change-oriented SCM tools deal with logical changes introduced in software, r
than with component versions which is the approach for Version-oriented tools [2

A change management process defines different roles for different group of p
involved in a software development process. The product responsible people (m
ers, project leaders) are interested in changes on the general functional level. A c
view in a form of parts of software that should be tested, verified and documented
interest of quality assurance people. The developers which implement change
interesting in a version-file view. They want to work with particular file versions.

This paper describes experience with using two different SCM tools at ABB Indus
Systems, both developed internally. The first tool, called MaMethod is strictly
change-oriented, while the second tool, called SDE, represents a combination of ver
sion-oriented and change-oriented methods.

The section 2 shortly describes the MaMethod tool and the experience of using c
sets. The section 3 describes the usage of change sets in SDE. The change sets are use
not only for the software configuration management, but also in other parts o
development process. A final conclusion is given in section 4.
Experience with Change-oriented SCM Tools January 27, 1998 1

er-
 the
r file

lly in
e file
1.1 Background

ABB Industrial Systems develops several families of process-control systems. The
final products are combinations of both developed and bought software and hardware.
Several hundreds of programmers are involved in the development. Programmers are
divided in development groups, where each group is responsible for some components
or for their integrations in the final products. Both components and products are deliv-
ered in a form of releases - a specific product version includes well defined component
versions.

Very high requirements are put on the products - they must run round the clock 365
days per year. The products are supported 10 years. Several versions and variants of
the same products are maintained.

These conditions put high requirements on the software quality and especially on soft-
ware configuration management. It must be possible to re-produce an old software
release, correct errors in it, and possibly implement the same changes in other prod-
ucts, or product versions. For theses reasons ABB Industrial Systems has used SCM
tools as essential part in the development process in more than 10 years.

2 Using a Change Oriented CM Tool

2.1 MaMethod Tool

MaMethod is a SCM tool developed in middle of eighties as a part of the entire devel-
opment environment [3]. At that time all the software was developed internally, and
the same was true for MaMethod.

MaMethod includes basic features of an SCM tool:

Version Management, Configuration and Build Management, Change Management,
Work Space Management and Product Management.

• Version Management comprehends identification of versions of software modules
(files). The files are not treated individually, but as parts of a hierarchical structure
called software systems. Both source files and files generated by build procedures
are defined as parts of systems. A file version, independently if a source or a gener-
ated file, is identified by its “logical” name and a version number. Every file v
sion is implemented as a file. When working in the MaMethod environment,
programmers use logical names, and MaMethod takes care to bring a prope
version.

A file version that belongs to a system version is not necessary placed physica
the system structure - typically, when several system versions contain the sam
version, they point to the same file.
Experience with Change-oriented SCM Tools January 27, 1998 2

 pos-
w file

rking
fer to
, or a
ied
One
 and
• Configuration Management includes procedures for comprising selected file ver-
sions in a set. MaMethod starts the configuration from the system level. A specific
system version is a configuration of identified subsystems versions, where a sub-
system version consists of particular file versions. A subsystem version also
include references to other subsystem versions which include files used in the build
procedure. In that way a subsystem version defines a complete environment
required for its modification and building.

MaMethod users work always in a specified configuration and automatically get
the belonging file versions.

The MaMethod build facility is similar to make. A build procedure called EXE-
CUTE parses trough build files to find dependencies between files, finds the appro-
priate file versions, compares their dates, checks their status and if necessary
executes the build procedures described in the build file. The build procedures treat
input (source) and output (generated) files in a more formal way than Make - they
are specified as variables and build procedures are defined as functions of these
variables.

A creation of a new system configuration is strictly related to change sets and it
will be presented later in more details.

• Work Space Management is tightly connected to Configuration Management.
MaMethod users login into a specific system configuration. The entire configura-
tion space consists of three levels: A reference level where frozen baselines of a
system are stored, a work level that collects changed files and working configura-
tions, and finally private working structures where files are actually changed.

In order to change a file, a user has to borrow it. The file is locked on the common
work level and copied to the user’s private workspace. The user modifies and
sibly builds and tests the changes locally in his/her private workspace. The ne
version is available for other users when the user returns the file.

