
Systematic Literature Review of Compliance
Checking Approaches for Software Processes

Julieth Patricia Castellanos Ardila, Barbara Gallina, and Faiz Ul Muram

IDT, Mälardalen University, Väster̊as, Sweden
{julieth.castellanos, barbara.gallina, faiz.ul.muram}@mdh.se

Abstract. Context: Software processes have increased demands com-
ing from normative requirements. Organizations developing software com-
ply with such demands to be in line with the market and the law. The
state-of-the-art provides means to automatically check whether a soft-
ware process complies with a set of normative requirements. However,
no comprehensive and systematic review has been conducted to charac-
terize such works. Objective: We characterize the current research on
this topic, including an account of the used techniques, their potential
impacts, and challenges. Method: We undertake a Systematic Liter-
ature Review (SLR) of primary studies reporting techniques for auto-
mated compliance checking of software processes. Results: We identify
41 papers reporting solutions focused on limited normative frameworks.
Such solutions use specific languages for the processes and normative
representation. Thus, the artifacts represented vary from one solution
to the other. The level of automation, which in most methods requires
tool-support concretization, focuses mostly on the reasoning process and
requires human intervention, e.g., for creating the inputs for such rea-
soning. In addition, only a few contemplate agile environments and stan-
dards evolution. Conclusions: Our findings outline compelling areas for
future research. In particular, there is a need to consolidate existing lan-
guages for process and normative representation, compile efforts in a
generic and normative-agnostic solution, increase automation and tool
support, and incorporate a layer of trust to guarantee that rules are
correctly derived from the normative requirements.

Keywords: Automated compliance checking · software processes · nor-
mative frameworks · Systematic Literature Review.

1 Introduction

Many applications and infrastructures rely on software, including the internet,
warning systems, and medical and financial information systems [59]. Due to its
growing use, the software is becoming a public good, and its quality is a concern
for society [133]. In particular, there is a group of stakeholders, called community
stakeholders [144], including governments, regulatory bodies, and companies or
individuals, who make a strong influence on normative compliance.



2 Castellanos Ardila et al.

Governments and regulatory bodies demand compliance with standards and
policies for licensing and certification purposes. Companies acting as customers
in a production chain commonly demand compliance with specific regulations
from their suppliers to have a standardized and transparent production [32].
There are also knowledgeable individuals demanding the use of standards to
influence responsible behavior among industry practices [126]. Thus, compliance
with normative frameworks is a must-do for software development organizations,
especially when software is developed for safety-critical systems1.

The software engineering community has observed that standardized software
processes make development tasks more predictable, transparent, and economi-
cal [41, 139, 100]. Standardized software processes are referenced in international
standards, e.g., ISO/IEC 12207 [84] for software, and ISO/IEC 15504 [80] series
of standards - and its evolution ISO/IEC 330xx series [82] for assessment and
improvement processes. It is also common to find standards and regulations in
the safety-critical context that follow a prescriptive approach, i.e., they mandate
a rigorous process for software development [92]. However, such standards mean
stringent compliance requirements beyond the commitment to improve process
capability [14]. In general, requirements regulating software aim at covering a
broad set of organization and use cases [144]. For this reason, they act as process
constraints and generally omit implementation-specific details [4].

Standards commonly provide information regarding the process elements re-
quired during software development and the mandated features. When seeking
compliance, process engineers use this information to include the sequence of
tasks mandated (i.e., the process behavior) and the resources ascribed to such
tasks, e.g., personnel, work products, tools, and methods, which are also framed
with essential properties (i.e., the process structure). Such work can be seen
as systematic, i.e, methodical in procedure or plan2. Thus, process compliance
management has been usually supported by systematically checking that the
processes used to develop software have such information at the required points.

Properly designed and developed information technology tools has the po-
tential to support process engineers in their compliance checking tasks [93]. For
this, a unifying mechanism that permits automatic reasoning between the soft-
ware process models and the normative frameworks regulating them could be a
solution. Several studies have approached this idea by formulating methods for
automating this task. However, to the best of our knowledge, no comprehensive
and systematic review has been conducted to characterize them.

In this paper, we undertake an SLR (Systematic Literature Review) of pri-
mary studies reporting techniques for automated compliance checking of software
processes. An SLR, according to Kitchenham and others [97, 99], is a secondary
study used to identify, analyze, and interpret all available evidence related to
a specific topic. Briefly, the purposes of this SLR are as follows: 1) provide an
overview regarding the evolution of the research regarding automated compli-

1 Safety-critical systems are those whose failure could lead to unacceptable conse-
quences, e.g., death, injury, loss of property, or environmental harm [105]

2 https://www.merriam-webster.com/dictionary/systematic



Title Suppressed Due to Excessive Length 3

ance checking of software processes; 2) provide an account of the current tech-
niques; 3) describe their potential impacts and challenges; and, 4) outline key
areas where future research can advance to support companies moving towards
automated compliance checking practices.

As a result, we identify 41 primary studies from a list of 2033 found in
recognized online libraries. The selected primary studies provide a set of ad
hoc solutions that are interesting, applicable, and valuable contributions to the
topic. However, such solutions use specific languages for the processes and nor-
mative representation. Thus, the artifacts represented vary from one solution to
the other. Most of the languages used for representing requirements primarily
define obligations (the mandatory requirements) but leave aside other consid-
erations, such as the permitted actions that could indirectly affect compliance,
e.g., exceptional cases surrogated by requirements tailoring. The level of automa-
tion claimed in the studies is mainly related to the reasoning required to define
compliance between software processes and the normative documents. However,
current methods require human intervention, especially to implement the inputs
of such a reasoning process. Tool support still needs concretization since most of
the approaches are in the stage of conceptual modeling or have been material-
ized as proof-of-concept prototypes. In addition, only a few methods contemplate
agile environments and standards evolution.

Our findings outline compelling areas where future research can advance
to support companies moving towards automated compliance checking prac-
tices. First, there is a need to consolidate existing languages for process and
normative representation since there are already too many options not being
adequately exploited. In our opinion, it is also crucial to consolidate a generic
and normative-agnostic solution that can handle the different concepts, struc-
tures, and scenarios provided in the standards. Such a solution could be more
attractive to organizations. It is also crucial to increase automation for easing
the creation of rules, i.e., rule editors, since formalizing requirements still need
human intervention. It is also essential to provide concrete and stable tools that
can support the compliance checking process. Finally, a layer of trust should be
incorporated in the methods for compliance checking to guarantee that rules are
correctly derived from the normative frameworks.

The paper is organized as follows. In Section 2, we present essential back-
ground. In Section 3, we present the research method. In Section 4, we report
the results of the review. In Section 5, we discuss the findings. In Section 6, we
discuss the validity of the findings. In Section 7, we discuss related work. Finally,
In Section 8, we summarize the work and present future remarks.

2 Background

This section presents essential background required in the rest of the paper.



4 Castellanos Ardila et al.

2.1 Compliance Checking of Software Processes

Software process compliance aims to ensure the fidelity of the processes used
to engineer software products to a selected normative framework, usually in the
form of an industry standard [127]. For this, organizations show either full adher-
ence, by complying with all requirements set out by the applicable standard or
perform requirements tailoring. Tailoring requires selecting applicable require-
ments, performing their eventual modifications, and explaining their implemen-
tation according to the project’s particular circumstances. A tailoring process
should also ensure consistency to the defined normative framework, which de-
termines allowed actions and the resulting conditions [100]. Traceability is also
a mandated requirement [129]. Normative frameworks commonly prescribe re-
quirements that include the tasks to be performed and resources ascribed to such
tasks, i.e., personnel, work products, tools, and methods, which are also framed
with essential properties [30]. Given these features, compliance management can
be supported by checking that the process used to engineer software systems
fulfill the properties set down by standards at given points.

Compliance checking requires at least two sources of information [45]. One
is the normative document to be complied with, and the other is the process for
which compliance is desired. Automatizing this task requires that these specifica-
tions are computer-based analyzable. Formal methods, which are a set of domain
theorems that are amenable to formal proving through reasoning, are of growing
interest for compliance checking [47, 148]. Using formal methods provides rigor-
ous methodologies that increase confidence in the correctness and completeness
of the software processes. However, the analysis of compliance is as good as the
models used for such analysis [114]. Moreover, the translation of requirements
written in natural language is complex. For this reason, precise notions are re-
quired [109]. Moreover, to be formal in a certification context, a model must
have an unambiguous, mathematically defined syntax and semantics [21].

A formal language should be expressive enough to cover the properties de-
scribed by the models under consideration. Commonly, there are two critical
features expressed in the normative frameworks. First, software process refer-
ence models prescribed by the standards are a ”shall” type collections of re-
quirements, i.e., compliance requires the satisfaction of all requirements, and
precise documentation documented along with the reasoning behind the require-
ments [64]. Second, the requirements of reasonable regulations must be balanced
with other values like the urgency of the problems in question, respect for the
plurality of view of participants, values, precedents, and traditions [85]. Thus,
justified exceptions are also be permitted. Accordingly, software process-based
compliance requirements conform to a standard if and only if it satisfies all
the obligations prescribed by the process-related requirements. Violating such
requirements could introduce potential risks. However, permissions provide ex-
ceptions to obligations, indirectly affecting compliance [48]. Thus, compliance is
a relationship between permissions (optional) and obligations (required).



Title Suppressed Due to Excessive Length 5

2.2 Software Processes

Software developers perform processes, which are often defined to various levels
of detail [118]. According to Parnas et al. [121], the most advantageous form of a
process description will be in terms of work products workflow. Lonchamp [108]
highlighted the importance of organizational structures. Fuggetta [56] concretize
the definition by including the involvement of constraints governing the concep-
tion, development, deployment, and maintenance. Software processes have also
been considered analogous to other kinds of processes [132, 69]. However, the
software process definition goes further since the software has a unique char-
acteristic, i.e., it is a pure information product that requires high abstraction
levels [117]. According to Armour [8], the authentic product of the software
development is the knowledge contained in the software. Thus, the software pro-
cess’s primary goal is to solve an application data processing problem [117] by
performing a knowledge acquisition activity [8].

Explicit descriptions of the software processes servers development to proceed
in a systematic way [41], increases predictability and transparency [100]. Soft-
ware process descriptions are also commonly used to convince third parties, such
as customers or regulatory bodies, regarding the quality of the software [56, 100].
However, different development methodologies tackled the necessity of software
processes in different ways. In particular, agile methodologies prioritize individ-
uals and interactions over processes and tools3. Moreover, agile follows an em-
pirical logic. In regulated environments, a defined logic is more desirable. Thus,
agile is faced with some fundamental challenges in regulated environments [55].
In contrast, plan-driven methodologies build mainly on the codification strat-
egy and the definition of appropriate steps in advance, making it more suitable
for regulated environments. Given the successful application of agile in software
projects4 and the suitability of plan-driven methodologies in regulated environ-
ments, hybrids between them are also conceived [101, 102], e.g., the Scaled Agile
Framework (SAFe)5.

Software process models help organizations preserve, repeat, analyze and
reuse process information [36]. Models also can improve the understanding of
compliance needs [44]. A software process model is an abstraction whose goal
is to approximate the full range of characteristics and properties of an actual
software process [33]. For this, a process model should [118]: 1) be described with
rigorous notations; 2) be detailed enough; 3) be semantically broad; and 4) be
clear and understandable to facilitate communication. For example, a process
description that does not indicate roles in charge of tasks is not likely to be of
much value in supporting reasoning about how to improve team coordination.

The concept of the software process model is analogous to the concept of the
life cycle (or lifecycle) model [100]: software life cycle models define the main
steps and their sequence, while software process models provide more detailed in-

3 https://agilemanifesto.org/
4 See for instance: https://stateofagile.com/
5 https://www.scaledagile.com/



6 Castellanos Ardila et al.

structions, breaking the main steps down into sub-steps, and adding information
about the results generated and the roles involved.

A recent survey conducted by Diebold and Scherr [47] shows the most ex-
pected characteristics of the software process models in industrial settings. In
particular, it is expected to have concepts that permit the creation of a detailed
description of the software process elements, i.e., the units of work and their or-
der, the roles performing the units of work, and the artifacts used and produced.
Besides, graphical representation of the process and structured text to explain
details are also desirable, mainly in projects where auditors need to assess the
software process for standards compliance. The possibility of having different
views on the software process is relevant, i.e., hierarchical representation of the
information, different perspectives for each role, and the usage and arrangement
of compliance artifacts. Finally, artifacts and environment customization are es-
sential aspects demanded from software process modeling tools since they can
help engineers configure models according to context (or project)-specific needs.

2.3 Software Process-related Normative Frameworks

Normative frameworks addressing software processes prescribe requirements for
their implementation. Organizations follow these documents, which are also
called prescriptive [106], to facilitate the process standardization, evaluation,
and improvement [54, 103]. For example, the standard ISO/IEC/IEEE 12207 [84]
provides terminology to establish a common framework for software life cycle
processes. The Software Process Improvement (SPI) movement started with the
Capability Maturity Model Integration (CMMI) [136] as a significant innova-
tion [15]. Then, the Software Process Improvement and Capability Determination-
SPICE (ISO/IEC 15504 [80]) was also created. SPI frameworks, which mainly
impose a plan-based development paradigm, aim at increasing product quality
but also to reduce time-to-market and production costs [41].

Several SPI context-specific frameworks exist [149], e.g., Automotive SPICE
(or ASPICE) [9], the medical devices MDevSPICEe [37] and the Object-Oriented
Software Process OOSPICE [138]. Recently, SPICE has been revised and re-
placed with the ISO/IEC 330XX series [82], e.g., ISO/IEC TS 33053 [2], which
defines a process assessment, and process reference model (PRM) for quality
management.

The International Organization for Standardization (ISO) has also defined
the fundamentals of quality management systems, which influence the process
assessment and improvement [94]. In particular, there is the ISO 9000 series [78],
e.g., ISO 9001 [77], guidance for their application ISO/IEC 90003 [73], and
ISO/IEC TR 29110 [79], which applies to very small entities. Additionally, the
information technology infrastructure Library (ITIL) framework, which the UK
government has developed, aims to provide a guideline for delivering quality in-
formation technology services [94]. Six Sigma, an organized methodology that
guides continuous improvement on manufacturing or service processes, has also
been used as a set of techniques and tools for SPI [142].



Title Suppressed Due to Excessive Length 7

Manufacturers of safety-critical systems have the duty of care6 [104]. Conse-
quently, ethics and regulatory regimes explicitly addressing such systems have
stronger compliance requirements beyond the commitment to improve software
process capability [14]. Manufacturers then must establish effective software de-
velopment processes based on recognized engineering principles [129], usually
found in industry standards [59]. There are governing bodies that are in charge
of ensuring the safety of citizens. For example, e.g., the European Commission
(EC) and the United States Food and Drug Administration (FDA) enforce regu-
latory obligations on manufacturers of medical devices so that they are safe and
fit for their intended purpose [24]. The Health and Safety Executive in England
has used compliance with IEC 61508 [76] as a guideline for bringing legal actions
if harm is caused by safety-critical systems [104]. As compliance with safety stan-
dards has become essential evidence for a jury in a product liability action [134],
failure or inadequate compliance could lead to legal risks, i.e., penalties [42] and
prosecutions [72].

In particular, prescriptive safety standards cover requirements for all soft-
ware life-cycle activities, and exist in almost all safety-related domains, e.g.,
ISO 26262 [83] (automotive), CENELEC EN 50128 [50] and EN 50126 [51] (rail-
way), DO-178C [1] (avionics), and IEC 62304 [75] (medical devices), to only
mention some of them. Cybersecurity handbooks (e.g., cyber-physical vehicle
systems SAE J3061 [131]), standard for software development (e.g., medical
devices-IEC 62304 [75] and space mission-critical software-ECSS-ST-40C [53]),
risk management (e.g., ISO 14971-application of risk management to medical de-
vices [74]), and information technology (e.g., ISO/IEC 27000 [81]), are also part
of the menu of standards that became de facto regulatory frameworks subjecting
the organizations to mandatory certification.

We also find explicitly defined regulations. For instance, the European Data
Protection Directive (EU DPD) [140], then replaced by the General Data Pro-
tection Regulation (GDPR) [52], and PIPEDA (Personal Information Protection
and Electronic Documents Act) [61]. Both regulations lay down rules relating
to protecting natural persons in the European Union and Canada, respectively.
Regulators will likely introduce additional measures to maintain legal oversight
over artificial intelligence (AI) algorithmic systems [12]. Since AI is still soft-
ware, its needs will probably be approached from the software process perspec-
tive [145]. Thus, practitioners have to embrace software process diversity, i.e.,
the adoption of multiple normative software process frameworks within single
software processes [127].

3 Research Method

This section describes our research method, which is based on the guidelines
for Systematic Literature Review (SLR) recommended by Kitchenham and oth-

6 In tort law, a duty of care is a legal obligation which is imposed on an individual
requiring adherence to a standard of reasonable care while performing any acts that
could foreseeably harm others [71].



8 Castellanos Ardila et al.

ers [97, 99]. A SLR is a rigorous review methodology that involves three main
activities.

1. Plan the review. This is a pre-review activity, which includes three tasks.
(a) Identify the need for a review. This tasks permits to identify the reasons

for undertaking the review and its scope.
(b) Specify goal and research question. The goal and the research questions

that aim at guiding the review are specified.
(c) Design the review protocol. The review protocol should include a search

strategy, which contains the search terms and resources to be searched,
e.g., digital libraries. It also includes the study selection criteria that are
used to determine which studies are included and excluded. Moreover, it
contains the study selection procedure, which describes how the selection
criteria will be applied. Finally, it includes the quality assessment criteria
used to determine the rigorousness and credibility of the used research
methods and the relevance of the studies.

2. Conduct the review. In this activity, the researchers apply the review
protocol previously created and answer the research questions. Tasks relevant
to this activity are the data collection and the data extraction.

3. Report the results of the review. In this activity, the researchers define
the means to illustrate the findings, including the SLR results and analysis.

The activities and tasks mentioned above should, in theory, be implemented
sequentially. However, in practice, it is often necessary to iterate between them
and update their discovered information as the researchers’ understanding of the
topic deepens. In the remaining parts of this section, we describe the first two
activities included in the SLR, i.e., plan and conduct the review, while we report
the results of the review in Section 4.

3.1 Plan the Review

This section presents the pre-review activities, i.e., identify the need for a review,
specify the goal and research questions, and design the review protocol.

Identify the Need for a Review As recalled in Section 2.2 the primary goal
of a software process is to solve an application data processing problem by per-
forming a knowledge acquisition activity. As such, software processes are valuable
informational assets, which have increasing demands regarding the inclusion of
requirements associated with normative frameworks (as recalled in Section 2.3).
Organizations understand that they have to adhere to such demands because it
is implicitly or explicitly dictated by both, the market and the law. However,
those organizations that want to move towards greater agility may find it chal-
lenging since normative frameworks are commonly prescribed in a plan-based
development paradigm.

Techniques for software process compliance checking could be helpful for
organizations. Such techniques permit organizations to verify whether a software



Title Suppressed Due to Excessive Length 9

process complies (or conforms) with the applicable normative requirements (as
recalled in Section 2.1). However, the software process compliance checking tends
to be complex. We present some factors that add complexity to the compliance
checking tasks, as follows.

