
Exploiting Parallelism in Multi-Task Robot
Allocation Problems

Branko Miloradović
Mälardalen University

Västerås, Sweden
branko.miloradovic@mdh.se

Baran Çürüklü
Mälardalen University

Västerås, Sweden
baran.curuklu@mdh.se

Mikael Ekström
Mälardalen University

Västerås, Sweden
mikael.ekstrom@mdh.se

Alessandro V. Papadopoulos
Mälardalen University

Västerås, Sweden
alessandro.papadopoulos@mdh.se

Abstract—Multi-Agent Systems (MASs) have been widely
adopted in robotics, as a means to solve complex missions by
subdividing them into smaller tasks. In such a context, Multi-
Robot Task Allocation (MRTA) has been a relevant research area,
with the main aim of providing formulations and solutions to
different mission configurations, in order to optimize the planning
and the execution of complex missions utilizing multiple robots.

In recent years, robotic systems have become more powerful
thanks to the adoption of novel computing platforms, enabling an
increased level of parallelism, in terms of sensing, actuation, and
computation. As a result, more complex missions can be achieved,
at the cost of an increased complexity for the optimization of the
mission planning.

In this paper, we first introduce the distinction between phys-
ical and virtual tasks of the robots, and their relation in terms
of parallel execution. Therefore, we propose a mathematical
formalization of the mission planning problem for Multi-Task
(MT) robots, in the presence of tasks that require only a Single-
Robot (SR) to complete, and in the presence of Time-Extended
Assignments (TAs). The problem is modeled with a Mixed-Integer
Linear Programming (MILP) formulation, with the objective of
minimizing the total makespan of the mission, exploiting the
potential (physical and virtual) parallelism of the robots. The
model is validated over some representative scenarios, and their
respective solutions are obtained with the CPLEX optimization
tool, showing the generality of the proposed formulation.

Index Terms—Multi-Robot Task Allocation, Parallel Task Ex-
ecution, Mixed-Integer Linear Programming

I. INTRODUCTION

Multi-Agent Systems (MASs) have been widely adopted
in robotic systems for the coordination, cooperation, and
planning of multiple robots [1]–[3]. More specifically, complex
robotics missions can be subdivided into smaller tasks, to
better exploit the distributed nature of MAS as well as the
potential heterogeneity of the considered agents. The resulting
mapping between the tasks composing the mission and the
robots is known as the Multi-Robot Task Allocation (MRTA)
problem [4], and it has been an active research area of the past
two decades. The richness of the problem is witnessed by the
numerous taxonomies proposed in the literature [4]–[6].

A multi-agent mission involves a number of tasks, a number
of agents, and a set of constraints describing the mutual

This work was supported by the project Aggregate Farming in the Cloud
(AFarCloud) European project, with project number 783221 (Call: H2020-
ECSEL-2017-2), by the Knowledge Foundation with the FIESTA project, and
by the Swedish Research Council (VR).

relations of tasks and agents. A multi-agent mission planning
can be then defined as the allocation of a set of tasks to a set of
agents with respect to agent capabilities and task requirements,
and it is equivalent to the MRTA problem. Although it is
possible to let a human to manually plan a mission for very
small instances, solving the MRTA problem efficiently requires
automated planning algorithms to be able to deal with high
number of tasks and constraints; however, even automated
planning falls short in terms of scalability [7]. If a mission
consists of a large group of agents that can perform multiple
mutually interrelated tasks in parallel, which are also scattered
in the environment, the problem can be described as a mixture
of routing and scheduling problems. Even in their simple
forms, both routing [8] and scheduling [9] problems are NP-
hard. Consequently, the combination of these two problems is
also at least NP-hard.

In recent years, robotic systems computational capacities
have become more powerful, thanks to the advances in modern
parallel real-time computing technologies [10], enabling an un-
precedented level of parallelism, in terms of sensing, actuation,
and computation. As a result, more complex missions can be
achieved by the robotic system, including tasks that require
only computational capacity, and no physical actuation, e.g.,
data processing or data transmission [11]. The additional tasks
to be assigned to the robot come at the cost of an increased
complexity for the MRTA and, more in general, for the
mission planning. In this paper, we introduce a new distinction
between physical and virtual tasks, and their relation in terms
of parallel execution. This distinction captures the additional
computational capabilities of robotic systems, and it allows for
a more rich specification of the task set required to complete
the mission.