The work level is also used for generation of new system versions. Several wo
versions can be created on the work level. The working system versions re
files placed in the work and reference structure. When users build the system
part of it, in the private working structure, they refer to files they have modif
from their structure, and other files from a common system working version.
of system working versions can eventually be taken as a new official version
copied to the reference level (Figure 1).
Experience with Change-oriented SCM Tools January 27, 1998 3

Fig. 1. MaMethod Work Space

2.2 Change Management

2.2.1 Change Registration

Any change done in MaMethod is under a change-set control. A logical change item is
defined as a Change Request (CR), an entity that describes a change to be done in the
system. When a user borrows a file, he/she must to refer to a CR. When a file is
returned from the user working space, the filename version is registered in the related
CR (or CRs). In this way a CR collects all the filenames and their versions being
changed.

Reference Level

Version A

Files

Work Level User 1

Time

User 2

Borrow x

Return x
Return y

Borrow y

Version w1

Borrow x

Return x

Version w2

Version A+1
Experience with Change-oriented SCM Tools January 27, 1998 4

2.2.2 System Integration

A new system version created on the work level consists of file versions from the orig-
inal system version and from the selected modified files. The modified files are not
selected directly, but Change Requests which are planned to be included in the new
system version, are selected. The file versions that belong to the selected CRs are iden-
tified by MaMethod and integrated in the new system version (Figure 2).

Fig. 2. New system version based on the original version and selected CRs

The advantage of this approach is that planned logical changes are directly included
into a new software version, and the mapping between logical changes and physical
files are done by a tool, not by programmers.

2.2.3 A Consistency of a System Version

There exists cases when file versions pointed from the selected Change Requests can
not directly be included in the new system version, because the generated system
would not be uniquely defined.

For example, several CRs can refer to the same file but different versions. This situa-
tion occurs when programmers change one file due to several Change Requests. In that
case the work space will contain several versions of one file. MaMethod does not build
a fictive file version that includes changes related to the selected CRs. Instead of that,
the latest version of those selected is taken. It is obvious that the latest version includes
some changes that belong to other CRs. By simply taking the latest version of the file,
a code that belong to another change will be also included into new system version. If
this is only a part of another Change Requests, i.e. if some other files have been modi-
fied due to the same Change Request, than an inconsistent combination of files will be
generated.

CR4CR1 CR2 CR3
Original version New Version

Selected CRs

Derived file versions
Experience with Change-oriented SCM Tools January 27, 1998 5

Different Version-oriented SCM tools treat this problem in different way. While some
of them ignore the problem, others give a warning for an inconsistent system [2].

MaMethod finds always a minimal set of CRs that make a consistent set of file ver-
sions:

1. If several CRs include the same file but different versions, the latest version of
them will be taken.

2. For every CR included in the integration, also their connected CRs are taken.

The connected CRs are defined in the following way:

We define a CR A as a set of file versions:

A = {f1.v1, f2.v2, ..., fk.vk}, where vi denotes a version of a file fi included in a CR A.

Suppose we have two CRs: M and N.

If there is a file fi, where file version fi.vm ∈ M, and fi.vn ∈ N, than CR N is con-
nected to CR M if n ≤ m.

The following example illustrates the rule:

Fig. 3. Connected CRs

CR N is connected to CR M and it will be taken if CR M is selected. File versions
f1.vk+2, f2.vm+2 and f3.vn+1 will be integrated in the new system version.

If CR A is connected to CR B and CR B is connected to CR C, then CR A is connected
to CR C. This implies that a selection of connected CRs is a recursive process.

Including specified and all connected CRs into a new system version, MaMethod
ensures that the new version is consistent, but it also can lead to unpredictable results -
some unwanted changes can be included into the new version!

file f1

file f2

vk
vk+1 vk+2

vm vm+1 vm+2

file f3 vn vn+1 vn+2

CR M

CR N
Experience with Change-oriented SCM Tools January 27, 1998 6

The
 it is

 really
mpor-

many
d to a
ch a
ection
 irritat-
mers

define
ated

ess is
stem

 much
e

nient
thods
2.2.4 Experience of using Change Sets

MaMethod have been used almost ten years. The experience of using Change Sets is
both positive and negative.

The positive experience in using a Change-oriented tool is first of all in having a better
control of delivered product versions. Each product version is followed by an automat-
ically created document that lists all functional changes included in the release. The
generated list of changes is also used for tests and verifications - those changes that are
implemented in a new version are verified in the final product test. It is also very con-
venient to find what changes have been made in an old product version and which files
have been changed due to a functional change.