– The requirements included in the standards prescribe many details regarding
the process structure (the presence of tasks ordered in a determined way, and
resources ascribed to such tasks, i.e., personnel, work products, tools, and
methods), and the properties of the process elements;

– There are many possible ways to be compliant. In particular, software process-
related normative frameworks provide tailoring rules that should be applied
according to specific processes’ needs (which may open room for including
agile methodologies);

– The requirements can be superseded or eliminated if assessed rationales, i.e.,
explicit justifications demonstrating compliance, are provided;

– Requirements in one part of the standard may refer to other parts of the
same standard or even to different standards, making their understanding
complicated:

– Many standards or new versions of older standards may apply to the same
software process.

For this reason, the automation of the tasks involved in compliance check-
ing of software process is an area of research of increasing interest. Such task is
considered to provide benefits in terms of efficiency and confidence to managers
and process engineers, who require to (re)configure their software processes ac-
cording to applicable software process-related normative frameworks. Efficiency
could be reached by leaving the repetitive work of checking the requirements to a
machine. Confidence could instead be reached when, after providing appropriate
representations of both standards and processes, proofs of compliance can be
derived. Several methods for compliance checking of software processes against
different kinds of normative frameworks have been proposed in the literature.
However, to the best of our knowledge, no comprehensive and systematic review
has been conducted to characterize them. Thus, we consider it essential to close
this gap in the most possible systematic and unbiased manner by performing an
SLR that permits us to recognize what exists in the current state-of-the-art in
that area.

Scope: The scope of an SLR can be defined by taking into account the guidelines
proposed by Cooper et al. [40]. In particular, it is essential to determine the fo-
cus (outcomes, methods, theories, applications), the goal (integration, criticism
or identification of central issues), the reviewers’ perspective (neutral represen-
tation or espousal of position), coverage (exhaustive, exhaustive with selective
citation, representative, central or pivotal), organization (historical, conceptual
or methodological), and audience (specialized scholars, general scholars, practi-
tioners or policymakers, the general public).

In particular, we focus on the research outcomes of the available literature
addressing automated compliance checking of software process. Our goal is to



10 Castellanos Ardila et al.

identify the specific aspects that have dominated past efforts regarding such
topic, i.e., publication trends, the characteristics of the methods, potential im-
pact, and challenges. We consider reporting our result from a neutral represen-
tation perspective, i.e., attempting to present the explicit evidence available in
the literature. We aim at implementing exhaustive coverage by determining an
inclusive review protocol. The SLR summary will be organized conceptually, i.e.,
works relating to the same abstract ideas will appear together. Finally, we aim
to write our SLR to target specialized scholars, practitioners, and policymakers.

Specify Goal and Research Questions In this section, we describe the main
goal of our SLR and the research questions.

Goal: Based on the need identified in Section 3.1, this SLR goal is to charac-
terize the current state-of-the-art regarding automated compliance checking of
software processes against the constrains associated to different kind of software
process-related normative frameworks (as recalled in Section 2.3). As presented
in Section 2.1, compliance checking requires at least two sources of information,
the normative document to be complied with and the process for which compli-
ance is desired. To automatize this task, such sources of information should be
computer-based analyzable. Thus, it is essential to know the methods used in the
state-of-the-art to represent such specifications as well as the individual concepts
used to describe the features included in the specifications. Moreover, it is impor-
tant to identify the status of the tool-support provided and the mechanisms used
to handle changes in the normative space, e.g., recertification. It is also crucial
to learn the methods’ target application, i.e., application domains, normative
documents addressed, illustrative scenarios and support for agile methodologies.
We are also interested in knowing the evolution of the topic over time and the
current challenges.

Research questions: Research questions are formulated by taking into ac-
count the research goal previously described (see Table 1).

Design the Review Protocol We present a summary of the concrete and
formal plan used in the execution of the SLR.

Search Strategy: An SLR uses specific concepts and terms for reaching the
possible amount of primary studies. In particular, the outcomes of the search
should refer to factors of importance for the review. To define such factors, we
consider the structure of the Context–Intervention–Mechanism–Outcome (CIMO)
Logic [46]. The CIMO is a logic constructed as follows: if you have a problematic
Context (C), use a special kind of Intervention (I) to invoke the generative Mech-
anism(s) (M), to deliver a specific Outcome (O). The context corresponds to the
surroundings (external and internal environment) factors. The interventions are
those factors that have the potential to do some influence. The mechanisms are



Title Suppressed Due to Excessive Length 11

Table 1: Research Questions
Id Question Motivation

RQ 1
How did research in automated com-
pliance checking of software processes
developed over time?

Identify the publication trend (i.e., number of papers
published, dates and the publication venues), and the
active groups doing research in the context of auto-
mated compliance checking of software processes.

RQ 2

What are the characteristics of the methods described the primary studies?

2.1 Which are the languages used to
represent software processes entities
and structures?

Characterize the different alternatives used to repre-
sent the software processes entities (units of work,
roles, tools, and guidance) and their properties, as
well as structures such as workflows, which are re-
quired for automated compliance checking described
in the primary studies.

2.2 Which are the languages used
to represent the compliance require-
ments?

Characterize the different alternatives used to provide
a representation of the requirements described in the
standards.

2.3 Which is the level of automation?
Examine the automation level described in the stud-
ies.

2.4 What are the mechanisms, if any,
used to handle standards evolution
and software process reconfiguration?

Identify the characteristics used in the primary stud-
ies to address software process reconfiguration in the
light of standards evolution (i.e., the release of a new
version of standards), tailoring (i.e., the selection,
eventual modification, and implementation rationale)
and process diversity (application of several standards
in the same project).

RQ 3

What is the potential impact of the proposed methods?

3.1 What are the application do-
mains?

Determine the specific application domain, e.g., auto-
motive, general software purposes, etc.

3.2 What are the types of normative
documents targeted?

Describe the type of standards, policies, regulations,
reference models or frameworks that target the stud-
ies.

3.3 What are the types of illustrative
scenarios presented?

Extract information regarding the examples, illustra-
tions, validation or use cases that describe the meth-
ods/frameworks/techniques.

3.3 To what extent agile methodolo-
gies are supported?

Describe whether the primary studies take into ac-
count the compliance checking in agile software pro-
cesses.

RQ 4
What challenges are identified in the
primary studies?

Identify the challenges in current research or open
problems, which can be used to determine future di-
rections in this area.

Table 2: Structure of the CIMO Logic.
CIMO criteria Factors

Context (C) Software processes

Intervention (I) Normative software process constraints

Mechanism (M) Automation methods

Outcome (O) Results of compliance checking

the means that in a specific context are triggered by the intervention. Finally,
the outcomes are the intervention results in its various aspects.

As presented in Table 2, the factors of importance in our SLR are software
processes, normative software process constraints, automation methods, the re-



12 Castellanos Ardila et al.

sults of compliance checking. Commonly, synonyms of such terms are also used
in the literature. We based the selection of the synonyms on the background
information gathered in Section 2. First, in Section 2.2, we found that the con-
cept of ”software process” is related to the concept of ”software lifecycle” (or life
cycle), ”software workflow,” and ”software development methodology.” Second,
in Section 2.3, we found sources of ”normative software process constraints” in
a ”standard”, ”reference model”, ”framework”, ”regulation”, ”policy.” Third, in
Section 2.1, we see that the word ”compliance” is used interchangeably with the
word ”conformance”. The word ”checking” and ”verification” could also be seen
as synonyms. We are not interested in checking the compliance of specifications
beyond the ones containing normative requirements. Therefore, we focus on the
concept ”compliance” or ”conformance”, which is the current jargon, and do not
strike on the concept ”model checking”, which is commonly used for software
verification. Actually, using the mentioned words, we find articles containing
techniques for compliance checking by means of model checking technology (See
S9, S12, S15, and S27), So, the not inclusion of the concept did not limit the
selections of the corresponding studies.

We did a test search in the library Science Direct7 to check whether the infor-
mation retrieval was different between all synonyms. The word verification was
showing fewer results than the searching results regarding checking. Moreover,
the results were related to software (as a product) verification and not soft-
ware process verification. We concluded that the word verification is not used
together with the work compliance or conformance of software processes. The
words ”automatic,” ”automated,” computer-based,” logic-based,” and ”formal”
could also be seen as synonyms. A similar test permitted us to check the differ-
ence between these three words. We found that the word ”automatic” leads to
more results than the word ”automated.” Moreover, the results obtained with
the word automated are included in the results obtained with the work auto-
matic. Thus, the word automated is not included in the final search string. The
results obtained with the word computer-based and logic-based were very few.
Moreover, such results were included in the search that included the word au-
tomatic. Thus, computer-based and logic-based are not used in the final search
string. Instead, the word formal yielded relevant new results. Thus, the word for-
mal is included in the final search string. Finally, we tested the plurals software
processes, software workflows, software development methodologies, standards,
reference models, frameworks, regulations, and policies. There were no new re-
sults by using such plurals. Based on the analysis and the combinations of the
terms previously defined, we specify our search string (see Table 3).

Table 3: Search String
(”automatic” OR ”formal”) AND (”compliance checking” OR ”conformance checking”) AND
(”software process” OR ”software life cycle” OR ”software lifecycle” OR ”software workflow” OR
”software development methodology”) AND (”standard” OR ”reference model” OR ”framework”
OR ”regulation” OR ”policy”)

7 https://www.sciencedirect.com/



Title Suppressed Due to Excessive Length 13

Study Selection Criteria: Primary studies are searched on popular scientific
online digital libraries that are widely used in computer science and software
engineering research, as reported in [153]: 1) ACM Digital Library8, 2) IEEE
Xplore Digital Library9, 3) Springer Link10, and 4) Google Scholar11. We also
include the results we gathered during our search string test in the library Science
Direct. The search time-frame is not restricted to a specific interval since we also
want to see the evolution of the topic over time. The inclusion and exclusion
criteria is presented in Table 4.

Table 4: Inclusion and Exclusion Criteria.
Type Description

Inclusion

I1
The primary study belongs to the software engineering domain. We are only
interested in automated compliance checking of software processes.

I2
The primary study is about compliance/conformance checking of software pro-
cesses against the constraints associated to different kind of software process-
related standards and reference frameworks

I3
The primary study included in the selection is a peer-reviewed article (i.e., sci-
entific journal, conference, symposium, or workshop) written in English related
to automatic compliance checking of software process.

I4
The primary study reports issues, problems, or any type of experience concern-
ing the aspects related to process-related automated compliance checking, i.e.,
process models, requirements formalization, analysis of compliance.

I5
The primary study describes solid evidence on automated compliance checking
of software processes by using, e.g., rigorous analysis, experiments, case studies,
experience reports, field studies, and simulation.

Exclusion

E1

The primary study focus on software process aspects different from compliance
checking, e.g., process design, execution, the management of workflow, or ad-
herence of a software process plan with the execution, or is does not does not
present sufficient technical details regarding automated compliance checking of
software processes.

E2 The text of the primary study is not available.

E3

The primary study belongs to the following categories: commercials, pure opin-
ions, grey literature (e.g., reports, working papers, white papers, and evalua-
tions), books, tutorials, posters, and papers outside of the contexts of computer-
based critical systems.

E4
The primary study is about automatic compliance checking of processes different
from software processes, e.g., business processes, building processes, etc.

E5
The primary study is not clearly related to at least one aspect of the specified
research questions.

E6 The study is a secondary or tertiary study.

E7
The primary study did not undergo a peer-review process, such as non-reviewed
journal, magazine, or conference papers, master theses and books (in order to
ensure a minimum level of quality).

Study Selection Procedure: The search string defined in Table 3 is applied
to the electronic databases selected in the study selection criteria. Different fil-
tering levels are then applied to the retrieved studies to find the relevant ones for

8 https://dl.acm.org/
9 https://ieeexplore.ieee.org/Xplore/home.jsp

10 https://link.springer.com/
11 https://scholar.google.com/



14 Castellanos Ardila et al.

this research. Initially, we perform a title screening on the initial set of retrieved
publications. In this phase, we also remove the duplicates that can be found
in different databases. Then, we perform an abstract screening, from which we
select the papers that would be thoroughly read. After, we perform a snow-
balling [151], which is a technique that aims at reaching more relevant primary
studies. Backward snowballing refers to searching relevant studies by consider-
ing the reference list of an initial set of primary studies. Forward snowballing
aims at identifying more relevant studies based on those papers citing the paper
being examined. For the forward snowballing, we use Google scholar, due to its
convenient facilities for finding referring papers. The number of papers result-
ing from this selection procedure were be fully processed in the SLR. The first
author (who is a Ph.D. student) does the paper’s search and selection. During
every phase, the second and third authors perform quality controls. To record
the data for later analysis and correlation, we used spreadsheets. In particular,
we focused on the data presented in Table 5.

Table 5: Data Extraction Criteria.
Extracted data Used for

Author information, Study title Study overview

Year, Publication types venues, and research groups Study overview and RQ1

Languages for representing software processes RQ2.1

Languages for representing requirements mandated by standards RQ2.2

Level of automation (fully automated, semi-automated) RQ2.3

Mechanisms for handling variability, if any RQ2.4

Validation/illustration/exemplification scenarios RQ3.1

Standards /policies/regulations/frameworks addressed RQ3.2

Support for agile, if any RQ3.3

Application domain RQ3.4

Challenges RQ4

Quality Assessment Criteria: We developed a checklist for the quantitative
and qualitative assessment of the selected research articles (see Table 6), based
on criteria formulated by Kitchenham and others [98]. For each item QA1 to
QA7, the scoring procedure has only three optional answers: Yes = 1, Partially
= 0,5, or No = 0. For a given study, its quality score is computed by summing
up the scores of the answers to the quality assessment questions.

3.2 Perform the Review

In this section, we present the details regarding how we perform the review.

Data Collection We apply the review protocol described in Section 3.1. In
particular, we applied the search string defined in Table 3 to the different
databases included in the study selection criteria without trunking the dates



Title Suppressed Due to Excessive Length 15

Table 6: Study Quality Assessment Criteria.
Item Assessment Criteria Score Description

QA1
Does the study includes a

clear statement of the
goal?

0 No. The goal is not described

0,5 Partially. The goal is described, but unclearly

1 Yes. The goal are well described and clear

QA2
Does the selected primary

study discuss their
results?

0
No. The results are not explicitly discussed in a
discussion section (or a similar section)

0,5
Partially. There is a discussion section (or some-
thing similar), but results are not completely
and clearly discussed.

1 Yes. The results are well discussed.

QA3

Is the paper based on

research (or it is merely a
”lessons learned” report
based on expert opinion)?

0 The paper is a report based on expert opinion

0,5
Partially. It is not completely clear the research
validity of the study.

1 Yes. The paper is based on research.

QA4

Does the selected primary

study completely
addresses the topic of
automated compliance
checking of software
processes?

0
No. The paper is not completely addressing the
topic of the research

0,5
Partially. The study partially address the topic
of the research.

1
Yes. The paper completely addresses the topic
of research.

QA5

Is there an adequate

description of the context
in which the research was
carried out?

0
No. The paper is not describing an adequate
context of the research

0,5
Partially. The study partially describes the con-
text of the research.

1
Yes. The paper is describing an adequate context
of the research

QA6
Is there a clear statement

of findings?

0
No. The paper is not having a clear statement
of the findings

0,5
Partially. The study partially describes the find-
ings of the research.

1
Yes. The paper is having a clear statement of
the findings

QA7

Are the results in

accordance with the goal
of the selected primary
study?

0
No. The results are not in accordance with the
goal.

0,5
Partially. The study partially describes the find-
ings of the research.

1 Yes. The results are in accordance with the goal.

of the search. Our search was performed between February 22 to March 15,
2021. The databases Springer Link, ACM (in which we took the option ”Expand
our search to The ACM Guide to Computing Literature”), and IEEExplore ac-
cepted all the words included in the search string. From these searches, we got
153, 71, and 1 possible primary studies, respectively. Instead, in Google scholar,
we needed to divide the search string in two. The first one was (”automatic”
OR ”formal”) AND (”compliance checking” OR ”conformance checking”) AND
(”software process” OR ”software life cycle” OR ”software lifecycle” OR ”soft-
ware workflow” OR ”software development methodology”) AND (”standard”
OR ”regulation” OR ”policy”) and the second one was (automatic OR formal)
AND (”compliance checking” OR ”conformance checking”) AND (”software pro-



16 Castellanos Ardila et al.

cess” OR ”software life cycle” OR ”software lifecycle” OR ”software workflow”
OR ”software development methodology”) AND (”reference model” OR ”frame-
work”). We obtained 762 and 839 possible primary studies, respectively (a total
of 1601 primary studies, many of them were repeated). We also added the 208
primary studies that we found in the search string test that we performed in
Science direct. In total, our search resulted in 2034 hits. Then, we perform the
title screening. In this step, we selected papers that match at least one of the
criteria we defined in the search string but do not match any exclusion criteria.
For example, the paper is selected if the title has the word process and confor-
mance checking. However, if the title has the expression business process, it is
immediately discarded. We did this to have a more accurate filter of useful mate-
rial from the first phase of our SLR. Given this strategy, we selected 68 primary
studies in Springer Link, 17 in ACM, 1 in IEE Explore, 106 in Google scholar,
and 11 in Science direct. The total of primary studies after title screening was
203. Then, we discarded the duplicates found in different databases, resulting
in 170 possible relevant studies. Then, we performed abstract screening and se-
lected 45 primary studies. We fully read the 45 studies and apply to them the
quality criteria. We decided to select the studies that got 6 of 7 in the qual-
ity criteria. As a result, 28 articles are selected. We performed the snowballing
process to the 28 articles previously selected. As a result we got 8 new primary
studies in the backward snowballing and 5 new primary studies in the forward
snowballing. The complete set of primary study that we have included in our
SLR is 41. We illustrate the search process and the number of primary studies
identified at each stage in Figure 1.

Fig. 1: Paper Selection Process.

Data Extraction The selected 41 papers were carefully read, evaluated with
the quality criteria (presented in Table 6), and compiled in Table 7. Then, we
did a summary of every approach, which we present in Section 4. We also collect
relevant data that could help to answer our research questions (presented in
Table 1). To record the data for later analysis and correlation, we used Excel
spreadsheets. In particular, we focused on the data presented in Table 5.



Title Suppressed Due to Excessive Length 17

T
a
b

le
7
:

S
el

ec
te

d
p

ri
m

a
ry

st
u

d
ie

s
u

si
n

g
S

L
R

.

