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Abstract—Deep model compression has been studied widely,
and state-of-the-art methods can now achieve high compres-
sion ratios with minimum accuracy loss. Recent advances in
adversarial attacks reveal the inherent vulnerability of deep
neural networks to slightly perturbed images called adversarial
examples. Since then, extensive efforts have been performed to
enhance deep networks’ robustness via specialized loss functions
and learning algorithms. Previous works suggest that network
size and robustness against adversarial examples contradict on
most occasions. In this paper, we investigate how to optimize
compactness and robustness to adversarial attacks of neural
network architectures while maintaining the accuracy using
multi-objective neural architecture search. We propose the use
of previously generated adversarial examples as an objective
to evaluate the robustness of our models in addition to the
number of floating-point operations to assess model complexity
i.e. compactness. Experiments on some recent neural architecture
search algorithms show that due to their limited search space they
fail to find robust and compact architectures. By creating a novel
neural architecture search (RoCo-NAS), we were able to evolve an
architecture that is up to 7% more accurate against adversarial
samples than its more complex architecture counterpart. Thus,
the results show inherently robust architectures regardless of
their size. This opens up a new range of possibilities for the
exploration and design of deep neural networks using automatic
architecture search.

I. INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial
attacks, where the natural data is perturbed with human-
inconspicuous, carefully crafted noises [1]. To mitigate this pit-
fall, extensive efforts have been devoted to adversarial defense
mechanisms, where the main focus has been on specialized
adversarial learning algorithms [2], [3], loss/regularization
functions [4], [5], as well as image preprocessing [6]–[8]. Yet,
few studies have explored the intrinsic influence of network
architecture on network resilience to adversarial perturbations.
Although the importance of architectures in adversarial ro-
bustness has emerged in the experiments of several previous
work [9], [10], more comprehensive study on the role of
network architectures in robustness remains needed. In this
work, we focus on gaining systematical understanding of
adversarial robustness in neural networks from an architectural
perspective.

Network architecture search (NAS) and adversarial samples
have rarely appeared together. Regarding adversarial samples,
they were discovered in 2013 when DNNs were shown to
behave strangely for nearly the same images [11]. Afterwards,

a series of vulnerabilities were found [12]–[14]. Such attacks
can also be easily applied to real world scenarios [1], [15]
which confers a big problem for current deep neural net-
works’ applications. Currently, there is not any known learning
algorithm or procedure that can consistently defend against
adversarial attacks.

Regarding NAS, the automatic design of architectures has
been of wide interest for many years. The aim is to develop
methods that do not need specialists in order to be applied to a
different application. This would confer not only generality but
also ease of use. Many researchers have developed unique ap-
proaches [16]–[18] to improve the accuracy besides decreasing
the complexity and computational cost. Current state-of-the-
art on image classification and object detection are developed
using NAS, which shows that NAS plays an important role
in solving standard learning tasks. Previous works [10], [19],
[20] discussed that network complexity and robustness against
adversarial examples contradict on most occasions; therefore,
compressed models commonly exhibit poor robustness.

In this paper, we propose the use of NAS to tackle this
issue. In other words, architecture search will be employed
to find accurate and compact neural networks with higher
robustness than their size equivalent architectures. This is
based on the principle that robustness of neural networks
can be evaluated by using adversarial attacks as a function
evaluation. We hypothesize that if there is a solution in a
given architecture search space, by considering the robustness
as one of the design objectives, the search algorithm would be
able to find the more robust solution. This is not only a blind
search for a cure. The best architectures found should also hint
which structures and procedures provide robustness for neural
networks. Therefore, it would be possible to use the results
of the search to further understand how to improve the search
methodology as well as design yet more robust ones. The paper
is structured as follows: Section II presents a background on
the neural architecture search (NAS) and existing researches
on adversarial attacks and defense. Our proposed method is
discussed in Section III. Section IV presents the experimental
results. Finally, the paper is concluded in Section V and section
VI is dedicated to acknowledgements.