The negative experience comes from both principal problems and programmers way of
working.

Programmers are focused on changing of code. It is very tempting to add some new
“small” changes in already borrowed file without registering the new change.
implication of this is that a released software actually include more changes than
specified in Change Requests. Formally, you are never sure if the documentation
describes all changes introduced in the release. Hopefully the biggest and most i
tant changes are registered.

Another problem is in the treatment of the connected CRs. Some CRs have to
connected CRs. Such a situation happens if there is a “common” file that is relate
lot of other files in a system, for example a build file or a common include file. Su
file can include changes that belong to several CRs. In that case the conn
between CRs depends on the order in which the CRs have been made. This is an
ing moment for programmers. To avoid the overall dependencies, the program
tend to isolate the changes in the common files by creating special CRs that
changes only for these files. This problem could be solved if each file is cre
dynamically by merging code parts from the change sets. Unfortunately this proc
not possible to run automatically, and manual merging of files in a big software sy
is out of the question - it takes too much time and it is too risky!

Using change sets works very good in the maintenance process, where not too
changes are introduced, and when it is important what changes have been made. In th
development process, change sets become of less importance.

In general the following conclusion can be done:

While quality people and managers find the change-oriented approach conve
because of possibility of tracking the changes, the programmers feel that the me
are too formal and inflexible.
Experience with Change-oriented SCM Tools January 27, 1998 7

3 Using a Combination of Change and Version Model

In the beginning of nineties our organization started the development of a new genera-
tion of products, based on open architectures. The main goal of new development pro-
cess was efficiency and quality: Programmers should concentrate on pure development
issues, other activities should be managed by tools as much as possible. Standard soft-
ware available on the market should be used as much as possible for both development
tools and product components. Development tools should be integrated in a common
graphical user environment, and data between different tools should be exchanged as
much as possible.

The new development process has required a new, modern and efficient SCM tool. The

new SCM tool was developed internally1, this time based on Revision Control System
(RCS) [4]. The new tool is called SDE (Software Development Environment) [5].

3.1 SDE Basic Characteristics

SDE is a software package adjusted for the development of large systems, to some
extent similar to MaMethod. It defines structures of repositories where versioned files
are saved. The repositories, called SDE software systems, are divided into configura-
tions which represent different versions or variants of software systems. Each configu-
ration is a hierarchical structure consists of subsystems, where each subsystem
contains files under version control. The separation in configurations makes it possible
to develop different versions of software in parallel.

SDE Workspace for programmers is placed in SDE projects, where each project mem-
ber has a private working structure. Such working structures are identical to system
structure. While SDE software systems include all versions of files, SDE projects have
a view to specific set of versions of files. Project members get their working versions
by checking out files from their view.

1. It may look strange that a SCM tool was developed internally, when the strategy was to buy
software on the market. Indeed, the initial intention was to buy a SCM tool. A requirement
specification was made and the market has been investigated. A CM tool was selected and
prepared for overall usage. Unfortunately, before the tool was established in the organization,
it disappeared when the company that had developed the tool, was bought by another one
(the new variant of the tool successfully appeared some years later). The second tool that was
selected, showed too poor quality when used in a large, complex environment.

The functionality of SDE has grown with time, according to new requirements. While a
group of eight people worked on SDE during the first three years, three people work today
full time on SDE. The work includes the development, maintenance, porting to another plat-
form and user support. The development does not include only CM tool, but also some others
tools related to software development (different utility programs, generation of documenta-
tion, etc.) and support for definition internal infrastructure. Several hundreds programmers
are using SDE today.
Experience with Change-oriented SCM Tools January 27, 1998 8

Using slightly modified RCS commands and some new commands related to RCS
files, SDE enables easy and fast browsing through the hierarchical system structures
and versioned files. On a top of RCS and some SDE commands, GUI-applications are
made.

SDE uses Make facility with pre-defined include files that refer to different parts of the
entire development environment used for the system building. When programmers log
in a project they get all definitions need for make to find proper files, both from the
current project and external software systems.

3.2 Using Change Requests

SDE includes support for Change Management. The experience from MaMethod led
to a conclusion that Change Management is very useful, but it should not be inflexible.
For this reason a combination of a Version-oriented and Change-oriented approach
was made in SDE. Change Requests are used to define and to follow up logical
changes introduced in a version of a software system.