ID
S

tu
d

y
D

e
sc

ri
p

ti
o
n

Y
e
a
r

T
y
p

e
Q

u
a
li

ty
A

ss
e
ss

m
e
n
t

C
ri

te
ri

a
Q

E
1

Q
E

2
Q

E
3

Q
E

4
Q

E
5

Q
E

6
Q

E
7

S
c
o
re

S
1

T
a
il
o
ri

n
g

a
n
d

C
o
n
fo

rm
a
n
c
e

T
e
st

in
g

o
f

S
o
ft

w
a
re

P
ro

c
e
ss

e
s:

T
h
e

P
ro

c
e
P

T
a
p
p
ro

a
ch

[1
5
0
]

1
9
9
5

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
2

M
a
n
a
g
in

g
S
ta

n
d
a
rd

s
c
o
m

p
li
a
n
c
e

[4
9
]

1
9
9
9

J
o
u
rn

a
l

1
0

1
1

1
1

1
6

S
3

M
a
n
a
g
in

g
P

ro
c
e
ss

c
o
m

p
li
a
n
c
e

[3
4
]

2
0
0
3

J
o
u
rn

a
l

1
1

1
1

1
1

1
7

S
4

C
o
m

p
li
a
n
c
e

fl
o
w

-
m

a
n
a
g
in

g
th

e
c
o
m

p
li
a
n
c
e

o
f

d
y
n
a
m

ic
a
n
d

c
o
m

p
le

x
p
ro

-
c
e
ss

e
s

[3
5
]

2
0
0
8

J
o
u
rn

a
l

1
1

1
1

1
1

1
7

S
5

A
n

A
u
to

m
a
ti

c
C

o
m

p
li
a
n
c
e

C
h
e
ck

in
g

A
p
p
ro

a
ch

fo
r

S
o
ft

w
a
re

P
ro

c
e
ss

e
s

[6
8
]

2
0
0
9

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
6

S
u
p
p

o
rt

in
g

Q
u
a
li
fi
c
a
ti

o
n
-

S
a
fe

ty
S
ta

n
d
a
rd

C
o
m

p
li
a
n
t

P
ro

c
e
ss

P
la

n
n
in

g
a
n
d

M
o
n
it

o
ri

n
g

[8
7
]

2
0
1
0

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
7

D
e
fi
n
in

g
S
o
ft

w
a
re

p
ro

c
e
ss

m
o
d
e
l

c
o
n
st

ra
in

ts
w

it
h

ru
le

s
u
si

n
g

O
W

L
a
n
d

S
W

R
L

[1
3
0
]

2
0
1
0

J
o
u
rn

a
l

1
0

1
1

1
1

1
6

S
8

A
m

o
d
e
l-

d
ri

v
e
n

e
n
g
in

e
e
ri

n
g

a
p
p
ro

a
ch

to
su

p
p

o
rt

th
e

v
e
ri

fi
c
a
ti

o
n

o
f

c
o
m

-
p
li
a
n
c
e

to
sa

fe
ty

st
a
n
d
a
rd

s
[1

1
9
]

2
0
1
1

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
9

N
O

V
A

W
o
rk

fl
o
w

:
A

W
o
rk

fl
o
w

M
a
n
a
g
e
m

e
n
t

T
o
o
l
T

a
rg

e
ti

n
g

H
e
a
lt

h
S
e
rv

ic
e
s

D
e
li
v
e
ry

[1
1
1
]

2
0
1
2

J
o
u
rn

a
l

1
0

1
1

1
1

1
6

S
1
0

T
o
w

a
rd

s
a

p
ro

c
e
ss

fo
r

le
g
a
ll
y

c
o
m

p
li
a
n
t

so
ft

w
a
re

[6
7
]

2
0
1
3

W
o
rs

h
o
p

1
0

1
1

1
1

1
6

S
1
1

S
u
p
p

o
rt

in
g

th
e

v
e
ri

fi
c
a
ti

o
n

o
f

c
o
m

p
li
a
n
c
e

to
sa

fe
ty

st
a
n
d
a
rd

s
v
ia

m
o
d
e
l-

d
ri

v
e
n

e
n
g
in

e
e
ri

n
g
:

A
p
p
ro

a
ch

,
to

o
l-

su
p
p

o
rt

a
n
d

e
m

p
ir

ic
a
l

v
a
li
d
a
ti

o
n

[1
2
0
]

2
0
1
3

J
o
u
rn

a
l

1
1

1
1

1
1

1
7

S
1
2

A
fr

a
m

e
w

o
rk

to
fo

rm
a
ll
y

v
e
ri

fy
c
o
n
fo

rm
a
n
c
e

o
f

a
so

ft
w

a
re

p
ro

c
e
ss

to
a

so
ft

w
a
re

m
e
th

o
d

[9
6
]

2
0
1
5

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
1
3

C
y
b

e
rs

e
c
u
ri

ty
p

o
li
c
y

v
e
ri

fi
c
a
ti

o
n

w
it

h
d
e
c
la

ra
ti

v
e

p
ro

g
ra

m
m

in
g

[7
0
]

2
0
1
6

J
o
u
rn

a
l

1
0

1
1

1
1

1
6

S
1
4

R
e
p
re

se
n
ti

n
g

S
o
ft

w
a
re

P
ro

c
e
ss

in
D

e
sc

ri
p
ti

o
n

L
o
g
ic

s:
A

n
O

n
to

lo
g
y

A
p
-

p
ro

a
ch

fo
r

S
o
ft

w
a
re

P
ro

c
e
ss

R
e
a
so

n
in

g
a
n
d

V
e
ri

fi
c
a
ti

o
n

[8
8
]

2
0
1
6

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
1
5

H
o
w

to
A

ss
u
re

C
o
rr

e
c
tn

e
ss

a
n
d

S
a
fe

ty
o
f
M

e
d
ic

a
l
S
o
ft

w
a
re

:
T

h
e

H
e
m

o
d
ia

l-
y
si

s
M

a
ch

in
e

C
a
se

S
tu

d
y

[7
]

2
0
1
6

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
5

S
1
6

A
F
ra

m
e
w

o
rk

fo
r

S
a
fe

ty
-C

ri
ti

c
a
l

P
ro

c
e
ss

M
a
n
a
g
e
m

e
n
t

in
E

n
g
in

e
e
ri

n
g

P
ro

je
c
ts

[1
0
]

2
0
1
7

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
5

S
1
7

A
p
p
ly

in
g

p
ro

c
e
ss

m
in

in
g

te
ch

n
iq

u
e
s

in
so

ft
w

a
re

p
ro

c
e
ss

a
p
p
ra

is
a
ls

[1
4
6
]

2
0
1
7

J
o
u
rn

a
l

1
1

1
1

1
1

1
7



18 Castellanos Ardila et al.

T
a
b

le
7

C
o
n
ti

n
u

e
d

:
S

el
ec

te
d

P
ri

m
a
ry

S
tu

d
ie

s.

S
1
8

C
o
n
ti

n
u
o
u
s

p
ro

c
e
ss

c
o
m

p
li
a
n
c
e

u
si

n
g

m
o
d
e
l

d
ri

v
e
n

e
n
g
in

e
e
ri

n
g

[6
0
]

2
0
1
7

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
1
9

T
o
w

a
rd

s
In

c
re

a
se

d
E

ffi
c
ie

n
c
y

a
n
d

C
o
n
fi
d
e
n
c
e

in
P

ro
c
e
ss

C
o
m

p
li
a
n
c
e

[2
9
]

2
0
1
7

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
2
0

A
u
to

m
a
te

d
le

g
a
l

c
o
m

p
li
a
n
c
e

ch
e
ck

in
g

b
y

se
c
u
ri

ty
p

o
li
c
y

a
n
a
ly

si
s

[1
2
8
]

2
0
1
7

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
2
1

A
fo

rm
a
li
z
a
ti

o
n

o
f

th
e

IS
O

/
IE

C
1
5
5
0
4
:

e
n
a
b
li
n
g

a
u
to

m
a
ti

c
in

fe
re

n
c
e

o
f

c
a
p
a
b
il
it

y
le

v
e
ls

[1
2
3
]

2
0
1
7

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
2
2

S
e
c
u
ri

ty
A

n
a
ly

si
s

a
n
d

L
e
g
a
l

C
o
m

p
li
a
n
c
e

C
h
e
ck

in
g

fo
r

th
e

D
e
si

g
n

o
f

P
ri

v
a
c
y
-f

ri
e
n
d
ly

In
fo

rm
a
ti

o
n

S
y
st

e
m

s
[6

3
]

2
0
1
7

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
2
3

T
o
w

a
rd

s
e
ffi

c
ie

n
tl

y
ch

e
ck

in
g

c
o
m

p
li
a
n
c
e

a
g
a
in

st
a
u
to

m
o
ti

v
e

se
c
u
ri

ty
a
n
d

sa
fe

ty
st

a
n
d
a
rd

s
[2

6
]

2
0
1
7

W
o
rk

sh
o
p

1
0

1
1

1
1

1
6

S
2
4

A
n

A
x
io

m
B

a
se

d
M

e
ta

m
o
d
e
l

fo
r

S
o
ft

w
a
re

P
ro

c
e
ss

F
o
rm

a
li
sa

ti
o
n
:

A
n

O
n
-

to
lo

g
y

A
p
p
ro

a
ch

[8
9
]

2
0
1
8

J
o
u
rn

a
l

1
0

1
1

1
1

1
6

S
2
5

E
n
a
b
li
n
g

c
o
m

p
li
a
n
c
e

ch
e
ck

in
g

a
g
a
in

st
sa

fe
ty

st
a
n
d
a
rd

s
fr

o
m

S
P

E
M

2
.0

p
ro

c
e
ss

m
o
d
e
ls

[2
7
]

2
0
1
8

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
2
6

E
n
su

ri
n
g

C
o
n
fo

rm
a
n
c
e

to
P

ro
c
e
ss

S
ta

n
d
a
rd

s
T

h
ro

u
g
h

F
o
rm

a
l

V
e
ri

fi
c
a
-

ti
o
n

[9
0
]

2
0
1
8

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
2
7

In
te

g
ra

ti
n
g

fo
rm

a
l

m
e
th

o
d
s

in
to

m
e
d
ic

a
l

so
ft

w
a
re

d
e
v
e
lo

p
m

e
n
t:

T
h
e

A
S
M

a
p
p
ro

a
ch

[6
]

2
0
1
8

J
o
u
rn

a
l

1
0

1
1

1
1

1
6

S
2
8

T
ra

n
sf

o
rm

in
g

S
P

E
M

2
.0

-C
o
m

p
a
ti

b
le

P
ro

c
e
ss

M
o
d
e
ls

in
to

M
o
d
e
ls

C
h
e
ck

-
a
b
le

fo
r

C
o
m

p
li
a
n
c
e

[2
8
]

2
0
1
8

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
2
9

C
o
m

p
li
a
n
c
e

o
f

a
g
il
iz

e
d

(s
o
ft

w
a
re

)
d
e
v
e
lo

p
m

e
n
t

p
ro

c
e
ss

e
s

w
it

h
sa

fe
ty

st
a
n
-

d
a
rd

s:
a

v
is

io
n

[5
7
]

2
0
1
8

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
3
0

F
o
rm

a
li
z
in

g
IS

O
/
IE

C
1
5
5
0
4
-5

a
n
d

S
E

I
C

M
M

I
v
1
.3

–
E

n
a
b
li
n
g

a
u
to

m
a
ti

c
in

fe
re

n
c
e

o
f

m
a
tu

ri
ty

a
n
d

c
a
p
a
b
il
it

y
le

v
e
ls

[1
2
4
]

2
0
1
8

J
o
u
rn

a
l

1
0

1
1

1
1

1
6

S
3
1

F
a
st

C
o
m

p
li
a
n
c
e

C
h
e
ck

in
g

in
a
n

O
W

L
2

F
ra

g
m

e
n
t

[1
8
]

2
0
1
8

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
3
2

D
e
v
e
lo

p
in

g
M

e
d
ic

a
l

D
e
v
ic

e
s

fr
o
m

A
b
st

ra
c
t

S
ta

te
M

a
ch

in
e
s

to
E

m
b

e
d
d
e
d

S
y
st

e
m

s:
A

S
m

a
rt

P
il
l

B
o
x

C
a
se

S
tu

d
y

[1
7
]

2
0
1
8

J
o
u
rn

a
l

1
1

1
1

1
1

1
6

S
3
3

F
a
c
il
it

a
ti

n
g

A
u
to

m
a
te

d
C

o
m

p
li
a
n
c
e

C
h
e
ck

in
g

in
th

e
S
a
fe

ty
-c

ri
ti

c
a
l

C
o
n
-

te
x
t

[2
5
]

2
0
1
9

J
o
u
rn

a
l

1
0

1
1

1
1

1
6

S
3
4

F
o
rm

a
li
si

n
g

P
ro

c
e
ss

A
ss

e
ss

m
e
n
t

a
n
d

C
a
p
a
b
il
it

y
D

e
te

rm
in

a
ti

o
n
:

A
n

O
n
-

to
lo

g
y

A
p
p
ro

a
ch

[9
1
]

2
0
1
9

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6



Title Suppressed Due to Excessive Length 19

T
a
b

le
7

C
o
n
ti

n
u

e
d

:
S

el
ec

te
d

P
ri

m
a
ry

S
tu

d
ie

s.

S
3
5

U
si

n
g

M
o
d
e
ls

to
E

n
a
b
le

C
o
m

p
li
a
n
c
e

C
h
e
ck

in
g

a
g
a
in

st
th

e
G

D
P

R
:

A
n

E
x
p

e
ri

e
n
c
e

R
e
p

o
rt

[1
4
3
]

2
0
1
9

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
3
6

A
L

if
e

C
y
c
le

fo
r

A
u
th

o
ri

z
a
ti

o
n

S
y
st

e
m

s
D

e
v
e
lo

p
m

e
n
t

in
th

e
G

D
P

R
P

e
r-

sp
e
c
ti

v
e

[4
3
]

2
0
2
0

C
o
n
fe

re
n
c
e

1
0

1
1

1
1

1
6

S
3
7

C
o
-e

n
g
in

e
e
ri

n
g

o
f

sa
fe

ty
a
n
d

se
c
u
ri

ty
li
fe

c
y
c
le

s
fo

r
e
n
g
in

e
e
ri

n
g

o
f

a
u
to

-
m

o
ti

v
e

sy
st

e
m

s
[2

0
]

2
0
2
0

J
o
u
rn

a
l

1
1

1
1

1
1

1
7

S
3
8

S
e
p
a
ra

ti
o
n

o
f

C
o
n
c
e
rn

s
in

P
ro

c
e
ss

C
o
m

p
li
a
n
c
e

C
h
e
ck

in
g
:

D
iv

id
e
-a

n
d
-

C
o
n
q
u
e
r

[3
0
]

2
0
2
0

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
3
9

R
e
u
si

n
g

(S
a
fe

ty
-o

ri
e
n
te

d
)

C
o
m

p
li
a
n
c
e

A
rt

if
a
c
ts

w
h
il
e

R
e
c
e
rt

if
y
in

g
[3

1
]

2
0
2
1

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7

S
4
0

C
o
m

p
li
a
n
c
e
-a

w
a
re

E
n
g
in

e
e
ri

n
g

P
ro

c
e
ss

P
la

n
s:

T
h
e

C
a
se

o
f

S
p
a
c
e

S
o
ft

w
a
re

E
n
g
in

e
e
ri

n
g

P
ro

c
e
ss

e
s

[3
1
]

2
0
2
1

J
o
u
rn

a
l

1
1

1
1

1
1

1
7

S
4
1

S
u
p
p

o
rt

in
g

Q
u
a
li
ty

A
ss

u
ra

n
c
e

w
it

h
A

u
to

m
a
te

d
P

ro
c
e
ss

-C
e
n
tr

ic
Q

u
a
li
ty

C
o
n
st

ra
in

ts
C

h
e
ck

in
g

[1
1
3
]

2
0
2
1

C
o
n
fe

re
n
c
e

1
1

1
1

1
1

1
7



20 Castellanos Ardila et al.

4 Results

In this section, we report the results of the SLR. In Section 4.1, we present the a
summary of the primary studies selected. Finally, in section 4.2, we present the
analysis of the results in relation to the research questions of the study.

4.1 Summary of the Primary Studies

In this section, we summarize the main results obtained in the SLR. Specifically,
the selected 41 papers (see Table 7) are categorized into 5 groups, according to
the type of approach (see Table 8). As the table shows, most of the primary
studies aim at performing compliance checking from the modeling of standards
concepts (15). The second-largest group of primary studies belongs to the cate-
gory in which compliance checking is performed from process modeling languages
(13). Compliance checking from role-based access controls has 5 primary stud-
ies, compliance checking from documents workflow has 2 primary studies, and
other approaches have 6 primary studies. Table 9, presents as summary of the
main characteristics of the 41 studies. In the remaining part of this section, we
present a summary of the studies according to the types of approaches previously
described.

Table 8: Type of Approaches.
Type Primary Studies Total

Compliance Checking from Documents Workflow S1, S2 2

Compliance Checking from Standards Concepts
Modeling

S3, S4, S5, S8, S10, S11, S12, S14, S18,
S21, S24, S26, S30, S31, S34

15

Compliance Checking from Process Modeling
Languages

S6, S7, S16, S19, S23, S25, S28, S29, S33,
S37, S38, S39, S40

13

Compliance checking from Role-based Access
Controls

S13, S20, S22, S35, S36 5

Other Methods S9, S15, S17, S27, S32, S41 6

Compliance Checking from Documents Workflow Initial approaches for
process-based compliance checking with quality standards are based on the ver-
ification of document evolution. In S1, the authors describe the process model
as the specification of documents flow for all necessary tasks during standards
assessments. The check is performed by reviewing whether the activities can
occur by verifying the conditions for documents’ existence. The rules that con-
dition the specification of documents are provided in PROLOG III [39], which
is a language that has its roots in FOL. The conformance checking is done with
a PROLOG-based tool called ProcePT (Process Programming & Tailoring) and
exemplified with the German process model VORGEHENSMODELL (short GV-
Model) [22], which can be tailored against different kinds of quality standards
such as ISO 9001. Such tailoring is done by removing activities and documents if
they are not required in the selected standard. The approach only takes tasks and



Title Suppressed Due to Excessive Length 21

documents under the GV model. Process elements such as persons and means
to activities should be passed on experience from previous projects.

The authors of S2 consider that process compliance is represented in the
documents produced during the engineering process. For this, a specification of
a document schema in UML is proposed. The properties of the documents pre-
scribed by the standards are formalized in FOL. Checks are performed when
there is an attempt to read or write documents during process enactment. The
environment is based on DOORS (Dynamic Object Oriented Requirements Sys-
tem) for managing the documents. DOORS has a Dynamic eXtension Language
(DXL) that can be used to automate tasks. The checking of FOL rules is done
with AP5 [38], which is an extension of Common Lisp. The standard used for
exemplifying the approach is called PSS-05. Both tools in S1 and S2 are proof
of concept prototypes.

Compliance Checking from Standards Concepts Modeling Several ap-
proaches consider the modeling of process-related elements from specific stan-
dards concepts provided by the standards. In S3, the authors conceive a workflow
manager, in which a given standard, in this case, the standard IEC 61508, is rep-
resented as a Model of Standards, which acts as a knowledge-base to provide the
required information. The standard’s meta-model is created in UML. An in-
telligent compliance agent, called the Inspector, performs compliance checks by
comparing the model of standards and the User-Defined Process (UDP). The ap-
proach is illustrated with a recommendation handling example. In S4, the same
approach than in S3 is enhanced with more details. In particular, the model
of standards is presented as an activity-based ontology where task execution is
constrained by the pre-and post-conditions, with an added type of precondition
being the technique that has to be used to carry out a task. A task agent per-
forms a task, and the progress of the task’s execution is represented through
several states. A capability is a skill, technique, method, knowledge, or any at-
tribute that a task agent requires to perform a task. Compliance checks are for
checking a UDP against the Model to identify compliance errors and assist the
user in specifying a process that meets a selected standard’s requirements. The
approach is evaluated with the light guard development project, an application
for assuring programmable electronic systems.