II. RELATED WORKS

In this section, we briefly introduce the literature of network
architecture search, adversarial attacks, and available defense
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techniques.

A. Neural Architecture Search

The aim of the NAS is to automatically design network
architectures to replace conventional handcrafted ones. Rep-
resentative techniques are divided into reinforcement learning
(RL) [18], [21]–[24] and evolutionary algorithm (EA) based
approaches [25]–[32], with a few methods falling outside these
two categories. On one hand, in reinforcement learning ap-
proaches, architectures are created from a sequence of actions
which are afterwards rewarded proportionally to the crafted
architecture’s accuracy. On the other hand, in evolutionary
computation based methods, small changes in the architecture
(mutations) and recombinations (crossover) are used to create
new architectures. All architectures are evaluated based on
their accuracy with some of the best architectures chosen to
continue to the next generation. Our search method, RoCO-
NAS, is based on an evolutionary method. We augment the
original encoding of NSGA-Net [33] and also introduce multi-
objective based selection scheme, including compactness and
robustness.

B. Generating Adversarial Example

An adversarial example is a slightly perturbed image, rec-
ognizable by human observer, generated by an adversary with
the goal of producing a wrong output from the correct target
class. An adversarial example x′ is generated as x′ = x + ε,
where x is the original sample and ε is the added perturbation.
The aim of an adversary is to find x’ to deceive network f
such that

f(x) 6= f(x′) ∧∆(x′, x) 6 ε (1)

where ∆(x′, x) indicates the difference between the original
image and the adversarial example. Generally, the strength of
the adversaries are limited by ε i.e. the amount of change they
are allowed to apply to the original sample in order to generate
adversarial examples. ∆ is commonly defined by a Lp−norm
distance metric. Three of the most popular choices for Lp are:
L0 : For image samples, this metric limits the number of

pixels that the adversary is allowed to perturb in order to
generate an adversarial example. The amount of perturbation
on each pixel is unlimited.
L2 : This metric is the Euclidean distance between the initial

sample x and the adversarial example x′. In this method the
adversary is allowed to tweak any pixel of the image as long
as the L2 distance is smaller than a certain value.
L∞ : This metric limits the amount of perturbation that an

adversary is allowed to apply to each pixel. The adversary
may alter any number of pixels as long as the amount of
perturbation for each pixel is smaller than a predefined value.

We have used several different attack algorithms to evaluate
the models in our experiments. These attacks generate their
examples based on different metrics, one pixel attack [14] uses
L0 norm, DeepFool [12] uses L2 norm and L∞ norm attacks
such as FGSM [2], BIM [1] and PGD [3]. Carlini and Wagner
attack (C&W) [34] supports all of the aforementioned metrics.

C. Defensive Techniques
Recently, many defensive techniques have been developed

in order to improve the robustness of neural networks against
adversarial attacks. Silva et al. [35] provided a comprehensive
study of the existing defense methods that separates them into
three groups:

1) Gradient Masking: The aim of the gradient masking
techniques is to make gradient based DNNs robust against
adversarial examples by hiding useful gradient information
from adversaries; therefore, they will not be able to easily alter
an input data to create an effective adversarial example [36],
[37]. These techniques produce a loss function that is smooth
around the training data points. Gradient masking defense
techniques are weak against black-box or attacks that are based
on approximate gradients [38], [39].

2) Adversarial Example Detection: Adversarial example
detection techniques are designed to recognize perturbed input
images from natural ones [40]–[43]. This task is usually done
by training a sub-network or designing a separate detector.
After detecting an adversarial example, these methods may
chose whether to ignore the example altogether or transform
it into a recognizable input for the network.

3) Robust Optimization: Robust optimization is referred
to the techniques that modify the optimization function by
adding knowledge about adversarial examples in the objective
function or adding uncertainty to model layers [35].