The contribution of this paper is twofold: (i) we propose
a mathematical model, in the form of Mixed-Integer Linear
Programming (MILP) problem, for the optimization of the
makespan of the problem configuration that covers Time-
extended Assignment (TA) of Single-Robot (SR) tasks, both
physical and virtual tasks, to Multi-Task (MT) robots. The
model is verified with the CPLEX solver on a set of problem
instances; (ii) we propose two task types, physical and virtual,
based on their spatial constraints and discuss their temporal
relations in the possible MT-SR-TA real-world scenario.

II. BACKGROUND AND RELATED WORK

The original MRTA taxonomy [4] for problem classification,
covers three main problem dimensions resulting in a total
of 8 different problem configurations. As the authors stated
at the time, there has been very little work done related to
the problem configurations that include MT robots, especially
the MT-SR-TA configuration. In an attempt to provide a
reasonable approximation to the problem formulation, the
authors state that the MT-SR-TA configuration can be seen
as a ST-MR-TA (MR stands for Multi-Robot tasks) with the
set partitioning problem inverted, i.e., splitting a set of tasks
into agent-specific coalitions. Such a formulation does not take
into account the location of the tasks and the time required for
the robots to move between them, focusing only on the task
allocation problem. The interrelatedness of the tasks has never
been addressed in [4], which makes the definition of MT or
MR configurations incomplete.

The next contribution to the MRTA taxonomy was iTax [5],
which aims at addressing the task interrelatedness that was
missing from the original MRTA taxonomy. This work pro-
vides a survey on different problem configurations. The MT
configuration lacked mathematical models of formal problem
definition, and in general, this topic has not been investigated
extensively by the research community. The authors stated
that some variants of Vehicle Routing Problem (VRP), like
pick-up and delivery, can be seen as an example of MT
problem configuration. Assuming that from the pick-up time
until delivery we have a continuously ongoing task, then every
stop to pick or deliver other packages can be seen as a from
of parallel task execution. The problem here is the level of
abstraction of tasks. If we assume that the task starts when the
package is picked up and ends when that package is delivered,
VRP can be considered to have MT-SR-TA configuration.
However, this description assumes a high-level description,
since the task composes of sub-tasks. Thus, it would be more
sensible to describe such a task as a set of three tasks, i.e., (1)
pick-up of package A, (2) transit from a pick-up to delivery
location, and (3) delivery of package A. In this scenario,
performing other tasks in between pick-up of package A
and delivery of package A cannot be seen as a parallel task
execution. Moreover, even if we assume these three tasks to
be one monolithic task, still, tasks are not executed in parallel,
but in a preemptive manner. For example, picking up of some
other package B, before package A has been delivered, can be
seen as an interruption of Task A and not as parallel execution
of Task A and B. For this reason, we discard the VRP as an
example of an MT-SR-TA configuration. In addition, even the
authors of this taxonomy in the tables summing problems for
each configuration left MT-SR-TA as a blank field.

From the iTax we can conclude that if tasks have relations to
other tasks within the same agent’s schedule, the problem falls
into interrelatedness category of Intra-schedule Dependencies
(ID). On the other hand, if there is a relation among tasks
that are scheduled for execution on different agents, e.g.,
precedence constraints, there must exist a dependency between

those schedules. This is called a Cross-schedule Dependency
(XD). Other task dependencies are covered in the iTax as well,
but they are out of the scope of this paper.

These taxonomies have been extended with two new dimen-
sions, a Synchronization Precedence (SP) and Time Windows
(TW) [6]. The former refers to an ordering constraints, e.g.,
task A needs to be done before task B, either by the same agent
or different agent; whereas the latter refers to a constraint that
a certain task has to be performed in a predefined time slot. In
this work we focus on SP dimension. In addition, the authors
provided a survey of the literature for other MRTA problem
types. For the problem configuration that is of interest to us,
MT-SR-TA, the conclusion was that this part of the MRTA
problem remained unexplored.