In S5, the authors present an approach for compliance checking with quality
standards (such as ISO/IEC 90003) in which the process-based requirements of
a standard are represented as process patterns. The process elements normally
found in standards, i.e., activities, roles, and work products, are defined as UML
classes. The compliance checking is a measure of the process deviation (absent
or skipped element, or reverse order of the implemented tasks represent a non-
compliant process model) during enactment using feature diagrams called PPST
(Process Pattern Structure Tree). PPST is based on the idea of Structured Ac-
tivity Node in UML Activity Diagram and PST (Process Structure tree) [147].
The approach is exemplified with a general software development process.



22 Castellanos Ardila et al.

In S8, the authors propose the use of UML metamodel for creating process
models and the conceptual models of the safety standard. The UML model of the
process concepts includes activities, artifacts produced and required, techniques
and roles. UML profiles are created to describe instances of the standards, in
this case, the standard IEC 61508. The profile is augmented with verifiable
constraints written in OCL. The compliance checking is automated. Compliance
rules have to be manually created, as well as the process model. The approach
is tool-supported, i.e., by using Rational Software Architect12. The application
UML profile is done in a case study related to the construction of a domain
model for sub-sea control systems in compliance with IEC 61508. In S11, the
same approach as in S8 is evaluated by taking into account experts opinions,
which found the approach easy to use and with a good acceptance.

In S10, the author present a Governance Analysis Tool (GAT) for information
privacy. GAT is a UML-based metamodel that contains a Governance Analy-
sis Model(GAM) and a Governance Analysis Language (GAL). GAM captures
information domain, i.e., process activities and roles, as well as organizational
information and general information regarding the legal entity. GAL is capable of
expressing many types of legal and organizational requirements. The MIT’s logic
analyzer Alloy13 is the engine on which GAT runs. For this, GAL information
is translated into assertions in Alloy’s language (which uses predicate logic) and
the Alloy tool can find counterexamples indicating situations of non-compliance.
A case related to compliance checking of a personal health information agains
PIPEDA (the Canada’s Personal Information Protection and Electronic Docu-
ments Act) is presented for illustration purposes.

In S12, the authors propose a general software process reasoning and ver-
ification tool by using fUML, a language that defines precisely the execution
semantics for a subset of UML Activity Diagram. The formalization of con-
straints included in software process reference frameworks such as OPENUP,
extreme programming, scrum and Kanban is done by using Linear Temporal
Logic (LTL). The tools, which is graphical-based, is developed as an Eclipse
EMF plug-in. Modelling of process and the formalization of constraints is manual
but assisted with the tool and by a specific template-based constraint language.
Evaluation is presented on a Scrum-based process.

In S14, S24, S26, and S34, the authors present the evolution of a framework
for software process assessment and capability determination. In particular, in
S14, the authors present an approach for software process verification and reason-
ing, which permits the translating of process models represented in composition
tree notations into DL. The knowledge of the process models contains the title,
purpose, outcomes, activities and task. The resulting knowledge base represent-
ing properties of the process elements that can be constrained with software
process standards such as ISO/IEC 12207, and ISO/IEC/29110. The approach
is illustrated with a case study related to the Human Resource Management
Process. In S24, the authors present an ontological approach (defined as an ax-

12 https://www.ibm.com/developerworks/downloads/r/architect/index.html
13 https://alloytools.org/



Title Suppressed Due to Excessive Length 23

iom metamodel) in OWL-DL. Such ontology contains 4 main concepts which
are originally selected form the standard ISO/IEC 29110 is presented. In S26,
the authors built on top of the previous work S14 and S24, which is related
to the creation of the process model, including a formal approach to software
process analysis and verification using DL-based ontology. In this case the DL
axioms represent the based practices or the process reference model (PRM) de-
fined by ISO/IEC 15504-5. To illustrate the process verification approach and
the inferencing services offered by ontologies, Protegé14 is used. The case study
selected is related to the development of Moodle15. In S34, the authors include
DL axioms related to the formalisation of the process capability dimension of
process assessment model (PAM). As a running process capability level exam-
ple, the authors use the capability level two (managed process) featuring PA2.1
performance management attribute and PA2.2 work product management pro-
cess attribute from ISO/IEC 15504-5. The Measurement Framework is extracted
from ISO/IEC 33020. The compliance checking is done by using OWL reasoners.

In S18, the authors present a metamodel defining two layers of abstraction.
The abstract level defines the abstract notions of process design and the concrete
level defines the corresponding concrete implementations. Elements defined are
activity, role, and tools. Each activity defines contracts. The notion of contract
is used to bind the components (activities) using Design by Contract. A notion
of conditions is also associated with the contracts at both levels. This serves for
specifying the pre/post conditions associated with an activity. For compliance
checking, a mapping between the abstract and concrete process is performed.
A process standard is translated into the abstract level of a process model only
once for each standard. The metamodel is proposed, but there is not a mention
of a specific tool, The example application is presented with the standard ECSS-
E-ST-40C.

In S21, and S30, the authors present the evolution of a framework for enabling
inference of maturity and capability levels of software processes. The concepts
related to processes and work products are modeled in OWL. SWRL is used to
create the compliance requirements. An SWRL rule is an implication between
the antecedent and the consequent, which is a combination of zero or more
atoms that are not allowing disjunctions or negation. The standards analysed
are ISO/IEC 15504 and SEI CMMI v1.3. Test cases from different organizations
and appraisals results published by the CMMI Institute16, were used for testing
the approach, which was modeled in OWL and analyzed with OWL reasoners,
such as HermIT17. In S31, the authors a similar approach for the representation
of GDPR, but the modeling is performed in OWL with constraint in DL.

Compliance Checking from Process Modeling Languages Some ap-
proaches take as a base consolidated process modeling languages and add a layer

14 https://protege.stanford.edu/
15 https://moodle.org/
16 https://sas.cmmiinstitute.com/pars/
17 http://www.hermit-reasoner.com/



24 Castellanos Ardila et al.

of analysis by using formal languages. In S6, the authors propose a framework
in which an OWL ontology is used to formalize domain standards and further
domain knowledge required to understand processes. The information in the on-
tology is constrained with Description Logic (DL) rules and transformed into the
SPEM 2.0 process models. Explicitly, the authors mention the provision of tasks
in the process model, which are traceable to product models. Tooling is con-
solidated by using Protege for the ontology, XSLT transformation, and Eclipse
Process Framework as the reference for SPEM 2.0 elements. Illustrations of the
concepts presented in ISO 26262. In terms of tailoring, there are OWL struc-
tures defined for transferring only elements according to a determined ASIL.
The limitation is that the formalized library only applied to ISO 26262.

In S7, the authors present an approach in which software process are im-
plements in SPEM 2.0, and then translated in OWL ontologies to permit the
application of constraints that can be derived from software engineering stan-
dards such as ISO 12207, process improvement frameworks such as CMMI or
ISO/IEC 15504 and agile processes. Both, S6 and S7 present a basic approach
as a proof of concept using OWL in Protegé. S7 in addition combines protegé
with SWRL (Semantic Web Rule Language) rules to represent constraints as
rules.

In S16, the authors propose a framework for compliance checking automation
at planning time, which includes the formalization of process in BPMN and then
transformed into timed petri nets. Compliance constraints, which are extracted
from the regulations, are represented in SHACL, which is a constraint language
able to retrieve information from RDF (Resource Description Framework)18.
Process tasks are represented in Camunda BPM engine19, which is a toolset
that offers support for BPMN 2.0 (Business Process Management Notation).
The authors have implemented a project-specific reasoner. The framework has
been defined from an industry scenario from the railway automation domain in
compliance with EN 50126.

In S19, S23, S25, S28, S33, S38, S39, and S40 the authors present the evo-
lution of a safety-centered planning-time framework for compliance checking of
safety-related processes. Process plans are modeled with a reference implementa-
tion of SPEM 2.0 (Software & Systems Process Engineering Metamodel), called
EPF (Eclipse Process Framework) Composer, which permits the representation
of process elements (i.e., tasks, roles, work products, guidance, and tools, and
process workflows). In S19 and S23, the requirements from the standards are
modeled in defeasible logic, and the approach permits to manage safety-oriented
process lines, i.e., process that are highly related. The reasoner used for com-
pliance checking is called SPINdle20. Initially, the authors focus on the automo-
tive domain by using the standards ISO 26262, ASPICE, andthe cybersecurity
handbook SAE J3061. In S25 and S28, the authors consolidate a tool supported
framework by including Formal Contract Logic (FCL), which is an evolution of

18 https://www.w3.org/RDF/
19 https://camunda.com/
20 http://spindle.data61.csiro.au/spindle/



Title Suppressed Due to Excessive Length 25

defeasible logic augmented with the concepts of deontic logic. FCL, which can
be analysed by using a compliance checker called Regorous21, combines concepts
and temporal knowledge representation characteristics to support the formaliza-
tion of requirements representing obligations and permissions in a normative
context that can be defeated by evolving knowledge. The standards used to il-
lustrate the approach are ISO 26262 and CENELEC EN 50128 (which applies
to railways). In S33, the authors augment the framework with process patterns
extracted from ISO 26262. In S38, the authors include process compliance hints.
Such hints are based on dividing requirements in terms of the elements they
target as well as the specific properties defined for each element. As a result,
customized icons an templates are provided for facilitating compliance effects
creation, which are used to form the propositions of the rules in FCL. Com-
pliance hints are illustrated with the formalization of CENELEC EN 50128. In
S39, the framework adds the tool support for variability management offered by
BVR-T (Base Variability Resolution Tool22), included in the tool-chain EPF-C
◦ BVR-T [86] to show process plan adherence with new versions of standards
(in this case the family of the standard ISO 14971).

In S40, the authors compile the compete framework and present a case study
taking into account the standards ECSS-E-ST-40. In S29, the frameworks is
analysed focusing on support for agilized environments, specially R-Scrum [55],
an agile process for avionics [112] and Safe Scrum [137].

In S37, the authors propose a method for managing compliance of processes
that have similar characteristics. In this approach, the process elements are man-
ually selected according to one specific standard and modeled in SPEM 2.0.
Then, a standard of the same family, i.e, standard with similar characteristics
is selected an manually compared with the initial one. Such comparison should
highlight the common and variable process aspects mandated by the standards.
Such aspects are modeled. The compliance checking is done by using BVR tool,
which permits the creation of simple rules in Basic Constraint Language (BCL)
to make possible the creation of compliant plans according to the selected stan-
dard.

Compliance Checking from Role-based Access Controls In S13, the au-
thors present an approach for the cybersecurity domain, which permits to ad-
dress the verification of security policies in role-based access control of enterprise
software. The automated security policy verification approach describes a repre-
sentation model and rules derived from the company’s role-based access control
(RBAC) policy in Answer Set Logic (ASL). ASL semantics is based on autoepis-
temic logic and default logic. For this reason, it makes a distinction between a
strong (or traditional) negation and negation as failure (negation derived from
incomplete information). It is a modeling concept illustrated with a web applica-
tion software to assist the hiring process in a company that can be implemented
with ASP solvers, e.g., LPARSE, DLV, GRINGO.

21 https://research.csiro.au/data61/regorous/
22 https://github.com/SINTEF-9012/bvr



26 Castellanos Ardila et al.

In S20 and S22, the authors based their approach on the premise: ”access
rights are permitted or denied depending on the security characteristics of the en-
tities involved in the access control.” The process is described as a purpose-aware
access control model concretized with message sequence charts. The message
chart, which represent the interaction between roles, specifies how an organi-
zation performs a particular process. Access rights to certain information have
to be granted to the roles taking into account the types of permitted actions.
Compliance policies are formalized in FOL and resolved with SMT (Satisfiabil-
ity Modulo Theories [11]) solvers. The control policy is checked on the access
rights of the roles that are involved in the process. However, there is not check
on tasks to be performed or other process elements. A Python-based tool is cre-
ated to perform the compliance checking. Such tool uses the PySMT library23

API to invoke the SMT solver MathSA24. The approach is illustrated with the
a Personal Health Record (PHR) system and the processing of personal data to
produce salary slips of employees.

In S36, control policies are represented as user histories, e.g., As a [Data
Subject], I want [to access my Personal Data and all the information (e.g., pur-
pose and categories)], so that [I can be aware about my privacy]. Then, such
policies are translated into machine interpretable statements by using XACML
(eXtensible Access Control Markup Language). As a result a list of XACML poli-
cies encoding the GDPR’s provisions are defined. The list of XACML policies
are instantiated with actual attributes. An access control tool uses the derived
attribute classification for mapping them into the user histories and enforce poli-
cies. Consequently the policies are applicable to the subject. This approach does
not utilizes compliance checking as such, but helps for deriving test cases that
could enforce the policies at testing time.

In S35, the authors propose a conceptual representation of the entities in-
volved in GDPR (General Data Protection Regulation) in UML. The UML rep-
resentation permits the creation of different types of data artifacts. However, for
process-based compliance checking, the artifacts available are the roles (called
actors). A set of OCL (Object Constraint Language)25 constraints embedded in
the UML classes are created to reflect the GDPR’s obligations. It only tackles
obligations, and the rules are embedded in the generic model.

Other Methods In S9, the authors present a workflow management system
called NOVA, which is not specifically defined for compliance checking of soft-
ware process but can be used for that purpose. The approach uses the time
Compensable Workflow Modeling Language (CWMLT) extended with the time
constraints of delay and duration in Linear Temporal Logic (LTL). In the work-
flow, it is possible to create units of work (or tasks). There is a small ontology in
OWL 2.0 representing the facts and rules found in healthcare policies. The NOVA
Engine is a workflow engine based on Service Oriented Architecture (SOA). The

23 https://github.com/pysmt/pysmt
24 http://mathsat.fbk.eu.
25 https://www.omg.org/spec/OCL/2.4/PDF



Title Suppressed Due to Excessive Length 27

approach is illustrated with a monitor system following the guidelines for man-
aging cancer-related pain in adults. NOVA Editor uses a graphical environment,
which permits the creation of correct by construction workflows (the incorrect
composition of workflow activities is prevented). Manual changes have to be done
in the workflow model if guidelines are tailored to specific cases.

In S15, S27, and S32, the authors propose an incremental life cycle model for
medical software development based on model refinement, includes the main soft-
ware engineering activities (specification, validation, verification, conformance
checking), and is tool-supported. The approach is based on the Abstract Sate
Machine (ASM) [19], which is a transition system that extend finite states ma-
chines with domain of objects with functions and predicates. ASM is a modeling
technique that integrates dynamic (operational) and static (declarative) descrip-
tions, as well as an analysis technique that combines validation (by simulation
and testing) and verification methods at any desired level of detail. In particu-
lar, it is possible to model the units of work and their sequence. ASM has rule
constructors that represent common vulnerabilities and defects. Such rules are
created in Computation Tree Logic (CTL) and can be used to check the ASM
modeling for avoiding violations of suitable properties. The reasoner is part of
a framework called AsmetaV. ASM is used to define the main phases and ac-
tivities of the development process. Requirements modeling is based on model
refinement; it starts by developing a high-level ground model that captures stake-
holders requirements.

S15 and S27 show a case study related to the hemodialysis machine case
study. In S32, the authors present an approach for checking the activities that
are needed for creating a Smart Pill Box. The checks are implemented in a lan-
guage called Avalla and tested with the validator AsmetaV. The compliance
verification with IEC 62304 and the FDA general principles of software valida-
tion are manually mapped to the steps taken in the process verification of the
approach presented. Thus, the approach is actually doing model checking to the
device. In S17, the authors present a method for discovering actual software
process models based on event logs and check conformance with the CMMI-
DEV model. For this, an event log is used to automatically construct a petri
net that explain the behavior discovered in the log. The conformance checking
process aims to verify the discovered process with the ”assessable” elements of
CMMI-DEV model (development lifecycle proposed by CMMI-DEV), which are
modeled by using Linear Temporal Logic (LTL).The result is a report presenting
if certain properties (CMMI-DEV model rules) hold in a log. The method is tool
supported via the ProM tool26.

In S41, the authors present a tool-supported framework for tracking processes
in the background of the actual software development, automatically standards
constraints, e.g., DO-178C/ED-12C and informing quality violations. The ap-
proach is evaluated with an open source system for unmanned aerial vehicles
and an industrial air traffic control system (ATC).

26 http://www.promtools.org/doku.php



28 Castellanos Ardila et al.

T
a
b

le
9
:

S
u

m
m

a
ry

o
f

th
e

R
ev

ie
w

ed
S

tu
d

ie
s.

ID
P
r
o
c
e
s
s

R
e
p
r
e
s
e
n
t
a
t
io

n

Tasks

WorkProducts

Roles

Guidance

Tools

WorkFlow

R
e
q
u
ir
e
m

e
n
t
s

R
e
p
r
e
s
e
n
t
a
t
io

n

Levelofautomation

EvolutionHandling?

Il
lu

s
t
r
a
t
iv

e
s
c
e
n
a
r
io

s

IndustrialSettings?

S
t
a
n
d
a
r
d
s

t
a
r
g
e
t
e
d

SupportAgile?

A
p
p
li
c
a
t
io

n
D
o
m

a
in

s

S
1

P
ro

c
e
P

T
X

X
F

O
L

(P
ro

lo
g
)

P
C

X
S
o
ft

w
a
re

D
e
v
e
lo

p
m

e
n
t

IS
O

9
0
0
1

Q
u
a
li
ty

S
2

U
M

L
X

F
O

L
P

C
S
o
ft

w
a
re

D
e
v
e
lo

p
m

e
n
t

IS
O

1
2
2
0
7

Q
u
a
li
ty

S
3

U
M

L
X

X
X

U
M

L
C

M
R

e
c
o
m

m
e
n
d
a
ti

o
n

H
a
n
d
li
n
g

X
IE

C
6
1
5
0
8

S
a
fe

ty
-c

ri
ti

c
a
l

S
4

U
M

L
X

X
X

U
M

L
P

C
P

ro
g
ra

m
m

a
b
le

E
le

c
tr

o
n
ic

S
y
st

e
m

s
X

IE
C

6
1
5
0
8

S
a
fe

ty
-c

ri
ti

c
a
l

S
5

U
M

L
X

X
P

P
S
T

P
C

S
o
ft

w
a
re

D
e
v
e
lo

p
m

e
n
t

IS
O

/
IE

C
9
0
0
0
3

Q
u
a
li
ty

S
6

S
P

E
M

2
.0

X
X

S
L
T

P
C
X

A
u
to

m
o
ti

v
e

S
y
st

e
m

D
e
si

g
n

IS
O

2
6
2
6
2

S
a
fe

ty
-c

ri
ti

c
a
l

S
7

S
P

E
M

2
.0

X
X

S
W

R
L

P
C

S
o
ft

w
a
re

D
e
v
e
lo

p
m

e
n
t

P
ro

c
e
ss

G
u
id

e
li
n
e
s

X
P

ro
c
e
ss

V
e
ri

fi
c
a
ti

o
n

S
8

U
M

L
X

X
X

X
O

C
L

P
C

S
u
b
-S

e
a

c
o
n
tr

o
l

X
IE

C
6
1
5
0
8
.

S
a
fe

ty
-c

ri
ti

c
a
l

S
9

C
W

M
L
T

X
X

L
T

L
P

C
X

S
e
rv

ic
e
s

D
e
li
v
e
ry

X
In

te
rn

a
l

G
u
id

e
li
n
e
s.