Adversarial training is the most popular type of robust
optimization. This technique extends the training dataset by
attaching predefined adversarial examples and their ground
truth label to it [2], [10], [11]. The goal is that the trained
model will be able to find the ground truth label, once it
is given a new adversarial example. Despite their popularity,
adversarial training methods mainly suffer from a common
problem. Considering the wide range of existing adversarial
attacks, it is not feasible to include every attack type in
the training; hence, adversarially trained models tend to be
biased towards the type of attack they are trained with. Plus,
these methods mainly train the network weight regardless
of any attention to the architecture. To resolve the former
issue, Madry et al. proposed to use PGD attack in adversarial
training. They have argued that PGD-based adversarial training
is able to increase the robustness of the network against
any other attack. Their results show a superior increase in
robustness when it is implemented on MNIST based models
compared to CIFAR-10 based models.

Recently, few cutting edges methods have taken advantage
of NAS to find robust neural network architectures against
adversarial examples [44]–[46]. Kotyan et al. [44] proposed
an evolutionary based NAS method called robust architecture
search (RAS) to find robust models against adversarial ex-
amples. Their results show that RAS is more capable than
other NAS methods in finding robust models. Guo et al.
[45] Incorporated PGD adversarial training with one-shot
NAS [47] to generate a family of models called RobNet
which show relatively superior robustness on various datasets,
such as CIFAR, SVHN, and Tiny-ImageNet while using less



parameters than their DenseNet and ResNet counterparts. As
opposed to [44], our robust optimization defense method takes
model complexity and natural accuracy into consideration by
utilizing multi-objective NAS and unlike [45] does not employ
any adversarial training in the process. In this work, we answer
the following question: ”Can the complex topology of a neural
network provide adversarial robustness without any form of
adversarial training?”. In other word, we try to understand
adversarial robustness purely from an architectural perspective.

III. ROBUST AND COMPACT NEURAL ARCHITECTURE
SEARCH

Execution of DNNs on embedded devices are often con-
strained by limitations in hardware resources in terms of
power consumption, latency constraints, and available mem-
ory. Hence, the design of DNNs is required to balance multi-
ple, possibly competing, objectives. On a separate note, the de-
ployment of CNNs also calls for attention to their robustness.
Despite their impressive predictive powers, the state-of-the-art
CNNs remain to commonly suffer from fragility to adversarial
attacks, and they are required to be designed robustly.

Often, when several design objectives are needed to be
considered simultaneously, there would not exist a single
solution that is able to lead optimally in all desired criteria,
especially when objectives contradict each other. Under such
conditions, a set of solutions that provides the entire trade-
off information between the objectives is more desirable. This
enables a designer to analyze the importance of each objective,
depending on the application, and to choose a suitable solution
on the trade-off frontier. A solution is considered to be Pareto
Optimal point, if and only if any other solution to the problem
does not dominate it. We propose RoCo-NAS, a genetic-based
architecture search algorithm to automatically generate a set of
DNN architectures that approximate the Pareto-front between
performance, complexity, and robustness for vision tasks. The
rest of this section describes the multi-objective optimization
problem, our search space and encoding scheme, and the main
components of RoCo-NAS in detail.

A. Exploration Method

To obtain an efficient trade-off solutions for multi-objective
optimization, two main approaches exist: i) classical point-
based methods like a weighted sum of the objective func-
tions (e.g., af1(x) + (1 − a)f2(x)); and ii) population-based
methods like genetic algorithms. Population-based strategies
offer a flexible approach to find multiple efficient trade-
off solutions in one execution. The efficiency obtained by
such parallelism cannot be compared by point-based methods
such as weighted combinations. Recent studies show that
population-based methods can successfully solve problems
with billions of variables [48]. In contrast, classical point-
based methods, like branch-and-bound, cannot handle even
hundreds of variables.