Even in the latest taxonomy extension [12], the MT part has
not been further explored, but it was kept as in the original
MRTA taxonomy. As can be seen form the analysis of the
most influential MRTA taxonomies, MT has been completely
neglected as a research direction, both from a theoretical and
practical perspective [4]–[6], [12]. This is still the case today.

III. VIRTUAL AND PHYSICAL TASK TYPES

First, we distinguish between two types of tasks that are
denoted as virtual and physical tasks.

Virtual tasks are tasks that have no spatial constraints for
their execution, i.e., they can be executed in any physical
location, and with the level of parallelism allowed by the
computing platform. For example, communicating and sending
proprioceptive data, data analysis, and so on. In general, these
tasks can be performed as solo tasks, i.e., they do not overlap
with any other tasks; during the execution of other tasks; or
during the transition from one task to the next one.

On the other hand, physical tasks are bound to a certain
location where they must be performed. Opposite to the virtual
tasks, physical tasks cannot be executed during the transition
from one task to the next one. Physical tasks include phys-
ical manipulation of objects, environment sensing (scanning
seabed, taking photos of objects of interest, etc.), or using tool
(drilling, welding, etc.). Contrarily to what has been proposed
by [6], we assume taking pictures of objects as physical task
as well, since it has to be done at a specific location. However,
taking photos or using camera in general can be a virtual task
as well if it is used, e.g., for localization of the agent. These
types of tasks are either performed as solo tasks or in parallel
with some other task. It is important to emphasize that in this
work we do not deal with preemptive tasks. The parallelism
among tasks can be divided into these three categories: (i)
physical parallelism, among two or more physical tasks; (ii)
virtual parallelism, among two or more virtual tasks; and (iii)
mixed parallelism, among a mix of two or more tasks that can
be either virtual or physical.

From a modeling standpoint, two or more physical tasks
that can run in parallel must have the same location, thus they
can be modeled as a unique task associated with the given
location, and with a duration computed either as the maximum
of the two or more durations (in case they can all run in

parallel) or by solving a local scheduling problem minimizing
the makespan of the physical tasks. For example, a robot with
two arms manipulating two different objects can be interpreted
as parallel execution of two independent tasks and these tasks
can be modeled as a single monolithic task.

The situation with the other two cases is however different.
Virtual parallelism cannot always be achieved, for example
due to functional dependencies among the tasks, to contention
of the required resources, or simply because the level of
parallelism provided by the computing platform is not enough
to support the amount of concurrent virtual tasks. Similarly,
also mixed parallelism may sometimes be not possible, for
example because of functional dependencies among the tasks,
or because of physical limitations, e.g., scanning the seabed
using sonar and using an acoustic modem for communication
is not possible due to possible underwater interference.

IV. PROBLEM FORMULATION

Let s ∈ S be an agent, in a set S := {s1, s2, . . . , sm}
of m agents that need to perform a set of n tasks,
V := {v1, v2, . . . , vn}; V includes both physical and virtual
tasks. Also, let c be a type of equipment in a set C :=
{c1, c2, . . . , ck}; each agent is endowed with one or more
pieces of equipment, and every task requires one specific piece
equipment to be completed. We denote with σ a deployment
location in a set Σ := {σ1, . . . , σq} of q deployment locations,
and δ to be a destination location in a set ∆ := {δ1, . . . , δw}.

Each agent s starts from a deployment location σ and
finishes its tour at a destination location δ. The superset
containing all the tasks and the deployment and destination
locations is defined as Ṽ := V ∪ Σ ∪∆. In addition, for con-
venience, a superset containing all the deployment locations
and tasks elements is defined as VΣ := V ∪ Σ. Analogously,
a superset containing all the destination locations and tasks is
defined as V∆ := V ∪∆. Every edge e(i, j) connecting two
tasks i, j ∈ Ṽ , out of which at least one is virtual, regardless
of the assigned agent, has a cost ωijs = 0. The cost matrix
Ω = [ωijs]n×n×m is symmetrical, i.e., ωijs = ωjis.

The model has four decision variables xijs, ti, zijs, and Q.

xijs =

{
1, if s ∈ S starts task i ∈ VΣ before task j ∈ V∆,

0, otherwise.

zijs =

{
1, if ti ≤ tj ,
0, otherwise.