H
e
a
lt

h
C

a
re

S
1
0

U
M

L
X

X
G

A
L

IT
In

fo
rm

a
ti

o
n

P
ri

v
a
c
y

X
P

IP
E

D
A

.
D

a
ta

P
ro

te
c
ti

o
n

S
1
1

U
M

L
X

X
X

X
O

C
L

P
C

S
u
b
-S

e
a

c
o
n
tr

o
l

X
IE

C
6
1
5
0
8

S
a
fe

ty
-c

ri
ti

c
a
l

S
1
2

fU
M

L
X

X
L
T

L
IT

S
o
ft

w
a
re

D
e
v
e
lo

p
m

e
n
t

P
ro

c
e
ss

G
u
id

e
li
n
e
s

X
P

ro
c
e
ss

V
e
ri

fi
c
a
ti

o
n

S
1
3

A
S
P

X
X

X
A

S
L

C
M

H
u
m

a
n

R
e
so

u
rc

e
s

X
R

B
A

C
p

o
li
c
y

C
y
b

e
rs

e
c
u
ri

ty

S
1
4

C
T

X
X

D
L

P
C

H
u
m

a
n

R
e
so

u
rc

e
s

X
IS

O
/
IE

C
T

S
3
3
0
5
3

Q
u
a
li
ty

S
1
5

A
S
M

X
X

L
T

L
P

C
M

e
d
ic

a
l

D
e
v
ic

e
s

X
IE

C
6
2
3
0
4

S
a
fe

ty
-c

ri
ti

c
a
l

S
1
6

B
P

M
N

X
X

S
H

A
C

L
P

C
R

a
il
w

a
y

X
E

N
5
0
1
2
6

S
a
fe

ty
-c

ri
ti

c
a
l

S
1
7

P
e
tr

i
n
e
t

X
X

L
T

L
IT

In
fo

rm
a
ti

o
n

T
e
ch

n
o
lo

g
y

C
M

M
I-

D
E

V
v
1
.3

S
P

I

S
1
8

U
M

L
X

X
X

M
a
p
p
in

g
C

M
S
p
a
c
e

E
C

S
S
-S

T
-4

0
C

S
a
fe

ty
-c

ri
ti

c
a
l



Title Suppressed Due to Excessive Length 29

T
a
b

le
9

C
o
n
ti

n
u

e
d

:
S

u
m

m
a
ry

o
f

th
e

R
ev

ie
w

ed
S
tu

d
ie

s.

S
1
9

S
P

E
M

2
.0

X
X

X
X

X
X

D
e
f-

L
C

M
X

A
u
to

m
o
ti

v
e

IS
O

2
6
2
6
2

A
S
P

IC
E

S
a
fe

ty
-c

ri
ti

c
a
l

S
2
0

S
M

T
X

F
O

L
IT

H
u
m

a
n

R
e
so

u
rc

e
s

X
E

U
D

P
D

D
a
ta

P
ro

te
c
ti

o
n

S
2
1

O
W

L
X

X
S
W

R
L

C
M

P
ro

c
e
ss

A
ss

e
ss

m
e
n
ts

X
IS

O
/
IE

C
1
5
5
0
4

S
P

I

S
2
2

M
S
C

X
F

O
L

P
C

H
u
m

a
n

R
e
so

u
rc

e
s

X
E

U
D

P
D

D
a
ta

P
ro

te
c
ti

o
n

S
2
3

S
P

E
M

2
.0

X
X

X
X

X
X

D
e
f-

L
C

M
X

A
u
to

m
o
ti

v
e

IS
O

2
6
2
6
2

S
A

E
J
3
0
6
1
.

S
a
fe

ty
-c

ri
ti

c
a
l

S
2
4

O
W

L
X

X
D

L
P

C
X

S
o
ft

w
a
re

d
e
v
e
lo

p
m

e
n
t

IS
O

/
IE

C
2
9
1
1
0

P
ro

c
e
ss

V
e
ri

fi
c
a
ti

o
n

S
2
5

S
P

E
M

2
.0

X
X

X
X

X
X

F
C

L
P

C
X

A
u
to

m
o
ti

v
e

IS
O

2
6
2
6
2

S
a
fe

ty
-c

ri
ti

c
a
l

S
2
6

O
W

L
X

X
D

L
P

C
S
o
ft

w
a
re

R
e
q
u
ir

e
m

e
n
ts

A
n
a
ly

si
s

IS
O

/
IE

C
1
5
5
0
4

S
P

I

S
2
7

A
S
M

X
X

L
T

L
P

C
M

e
d
ic

a
l

D
e
v
ic

e
s

X
IE

C
6
2
3
0
4

F
D

A
p
ri

n
c
ip

le
s

S
a
fe

ty
-c

ri
ti

c
a
l

S
2
8

S
P

E
M

2
.0

X
X

X
X

X
X

F
C

L
P

C
X

R
a
il
w

a
y

C
E

N
E

L
E

C
E

N
5
0
1
2
8

S
a
fe

ty
-c

ri
ti

c
a
l

S
2
9

S
P

E
M

2
.0

X
X

X
X

X
X

F
C

L
P

C
A

g
il
iz

e
d

E
n
v
ir

o
n
m

e
n
ts

IS
O

2
6
2
6
2

D
O

-1
7
8
C
X

S
a
fe

ty
-c

ri
ti

c
a
l

S
3
0

O
W

L
X

X
S
W

R
L

C
M

C
o
m

p
a
n
ie

s
A

p
p
ra

is
a
ls

R
e
-

su
lt

s
X

IS
O

/
IE

C
1
5
5
0
4

C
M

M
I

v
1
.3

S
P

I

S
3
1

O
W

L
X

D
L

C
M

M
e
d
ic

a
l

D
e
v
ic

e
X

G
D

P
R

D
a
ta

P
ro

te
c
ti

o
n

S
3
2

A
S
M

X
X

C
T

L
P

C
M

e
d
ic

a
l

D
e
v
ic

e
X

IE
C

6
2
3
0
4

F
D

A
p
ri

n
c
ip

le
s

S
a
fe

ty
-c

ri
ti

c
a
l

S
3
3

S
P

E
M

2
.0

X
X

X
X

X
X

F
C

L
P

C
X

A
u
to

m
o
ti

v
e

IS
O

2
6
2
6
2

S
a
fe

ty
-c

ri
ti

c
a
l

S
3
4

O
W

L
X

X
D

L
P

C
S
o
ft

w
a
re

D
e
v
e
lo

p
m

e
n
t

IS
O

/
IE

C
1
5
5
0
4

S
P

I

S
3
5

U
M

L
X

O
C

L
P

C
In

fo
rm

a
ti

o
n

T
e
ch

n
o
lo

g
y

G
D

P
R

D
a
ta

P
ro

te
c
ti

o
n

S
3
6

X
A

C
M

L
X

X
A

C
M

L
C

M
A

u
th

o
ri

z
a
ti

o
n

S
y
st

e
m

s
X

G
D

P
R

X
D

a
ta

P
ro

te
c
ti

o
n

S
3
7

S
P

E
M

2
.0

X
X

X
X

X
X

B
C

L
P

C
X

A
u
to

m
o
ti

v
e

IS
O

2
6
2
6
2

S
A

E
J
3
0
6
1

S
a
fe

ty
-c

ri
ti

c
a
l

S
3
8

S
P

E
M

2
.0

X
X

X
X

X
X

F
C

L
P

C
X

R
a
il
w

a
y

C
E

N
E

L
E

C
E

N
5
0
1
2
8
.

S
a
fe

ty
-c

ri
ti

c
a
l

S
3
9

S
P

E
M

2
.0

X
X

X
X

X
X

F
C

L
,

B
C

L
P

C
X

M
e
d
ic

a
l

D
e
v
ic

e
s

IS
O

1
4
9
7
1

S
a
fe

ty
-c

ri
ti

c
a
l



30 Castellanos Ardila et al.

T
a
b

le
9

C
o
n
ti

n
u

e
d

:
S

u
m

m
a
ry

o
f

th
e

R
ev

ie
w

ed
S
tu

d
ie

s.

S
4
0

S
P

E
M

2
.0

X
X

X
X

X
X

F
C

L
P

C
X

S
p
a
c
e

E
C

S
S
-E

-S
T

-4
0
C

S
a
fe

ty
-c

ri
ti

c
a
l

S
4
1

U
M

L
X

X
X

D
e
c
la

ra
ti

v
e

P
C

A
v
io

n
ic

s
X

D
O

-1
7
8
C

X
S
a
fe

ty
-c

ri
ti

c
a
l

C
o
n
v
e
n
t
io

n
s

(X
)

S
u
p
p

o
rt

e
d
,

(C
M

)
C

o
n
c
e
p
tu

a
l

M
o
d
e
l,

(P
C

)
P

ro
o
f

o
f

C
o
n
c
e
p
t

P
ro

to
ty

p
e
,

(I
T

)
Im

p
le

m
e
n
te

d
T

o
o
l.

L
a
n
g
u
a
g
e
s

(U
M

L
)

U
n
ifi

e
d

M
o
d
e
li

n
g

L
a
n
g
u
a
g
e
2
7
,

(O
W

L
)

W
e
b

O
n
to

lo
g
y

L
a
n
g
u
a
g
e
2
8
,

(S
P

E
M

2
.0

)
S
o
ft

w
a
re

&
S
y
st

e
m

s
P

ro
c
e
ss

E
n
g
in

e
e
ri

n
g

M
e
ta

m
o
d
e
l2

9

(C
W

M
L
T

)
C

o
m

p
e
n
sa

b
le

W
o
rk

fl
o
w

M
o
d
e
li
n
g

L
a
n
g
u
a
g
e

[1
2
5
],

(f
U

M
L

)
F
o
u
n
d
a
ti

o
n
a
l

S
u
b
se

t
fo

r
E

x
e
c
u
ta

b
le

U
M

L
M

o
d
e
ls

3
0
,

(A
S
M

)
A

b
st

ra
c
t

S
ta

te
M

a
ch

in
e
s

[1
9
],

(A
S
P

)
A

n
sw

e
r

S
e
t

P
ro

g
ra

m
m

in
g

&
(A

S
L

)
A

n
sw

e
r

S
e
t

L
o
g
ic

[1
0
7
],

(B
P

M
N

)
B

u
si

n
e
ss

P
ro

c
e
ss

M
a
n
a
g
e
m

e
n
t

N
o
ta

ti
o
n
3
1
,

(S
M

T
)

S
a
ti

sfi
a
b
il
it

y
M

o
d
u
lo

T
h
e
o
ri

e
s

[1
1
],

(X
A

C
M

L
)

e
X

te
n
si

b
le

A
c
c
e
ss

C
o
n
tr

o
l

M
a
rk

u
p

L
a
n
g
u
a
g
e
,

(F
O

L
)

F
ir

st
O

rd
e
r

L
o
g
ic

,
(P

P
S
T

)
P

ro
c
e
ss

P
a
tt

e
rn

S
tr

u
c
tu

re
T

re
e

[1
4
7
],

(X
S
L
T

)
E

x
te

n
si

b
le

S
ty

le
sh

e
e
t

L
a
n
g
u
a
g
e

T
ra

n
sf

o
rm

a
ti

o
n
s3

2
,

(S
W

R
L

)
S
e
m

a
n
ti

c
W

e
b

R
u
le

L
a
n
g
u
a
g
e
3
3
,

(O
C

L
)

O
b

je
c
t

C
o
n
st

ra
in

t
L

a
n
g
u
a
g
e
3
4
,

(L
T

L
)

L
in

e
a
r

T
e
m

p
o
ra

l
L

o
g
ic

[1
2
2
],

(G
A

L
)

G
o
v
e
rn

a
n
c
e

A
n
a
ly

si
s

L
a
n
g
u
a
g
e

[6
7
],

(D
L

)
D

e
sc

ri
p
ti

o
n

L
o
g
ic

3
5
,

(D
e
f-

L
)

D
e
fe

a
si

b
le

L
o
g
ic

3
6
,

(F
C

L
)

F
o
rm

a
l

C
o
n
tr

a
c
t

L
o
g
ic

[6
2
],

(C
T

L
)

C
o
m

p
u
ta

ti
o
n
a
l

T
re

e
L

o
g
ic

,
(B

C
L

)
B

a
si

c
C

o
n
st

ra
in

t
L

a
n
g
u
a
g
e
,

(S
H

A
C

L
)

S
h
a
p

e
s

C
o
n
st

ra
in

t
L

a
n
g
u
a
g
e
3
7
,

(C
T

)
C

o
m

p
o
si

ti
o
n

T
re

e
s

2
7

h
tt

p
s:

/
/
w

w
w

.o
m

g
.o

rg
/
sp

ec
/
U

M
L

/
2
8

h
tt

p
s:

/
/
w

w
w

.w
3
.o

rg
/
O

W
L

/
2
9

h
tt

p
s:

/
/
w

w
w

.o
m

g
.o

rg
/
sp

ec
/
S
P

E
M

3
0

h
tt

p
s:

/
/
w

w
w

.o
m

g
.o

rg
/
sp

ec
/
F

U
M

L
3
1

h
tt

p
s:

/
/
w

w
w

.b
p
m

n
.o

rg
/

3
2

h
tt

p
s:

/
/
w

w
w

.w
3
.o

rg
/
T

R
/
2
0
1
7
/
R

E
C

-x
sl

t-
3
0
-2

0
1
7
0
6
0
8
/

3
3

h
tt

p
s:

/
/
w

w
w

.w
3
.o

rg
/
S
u
b
m

is
si

o
n
/
S
W

R
L

/
3
4

h
tt

p
s:

/
/
w

w
w

.o
m

g
.o

rg
/
sp

ec
/
O

C
L

/
3
5

h
tt

p
:/

/
d
l.
k
r.

o
rg

/
3
6

h
tt

p
:/

/
w

w
w

.d
ef

ea
si

b
le

.o
rg

/
3
7

h
tt

p
s:

/
/
w

w
w

.w
3
.o

rg
/
T

R
/
sh

a
cl

/



Title Suppressed Due to Excessive Length 31

4.2 Analysis

In this section, we present the analysis of the results in relation to the addressed
research questions presented in Table 1.

RQ 1. Publications Distribution This section presents the publication dis-
tribution of the 41 primary studies resulting for the SLR (i.e., time and venue)
(see Figure 2) and active research groups in the context automatic compliance
checking of software processes (see Table 10). In particular, Figure 2a, presents
the distribution of the studies according to the types of publication venues. As
the figure depicts, most primary studies were published in conferences (66%),
while journals (29%) and workshops (5%) were the sources of fewer studies.

In the first years (1995 to 2009), only one or no publications were discovered.
The distribution of the publications presents one peak in 2017, where 9 papers
were found. Then, in 2018 the publication of papers descent again to seven
papers and continue in descending mode until 2021. We also could see that most
of the studies have been found after 2017 (26 out of 41 studies 63%). However,
the literature revision during 2021 only included the first three months since we
finished our search in March. Thus, the trend could increase during this year.

(a) Venues Types. (b) Years.

Fig. 2: Publications Distribution.
Concerning the active research groups within automated compliance check-

ing for software processes, we looked at the selected primary studies’ affiliation
details. The assignment of contributed studies of each active research group
is based on the affiliations given in these studies to the first author. Table 10
presents the active research groups (with at least two publications on the men-
tioned topic) and the corresponding number of contributed studies. The results
depict that the Mälardalen University is the leading organization in terms of
the number of publications, followed by Griffith University. Then, Charles Uni-
versity, Loughborough University, Universidade de Lisboa, and the University of
Oslo appear with two publications. The rest of the universities and centers only
have one publication (in total, 19). Thus, there are research groups around the
world doing research in this topic.



32 Castellanos Ardila et al.

Table 10: Active Research Groups.
Affiliations Primary Studies Total

Mälardalen University S19, S23, S25, S28, S29, S33, S37, S38, S39, S40 10

Griffith University S14, S24, S26, S34 4

Charles University S15, S27 2

Loughborough University S3, S4 2

Universidade de Lisboa S21, S30 2

University of Oslo S8, S11 2

Other Universities/Centers
S1, S2, S5, S6, S7, S9, S10, S12, S13, S16, S17,
S18, S20, S22, S31, S32, S35, S36, S41

19

Analysis of the results for RQ 1. We did not set a lower boundary for
the year of publication in our search process since, to the best of our knowl-
edge, there is no precise date where the concept (or the topic) was coined, as it
happens in other subject areas. However, as Figure 2b depicts, the time frame
identified the first primary study on the topic back in the 1990s. Previous to
this year, we did not find primary studies, so we could consider the 1990’s the
initiation of this topic’s work. This result corroborates with the publication of
Osterweil’s seminal paper [117] back in 1987, where the author discusses the
nature of software processes and categorized them as a kind of software, which
can also be programmed.

Osterweil’s assumptions could be the source of interest for work related to
the formalization of processes and their normative constraints. However, after
analyzing the general temporal view of the studies, we can conclude that the
number of studies about automated compliance checking of software processes is
rare through the years. Although the apparent increase in the number of primary
studies found in 2017, this result corroborates that the topic has been somewhat
neglected. However, some groups, especially in Europe and Australia, continue
advancing the research on the topic.

RQ 2. Characteristics of the Methods In this section, we present the char-
acteristics of the methods described in the primary studies selected (summarized
in Figure 3) by answering questions RQ 2.1, RQ 2.2, RQ 2.3 and RQ 2.4.

RQ 2.1. Languages used to represent software processes entities and
structures Five types of approaches (see Table 8) have been used to represent
the information contained in software processes. Such approaches are distributed
as presented in Figure 3a. 36% of the primary studies, namely S3, S4, S5, S8, S10,
S11, S12, S14, S18, S21, S24, S26, S30, S31, S34, consider the modeling of process-
related elements from specific standards concepts. 32% of the primary studies,
namely S6, S7, S16, S19, S23, S25, S28, S29, S33, S37, S38, S39, S40, take as a
base consolidated process modeling languages to which a layer of analysis using
formal languages is added. The minority of the studies found are distributed as
follows: 12% of the methods, namely S13, S20, S22, S35, S36, take into account



Title Suppressed Due to Excessive Length 33

(a) General Approaches. (b) Languages for Modeling Process.

(c) Process Elements Represented. (d) Languages for Compliance Require-
ments Modeling.

(e) State of the tool support. (f) Evolution Handling Provision.

Fig. 3: Methods Characteristics.

access rights given to the roles in a process, 5% of the methods, namely, S1 and
S2, take into account the documents workflow, and the final 15% of the methods,
namely S9, S15, S17, S27, S32, S41, have other types of proposals. e.g., process
mining, declarative programming, and workflow modeling.

The five types of approaches make use of 14 different languages to represent
the process elements, and structures as Figure 3b depicts. n particular, S15, S27,
S32 use ASM, S13 uses ASP, S14 uses CT, S9 uses CWMLT, S12 uses fUML,



34 Castellanos Ardila et al.

S22 uses MSC, S21, S24, S26, S30, S31 and S34 use OWL, S17 uses Petri Net,
S16 uses BPMN, S20 uses SMT, S1 uses ProcePT, S6, S7, S19, S23, S25, S28,
S29, S33, S37, S28, S39 use SPEM 2.0, S2, S3, S4, S5, S8, S10, S11, S18 and S35
use UML, and finally S36 uses XACML (see Table 9).

It is important to note that models created in OWL and UML could also be
considered as new languages. Thus, in the end, we have more than 14 languages
used for modeling software processes. We also can see in Figure 3c that some
process elements have more importance than others in the modeling languages
created/reused, as each normative framework considers different kinds of process
elements. In particular, significant attention in the modeling part of the processes
is given to the tasks, work products, and workflows.