Multi-Objective Selection: In mathematical terms, a multi-
objective optimization problem is formulated as:

min
x
{f1(x), ..., fM (x)} (2)

where each fi is an objective that we are going to optimize,
and x is the neural network architecture solution. For the
aforementioned problem, given solutions x1 and x2, x1 is said
to dominate x2 (i.e., x1 ≤ x2) if:

1) x1 is no worse than x2 for all objectives (fi(x1) ≤
fi(x2)∀i ∈ {0, . . . ,M}

2) x1 is better than x2 in at least one objective (∃i ∈
{0, ...,M}|fi(x1) < fi(x2))

Therefore, a solution xi is non-dominated if these conditions
hold for all xj and j 6= i.

The core of RoCo-NAS is a selection criterion that leverages
non-dominated solutions. Specifically, given a population of
network architectures {x1, . . . , xn} and their fitness functions
{f1(xi), . . . , fM (xi)}, the ranking and selection procedure
consists of two stages: (1) non-dominated solutions are se-
lected over dominated solutions; (2) explicitly ranking of
solutions that are diverse w.r.t. the trade-off between the
objectives higher than solutions that are ”crowded” on the
trade-off front, i.e., how close a given solution is to its
neighbors in the objective space. We used the NSGA algorithm
presented by Deb et al. [49] to adapt non-domination ranking
and crowdedness measurements. The non-domination ranking
indicates the front number that a solution belongs to; these
fronts are composed of the set of non-dominated solutions at
the current search iteration.

Elitist Selection: Using this approach, the best solution (in
terms of objective values, which are accuracy, compactness,
and robustness in our problem) in the parent population is
always passed to the next population. This policy allows the
previous best solution to have a chance for sharing its genetic
information with the next generation, while there is no risk for
losing the information to the newly generated child population.

B. Search Space and Encoding

Most of the hand-crafted CNN models are designed by com-
bining the same optimized computational block (e.g. DenseNet
[50], ResNet [51], etc. computational blocks) that consists
of layer-wise computations. However, RoCo-NAS is adapted
from NSGA-Net that constructs architectures by a combination
of several optimized computational blocks, also referred to as
a phase. Though RoCo-NAS operates to optimize individual
computational blocks, the performance of each architecture
solution is assessed based on the entire model i.e. several
distinct interconnected computational blocks.

RoCo-NAS encodes the operations of each network as
xo = (x

(1)
o , x

(2)
o , ..., x

(np)
o ) where np is the total number of

computational blocks. Each x
(i)
o encodes a directed acyclic

graph with maximum of no nodes (computational units) that
describes the operation within a phase encoded by a binary
string. In this approach, nodes are basic computational units
that carry out the same sequence of operations i.e. a 3 × 3
convolution followed by batch-normalization and ReLU acti-
vation. This encoding scheme offers a compact representation



of the network architectures in search space, yet is flexible
enough that many of the computational blocks in hand-crafted
networks can be encoded. The total number of architectures
in our search space is:

γx = np × 2no(no−1)/2+1 (3)

Fig. 1. The search space from RoCo-NAS. Including computation blocks and
a detailed representation of a sample computational block, its corresponding
nodes and encoding.

Fig. 1 illustrates RoCo-NAS search space including three
computational blocks, each consist of a distinct combination
of computational units. The figure also shows a possible
variation of the nodes inside a computation block and their
corresponding encoding by the approach presented in [33].

C. Search Procedure
RoCo-NAS is an iterative process in which initial solutions

are made gradually better as a group, called population. In
every iteration, the same number of new network architectures
(offspring) are generated from parents, which are selected from
the last iteration in the population. Both parents and offspring
compete for remaining and reproduction (becoming a parent)
in the next iteration. There exists flexibility in the generating of
the initial population. It may be generated randomly or forced
to select the hand-crafted network architectures (according
to prior knowledge). The procedure for RoCo-NAS search
algorithm has been shown in Algorithm 1.