The decision variable xijs ∈ {0, 1} defines if agent s
travels from task i to task j. The decision variable zijs ∈
{0, 1}defines if start time of task i is before or after task j.
The decision variable ti ∈ R+

0 defines the starting time of a
task i. Finally, the decision variable Q ∈ R is used to express
the upper bound of the longest tour performed by an agent.
Every task i ∈ VΣ has a duration ξis ∈ R+

0 , representing
the amount of time agent s needs in order to complete task
i; if i ∈ Σ ∪ ∆, ξis = 0. Precedence relations among tasks
are described by the adjacency matrix Π = [πij]n×n, where
πij = 1 if i ≺ j, and 0 otherwise. In addition, every task

i ∈ V requires a certain equipment fc(i) for its successful
completion, with fc : V 7→ C. Each agent s ∈ S has a set
of available equipment Cs ⊆ C. An equipment matrix defines
which tasks can be performed by agent s, and it is defined as
As := [aijs]n×n, with

aijs =

{
1, fc(i) ∈ Cs ∧ fc(j) ∈ Cs ∧ πij = 1

0, otherwise.

The definition of the equipment matrix As can be extended to
include the deployment and destination locations as:

aijs =

aijs, i, j ∈ V,
1, (i ∈ Σ, j ∈ V∆) ∨ (i ∈ VΣ, j ∈ ∆),

0, (i, j ∈ Σ) ∨ (i, j ∈ ∆).

As previously explained, tasks are divided into virtual and
physical tasks. We can define a function h : V 7→ {0, 1},
where hi = 1 if task i is virtual, and 0 otherwise.

We finally define the symmetrical matrix R = [rij]n×n to
specify which tasks can be performed in parallel, where rij =
1 if tasks i and j can be done in parallel, and 0 otherwise.

This problem can be seen as a combination of a routing and
scheduling problem.

A. Routing Part of the Formulation

In the following, we present the constraints related to the
routing part of the problem.

xijs ≤ aijs, ∀i ∈ VΣ,∀j ∈ V∆,∀s ∈ S. (1)∑
s∈S

∑
i∈VΣ

xijs = 1, ∀j ∈ V, (2)∑
s∈S

∑
j∈V∆

xijs = 1, ∀i ∈ V. (3)

∑
i∈VΣ

xijs =
∑
k∈V∆

xjks, ∀j ∈ V,∀s ∈ S. (4)∑
i∈Σ

∑
j∈V∆

xijs = 1, ∀s ∈ S, (5)

∑
i∈VΣ

∑
j∈∆

xijs = 1, ∀s ∈ S, (6)∑
s∈S

∑
j∈V∆

xijs = Bi, ∀i ∈ Σ, (7)

∑
i∈N

∑
j∈N

xijs ≤ |N | − 1, ∀N ⊆ V,N 6= ∅,∀s ∈ S. (8)

It is forbidden for an agent s to perform tasks with incorrect
equipment, Eq. (1), defined in the equipment matrix As. Ex-
actly one agent s ∈ S can start and finish each task, and it can
do it exactly once, Eqs. (2) and (3). The same agent that started
a task has to finish it, Eq. (4). The start of every tour has to be
at the deployment location Eq. (5), while the final destination
must always be at one of the destination locations Eq. (6). Note
that some agents can go directly from a deployment location
to a destination location without performing any of the tasks,
i.e., xijs = 1, i ∈ Σ, j ∈ ∆. This means that the agent is
not used in the final plan. The number of agents Bσ in each

deployment location σ ∈ Σ is assumed to be given as an input
to the problem, and it is such that

∑
i∈Σ Bi = |S|, Eq. (7).

Every agent must therefore leave the deployment location to
reach either a task or directly a destination location. In order
to eliminate sub-tours, the Dantzig-Fulkerson-Johnson (DFJ)
sub-tour elimination formulation [13] has been extended and
adapted to be applied to this type of problem as. It states
that for each nonempty subset N ⊆ V , the number of edges
between the nodes of N must be at most |N | − 1, Eq. (8). A
task i cannot be repeated: xiis = 0, ∀i ∈ Ṽ,∀s ∈ S.