RQ 2.2. Languages used to represent compliance requirements In the
analysis of the selected primary studies, we found that a wide range of studies
uses FCL (S25, S33, S28, S29, S33, S38 and S39) to formalize the requirements
prescribed by the standard (see Figure 3d). In the second place, the preferred
languages are LTL (S9, S12, S15, S17 and S27) and DL (S14, S24, S26, S31
and S34). In the third place, the selected language is FOL (S1, S2, S20, S22).
However, there are languages in many other flavors that the researchers pre-
fer to represent the requirements prescribed by the standards, i.e., ASL, BCL,
CTL, Def-L, GAL, OCL, PPST, SHACL, SWRL, UML, XACML, XSLT, and
Declarative languages (database approach). Thus, the modeling of requirements
follows a similar trend as modeling processes: several languages, each selected
according to specific needs.

RQ 2.3. Level of automation The automation part claimed in the studies
(see Section 4) is related to the compliance reasoning, namely the automatic
comparison between the process and the normative documents. Frameworks
composed of chained tools also automatically transform the information be-
tween the interrelated tools. Those that perform process mining also provide
an automatic mining procedure. However, the formalization of requirements is
performed mostly manually, in some cases, by using formalization patterns. The
state of the tool support is also variable. We classify it in three groups: (CM)
Conceptual Model, (PC) Proof of Concept Prototype, (IT) Implemented Tool,
as presented in Figure 3e. As the figure depicts, 68% of the methods, namely,
S1, S2, S4, S5, S6, S7, S8, S9, S11, S14, S15, S16, S22, S24, S25, S26, S27, S28,
S29, S32, S33, S34, S35, S37, S38, and S39, are prototypes that are used as a
proof of concept, 22% of the methods, namely, S3, S13, S18, S19, S21, S23, S30,
S31 and S36, are conceptual models, and only 10% of the methods, namely S10,
S12, S17, and S20, are fully implemented tools.

RQ 2.4. Evolution handling As presented in Figure 3f, only 34% of the
primary studies present explicit means for addressing software process reconfig-
uration in the light of standards evolution (i.e., the release of a new version of
standards), tailoring (i.e., the selection, eventual modification, and implemen-
tation rationale) and process diversity (application of several standards in the



Title Suppressed Due to Excessive Length 35

same project). In S1, for example, there are specific structures, such as the defini-
tion of integrity levels prescribed by safety standards, which permit the deletion
and modification of work products and activities according to the project’s char-
acteristics. In S6 and S9, there is a tailoring step in the creation of processes
models process, which is in charge of transferring only those requirements, meth-
ods and activities, which are relevant according to the system’s ASIL. In S9, in
addition, there is a monitor system that follows the guidelines for managing
constraints and permits the creation of correct by construction workflows, pre-
venting the incorrect composition of tasks. In S24, it is used a mechanism called
powertype, which is pattern for modeling that combines instantiation and gener-
alisation semantics in process metamodeling. In S19, S23, S37, and S39, the use
of methodologies such as process lines, permit not only evolution handling but
also to manage process diversity and reuse. In S25, S28, S33, S38 and S40, the
change management is based on the extension capabilities reuse and traceability
provided by the process modeling language SPEM 2.0.

Analysis of the results for RQ 2 We can see in the results that researchers use
different kinds of approaches and methodologies to represent the software pro-
cess to be used for automatic compliance checking. The purpose of the primary
studies was to model the specific concepts provided in particular standards. In
most cases, the standards only prescribe the sequence of tasks (process behavior)
and process outcomes (defined in the work products). Only a few primary stud-
ies provide the possibility of modeling several process elements rather than only
process workflows and work products. As a result, new languages with limited
scope have been created. The continuous creation of ad-hoc software process-
related modeling solutions could be a disadvantage, especially when well-defined
process modeling languages (such as SPEM 2.0 and BPMN) could be reused and
extended according to specific needs.

Compliance checking of software processes built on the capabilities provided
by logic-based languages, especially for representing the requirements prescribed
by the normative frameworks. In particular, the selection of languages in the
primary studies was very diverse showing a similar trend than in languages used
to represent software processes. In general, every formal method has its strengths
and limitations as its own formal approaches and semantics. Some are easier to
understand and use than others. The coverage, readability characteristics and
tool support are also aspects that vary from one formal language to the other.
Thus, it is important to find the correct balance between all those aspects to
achieve the best fit for the problem at hand.

Essentially, the surveyed methods require human intervention, especially to
implement the inputs of the reasoning process. The manual mapping or formal-
ization of requirements as constraints requires considerable knowledge of the
underlying formalisms and formal techniques. Therefore, formal approaches are
often not easy to use for many process engineers. Given this aspect, there is
a need for automate the transformation of normative requirements into formal
representation, or at least, the provision of editors that could lessen the demands
of its use. In addition, it is challenging to promote the use of methods for auto-



36 Castellanos Ardila et al.

matic compliance checking in the industry when the tool support is lacking or
nonexistent.

Evolution handling is a crucial aspect of process-related compliance manage-
ment. However, the results of the SLR show that this aspect has been somewhat
neglected. Another downside of the methods could be that the hard-coded rules
could lessen the extensibility and generality and, therefore, the scope of applica-
tion of these approaches. Therefore, there is a need to provide change manage-
ment means that permit process engineers to understand, plan, implement and
communicate the change due to the evolution of the standards, tailoring, and
process diversity.

RQ 3. Potential Impact In this section, we present the potential impact
of the studies in terms of application domain, normative documents targeted,
illustrative Scenarios and agile support (summarized in Figure 4) by answering
questions RQ 3.1, RQ 3.2, RQ 3.3 and RQ 3.4.

RQ 3.1. Application domains Several application domains are addressed in
the primary studies, as presented in Figure 4a. The most representative appli-
cation domain is the safety-critical, with 51% of the studies tackling this sector,
i.e., S3, S4, S6, S8, S11, S15, S16, S18, S19, S23, S25, S27, S28, S29, S32, S33,
S37, S38, and S39. Then, we find that the researchers are interested in software
process improvement SPI and quality (22%), i.e., S1, S2, S5, S14, S17, S21, S26,
S30, and S34, and data protection (15%), i.e., S10, S20, S22, S31, S35, and S36.
Other application domains are also represented in less quantity, i.e., software
process verification (7%), i.e., S7, S12, and S24, Cybersecurity (2%), i.e., S13
and health care (2%), i.e., S9.

RQ 3.2. Normative documents targeted Different standards have been
modeled and used in the experimentations or illustration results provided in
the primary studies. As depicted in Figure 4b, the standards more used are
ISO 26262 (15%), i.e., S6, S19, S23, S25, S29, S33, and S37, IEC 61508 (9%),
i.e., S3, S4, S8, and S11, and ISO/IEC 15504 (9%), i.e., S21, S26, S30 and
S34. To a lesser extent, the primary studies used GDPR (6%), IEC 62304 (6%),
SAE J3062 (4%), FDA principles for software development (4%), software pro-
cess guidelines (4%), internal guidelines (4%), ECSS-E-ST-40C (4%), DO-178C
(4%) and CMMI (4%). Other standards were also used, representing 19% of the
studies (i.e., ISO 12207, ISO 14971, ISO 9001, ISO/IEC 29110, ISO/IEC 90003,
ISO/IEC TS 33053, PIPEDA, ASPICE, EN 50126.

RQ 3.3. Illustrative scenarios Illustrative scenarios are presented in Fig-
ures 4c and 4d. In particular, the studies focused primarily in general aspects of
software development (23%), i.e., the GV-Model in S1, Case PSS-05 in S2, test-
ing procedures and scrum processes), Automotive examples (16%), i.e., S6, S19,
S23, S25, S33 and S37, and Medical devices development (11%), i.e., S17 and
S19 with the hemodialysis machine, S32 with the smart pill box, S39 with a gen-
eral risks analysis for medical devices and S40 with a wearable fitness appliance.



Title Suppressed Due to Excessive Length 37

(a) Application Domain. (b) Normative Frameworks Addressed.

(c) Illustrative Scenarios. (d) Evaluation Data from Industry.

(e) Agile Support.

Fig. 4: Potential Impact.

Representative examples were also found in human resources systems (9%), i.e.,
i.e., S13, S14, S20, and S22, general applications in information technology (7%),
i.e., S10. S17 and S35 railway (7%), i.e., S16, S28 and S28, avionics (4%), i.e.,
S29 and S41, Space (5%), i.e., S18 and S49, Sub-sea control (5%), i.e., S22 and
S36 and appraisals results (4%), i.e., S31 and S34. Other illustrative scenarios
have a 9% of representation (i.e., agilized environments, programable electronic
systems, recommendation handling systems and services delivery). In total, 19 of



38 Castellanos Ardila et al.

the 41 studies (approximately, 46%) used data extracted from industrial settings
to evaluate their methods, i.e., S3, S4, S8, S9, S10, S11, S13, S14, S15, S16, S10,
S21, S22, S27, S30, S31, S32, S36 and S41.

RQ 3.4. Agile support Support for agile is not highly represented in the stud-
ies selected (the only 10% of the studies showed some agile-related information).
The information related to agile compliance is having different characteristics in
different studies. For example, in studies S7 and S12, the techniques apply for
compliance checking with the SCRUM framework, but there are no direct obser-
vations regarding compliance checking with a regulatory text. In S29, the support
is provided to agilized environments, i.e., environments that result from the com-
bination of agile and plan-based development processes, especially applicable to
regulated contexts. In S35, the support is presented by providing normative re-
quirements formalization templates in the form of user stories. Finally, in S41,
the framework uses mining techniques to extract the developers’ performed work.
This technique is restricted to process executions and reconstruction of compli-
ance after the fact. Thus, some support for agile methodologies exists. However,
there is much room for improving this aspect. Correctly combined with other
techniques, agile methodologies in compliance with normative frameworks could
be better supported.

Analysis of the results for RQ 3 The primary studies’ methods provide a set of
engaging, applicable, and useful aspects contributing to the automation of com-
pliance checking of software processes. In general, there are diverse application
domains, different standards targeted, and illustrative scenarios performed. From
such scenarios, valuable lessons learned and practical insights have also been col-
lected. However, in most cases, normative documents have been considered in
isolation resulting in ad-hoc solutions. In addition, the use of case studies from
industry, even though it is good (46%), should be increased in order to provide
real setting insights. In reality, manufacturers have to deal with software process
diversity, tailoring, and standards evolution. Moreover, software organizations
are moving towards agile, even in heavily regulated domains, such as the safety-
critical. Thus, the narrow focus of the methods reported, the poor support for
agile environments, and the non concretized tool support (which is the common
aspect) may be a factor that also hinders their application in practice.

RQ 4. Challenges Our investigation found that the existing literature related
explicitly to compliance checking of software processes is scarce and scattered
(see answer to RQ 1). The publication’s irregularity in the initial years and
the reduced amount of journal papers published may indicate that the topic
has taken a long time to establish itself as a research subject. It seems also that
research has been done in silos. Such independence may result in wasted research
efforts since languages for process modeling are very often created from scratch.

In today’s methods for automated compliance checking of software processes
(see answer to RQ 2), diverse abilities are required from their potential users. In



Title Suppressed Due to Excessive Length 39

particular, there is the need for knowledge regarding process modeling and the
ability to formalize natural language in a specific formal language. As potential
users, we have the process engineers who may already have some expertise in
process modeling. However, different tools may approach modeling in different
ways. Besides, the formalization of natural language in which the requirements
are commonly specified is always perceived as demanding. Such perception may
hinder the interest of the potential users and, thus, the methods’ use.

The automation level claimed by the methods studied is related to two as-
pects. On the one hand, there are means to automate the compliance reasoning
required to compare processes and the normative documents regulating them.
On the other hand, there is conceptual integration of the tool-chain required
to provide the reasoning aspects. However, in most primary studies, the con-
crete technological interaction between different tool-chain components is still
a weak link in tool support provision. As a result, it is frequent to find that
the tool support is still at the stage of conceptual modeling or proof of concept
prototypes.

Finally, we can see impact problems (see the answer to RQ 3). Particularly,
there is no consistent use of data from industry, limiting the evaluation of the
studies. Moreover, in almost all the studies, the standards are addressed in iso-
lation, reducing the results’ generalizability. Finally, there is a lack of support
for agile. These three aspects should be addressed in future research efforts to
boost the implementation of the methods that are already available in the state-
of-the-art.

5 Discussion

The previous parts of the paper have been objective accounts of the literature.
Instead, in the remaining parts of this section, we discuss outstanding aspects
regarding automatic compliance checking of software processes based on inter-
pretations of the authors.

5.1 The use of software process modeling languages

Notably, a software product with desirable guaranteed attributes (e.g., safety,
quality, reliability) is the result of several artifacts supplementing each other as
well as actors performing on it with specialized techniques and tools in well-
defined engineering processes. Consequently, it is essential to be able to describe
all such concepts and structures included in a software process, as well as their
properties, plus additional descriptive information. This could be the reason for
the change of the trend in the last years, where researchers tend to use consoli-
dated process modeling languages, such as SPEM 2.0 and BPMN. Such modeling
languages have already defined characteristics, e.g., extensibility and reuse ca-
papbilities. Consequently, new features can be modeled if needed by customizing
or extending existing ones, permitting the modeling of more complete software
processes that help the process users and auditors to understand what is needed



40 Castellanos Ardila et al.

to be done, who will perform tasks, what resources will be used, and what results
will be obtained. A software process model with such characteristics is especially
needed for creating software products in the safety-critical context, which is of-
ten subject to a certification process. Most of the consolidated process modeling
languages already offer tool support, which makes their use even easier. Thus, we
consider that new research efforts in automatic compliance checking, specifically
for software processes, could consider existing process modeling languages to
accelerate results in the topic and standardize the techniques and tool support.

5.2 Language suitability for addressing normative requirements

First and foremost, compliance is a relationship between permissions (what you
are allowed to do), obligations (what you have to do), and prohibitions (what you
should avoid). In the case of compliance with standards, the concept of tailoring
is also relevant. Tailoring allows organizations to adapt normative requirements
to specific project conditions. However, in the tailoring process, the provision of
a justification (called rationale) is a mandatory element aimed at legitimizing
changes. Tailoring can be seen as a sort of justified exception-handling in software
process compliance checking. Thus, the language selected to represent normative
frameworks should be able to provide means that facilitate the description of the
mentioned concepts since they are not only necessary but also sufficient to tackle
the compliance checking problem of software processes.

In our analysis of the languages used in the primary studies, we found ex-
ploitable characteristics. For example, FCL explicitly provides the concepts of
obligation, permission, and the rule priority, allowing reasoning with exceptions.
Def-L permits to model facts, defeasible rules, and defeaters, providing the op-
portunity to model and reasoning with contradictory information. ASL provides
a clear distinction between strong (or traditional) negation to represent a nega-
tion derived from evidence and negation as failure, admitting reasoning with
incomplete information. The remaining languages consider the requirements as
constraints that restrict the processes’ scope of action. In other words, require-
ments are defined as the obligations that the process or the process elements
should fulfill or the prohibitions that should avoid to be deemed compliant.
Thus, they can cope with the concept of obligation (or prohibition) very well,
even though such a concept is not explicitly defined. However, the possibility
to handle contradictions and incomplete information is not provided either in
an implicit or explicit form. Such reduced semantics lead to reduced reasoning
capabilities, which also decreases the scope of the methods used for compliance
checking. An ideal language for formalizing the requirements of normative frame-
works could actually be a combination of several mechanisms and well-defined
semantics that could work harmoniously to achieve idealized goals: compliance
checking of single processes, variability management, agile processes as well as
plan-driven, and finally, process planning and execution.



Title Suppressed Due to Excessive Length 41

5.3 Towards a generic and domain-agnostic method

Most of the approaches aim at seeking compliance at design time. As such, com-
pliance checking is able to demonstrate intentional compliance, i.e., distribution
of responsibilities, such that if every actor fulfills its goals, then the compliance is
ensured. [135]. However, intentional compliance can only permit, not guarantee,
any quality attribute of the process. Non-conformance between process planning
and execution can put the software development at risk in realizing the compli-
ance required. Therefore, combinations between compliance of software process
plans and follow-ups during process execution should be made sure. In our opin-
ion, the results of the methods surveyed in this study could fertilize each other
towards the consolidation of a more holistic, generic and normative-agnostic so-
lution that is able to tackle, e.g., quality, SPI, safety, cybersecurity. A resulting
method could be more attractive to organizations, and industrial applications
could be made on a larger scale.

5.4 The need for diverse abilities

Converting normative requirements into formal specifications has many benefits.
In particular, formal descriptions obligate the person who analyses the norms
to see them from a causal perspective that would facilitate their interpretation.
Moreover, a formal specification of normative requirements is a description that
is precise and (if properly done) complete. These two characteristics may con-
vince practitioners to use formal languages to do compliance checking tasks.
However, there is nothing to do if the language used to perform such formal-
ization is too difficult to understand. A key point for introducing any formal
language in the industry is the usability aspects. We need to avoid the case of a
new person feeling confused and frustrated with such formalisms. In particular,
it could be interesting to develop short, straight-forward expressions, which are
clear, and at the same time, readable when the complexity (and size) grows.

5.5 Increase the level of automation and tool support

It is difficult to guarantee industrial adoption when there is nonexistent or loosely
coupled tool support. Thus, it is crucial to provide adequate and complete tool
support for automatically perform compliance checking. This aspect can be facil-
itated by integrating existing development tools like Rational Method Composer,
which is are already used in industry. It is also essential to increase the automa-
tion means for easing the creation of rules, i.e., rule editors and process models,
since formalizing requirements still needs human intervention. A good aspect is
that the research arena moves towards automatic means to model the process
after the fact, namely, process mining approaches. These approaches suit ag-
ile/agilized environments very well if automation is used during the development
process stages. However, where there are no process logs available, the approach
is not very suitable. Besides, mining techniques could extract the information
too late in the development process, and then compliance may be challenging to



42 Castellanos Ardila et al.

fix. In our opinion, process mining techniques can be included in a framework for
facilitate the compliance checking lifecycle, but not as a standalone technique to
guarantee compliance.

5.6 Going beyond technological dilemmas

Article 22 of the GDPR [141] stipulates that whenever a decision that legally
or significantly affects an individual relies solely on automated processing, the
right to contest the decision must be guaranteed. Thus, there is a need to clearly
explain the automatic compliance checking results that guarantee organizations
and individuals’ rights. Consequently, means for transparency have to build in
the methods. Transparency can be achieved by implementing data provenance
and traceability mechanisms. Data provenance is associated with data regarding
origin, changes, and details supporting confidence or validity. Traceability is re-
lated to the relationships between compliance results, software process elements,
and normative frameworks. We also consider that informal explanations should
always accompany formal specifications to clarify the rules’ meaning and place
them in context. In that way, if problems arise with released software products,
transparent, traceable, and fully documented compliance checking results could
show that the prescribed procedure was applied.

Assuming that the method for compliance checking and the tool support are
correctly designed, good results may be expected. However, correct answers de-
pend on the quality of the inputs that the tool receives. Unfortunately, the use of
mathematical methods for compliance checking, as presented in the studies, are
no guarantee of correctness since humans apply them. Cognitive biases, which
are deviations from the rational way we expect our brains to work, may appear
when we formalize normative documents. Therefore, there must be a layer of
trust in the methods, which guarantees that there is no requirement poison-
ing, i.e., rules incorrectly derived from the normative frameworks. In that way,
we could fight the lack of trust between organizations participating in global
software development governance and the utilization of automated means for
compliance checking.