The goal of exploration is to discover diverse ways of
connecting nodes to form a phase (computational block).
Genetic operations, crossover, and mutation offer an effective
means to realize this goal.

Crossover selects two members of the population (parents)
and uses them to create a new population member (offspring)
by inheriting computational blocks from parents. The idea of
the crossover is to preserve frequent parents’ shared compu-
tational blocks.

Mutation operation randomly changes the number of nodes
or connections in a computational block. Mutation ensures
generating a diverse set of network architectures and avoids
the local optimum problem. To escape creating a completely
random architecture, only one computational block is allowed
to be mutated at a time.

Algorithm 1: RoCo-NAS procedure using Elitist
Evolutionary Algorithm (NSGA)
Requires: N : size of population
T : Maximum number of generations.
Ensure: Non-dominated individuals in Pt+1.
Step 1. Initialization: Generate a random initial

population of Neural Network Architecture P0 and
create an empty child set Q0.T ← 0

Step 2. Fitness assignment: Pt+1 ← Pt ∪Qt, and
then calculate the fitness values for Robustness,
Compactness and accuracy of the individuals
(Network Architectures) in Pt+1.

Step 3. Truncation: Reduce size of Pt+1 by keeping
best N network architecture according to their fitness
values.

Step 4. Termination: If t = T , output non-dominated
individuals (network architectures) in Pt+1 and
terminate.

Step 5. Selection: Select neural network architectures
from Pt+1 for mating.

Step 6. Variation: Apply crossover and mutation
operations to generate Qt+1. t← t+ 1 and go to
Step 2.

D. Fitness function Evaluation

In addition to accuracy, we have considered robustness and
compactness as the second and third objectives of RoCo-NAS.

1) Compactness: In order to generate more compact mod-
els, computational complexity, defined as the number of
floating-point operations (FLOPs) conducted during a forward
pass in an architecture, is considered as an objective.

2) Robustness: There exists a wide variety of adversarial
attacks for neural networks; therefore, choosing an attack to
evaluate robustness is an ambiguous task. Kotyan et al. [52]
proposed a method that uses attacks with different levels of
both L0 and L∞ metrics to evaluate the robustness of neural
networks. This method suggests that adversarial examples
created with this duality (L0 and L∞), as opposed to other
combination of metrics, can correctly assess the robustness
of neural networks. To evaluate the robustness of our models
during the search process, we have used this method to
generate a set of adversarial examples. This set is created using
various thresholds (1,3,5 and 10) for L0 and L∞ metrics and
target networks such as DenseNet, LeNet, Resnet and VGG-
16 to be inclusive among a wide range of neural network
architectures. Table I summarizes our robustness evaluation
adversarial set based on their attack type, target network,
threshold and the number of successful samples. Generating
the robustness evaluation set before NAS accelerates our
procedure and also ensures that the robustness of our models
is not biased toward certain attacks.

The objectives of the RoCo-NAS for each network archi-
tecture solution a are defined as accuracy (errnatural(a)),
compactness (FLOPs(a)) and robustness (erradv(a)). The



TABLE I
DETAILS OF GENERATED EVALUATION ADVERSARIAL SAMPLES.

L0 L∞
Model 1 3 5 10 1 3 5 10 Total

DenseNet 133 178 201 285 76 85 93 143 1194
LeNet 444 529 571 651 274 279 289 329 3366
ResNet 220 304 367 478 91 102 129 190 1881

VGG-16 440 506 541 627 289 296 307 344 3350
Total 1237 1517 1680 2041 730 762 818 1006 9791

Number of adversarial samples generated using different attack types, thresholds and target networks.

aim of the fitness function is to evaluate the models based on
minimizing all the objectives.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the results of using multi-
objective neural architecture search on robustness, compact-
ness and natural accuracy by evaluating the generated models
from our proposed method. First, we will describe our imple-
mentation settings and our baseline configuration. Then, we
will compare the models from our proposed method with the
baseline models in terms of their model complexity, robustness
and natural accuracy.

