A Trade-Off between Computing Power and Energy Consumption of On-Board
Data Processing in GPU Accelerated In-Orbit Space Systems

By Nandinbaatar Ts0G,"” Saad MUBEEN," Mikael SJODIN," and Fredrik BRUHN!?

D Milardalen University, Viisterds, Sweden
2 Unibap AB (Publ.), Uppsala, Sweden

(Received July 12th, 2019)

On-board data processing is one of the prior on-orbit activities that improves the performance capability of in-orbit space systems

such as deep-space exploration, earth and atmospheric observation satellites, and CubeSat constellations. However, on-board data

processing encounters higher energy consumption compared to traditional on-board space systems. This is because the traditional

space systems employ simple processing units such as single-core microprocessors as the systems do not require heavy data processing.

Moreover, solving the radiation hardness problem is crucial in space, and adopting a new processing unit is challenging. In this paper,

we consider a Graphics Processing Unit (GPU) accelerated in-orbit space system for on-board data processing. According to prior

works, there exist radiation-tolerant GPU, and the computing capability of systems is improved by using heterogeneous computing

method. We conduct experimental observations of energy consumption and computing potential using this heterogeneous computing

method in our GPU accelerated in-orbit space systems. The results show that the proper use of GPU increases computing potential

with 10-140 times and consumes between 8-130 times less energy. Furthermore, the entire task system consumes 10-65% of less

energy compared to the traditional use of processing units.

Key Words: On-board Data Processing, Heterogeneous Computing, Energy Efficiency, GPU Accelerated On-board Computer

Nomenclature
C worst case execution time (WCET), sec
T period of task, sec
D deadline of task, sec
R response time (RT), sec
t time instance, sec
E consumed energy, Joule
P consumed power, Watt

1. Introduction

In the space community, technological advances make it pos-
sible to work on a new challenge for on-orbit activities" in-
cluding in-orbit servicing and in-situ experiments. On-board
data processing is one of the prior on-orbit activities that im-
proves the performance capability of in-orbit space systems
such as deep-space exploration, earth and atmospheric obser-
vation satellites, and CubeSat constellations. We consider that
the advanced on-board data processing solves the current com-
munication limitation which is low-speed connections between
satellites and ground stations with limited access time inter-
vals. Furthermore, there exist Size, Weight, and Power (SWaP)
and radiation limitations for space systems as well as on-board
data processing. Due to these limitations, the traditional and
small scale space systems employ simple processing units such
as micro-controllers or a single-core processor even though the
systems end up with limited on-board processing capabilities in
orbit. The rapid development of technology makes advanced
on-board data processing possible for small scale space sys-
tems using heterogeneous processing units that meet the re-
quirements of size and weight limitations. Moreover, there ex-
ist many radiation hardened and/or tolerant processing units in-

cluding Field Programmable Gate Arrays (FPGA), Digital Sig-
nal Processor (DSP) and Graphics Processing Unit (GPU).?
However, these processing units consume more energy.> In ad-
dition, the use of GPUs in the context of space is not well stud-
ied yet, due to the prior concern that GPUs are not suitable for
the radiation-hardened environments. Therefore, in this paper,
we consider a trade-off between computing power and energy
consumption focusing on the entire task set with different use
scenarios in GPU accelerated systems.

The interest of using heterogeneous computing in real-time
and low-end embedded systems is increasing along with ad-
vanced on-board processing such as machine learning and com-
puter vision algorithms. However, in real-time and low-end
embedded systems, heterogeneous processing units are less-
studied compared to single- and multi-core processing units,
although, heterogeneous computing is well-known in High-
Performance Computing (HPC), especially in supercomput-
ers.*> The main reasons that hinder the usage of heterogeneous
processing units in embedded systems are difficulties of paral-
lel programming and complexity of heterogeneous systems. In
order to address these problems, some industry vendors (AMD,
ARM, Imagination, MediaTek, Qualcomm, and Samsung) es-
tablished HSAFoundation® which has proposed a new stan-
dard, the Heterogeneous System Architecture (HSA), for the
advancement of heterogeneous computing. In this paper, we
conduct experimental observations of HSA compliant GPU ac-
celerated on-board processing platforms using heterogeneous
computing methods introduced in prior works.>” These plat-
forms are commercialized by Unibap AB* with flight heritage
and selected by NASA for high-performance on-board data pro-
cessing for the HyTI thermal hyperspectral mission.”