B. Scheduling Part of the Problem

In the following, we present the constraints related to the
scheduling part of the problem.

xijs ≤ zijs, ∀i ∈ VΣ,∀j ∈ V∆,∀s ∈ S, (9)∑
s∈S

(zijs + zjis) ≤ 1, ∀i, j ∈ V. (10)

ziks + zkjs − zijs ≤ 1, ∀i ∈ VΣ,∀j ∈ V∆,∀k ∈ V,∀s ∈ S.
(11)

ti + ξis + ωijs ·
∑
s∈S

zijs ≤ tj , ∀i ∈ VΣ,∀j ∈ Ṽ, i ≺ j, (12)

tj +M · (1−
∑
s∈S

zijs) ≥ ti + P, ∀i ∈ VΣ,∀j ∈ Ṽ, (13)

ti ≤ Q, ∀i ∈ ∆. (14)∑
j∈V

hj · xijs = 0, ∀i ∈ Σ,∀s ∈ S. (15)

The scheduling part deals with constraints including the deci-
sion variable zijs that indicates if task i is started before task
j by agent s. The relation between xijs and zijs is expressed
in Eq. (9), meaning that if agent s executes task i right before
j (xijs = 1), then zijs = 1, and that if task i is not executed
before j (zijs = 0), then also xijs = 0. We introduce Eq. (10)
to prevent possible cycles in variable z. In order to maintain
the transitive property Eq. (11) is introduced. It ensures that
if a task i starts before task k, and task k starts before task
j, then task i must start before task j. In the model, we also
include precedence constraints between tasks, i.e., a task i
must be completed before task j, Eq. (12). Specifically, for
every agent s such that zijs = 1, the earliest schedule time
for a task j is the sum of: (i) the starting time of the task i (ti),
(ii) the duration of task i (ξis), and (iii) the cost of moving
from i to j (ωijs). The sum of zijs over all agents is equal
to 0 in case when task i and task j are not performed by the
same agent, thus removing the travel distance ωijs from the
equation. In contrast, when the sum is equal to 1 it indicates
that an agent s performs both tasks i and j. The disjunctive
constraint Eq. (13), in conjunction with Eq. (10), ensure that no
two tasks can overlap on the same agent, unless it is allowed by
their parallelism, expressed by matrix R. P is a non-negative
real number that expresses the time difference between the
starting time ti and starting time tj . The way P is calculated
is described in the Sect. IV-D. The total duration of the tours
of every agent is upper bounded by the decision variable Q

as defined in Eq. (14). To prevent execution of virtual tasks at
the beginning of the plan we introduce Eq. (15).

C. Optimization Problem

To solve the previously described problem it is necessary to
allocate all tasks in V to a set of available agents S, avoiding
task repetition, while respecting equipment and precedence
requirements, and minimizing the mission time. The resulting
optimization problem can be expressed as:

minimize
x,z,t,Q

Q

subject to Constraints (1)–(15). A mission can have different
objective functions [14]. We chose to minimize the maximum
makespan of an agent over all agents.

D. Calculating the value of P
The value P is calculated based on 3 different cases. In

general, P can be described as the time interval between the
starting time of task i and the starting time of task j.

1) Case 1: The first case deals with situations when at
least one involved task is virtual, while the other can be either
virtual or physical, and the execution of the two tasks cannot
be in parallel, i.e., rij = rji = 0. First, the situation where
task j is executed after task i is addressed. In this case, the
minimum difference between the two starting times is the
duration of task i, i.e., P1 = ξis. Analogously, when task
j is executed before task i, P1 is equal to the duration of task
j, i.e., P1 = ξjs. This can be further generalized as

P1 = ξis ·
∑
s∈S

zijs + ξjs · (1−
∑
s∈S

zijs), i ∈ VΣ, j ∈ V∆.