A. Implementation Details

Search Parameters: Table II shows NSGA-Net’s fixed
parameters in all of our experiments. Our search method
explores different architectures by changing the number of
computational units in each computational block and their
connections. Our architectures have 3 computational blocks
and each block contains the maximum of 6 computational units
or nodes. Our search algorithm is executed for 20 generations
and models are trained for 25 for epochs before getting
evaluated during the search process.

TABLE II
NSGA-NET NAS PARAMETERS

Parameter Value
Computational blocks 3

Maximum computational units 6
Genetic algorithm generations 20
Genetic algorithm population 40

Training epochs 25

Post-search Optimization: After the search procedure,
architectures are sorted using pareto-optimal optimization to
find optimal solutions regarding the objectives. Then, Each
model is trained with the batch size as 128 and initial channels
as 32 for 120 epochs to improve classification accuracy. The
following evaluations are done using these trained models.

Hardware Description: We have used a PC equipped with
12-core Intel® Xeon® Silver 4109T CPU at 4.3GHz, 16GB of
system memory, and a GeForce GTX 1080 Ti GPU to conduct
our experiments.

B. Baseline-NAS Analysis

As opposed to RoCo-NAS with a separate robustness ob-
jective, our baseline-NAS is implemented using only accu-
racy and compactness objectives. Our models are capable of
generating architectures comparable to state-of-the-art NAS
methods such as Proxyless [53], ENAS [18], DARTS [26]
and SMASH [54]. For this comparison, we have selected an
optimal model from the set of our baseline-NAS solutions
considering both FLOPs and CIFAR-10 accuracy objectives.
As illustrated in Fig. 2, our baseline-NAS architecture exhibits
comparable CIFAR-10 classification accuracy while using
fewer number of parameters. The cost of our search algorithm
is approximately 9.5 GPU days.

Fig. 2. Accuracy vs number of parameters of our baseline-NAS compared
to other state-of-the-art NAS methods on CIFAR-10.

C. RoCo-NAS: Compression, Robustness and Accuracy

We have designed our proposed search algorithm using
multi-objective optimization to reduce model complexity and
improve robustness and natural accuracy of the models. Our
goal here is to evaluate the models from our proposed method
and compare them with our baseline NAS models. In order to
compare different sets of models, generated by different search
configurations, we have selected the top N computationally
light models, calculated by the number of FLOPs, from the
set of pareto-optimal solutions, where N ∈ {1, 3, 5}.

Model Complexity: We have used two different metrics to
compare model complexity including the number of FLOPs
and the number of parameters.



We have measured computational complexity by measuring
the number of FLOPs in our search algorithm. Generally, as
it is illustrated in Fig. 3, the top models from RoCo-NAS are
more computationally intensive than our baseline models.

Fig. 3. Comparing computational complexity of the top models from baseline-
NAS and RoCo-NAS using number of FLOPs.

We have also measured the number of parameters to com-
pare the size of our models. Fig. 4 shows a comparison
between the size of top models from baseline-NAS and RoCo-
NAS. Similar to computational complexity, the models form
our baseline-NAS are more compact than RoCo-NAS. The top
models from RoCo-NAS are up to 8× larger than our baseline-
NAS.

Fig. 4. Comparing size of the top models from baseline-NAS and RoCo-NAS
using number of parameters.

Robustness We have compared the robustness of our mod-
els using our generated adversarial dataset and a number of
well-known attacks such as PGD, FGSM, BIM, Carlini &
Wagner and DeepFool.

As shown in Table III, RoCo-NAS is able to find more
robust models against our L0 and L∞ based generated adver-
sarial examples even if it is at the cost of model complexity.
The question that is later discussed in Section IV-D is whether
the model complexity is the only contributing factor to the
higher robustness of RoCo-NAS models.