* https://unibap.com/

1.1. Contributions

The overall goal of our research is to develop a real-time
system which could provide more computing potential to its
tasks under energy limited conditions. This work is part of un-
derstanding suitable mapping from heterogeneous processors
to tasks under limited energy budget. Prior works>’® report
that the balanced use of heterogeneous processors improves the
schedulability of the task sets in real-time systems when tasks
are allowed to choose to run on different processors in different
instances. Hence, our contribution in this paper is to conduct
observations of energy consumption in GPU accelerated real-
time systems while using the mapping method for the balanced
use of heterogeneous processors. These observations provide
us the fundamental understanding to perform the dynamic al-
location of tasks to the heterogeneous processors under limited
energy budget.
1.2. Organization

In the rest of this paper, we provide needed related work in
Section 2. Section 3 presents detailed explanations about real-
time systems, heterogeneous computing as well as advanced ap-
plications in satellite. A description of our system model is dis-
cussed in Section 4. Section 5 reports experimental evaluation.
Lastly, we conclude in Section 6.

2. Related work

In high performance computing, the research of heteroge-
neous processors and heterogeneous computing is very active.”
Especially, in supercomputers, the impact of GPU is indispens-
able. However, the balanced use of GPU and Central Process-
ing Unit (CPU) is significant, since not all the applications are
suitable for parallelism.” The nature of Open Computing Lan-
guage (OpenCL)>!? makes heterogeneous computing easier as
it is possible to prepare the different kernels on the different
devices. Furthermore, heterogeneous computing is considered
as part of distributed computing in sense of distributing the
data/kernels to the distributed computing resources when appli-
cations use data-parallelism. However, satellites as being low-
end embedded system applications need to perform under lim-
ited budgets of the different resources (location, SWaP); there-
fore, considering the distributed computing resources is chal-
lenging in the satellite. Moreover, the research of heteroge-
neous computing in real-time embedded systems is less studied
compared to high performance computing.

There exist several approaches to utilize GPU in real-time
systems. Shinpei et al. introduced TimeGraph,'" Responsive
GPGPU Execution Model (RGEM)!? and Gdev'® along with
zero-copy Input/Output (I/O) processing for low-latency GPU
computing.'¥ Furthermore, the works of Elliott et al.'>'® and
Kim et al.'”>'® consider worst-case timing behavior in GPU
accelerated real-time systems. Most of these works consider
compensating the limitation of early existing GPU hardware
and device drivers such as a zero-copy technique for acceler-
ators’ memory and splitting tasks into smaller chunks for al-
lowing preemption. However, these limitations are considered
to be solved by new technologies such as unified memory, zero-
copy and preemption support in Compute Unified Device Ar-
chitecture (CUDA)'? and Heterogeneous System Architecture

(HSA).3’20’21)

There are several works that have focused on modeling se-
quential and parallel tasks such as fork-join?>?3 and Directed
Acyclic Graph (DAG).?*? Recently, Baruah?® introduced i f-
then-else concept using conditional DAG task modeling, which
is useful for the heterogeneous computing. The topology of this
model is considered in this study.

In order to maintain a sustainable system in space, energy ef-
ficiency is the crucial factor that should be considered. There
are many techniques used to improve energy efficiency® such
as workload partitioning based techniques,?” Dynamic Volt-
age and Frequency Scaling (DVFS) based techniques,?® and
resource scaling based techniques. The combination of these
techniques has also considered to save energy efficiency.?” Our
experiments in this paper focus more on the energy consump-
tion of the entire system compared to specific tasks, since the
power budget for the entire system is most important in the low-
end embedded systems.

Employing heterogeneous processors in On-Board Computer
(OBC) of a satellite is common when the scale of the satellite
size is larger. For example, FPGA accelerated on-board com-
puters are well known in satellites, as FPGAs are robust in the
radiation-hardened environments. Since FPGAs are good for
image and video processing, they are considered for on-board
processing in an advanced imaging system,?? Digital Video
Broadcasting - Satellite - Second Generation (DVB-S2) trans-
port stream” and real-time cloud detection.>” On the other
hand, the use of GPUs in the context of space was not ap-
preciated, due to the prior concern of GPUs for the radiation-
hardened environments. Recently, GPUs are being considered
more and more in the on-board computer is increasing.>3> In
this paper, we conduct experimental observations of utilizing
GPU in the context of space.

3. Background

The advanced on-board data processing should be predictable
in order to make a decision in orbit, while it is considered as a
way to solve the limitation of communication between the satel-
lite and the ground station. To consider a predictable system,
we introduce the background knowledge of real-time systems
in this section. Then, we present how the heterogeneous com-
puting techniques are implemented in the current state of the
art environments. Furthermore, we discuss the use of advanced
applications in satellite in this section.