(16)
2) Case 2: The second case deals with the situation when

one task is virtual, and the other is either virtual or physical,
and the two tasks can run in parallel, i.e., rij = 1. This allows
task j to have the same starting time as task i, thus in both
sub-cases, zijs = 1 and zijs = 0, both tasks have the same
starting time. Consequently, the value of P2 is the same. If
we expand Eq. (16) to include task parallelism by multiplying
P1 with (rij − 1) it results in

P2 = P1 · (rij − 1) = 0, i ∈ VΣ, j ∈ V∆, s ∈ S. (17)

3) Case 3: The last case considers two physical tasks , thus,
by the problem description in Sect. III, it is not possible to
execute them in parallel, i.e., rij = 0. Depending on the value
of zijs, P3 has the value of P3 = ωijs + ξis or P3 = ωjis +
ξjs, where ωijs = ωjis. This can be generalized to include
a deployment location instead of the first task. In general, P
can be expressed by combining P1,P2, and P3:

P = ωijs ·
∑
s∈S

zijs + P2, ∀i ∈ VΣ, j ∈ V∆. (18)

Eq. (18) is a generalization of all three cases. It can easily be
reduced to Eq. (16) in a case where either task i, or j, or both
are virtual. By the definition of ωijs (Sect. IV), whenever at
least one of the tasks is virtual ωijs = 0. If task i and j can be

executed in parallel (rij = 1), the second part of the Eq. (18)
is 0. Since tasks i and j can be run in parallel it means at
least one of them is a virtual task, making the ωijs = 0 and
consequently P = 0. With the combination of these three
cases, we can cover a wide range of task relations.

V. A CASE STUDY

This case study has two goals: (i) to showcase how the
presented formalization of the [XD]:MT-SR-TA-SP problem
configuration is mapped to a real-world scenario in practice,
and (ii) to highlight the complexity, which is associated with
identification of a solution, even in the simple cases.

Let us consider an underwater mission scenario with 2
agents, i.e., Autonomous Underwater Vehicles (AUVs), and
6 tasks. Out of the 6 tasks, 3 are virtual (h1 = h5 = h6 = 1)
and 3 are physical. The only tasks that can execute in parallel
are task 3 and 6, i.e., r36 = r63 = 1.

The mission consists of measuring H2S (hydrogen sulfide)
water pollution at location A (Task 4), scanning a seabed at
location B (Task 3), taking photos at location C (Task 2).
The virtual tasks are as follows: Task 6 in which the gathered
data from scanning the seabed (Task 3) is processed; the data
processing of Task 6 can be executed in parallel with the data
collection of Task 6. Also, Tasks 1 and 5, which are sending
data back to the command center data gathered in Tasks 2 and
4, respectively. Furthermore, Task 5 cannot be executed before
Task 4 is finished, i.e., there is a precedence constraint 4 ≺ 5.
The same is applied to the Task 2 and 1, i.e., 2 ≺ 1.

Two AUVs are available for this mission. AUV 1 is
equipped with a sonar, a camera system, and an acoustic
modem, while AUV 2 has the equipment for water pollution
measurements in addition to an acoustic modem. The final
plan is shown in Fig. 1 as two sub-figures, each dedicated
to an AUV. Task 0 indicates the transit from one task to
another. Physical tasks are colored red, whereas virtual tasks
are indicated with blue color. Transit tasks, which represent
moving of an AUV from one location to the next, are colored
green. As it can be seen, the plan for AUV 1 is to go to
the location B and perform Task 3, while simultaneously
processing the acquired data. Then AUV 1 should go to
location C and perform Task 2, and send data back to the
command center while going to the destination location. AUV
2 is tasked to go to location A, and take photos (Task 4).
Afterwards, AUV 2 is tasked with sending photos to the
command center (Task 5). This data is sent in parallel with
the transit from location C to the destination location.

This small mission, which can be seen as a part of a larger
mission, showcases a real-world use case of a [XD]:MT-SR-
TA-SP problem configuration.

VI. EVALUATION

The evaluation is performed on a set of test instances using
the CPLEX solver. The experimental platform is an i9-9980XE
@4.1GHz (18 cores) CPU with 128GB of DDR4 RAM.
CPLEX is set with a timeout of 6 hours. We compare the
presented formulation with an equivalent model that does not
exploit the task parallelism, to assess the obtained advantage.

0 500 1000 1500
0
1
2
3
4
5
6

Makespan [s]

Ta
sk

s

AUV 1

0 500 1000 1500
0
1
2
3
4
5
6

Makespan [s]

AUV 2

Fig. 1: The plan with parallel task execution.