Every physical change in a software system is related to logical changes, but the inte-
gration process i rather related to file versions than change sets.

A CR is implemented as a simple RCS file. A file version is a text file with a specific
format. The header part of a CR includes some keywords like Priority and CR Type,
creation date and final termination date. When files are modified, and checked in, CRs
are updated by their file names and versions. The body part includes a description of
the change.

As a versioned file under RCS control, a CR does not include only the change descrip-
tion and list of changed file versions, but also features from RCS: a state, a responsible
user (author) and date of change.

CRs are saved in a RCS directory placed in a CR library. Every system configuration
includes a CR library - so a CR library comprises all logical changes of a software ver-
sion.

CRs are not modified manually, but different commands take care on that. For exam-
ple, the RCS ci command has been modified: When a programmer checks in a file he/
she also specifies CRs to which the checked-in file version is related, as illustrated in
the example bellow:

ci -cProblem_010 file
Log message
.

The ci command first checks in a file and then checks out CR specified by the -c option
from the CR library, modifies it and checks in back. The new CR version includes the
file name, version and the version log message of the checked in file.
Experience with Change-oriented SCM Tools January 27, 1998 9

Figure 4 shows a typical CR:

CR-rce_eval Term lglomsru 1996/03/22 09:26:20 Evaluate RCE
--

Terminated: 96-03-22 by lglomsru
Created: 96-01-30 by lglomsru
Type: New Function
Priority: High

File: ./doc/rce/rceeval.frm 1.1 1.2 1.3
File: ./doc/rce/rceback.frm 1.1

Description:
Evaluation report of the application Revision Control Engine - RCE

./doc/rce/rceeval.frm 1.2
 Added intro, gen descr and RCE Functions
./doc/rce/rceeval.frm 1.3
 The revision without comments from others
 Approved by Ivica Crnkovic

Fig. 4. Change Request

A more advanced interaction is implemented in GUI applications where available CRs
can be selected, displayed, or a new CR can be created during the check in process.

A final version of a CR includes a description of a logical change and information
about all modified file versions.

3.3 System Integration

The integration process implemented in SDE is a version-oriented type. There are sev-
eral possibilities to select files for the new system version - latest versions with a spe-
cific state (Stable), latest versions created before a specific date, or just the latest
versions. In the version-oriented model, programmers have better control over their
code, even if a large number of files are processed.

However, the way to processing files goes through Change Requests. Every change
done in a system version is initiated by a CR. A programmer works on a change
described in a CR. When all changes related to a CR are completed, the programmer
sets the CR-state to Terminated.

Even if a new software version is generated directly from the specified file versions,
there is a possibility to check which Change Requests are included in the new release.
SDE has a support to compare the content of a software system with the registered files
in CRs. A list showing relations between CRs and files included into the generated
system version can be produced.
Experience with Change-oriented SCM Tools January 27, 1998 10

m”,
 who

reated
tually
am-
y are
 clas-
 the

ith a
arise.
Figure 6 shows a list of changed file versions and related Change Requests. The Rela-
tion column shows if some file versions not included in CRs are in the selected file set,
or if there is some file versions belonging to a CR that are not included into the file set.

File Ver State User Relation Change Requests
--

./Encap/Makefile 1.1 Rel sfrennem = 1.9:CR-Make 1.11:CR-move

./SDECon/Interf.C 1.11 Exp sfrennem > 1.10:CR-SoftB 1.9:CR-new...

./SDECon/sde.pd 1.6 Rel mmedin = 1.6:CR-UpdateMakefiles

./Term/Makefile 1.10 Exp sfrennem > 1.6:CR-UpdateMakefiles

./cr/Mngr/CRAppl.C 1.27 Exp edewaal = 23:CR-SysDir 1.27:CR-crSDE.

./cr/Mngr/CRAppl.H 1.20 Exp edewaa < 20:CR-SdeSys 1.21:CR-cr...

./cr/Mngr/CRCont.C 1.3 Exp icrnkovi = 1.3:CR-mod 1.2:CR-newCom.

./cr/Mngr/CRCont.H 1.3 Exp edewaal = 1.3:CR-mod 1.2:CR-newCom

./cr/pmr/FindCR 1.2 Exp sfrennem !

......................