6 Validity of the results

The research method used in this work intends to capture all papers addressing
automatic compliance approaches of software processes. Therefore, we followed
strictly the guidelines recommended in [97, 99]. However, there are threats that
could undermine the validity of the results obtained in this systematic review.
In this section, we address potential threats regarding publication bias (refers
to the problem that positive results are more likely to be published than neg-
ative results), identification of primary studies (refers to the strategy to collect
all possible studies), and data extraction consistency (refers to the strategy to
extract all data required to address the review questions).



Title Suppressed Due to Excessive Length 43

Publication bias: We designed a review protocol by following the steps
proposed by the guidelines described in Section 3. The first author prepared the
protocol while the second and third authors (who have previously participated
in research involving SLR, see for instance [23, 115]) ensure appropriateness by
performing an exhaustive review and assessment. We also pay careful attention
to external reviewers’ critical comments on an earlier version of this paper. Their
observations lead to an increase in the clarity of the review protocol. We also in-
clude Google scholar to avoid limiting information sources to specific publishers,
journals, or conferences. In order to accumulate reliable information, we decided
not to restrict the search dates and avoid the inclusion of technical reports, works
in progress, unpublished paper, or non-peer-reviewed publications.

Identification of primary studies: We aimed at ensuring that the search
addresses our review intentions. For this, we performed a careful characterization
of the topic (see Section 2) in an attempt to discover all the possible concepts
and their respective synonyms. We additionally tested such concepts in a known
digital library. With such a result, we concretized our search string as presented
in Table 3. We are aware that the search strategy is not sufficient to capture all
the possible studies. We carry out the snowballing process to mitigate this threat.
Consequently, we manually scanned and analyzed the references used primary
studies retrieved from the automated search (backward snowballing) and the
citations such studies get in Google scholar (forward snowballing). The main goal
was to ensure that our SLR also covers follow-up works that might exist but have
not been included in the search. The process of identifying primary studies was
performed by the first author, who is a Ph.D student. The prospective primary
studies were evaluated and cross-validated by the second and third authors, who
are experienced researchers.

Data extraction consistency: We based our data extraction strategy on
the data extraction criteria presented in Table 5. The first author prepared the
selection criteria by considering the quality criteria presented in Table 6, and
the research questions we intend to answer in the SLR, presented in Table 1. We
checked the data extraction table’s consistency by conducting a data extraction
pilot on a set of primary studies. After that test, we refine the data extraction
table by aggregating parametrization. For instance, we defined parameters for
the information regarding automation levels of the studies surveyed (CM, PC,
and IT). The data was distributed in two tables. The first table contains selec-
tion criteria and articles identification (see Table 7). The second table contains
16 columns aimed at recording the information corresponding to the research
questions (see Table 9). All this information was recorded and analyzed by using
Excel spreadsheets. We consider that the adopted data extraction strategy could
help to reduce threats regarding the data extraction consistency.

7 Related Work

SLRs regarding process-based compliance checking have been conducted pri-
marily in business-related areas. In particular, the work included in Becker et



44 Castellanos Ardila et al.

al. [13] presents a classification of approaches for compliance checking at design
time (processes are checked at the moment they are created) based on business-
related compliance patterns and the use of different techniques for modeling
processes. Ly et al.’s [110] work provides a systematic comparison of existing
approaches for monitoring compliance rules over business processes during run-
time (compliance is checked during process execution). In the work done by
Hashmi et al. [65], the authors evaluate selected frameworks regarding the mod-
eling of different compliance requirements and their link with the business pro-
cess. In the work done by Hashmi et al [66] and El Kharbili et al [95], the authors
present an evaluation of compliance management strategies at different times of
the compliance lifecycle, i.e., design-time, run-time, and auditing-time (compli-
ance is checked after the process has been executed). In Hashmi et al.’s work, the
author also review how control flow structures and norms are modeled. Like the
previous SLRs, our work also found that different kinds of formal approaches are
used to model processes and normative frameworks. However, any of these SLRs
include compliance checking of software processes, which is our focus. Moreover,
in our work, we found that the concepts used to describe processes are mod-
eled according to the specific standard’s needs. Instead, the business context
reviews found that it is more common to model artifacts in existing business-
oriented process modeling languages. Besides, none of the previous SLRs review
the concepts required for modeling complete process specifications, according
to software process needs, i.e., the definition of roles, work products, guidance,
and tools. Only the review presented by Hashmi et al. [66] considers the data
management at run-time, but only from the perspective of norms definition.

In engineering contexts, we find the work of Boella et al. [16] and, more
recently Akhigbe et al. [3], whose focus is surveying the representation of knowl-
edge for legal and regulatory requirements engineering. On the one hand, Boella
et al.’s work focuses on norms representation. On the other hand, Akhigbe et
al.’s focus on studying the uses and main claimed benefits and drawbacks of
goal-oriented and non-goal-oriented modeling methods for legal and regulatory
compliance. Instead, we focus on characterizing compliance checking as a whole.
For this reason, we include the languages used to model the normative frame-
works and the processes used to engineer the software. There are works targeting
software processes from different perspectives. For example, the work done by
von Wangenheim et al. [149] is an SLR, that focuses on software process capa-
bility/maturity models. In addition, the work done by Yan et al [152] presents a
systematic mapping study on quality assessment models. Our work, instead, fo-
cuses on all the models that can be derived from normative frameworks applied
to software processes, which include quality and SPI. The work done by Gar-
cia et al [58] focuses on the identification of software process modeling languages.
We do a similar thing, but we also include the models for normative frameworks
required for compliance analysis. Finally, in the context of safety-related com-
pliance management, we find Nair et al.’s work [116], whose work focuses on the
characterization of compliance artifacts, including the importance of providing



Title Suppressed Due to Excessive Length 45

process-based compliance checks. However, it is not covering how such checking
is done.

8 Conclusions and Future Work

The world is permeated by software applications, many of them acting in safety-
critical environments. Organizations doing software solutions also have to im-
plement processes, which are often mandated by normative frameworks, i.e.,
standards, regulations, laws and guidance. For this reason, software process
compliance is not an option. However, software process compliance checking
is challenging due to the numerous normative frameworks to which organiza-
tions need to comply. In the research arena, we can find several studies, which
have tackled the compliance checking problem of software processes from diverse
perspectives. In this paper, we characterized the state-of-the-art by performing
a systematic literature review on the topic. In our opinion, the primary stud-
ies selected provide a set of ad hoc solutions that are interesting, applicable,
and valuable contributions to the topic. There is also diversity regarding process
modeling languages and the types of artifacts described. Most of the languages
used for representing requirements primarily cover the concept of obligations
and prohibitions (what should be done and what should be avoided) but leave
aside other considerations, such as the permitted actions that could indirectly
affect compliance, e.g., requirements tailoring. The level of automation claimed
is related to the compliance reasoning required to compare processes and the
normative documents and tool-chain information integration. Essentially, the
surveyed methods require human intervention, especially to implement the in-
puts of the reasoning process. Tool support is still an issue since most of the
approaches are in the stage of conceptual modeling or have been materialized as
proof-of-concept prototypes. In addition, few of the methods contemplate agile
environments and standards evolution.

In the future, we will consider possible solutions for the challenges discov-
ered in this SLR (see Section 5). First, new research efforts in automatic com-
pliance checking, specifically for software processes, need to consider existing
process modeling languages to accelerate the topic’s results and standardize the
techniques and tool support. In particular, we consider it essential to promote
well-defined software process modeling languages, such as SPEM 2.0, to avoid
repetition in creating process-related modeling resources. For this, we could per-
form comparative studies between existing process modeling languages and case
studies showing their capabilities. Second, researchers need to find appropriate
means for using logical approaches for the representation of normative frame-
works. In that sense, we will continue investigating how to combine existing lan-
guages. The goal is to contribute with a well-defined (set of) logical structure(s)
that works harmoniously in all the aspects required for software process-related
compliance checking: reasoning capabilities, means for variability management,
support for agile environments, and process execution conformance. However,
we need to avoid the case of a new person feeling confused and frustrated when



46 Castellanos Ardila et al.

using formal methods. In particular, it could be interesting to develop short,
straightforward expressions (i.e., syntactic sugar) that make it easier to read or to
express normative frameworks, especially when the complexity (and size) of the
compliance checking tasks grows. Third, we believe that existing studies could
be combined to achieve a generic and normative agnostic method. Fourth, it is
also vital to increase automation level by defining mechanisms that support the
formalization of rules and reuse. It is also essential to concretize the tool support
and increase the use of data derived from industrial-related software processes to
evaluate the methods. Finally, we also mentioned incorporating a trust layer to
guarantee that rules are correctly derived from the normative frameworks. This
aspect can be reached in the future by using technological means. However, a
shorter-term solution could be to contact standardization/regulatory bodies to
investigate the possibility of releasing process models and formal representations
of the requirements within the release of new versions of the standards. With
this strategy, we could reduce undesired room for interpretation of the normative
texts.

Acknowledgment

This work is supported by the EU and VINNOVA via the ECSEL JU project
AMASS (No. 692474) [5].

References

1. European Organisation for Civil Aviation Equipment & European Organisation
for Civil Aviation Equipment: RTCA/DO-178C – Software Considerations in Air-
borne Systems and Equipment Certification (2011)

2. ISO/IEC JTC 1/SC 7: ISO/IEC TS 33053 – Information technology — Process
assessment — Process Reference Model (PRM) for quality management (2019),
https://www.iso.org/standard/55144.html

3. Akhigbe, O., Amyot, D., Richards, G.: A systematic literature mapping of goal
and non-goal modelling methods for legal and regulatory compliance. Require-
ments Engineering 24(4), 459–481 (2019), https://doi.org/10.1007/s00766-018-
0294-1

4. Alexander, I.F.: A taxonomy of stakeholders: Human roles in system development.
International Journal of Technology and Human Interaction (IJTHI) 1(1), 23–59
(2005)

5. AMASS: Architecture-driven, Multi-concern and Seamless Assurance and Certi-
fication of Cyber-Physical Systems. http://www.amass-ecsel.eu/

6. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A.: Integrating formal meth-
ods into medical software development: The ASM approach. Science of Computer
Programming 158, 148–167 (2018)

7. Arcaini, P., Bonfanti, S., Gargantini, A., Riccobene, E.: How to Assure Correct-
ness and Safety of Medical Software : The Hemodialysis Machine Case Study. In:
International Conference on Abstract State Machines. pp. 344–359 (2016)

8. Armour, P.G.: The Laws of Software Process: A New Model for the Production
and Management of Software. CRC Press (2003)



Title Suppressed Due to Excessive Length 47

9. Automotive SIG: Automotive SPICE V. 3.0 – Process Assessment/Reference
Model (2015)

10. Bala, S., Cabanillas, C., Haselböck, A., Havur, G., Mendling, J., Polleres, A.,
Sperl, S., Steyskal, S.: A Framework for Safety-Critical Process Management in
Engineering Projects. International Symposium on Data-Driven Process Discov-
ery and Analysis, vol. 1, pp. 1–27 (2017)

11. Barrett, C., Tinelli, C.: Satisfiability Modulo Theories. Handbook of Model Check-
ing pp. 305–335 (2018)

12. Bauer, K., Hinz, O., van der Aalst, W., Weinhardt, C.: Expl(ai)n it to me–
explainable ai and information systems research. Business & Information Systems
Engineering (2021)

13. Becker, J., Delfmann, P., Eggert, M., Schwittay, S.: Generalizability and Appli-
cability of Model- Based Business Process Compliance-Checking Approaches: A
State-of-the-Art Analysis and Research Roadmap. Business Research 5(2), 221–
247 (2012)

14. Biro, M.: Open services for software process compliance engineering. In: Inter-
national Conference on Current Trends in Theory and Practice of Informatics.
pp. 1–6. Springer (2014)

15. Biro, M.: Open services for software process compliance engineering. pp. 1–6.
SOFSEM 2014: Theory and Practice of Computer Science, Springer International
Publishing, Cham (2014)

16. Boella, G., Humphreys, L., Muthuri, R., Rossi, P., Van Der Torre, L.: A critical
analysis of legal requirements engineering from the perspective of legal practice.
pp. 14–21. 7th International Workshop on Requirements Engineering and Law
(2014)

17. Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from
abstract state machines to embedded systems: A smart pill box case study. In:
International Conference on Objects, Components, Models and Patterns. pp. 89–
103. Springer (2019)

18. Bonatti, P.: Fast Compliance Checking in an OWL2 Fragment. In: 27th Inter-
national Joint Conferences on Artificial Intelligence Organization. pp. 1746–1752
(2018)

19. Börger, E., Stark, R.: Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer-Verlag, New York, Inc. (2003).
https://doi.org/10.1007/978-3-642-18216-7

20. Bramberger, R., Martin, H., Gallina, B., Schmittner, C.: Co-engineering of safety
and security life cycles for engineering of automotive systems. ACM SIGAda Ada
Letters 39(2), 41–48 (2020)

21. Brown, D., Delseny, H., Hayhurst, K., Wiels, V.: Guidance for using formal meth-
ods in a certification context. ERTS2 2010, Embedded Real Time Software &
Systems (2010)

22. Bundesamt für Wehrtechnik und Beschaffung (BWB): General Directive 250:
Software Development Standard for the German Federal Armed Forces, V-model,
Software Lifecycle Process Model (1992)

23. Carlan, C., Gallina, B., Soima, L.: Safety case maintenance: A systematic liter-
ature review. In: 40th International Conference on Computer Safety, Reliability
and Security (2021)

24. Carroll, N., Richardson, I.: Software-as-a-medical device: demystifying connected
health regulations. Journal of Systems and Information Technology (2016)



48 Castellanos Ardila et al.

25. Castellanos Ardila, J., Gallina, B., Ul Muram, F.: Facilitating Automated Com-
pliance Checking of Processes in the Safety-critical Context. Electronic Commu-
nications of the EASST 078, 1–20 (2019)

26. Castellanos Ardila, J.P., Gallina, B.: Towards Efficiently Checking Compliance
Against Automotive Security and Safety Standards. 7th IEEE International
Workshop on Software Certification (2017)

27. Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Enabling Compliance Check-
ing against Safety Standards from SPEM 2.0 Process Models. pp. 45 – 49. Eu-
romicro Conference on Software Engineering and Advanced Applications (2018)

28. Castellanos Ardila, J.P., Gallina, B., UL Muram, F.: Transforming SPEM 2.0-
compatible Process Models into Models Checkable for Compliance. 18th Interna-
tional SPICE Conference (2018)

29. Castellanos Ardila, J., Gallina, B.: Towards increased efficiency and confidence in
process compliance. The 24th EuroAsiaSPI Conference, vol. 748 (2017)

30. Castellanos Ardila, J.P., Gallina, B.: Separation of concerns in process compliance
checking: Divide-and-conquer. pp. 135–147. European Conference on Software
Process Improvement, Springer (2020)

31. Castellanos Ardila, J.P., Gallina, B.: Reusing (safety-oriented) compliance arti-
facts while recertifying. pp. 53–64. 9th International Conference on Model-Driven
Engineering and Software Development - Volume 1: MODELSWARD,, INSTICC,
SciTePress (2021). https://doi.org/10.5220/0010224900530064

32. Castellanos Ardila, J.P., Gallina, B., Governatori, G.: Compliance-aware engi-
neering process plans: The case of space software engineering processes. Artificial
intelligence and law (2021)

33. Cha, S., Taylor, R.N., Kang, K.: Handbook of software engineering. Springer
(2019)

34. Cheung, L., Chung, P., Dawson, R.: Managing process compliance. Information
management: Support systems and multimedia technology pp. 48–62 (2003)

35. Chung, P., Cheung, L., Machin, C.: Compliance Flow-Managing the Compliance
of Dynamic and Complex Processes. Knowledge-Based Systems 21(4), 332–354
(2008)

36. Clarke, L.A., Osterweil, L.J., Avrunin, G.S.: Supporting human-intensive systems.
pp. 87–92. FSE/SDP workshop on Future of software engineering research (2010)

37. Clarke, P., LepmetsF, M., McCaffery, F., Finnegan, A., Dorling, A., Flood, D.:
Mdevspice - a comprehensive solution for manufacturers and assessors of safety-
critical medical device software. pp. 274–278. Software Process Improvement and
Capability Determination, Springer International Publishing, Cham (2014)

38. Cohen, D.: AP5 Reference Manual. https://ap5.com/doc/ap5-man.html (2019)
39. Colmerauer, A.: An Introduction to Prolog III. Computational Logic pp. 37–79

(1990)
40. Cooper, H.M.: Organizing knowledge syntheses: A taxonomy of literature reviews.