A. Benchmark Settings

The benchmark consists of 6 problem instances with dif-
ferent levels of complexity, regarding the number of agents,
tasks, and constraints. We limit the number of different
equipment required by tasks to 3. The number of required
precedence relations selected from the set {0, 1, 2} through
discrete uniform distribution. The number of tasks and agents
vary depending on the scenario. The task duration vary from
10 to 500 seconds. Two different cases are compared on the
same problem of test instances. In the first case, parallel task
execution is allowed whenever it is possible. In the second
case, parallel task execution is forbidden; however, virtual
tasks can still be performed while agents are in transit.

B. Implementation

The performance of the CPLEX solver greatly depends
on the way a model is implemented. Although the goal of
this work is not to address the optimization of the imple-
mented model, but rather to evaluate the proposed model,
we do incorporate some of the implementation details that
were used to configure the solver. In routing problems, it is
common to implement sub-tour elimination constraints as lazy
constraints [15]. This is the case with Eq. (8). This means
that this constraint is only taken into account after CPLEX
finds an incumbent solution. At this point, it is checked if this
solution satisfies Eq. (8). If it does, the found solution is valid;
otherwise, a new constraint is added to the model to remove
this incumbent solution from the feasibility set. The disjunctive
constraint Eq. (13) and the precedence constraint Eq. (12)
are implemented as indicator constraints. The formulations
with big-M coefficients may cause numerical instability. The
provided indicator constraints avoid this problem altogether;
however, this comes at the cost of a reduced performance
in terms of convergence time. Ku and Beck [16] performed
a comparison of disjunctive and indicator constraints on a
Job-Shop Scheduling Problem and showed that indicator con-
straints are up to three times slower than the disjunctive ones.
Nevertheless, we used the IloIfThen indicator constraints
provided by CPLEX, to avoid potential numerical issues.

C. Results

The obtained results from the CPLEX optimization tool for
the set of problem instances, are given in Table I. Instances
1–4, take less time to compute, however as the number of
agents and tasks increase, the time required for the computing
the optimal solution grows exponentially, e.g., with instance
6 reaching the timeout of 6 hours, without being able to
prove optimality. However, a feasible solution was always
computed. Comparing the obtained solutions for the case with
and without parallel execution, three things can be observed.
Firstly, the computed solutions for the parallel execution cases
are either better or equivalent to the cases without parallel
execution. If we look at the solution of Instance 3 (Fig. 1),
we have shown how the plan looks when tasks 3 and 6 can
run in parallel. In Fig. 2 the same mission is presented, but
without allowing the parallel execution of tasks. The overall
makespan is shorter when parallelism is allowed. In Instances
2, 3, 4, and 6, the makespan is decreased up to ∼ 20%,
when the parallelism is exploited. It is to be noticed that such
numeric advantages can be more or less based on the specific
problem setup (number of agents, number of tasks, precedence
constraints, parallelism, etc.), and hence is not trivial to predict
a priori. For Instances 1 and 5, the computed solutions are the
same in both cases with and without parallel task execution.
In general, this can happen whenever the virtual tasks can
be completed during the transits, and therefore the serialized
execution has the same makespan as its parallel counterpart.

VII. CONCLUSION

We have presented a mathematical model for the opti-
mization of multi-robot mission planning, which is able to
exploit task parallelism. In particular, we have focused on the
formulation of the [XD]:MT-SR-TA-SP problem configuration
as a MILP problem, with the objective of minimizing the
total makespan of the mission. The presented model has been
evaluated over a set of problem instances using CPLEX, in
order to reveal both the generality of the proposed approach,
and the advantages associated with the exploitation of task
parallelism. Furthermore, we have introduced the distinction
of virtual and physical tasks, characterizing their relations in
terms of parallel task execution.

Future work will extend this formulation to include Time-
Windows and Multi-Robot tasks. Additionally, further inves-
tigation is needed to provide more scalable solvers for the
presented problems, possibly trading off optimality for feasi-

TABLE I: Results for parallel and non-parallel task execution.