Fig. 5. Comparing integrated file versions with Change Requests

3.4 Experience with Using CRs in a less Formal Way

The main difference in the integration process between MaMethod and SDE is the way
of collecting files and generating new system versions. While MaMethod starts from
change sets, SDE uses directly file versions for the integration with implicit inclusion
of Change Requests. SDE allows, with a warning, that a only part of a Change Request
is integrated. The experience is that the pragmatic SDE approach is simpler and easier
to control than the more formal approach in MaMethod.

Change Requests are not used only in the software integration process, but they have
several purposes:

1. CRs are used as ‘to do’ list. This list is updated from the “Fault Tracking Syste
from the “Proposed Development Items” database, or just by programmers
want to record a proposal for a change.

2. CRs are used to follow-up development projects.

3. CRs are used for the release documentation generation

A Change Request passes trough different states during its life. When a CR is c
it gets a state Init, under work sessions it passes through some states, when even
ends in the Terminated state. Different metrics can be extracted from CRs. One ex
ple is a presentation of the current project state - how many CRs exist, how man
completed, how many are currently open. Another example is a presentation and
sification of history of CRs - how log time is needed to implement a change, how
change implementation was scheduled.

Figure 6 shows a typical example of a development project life - a project starts w
well defined requirements, but during its life a number of new Change Requests
Experience with Change-oriented SCM Tools January 27, 1998 11

When the project is closed and the new product version is delivered, there are still
some CRs postponed for next releases.

Fig. 6. CR states during a development project life

During the development phase the project managers find very useful information about
how many percent of CRs are completed, how many are under the test procedure, how
many are open, how many are still in the Initiate state.

4 Conclusion

A long experience of using two different SCM tools with different levels of Change-
oriented approaches shows:

• It is a quite challenging job to use a strict change-oriented model, where it is not
quite clear which file versions will be included into a software release. Program-
mers prefer to work directly with files.

• A usage of a change-oriented model is more appropriate for maintenance than pure
development.

• It is not possible to achieve an exact mapping between logical and physical
changes. There is always a risk that a programmer make changes in a file which
cover both registered and not registered logical changes.

Number of CRs

Total Number of CRs

Completed CRs

Working CRs

Initiated CRs

Date

50

100

150

Project start Project end
Experience with Change-oriented SCM Tools January 27, 1998 12

96,

rch

er-
• Information from a change-oriented tools can be utilized in the process develop-
ment - for project follow-ups, planning, quality assurance, etc.

• A SCM tool that (also) manages logical changes is needed for an efficient develop-
ment and maintenance process for large software systems.

• We need a tool that comprises both approaches - a tool that controls component
versions and in the same time support a change-oriented process.

References

1. Ian Sommerville (Ed.), Software Configuration Management - Introduction, Soft-
ware Configuration Management ICSE’96 Workshop, Berlin, March 19
Selected Papers, Springer Verlag, ISB N 3-540-61964-X, pages 1-7

2. Reinder Conradi and Bernhard Westfechtel, Configuring Versioned Software Prod-
ucts, Software Configuration Management ICSE’96 Workshop, Berlin, Ma
1996, Selected Papers, Springer Verlag, ISB N 3-540-61964-X, pages 88-109

3. Ivica Crnkovic, Large Scale Software System Management, Ph. D. Thesis 1990,
University of Zagreb, Faculty of Electrical Engineering

4. Walter F. Tichy, RCS - A System for Version Control, Software and Practice
Experience, 15(7):635-654, 1985

5. Ivica Crnkovic, Experience of Using a simple SCM Tool in a Complex Develop-
ment Environment, Software Configuration Management ICSE’96 Workshop, B
lin, March 1996, Selected Papers, Springer Verlag, ISB N 3-540-61964-X, pages
262-263
Experience with Change-oriented SCM Tools January 27, 1998 13

	1 Introduction
	1.1 Background

	2 Using a Change Oriented CM Tool
	2.1 MaMethod Tool
	2.2 Change Management
	2.2.1 Change Registration
	2.2.2 System Integration
	2.2.3 A Consistency of a System Version
	2.2.4 Experience of using Change Sets

	3 Using a Combination of Change and Version Model
	3.1 SDE Basic Characteristics
	3.2 Using Change Requests
	3.3 System Integration
	3.4 Experience with Using CRs in a less Formal Way

	4 Conclusion