TABLE III
ACCURACY OF THE TOP MODELS FROM BASELINE-NAS AND ROCO-NAS
AGAINST OUR L0 AND L∞ BASED GENERATED ADVERSARIAL EXAMPLES.

Configuration Top-1 Top-3 Top-5
Baseline NAS 75.77% 78.65% 79.55%

RoCo-NAS 82.15% 81.89% 81.91%

We have previously demonstrated how RoCo-NAS gener-
ates more complex models compared to our baseline-NAS.
Seeing that the models from RoCo-NAS are also more robust
is an indication of a clear trade-off between model complexity
and robustness.

As it is illustrated in the Fig. 5, we have used a weak
variation of PGD attack with ε = 1 to compare the robustness
of our models displayed with different colors depending on
their configuration based on the number of their FLOPs.
The red curved line that is an approximation of the RoCo-
NAS models is located on the top-right corner of the figure
which shows their high robustness considering their model
complexity (higher number of FLOPs).

Fig. 5. Comparing the robustness of baseline-NAS and RoCo-NAS against
PGD attack with ε = 1.

We have repeated the same experiment with four other
attacks including different variations of FGSM with ε =
0.1, 0.2, 0.3, BIM, DeepFool and C&W. As it is evident in the
Fig. 6, they all follow a similar pattern and point to the same
conclusions we have previously discussed. The models from
RoCo-NAS are generally more robust and their robustness is
proportional to the number of FLOPs i.e. model complexity.

Natural Accuracy: The natural accuracy of our models
is evaluated using validation images from CIFAR-10 dataset.
Table IV shows that the top models from RoCo-NAS out-
perform the models from our baseline-NAS by a small yet
evident margin. The fact that the models from RoCo-NAS are
generally larger suggests that network size is directly related
to natural accuracy.

TABLE IV
ACCURACY OF THE TOP MODELS FROM BASELINE-NAS AND ROCO-NAS

SEARCH CONFIGURATIONS MEASURED BY CIFAR-10 DATASET.

Configuration Top-1 Top-3 Top-5
Baseline-NAS 92.80% 94.50% 94.97%

RoCo-NAS 95.80% 95.90% 95.78%

D. Robustness analysis of different configurations

We have compared two different models of equivalent
complexity (relatively equal number of FLOPs) from RoCo-
NAS and our baseline-NAS configurations regarding their
robustness and the results are presented in the Table V. Even



Fig. 6. Comparing the robustness of baseline-NAS and RoCo-NAS models using FGSM with different values for ε, BIM, C&W and DeepFool attacks based
on the number of FLOPs.

though the selected model from our baseline-NAS is slightly
larger (measured by the number of parameters) and more
computational intensive (measured by the number of FLOPs),
the model from RoCo-NAS is up to 7% more robust against
C&W and PGD attacks.

TABLE V
ROBUSTNESS COMPARISON OF MODELS WITH EQUIVALENT COMPLEXITY

FROM DIFFERENT SEARCH CONFIGURATIONS

Configuration Parameters FLOPs PGD C&W
Baseline-NAS 3.27M 34.22M 50.96% 26.55%

RoCo-NAS 3.13M 32.22M 56.56% 33.78%

The superior robustness of the less complex architecture
found by our proposed method, RoCo-NAS, suggests that this
configuration is able to find models that are inherently robust
to adversarial examples, regardless of the model complexity.

V. CONCLUSION

We proposed a robust architecture search framework as a
solution for developing and researching robust and compact
models. This method is based on using adversarial attacks
together with accuracy and compactness as evaluation func-
tions in NAS. Here, we propose the RoCo-NAS, which has
used genetic-based multi-objective optimization. Results with
our proposed method showed those novel robust and compact
architectures exist. In fact, the evolved architectures achieved
compact results comparable with state-of-the-art models and
were capable of improving the robustness compared to the
more complex baseline models while not having any special

training or defense. In other words, the obtained architecture
are inherently robust.
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