Parallel execution Non-parallel execution
Inst. Optimal Cost Time [s] Optimal Cost Time [s]

1 Yes 1056 10.9 Yes 1056 13.1
2 Yes 1128 14.5 Yes 1312 21.2
3 Yes 1302 0.3 Yes 1445 0.3
4 Yes 752 16.9 Yes 901 282.4
5 Yes 735 4623 Yes 735 6323
6 No 1093 21613 No 1330 21619

0 500 1000 1500
0
1
2
3
4
5
6

Makespan [s]

Ta
sk

s

AUV 1

0 500 1000 1500
0
1
2
3
4
5
6

Makespan [s]

AUV 2

Fig. 2: The plan without parallel task execution.

bility. Thus, meta-heuristic approaches, as well as constraint-
programming, pose a sensible option for a future solver design.

REFERENCES

[1] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,”
Ieee Access, vol. 6, pp. 28 573–28 593, 2018.

[2] B. Miloradović, B. Çürüklü, M. Ekström, and A. V. Papadopoulos, “A
genetic algorithm approach to multi-agent mission planning problems,”
in Operations Research and Enterprise Systems, 2020, pp. 109–134.

[3] M. Frasheri, J. Cano-Garcia, E. Gonzalez-Parada, B. Çürüklü, M. Ek-
ström, A. V. Papadopoulos, and C. Urdiales, “Adaptive autonomy in
wireless sensor networks,” in AAMAS, 2020, pp. 375–383.

[4] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[5] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.

[6] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robotics
and Autonomous Systems, vol. 90, pp. 55–70, 2017.

[7] F. C. Van Delft, G. Ipolitti, D. V. Nicolau Jr, A. Sudalaiyadum Perumal,
O. Kašpar, S. Kheireddine, S. Wachsmann-Hogiu, and D. V. Nicolau,
“Something has to give: scaling combinatorial computing by biological
agents exploring physical networks encoding np-complete problems,”
Interface focus, vol. 8, no. 6, p. 20180034, 2018.

[8] P. Toth and D. Vigo, “The vehicle routing problem,” Discrete Mathemat-
ics and Applications, Society for Industrial and Applied Mathematics,
Philadelphia, 2002.

[9] K. Jansen, M. Mastrolilli, and R. Solis-Oba, “Approximation schemes
for job shop scheduling problems with controllable processing times,”
European journal of OR, vol. 167, no. 2, pp. 297–319, 2005.

[10] S. Seok, D. J. Hyun, S. Park, D. Otten, and S. Kim, “A highly
parallelized control system platform architecture using multicore cpu
and fpga for multi-dof robots,” in ICRA, 2014, pp. 5414–5419.

[11] J. Vander Hook, T. Vaquero, F. Rossi, M. Troesch, M. S. Net, J. School-
craft, J.-P. de la Croix, and S. Chien, “Mars on-site shared analytics
information and computing,” in ICAPS, vol. 29, 2019, pp. 707–715.

[12] B. Miloradović, M. Frasheri, B. Cürüklü, M. Ekström, and A. V.
Papadopoulos, “Tamer: Task allocation in multi-robot systems through
an entity-relationship model,” in PRIMA. Springer, 2019.

[13] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Journal of the Operations Research Soci-
ety of America, vol. 2, no. 4, pp. 393–410, 1954.

[14] M. Gini, “Multi-robot allocation of tasks with temporal and ordering
constraints,” in AAAI, 2017.

[15] M. M. Aguayo, S. C. Sarin, and H. D. Sherali, “Solving the single and
multiple asymmetric traveling salesmen problems by generating sub-
tour elimination constraints from integer solutions,” IISE Transactions,
vol. 50, no. 1, pp. 45–53, 2018.

[16] W.-Y. Ku and J. C. Beck, “Mixed integer programming models for job
shop scheduling: A computational analysis,” Computers & Operations
Research, vol. 73, pp. 165–173, 2016.

	Introduction
	Background and Related Work
	Virtual and Physical Task Types
	Problem Formulation
	Routing Part of the Formulation
	Scheduling Part of the Problem
	Optimization Problem
	Calculating the value of P
	Case 1
	Case 2
	Case 3

	A Case Study
	Evaluation
	Benchmark Settings
	Implementation
	Results

	Conclusion
	References