Knowledge in society 1(1), 104–126 (1988)
41. Cugola, G., Ghezzi, C.: Software processes: a retrospective and a path to the

future. Software Process: Improvement and Practice 4(3), 101–123 (1998)
42. Cusumano, M.A.: Who is liable for bugs and security flaws in software? Commu-

nications of the ACM 47(3), 25–27 (2004)
43. Daoudagh, S., Marchetti, E.: A life cycle for authorization systems development

in the gdpr perspective. pp. 128–140. ITASEC (2020)
44. De La Vara, J.L., Maŕın, B., Ayora, C., Giachetti, G.: An empirical evaluation

of the use of models to improve the understanding of safety compliance needs.
Information and Software Technology 126, 106351 (2020)



Title Suppressed Due to Excessive Length 49

45. De La Vara, J.L., Ruiz, A., Attwood, K., Espinoza, H., Panesar-Walawege, R.K.,
López, Á., Del Ŕıo, I., Kelly, T.: Model-based specification of safety compliance
needs for critical systems: A holistic generic metamodel. Information and Software
Technology 72(C), 16–30 (2016)

46. Denyer, D., Tranfield, D., Van Aken, J.E.: Developing design propositions through
research synthesis. Organization studies 29(3), 393–413 (2008)

47. Diebold, P., Scherr, S.: Software process models vs descriptions: What do prac-
titioners use and need? Journal of Software: Evolution and Process 29(11), 1–13
(2017)

48. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Checking Traces for Regulatory Con-
formance. pp. 86–103. Proceedings of the International Workshop on Runtime
Verification (2008)

49. Emmerich, W., Finkelstein, A., Montangero, C., Antonelli, S., Armitage, S.,
Stevens, R.: Managing Standards Compliance. IEEE Transactions on Software
Engineering 25(6), 836–851 (1999)

50. European Committee for Electrotechnical Standardization: CENELEC - EN
50128. Railway Applications-Communication, Signaling and Processing Systems
Software for Railway Control and Protection Systems (2011)

51. European Committee for Electrotechnical Standardization: CENELEC - EN
50126. Railway Applications - The Specification and Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS) (2017)

52. European Parliament and Council of the European Union: General Data Protec-
tion Regulation (GDPR) (2016)

53. European Space Agency: ECSS-E-ST-40C – Space Engineering Software (2009),
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/

54. Fernandes, J.M., Duarte, F.J.: A reference framework for process-oriented soft-
ware development organizations. Software & Systems Modeling 4(1), 94–105
(2005)

55. Fitzgerald, B., Stol, K.J., O’Sullivan, R., O’Brien, D.: Scaling Agile Methods
to Regulated Environments: An Industry Case Study. pp. 863–872. 35th Inter-
national Conference on Software Engineering (ICSE), IEEE Computer Society
(2013). https://doi.org/10.1109/ICSE.2013.6606635

56. Fuggetta, A.: Software process: a roadmap. pp. 25–34. Conference on the Future
of Software Engineering, Orlando, Florida (2000)

57. Gallina, B., Ul Muram, F., Castellanos Ardila, J.: Compliance of Agilized (Soft-
ware) Development Processes with Safety Standards: a Vision. pp. 1–6. 4th In-
ternational Workshop on Agile Development of Safety-Critical Software (2018)

58. Garćıa-Borgoñon, L., Barcelona, M.A., Garćıa-Garćıa, J.A., Alba, M., Escalona,
M.J.: Software process modeling languages: A systematic literature review. Infor-
mation and Software Technology 56(2), 103–116 (2014)

59. Generowicz, M.: The Easy Path to Functional Safety Compliance. pp. 1–
3. I&E Systems Pty Ltda (2013), https://www.iesystems.com.au/wp-
content/uploads/2015/04/Duty-of-Care-Article.pdf, Accessed March 30, 2021

60. Golra, F.R., Dagnat, F., Bendraou, R., Beugnard, A.: Continuous process com-
pliance using model driven engineering. In: International Conference on Model
and Data Engineering. pp. 42–56. Springer (2017)

61. Goverment of Canada: PIPEDA – Personal Information Protection and Elec-
tronic Documents Act (2000)

62. Governatori, G.: Representing business contracts in RuleML. International Jour-
nal of Cooperative Information Systems 14(02n03), 181–216 (2005)



50 Castellanos Ardila et al.

63. Guarda, P., Ranise, S.: Security Analysis and Legal Compliance Checking for
the Design of Privacy-friendly Information Systems. In: Symposium on Access
Control Models and Technologies. pp. 247–254 (2017)

64. Harju, H., Lahtinen, J., Ranta, J., Nevalainen, R., Johansson, M.: Software safety
standards for the basis of certification in the nuclear domain. pp. 54–62. 7th In-
ternational Conference on the Quality of Information and Communications Tech-
nology (2010)

65. Hashmi, M., Governatori, G.: A methodological evaluation of business process
compliance management frameworks. Proceedings of the Asia-Pacific Conference
on Business Process Management pp. 106–115 (2013)

66. Hashmi, M., Governatori, G., Lam, H., Wynn, M.: Are we done with business
process compliance: state of the art and challenges ahead. Knowledge and Infor-
mation Systems 57(1), 79–133 (2018)

67. Hassan, W., Logrippo, L.: Towards a process for legally compliant software.
In: 2013 6th International Workshop on Requirements Engineering and Law
(RELAW). pp. 44–52. IEEE (2013)

68. He, X., Guo, J., Wang, Y., Guo, Y.: An automatic compliance checking approach
for software processes. pp. 467–474. Asia-Pacific Software Engineering Conference
(2009)

69. Henderson, P.: Software processes are business processes too. pp. 181–182. 3rd
International Conference on the Software Process. Applying the Software Process,
IEEE (1994)

70. Hewett, R., Kijsanayothin, P., Bak, S., Galbrei, M.: Cybersecurity policy verifi-
cation with declarative programming. Applied Intelligence 45(1), 83–95 (2016)

71. Icheku, V.: Understanding ethics and ethical decision-making. Xlibris Corporation
(2011)

72. Ingolfo, S., Siena, A., Mylopoulos, J.: Establishing regulatory compliance for soft-
ware requirements. pp. 47–61. International Conference on Conceptual Modeling
(2011)

73. Internation Organization for Standardization: ISO/IEC 90003:2004-Software en-
gineering – Guidelines for the application of ISO 9001:2000 to computer software
(2004)

74. Internation Organization for Standardization: ISO 14971:2019 – Application of
risk management to medical devices (Dec 2019)

75. Internation Organization for Standardization - Technical Committee 210: IEC
62304- Medical device software — Software life cycle processes (2006)

76. International Electrotechnical Commission: IEC 61508– Functional safety of elec-
tric/electronic/programmable electronic safety-related systems (1998)

77. International Organization for Standardization: ISO 9001-3– Quality Manage-
ment and Quality Assurance Standards - Part 3 (1991)

78. International Organization for Standardization: ISO 9000– Quality Management
Systems-Fundamentals and Vocabulary (2005)

79. International Organization for Standardization: ISO/IEC TR 29110-5-1-2 – Soft-
ware engineering – Lifecycle profiles for Very Small Entities (VSEs): Management
and engineering guide: Generic profile group: Basic profile (2011)

80. International Organization for Standardization: ISO/IEC 15504 – Information
technology - Process assessment (Jun 2013)

81. International Organization for Standardization - Technical Committe: ISO/IEC
joint technical committee JTC 1: ISO/IEC 27000– Information Technology (2018)



Title Suppressed Due to Excessive Length 51

82. International Organization for Standardization - Technical Committe: ISO/IEC
JTC 1/SC 7: ISO/IEC 330XX – Information technology - Process assessment –
Concepts and Terminology. (2015)

83. International Organization for Standardization - Technical Committe: ISO/TC
22/SC 32: ISO 26262: Road Vehicles Functional Safety (2018)

84. International Organization for Standardization/International Electrotechnical
Commission: ISO/IEC/IEEE 12207– Systems and software engineering — Soft-
ware life cycle processes (2017)

85. Jääskinen, N.: Better regulation programs: Some critical remarks. In: Changing
Forms of Legal and Non-Legal Institutions and New Challenges for the Legislator.
pp. 29–33. International Conference on Legislative Studies in Helsinki (2008)

86. Javed, M., Gallina, B.: Safety-oriented Process Line Engineering via Seamless
Integration between EPF Composer and BVR Tool. pp. 23–28. 22nd International
Systems and Software Product Line Conference (2018)

87. Jost, H., Hahn, A., Häusler, S., Köhler, S., Gačnik, J., Köster, F., Lemmer, K.:
Supporting qualification: Safety standard compliant process planning and moni-
toring. pp. 1–6. Symposium on Product Compliance Engineering (2010)

88. Kabaale, E., Wen, L., Wang, Z., Rout, T.: Representing Software Process in De-
scription Logics: An Ontology Approach for Software Process Reasoning and Ver-
ification. pp. 362–376. Software Process Improvement and Capability Determina-
tion Conference, Springer (2016)

89. Kabaale, E., Wen, L., Wang, Z., Rout, T.: An Axiom Based Metamodel for Soft-
ware Process Formalisation : An Ontology Approach. International Conference on
Software Process Improvement and Capability Determination, vol. 2, pp. 226–240
(2017)

90. Kabaale, E., Wen, L., Wang, Z., Rout, T.: Ensuring Conformance to Process
Standards Through Formal Verification. International Conference on Software
Process Improvement and Capability Determination, vol. 2, pp. 248–262. Springer
International Publishing (2018)

91. Kabaale, E., Wen, L., Wang, Z., Rout, T.: Formalising Process Assessment and
Capability Determination : An Ontology Approach. European Conference on Soft-
ware Process Improvement, vol. 2, pp. 594–605. Springer International Publishing
(2019)

92. Kemp, R.: Regulating the safety of autonomous vehicles using artificial intelli-
gence. Communications Law 24(1), 24–33 (2019)

93. Kerrigan, S., Law, K.H.: Logic-based regulation compliance-assistance. pp. 126–
135. Proceedings of the 9th international conference on Artificial intelligence and
law (2003)

94. Khan, A.A., Keung, J., Niazi, M., Hussain, S., Ahmad, A.: Systematic literature
review and empirical investigation of barriers to process improvement in global
software development: Client–vendor perspective. Information and Software Tech-
nology 87, 180–205 (2017)

95. Kharbili, M.e., Medeiros, A.K.A.d., Stein, S., van der Aalst, W.M.: Business pro-
cess compliance checking: Current state and future challenges. Modellierung be-
trieblicher Informationssysteme (MobIS 2008) (2008)

96. Khelladi, D.E., Bendraou, R., Baarir, S., Laurent, Y., Gervais, M.P.: A framework
to formally verify conformance of a software process to a software method. In:
Proceedings of the 30th Annual ACM Symposium on Applied Computing. pp.
1518–1525 (2015)

97. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature
reviews in Software Engineering. Tech. Rep. 4ve (2007)



52 Castellanos Ardila et al.

98. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman,
S.: Systematic literature reviews in software engineering–a systematic literature
review. Information and software technology 51(1), 7–15 (2009)

99. Kitchenham, B., Brereton, P.: A systematic review of systematic review process
research in software engineering. Information and software technology 55(12),
2049–2075 (2013)

100. Kneuper, R.: Software Processes and Life Cycle Models. An Introduction to Mod-
elling, Using and Managing Agile, Plan-Driven and Hybrid Processes. Springer,
Cham (2018). https://doi.org/https://doi-org.ep.bib.mdh.se/10.1007/978-3-319-
98845-0, iSBN 978-3-319-98845-0

101. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trek-
tere, K., McCaffery, F., Linssen, O., Hanser, E., et al.: Hybrid software and system
development in practice: waterfall, scrum, and beyond. pp. 30–39. International
Conference on Software and System Process (2017)

102. Kuhrmann, M., Diebold, P., Munch, J., Tell, P., Trektere, K., McCaffery, F.,
Garousi, V., Felderer, M., Linssen, O., Hanser, E., et al.: Hybrid software de-
velopment approaches in practice: a european perspective. IEEE Software 36(4),
20–31 (2018)

103. Kuhrmann, M., Konopka, C., Nellemann, P., Diebold, P., Münch, J.: Software
process improvement: where is the evidence?: initial findings from a systematic
mapping study. pp. 107–116. International Conference on Software and System
Process (2015)

104. Ladkin, P.B.: Duty of care and engineering functional-safety standards. Digital
Evidence & Elec. Signature L. Rev. 16, 51 (2019)

105. Leveson, N.: Safety : Why, What, and How. ACM Computing Surveys (CSUR)
18(2), 125–163 (1986)

106. Leveson, N.G.: The use of safety cases in certification and regulation. Tech. rep.,
Massachusetts Institute of Technology. Engineering Systems Division (2011)

107. Lifschitz, V.: What is answer set programming. AAAI, vol. 8, pp. 1594–7 (2008)

108. Lonchamp, J.: A structured conceptual and terminological framework for software
process engineering. pp. 41–53. 2nd International Conference on the Software
Process-Continuous Software Process Improvement, IEEE (1993)

109. Lúcio, L., Rahman, S., Cheng, C.H., Mavin, A.: Just formal enough? automated
analysis of ears requirements. pp. 427–434. NASA Formal Methods Symposium,
Springer (2017)

110. Ly, L., Maggi, F., Montali, M., Rinderle-Ma, S., Van Der Aalst, W.: Compliance
monitoring in business processes: Functionalities, application, and tool-support.
Information Systems 54, 209–234 (2015)

111. Maccaull, W., Rabbi, F.: NOVA Workflow : A Workflow Management Tool Tar-
geting Health Services Delivery. In: International Symposium on Foundations of
Health Informatics Engineering and Systems. pp. 75–92 (2012)

112. Marsden, J., Windisch, A., Mayo, R., Grossi, J., Villermin, J., Fabre, L., Aven-
tini, C.: Ed-12c/do-178c vs. agile manifesto: A solution to agile development of
certifiable avionics. In: 9th European Congress Embedded Real Time Software
and Systems (ERTS) (2018)

113. Mayr-Dorn, C., Vierhauser, M., Bichler, S., Keplinger, F., Cleland-Huang, J.,
Egyed, A., Mehofer, T.: Supporting quality assurance with automated process-
centric quality constraints checking. IEEE/ACM 43rd International Conference
on Software Engineering (ICSE) (2021)



Title Suppressed Due to Excessive Length 53

114. Munoz-Gama, J.: Conformance Checking and its Challenges. Conformance Check-
ing and Diagnosis in Process Mining Comparing Observed and Modeled Processes
pp. 11–18 (2016)

115. Muram, F.u., Tran, H., Zdun, U.: Systematic review of software behavioral model
consistency checking. ACM Computing Surveys (CSUR) 50(2), 1–39 (2017)

116. Nair, S., De La Vara, J., Sabetzadeh, M., Briand, L.: An extended systematic
literature review on provision of evidence for safety certification. Information and
Software Technology 56(7), 689–717 (2014)

117. Osterweil, L.: Software processes are software too. In: 9th international conference
on Software Engineering (ICSE 1987). IEE (1987)

118. Osterweil, L.J.: Formalisms to support the definition of processes. Journal of
Computer Science and Technology 24(2), 198–211 (2009)

119. Panesar-Walawege, R., Sabetzadeh, M., Briand, L.: A Model-Driven Engineering
Approach to Support the Verification of Compliance to Safety Standards. In:
International Symposium on Software Reliability Engineering. pp. 30–39 (2011)

120. Panesar-Walawege, R., Sabetzadeh, M., Briand, L.: Supporting the verification
of compliance to safety standards via model-driven engineering: Approach, tool-
support and empirical validation. Information and Software Technology 55(5),
836–864 (2013), http://dx.doi.org/10.1016/j.infsof.2012.11.009

121. Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it.
IEEE transactions on software engineering (2), 251–257 (1986)

122. Pnueli, A.: The temporal logic of programs. pp. 46–57. 18th Annual Symposium
on Foundations of Computer Science, IEEE (1977)

123. Proença, D., Borbinha, J.: A Formalization of the ISO/IEC 15504: Enabling Au-
tomatic Inference of Capability Levels. In: International Conference on Software
Process Improvement and Capability Determination. pp. 197–210 (2017)

124. Proença, D., Borbinha, J.: Formalizing ISO/IEC 15504-5 and SEI CMMI v1.3 –
Enabling automatic inference of maturity and capability levels. Computer Stan-
dards and Interfaces (2018)

125. Rabbi, F., Wang, H., MacCaull, W.: Compensable workflow nets. pp. 122–137.
International Conference on Formal Engineering Methods, Springer (2010)

126. Rahim, M.M., Idowu, S.O.: Social Audit Regulation: Development, Challenges
and Opportunities. Springer (2015)

127. Ramasubbu, N., Bharadwaj, A., Tayi, G.K.: Software process diversity: Concep-
tualization, measurement, and analysis of impact on project performance. MIS
Quarterly 39(4), 787–808 (2015), https://www.jstor.org/stable/26628652

128. Ranise, S., Siswantoro, H.: Automated Legal Compliance Checking by Security
Policy Analysis. In: International Conference on Computer Safety, Reliability, and
Security. pp. 361–372 (2017)

129. Regan, G., Biro, M., Mc Caffery, F., Mc Daid, K., Flood, D.: A traceability
process assessment model for the medical device domain. pp. 206–216. European
Conference on Software Process Improvement, Springer (2014)

130. Rodriguez, D., Garcia, E., Sanchez, S., Nuzzi, C.R.S.: Defining software process
model constraints with rules using owl and swrl. International Journal of Software
Engineering and Knowledge Engineering 20(04), 533–548 (2010)

131. SAE International: SAE J3061 – Cybersecurity Guidebook for Cyber-Physical Ve-
hicle Systems (2016)

132. Scacchi, W.: Business processes can be software too: some initial lessons learned.
pp. 183–184. 3rd International Conference on the Software Process. Applying the
Software Process, IEEE Computer Society (1994)



54 Castellanos Ardila et al.

133. Schieferdecker, I.: Responsible software engineering. In: The Future of Software
Quality Assurance, pp. 137–146. Springer, Cham (2020)

134. Schwartz, A.: Statutory interpretation, capture, and tort law: The regulatory
compliance defense. American Law and Economics Review 2(1), 1–57 (2000)

135. Siena, A., Mylopoulos, J., Perini, A., Susi, A.: From Laws to Requirements. In:
Requirements Engineering and Law. pp. 6–10 (2008)

136. Software Engineering Institute - Carnegie Mellon University: CMMI for Develop-
ment Version 1.3– Capability Maturity Model Integration (2011)

137. St̊alhane, T., Myklebust, T., Hanssen, G.: The application of safe scrum to IEC
61508 certifiable software. In: 11th International Probabilistic Safety Assessment
and Management Conference and the Annual European Safety and Reliability
Conference. vol. 8, pp. 6052–6061 (2012)

138. Stallinger, F., Henderson-Sellers, B., Torgersson, J.: The oospice assessment com-
ponent: Customizing. Business Component-Based Software Engineering 705, 119
(2012)

139. Tarr, P.L., Wolf, A.L.: Introduction to “engineering of software: The continu-
ing contributions of leon j. osterweil”. Engineering of Software, Springer, Berlin,
Heidelberg

140. The European Parlament and the Council of the European Union: EU DPD –
European Data Protection Directive (1995)

141. The European Parliament and the Council of the European Union: GDPR –
General Data Protection Regulation (2016)

142. Tonini, A.C., Mesquita Spinola, M.D., Barbin Laurindo, F.J.: Six sigma and soft-
ware development process: Dmaic improvements. Technology Management for the
Global Future - PICMET 2006 Conference, vol. 6, pp. 2815–2823 (2006)

143. Torre, D., Soltana, G., Sabetzadeh, M., Briand, L., Auffinger, Y., Goes, P.: Us-
ing Models to Enable Compliance Checking against the GDPR : An Experience
Report. 22nd International Conference on Model Driven Engineering Languages
and Systems pp. 1–11 (2019)

144. Usman, M., Felderer, M., Unterkalmsteiner, M., Klotins, E., Mendez, D.,
Alégroth, E.: Compliance requirements in large-scale software development: An
industrial case study. In: International Conference on Product-Focused Software
Process Improvement. pp. 385–401. Springer (2020)

145. Vakkuri, V., Jantunen, M., Halme, E., Kemell, K.K., Nguyen-Duc, A., Mikkonen,
T., Abrahamsson, P.: Time for ai (ethics) maturity model is now. arXiv preprint
arXiv:2101.12701 (2021)

146. Valle, A.M., Santos, E.A., Loures, E.R.: Applying process mining techniques in
software process appraisals. Information and software technology 87, 19–31 (2017)

147. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process struc-
ture tree. Data & Knowledge Engineering 68(9), 793–818 (2009),
http://dx.doi.org/10.1016/j.datak.2009.02.015

148. Vilkomir, S., Bowen, J., Ghose, A.: Formalization and assessment of regulatory
requirements for safety-critical software. Innovations in Systems and Software
Engineering 2(3-4), 165–178 (2006)

149. von Wangenheim, C.G., Hauck, J.C.R., Salviano, C.F., von Wangenheim, A.: Sys-
tematic literature review of software process capability/maturity models. Interna-
tional Conference on Software Process Improvement and Capabity Determination
(SPICE), Pisa, Italy (2010)

150. Welzel, D., Walter, H., Schmidt, W.: Tailoring and conformance testing of software
processes: the ProcePT approach. pp. 41–49. Software Engineering Standards
Symposium (1995)



Title Suppressed Due to Excessive Length 55

151. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. pp. 1–10. 18th International Conference on Eval-
uation and Assessment in Software Engineering (2014)

152. Yan, M., Xia, X., Zhang, X., Xu, L., Yang, D., Li, S.: Software quality assessment
model: A systematic mapping study. Science China Information Sciences 62(9),
1–18 (2019)

153. Zhang, H., Ali-Babar, M., Tell, P.: Identifying relevant studies in software engi-
neering. Information and Software Technology 53(6), 625–637 (2011)