3.1. Real-time system

A real-time system is a system that reacts to external events.
The system executes a function based on the external events and
returns a response within a finite and required time. Therefore,
not only the accuracy of the result, but also the timeliness is a
crucial factor for the accuracy of the system.

The real-time system can be divided into a hard, firm and
soft*® real-time system from perspective of the timing con-
straints (see Figure 1). The hard real-time system must pass all
specified timing constraints. If the system misses a constraint
(e.g., a deadline) once, it results in failure leading to a fatality
and/or big financial or environmental damage. Therefore, hard
real-time systems are often considered to be safety critical. In a

soft real-time system, one or more deadline misses may be tol-
erated at the cost of lower quality of service. A firm real-time
system is between hard and soft real-time systems.

System Requirements

Efficiency

Predictability

QoS High Safety
Management Performance Critical l\‘

Soft Firm Hard

Timing constraints

Fig. 1. A real-time system requirements."

3.2. Heterogeneous computing

In regards to parallel computation, technology developments
that have been pursued actively cover many environments such
as operating systems, programming languages/libraries, hetero-
geneous processing units and so on. Here we look through four
programming languages which are pushing the heterogeneous
computation research a lot.

Open Multi-Processing (OpenMP),3> a specification imple-
menting Application Programming Interface (API), is a well-
known candidate when it comes to parallel computation and
consists of compilers directives, runtime library routines, tool
support and environment variables used in Fortran and C/C++
programs. OpenMP allows a program to run its parallel part
regardless of whether it is on a host device or target devices.
Regardless of how an executable is assigned to the processors,
the host device is set as a default/spare processor and is pos-
sible to run the executable implicitly when the assigned target
device is not able to run it. In other words, a parallel part of
programs has a heterogeneous variety of the execution contexts
on processors.

OpenCL is an open and royalty-free standard for paral-
lel programming in heterogeneous systems including smart-
phones, personal computers, servers and embedded systems. In
OpenCL,* computing systems are considered as a collection
of a number of computing devices which consist of a host pro-
cessor (host device in OpenMP) and accelerators (target devices
in OpenMP). By simply using cl/CreateContextFromType func-
tion together with conditional statements like if, programmers
can develop a heterogeneous nature of executions explicitly.

CUDA is a (Nvidias GPU centered) parallel computing plat-
form and a heterogeneous programming model. CUDA consists
of a host and devices which stand for CPU and Nvidia’s GPUs,
respectively. In CUDA,>3® three qualifiers/space-specifiers
(-_global__, __device__, and __host__) are prepared to run code
regardless of it is on host or devices. The space-specifiers al-
low programmers to write executions explicitly with a hetero-
geneous nature.

In order to gain computational performance using GPU in
systems, Microsoft implemented a native programming model

i http://www.artist-embedded.org/docs/Events/2008
/RT-Kernels/SLIDES/s1-Intro.pdf

and open specification called "C++ Accelerated Massive Paral-
lelism (C++ AMP)” which extends to programming language
C++ and its runtime library.>® Moreover, C++ AMP is sup-
ported by HSA using its intermediate language Heterogeneous
System Architecture Intermediate Language (HSAIL). HSA al-
lows virtual shared memory between different devices such as
host (CPU) and target (e.g. GPU, DSP). Similar to OpenMP,
C++ AMP runs an executable implicitly on a host device when
it is assigned to target device which is not able to run the exe-
cutable at the same time.
3.3. Advanced applications in satellite

Satellite image analysis presents a fertile ground for apply-
ing cutting edge computer vision algorithms. In contrast to
other fields of application of computer vision, such as Advanced
Driver Assistance Systems (ADAS), satellite images are quasi-
static, in the time-scale defined by the image acquisition fre-
quency: the satellite does not move very fast (if at all) in rela-
tion to the imaged landscape, weather conditions such as cloud
formations do not change rapidly, and neither do the lighting
conditions. Nonetheless, for a variety of applications, we still
need to be able to compensate for all these factors, and deduce
a normalized image where further inference can be performed.
As it is common in the computer vision/machine learning space,
it is beneficial to know in advance what questions one wishes
to answer. Possible interesting questions include: is a forest
on fire, and if yes, how is it evolving over time? Or, is there
a hurricane system developing? Or, how fast is ice melting in
Antarctica? Or, how fast is traffic flowing in highway I-90?

Cloud identification is best viewed as deducing a cloud den-
sity distribution over the image to accommodate for the varying
degree of apparent cloud thickness. In this scheme, a cloud-
ness value of 1 would be interpreted as perfect confidence of
complete obstruction of the ground by clouds (per pixel). Sim-
ilarly, a cloudness value of 0 would be interpreted as perfect
confidence of no obstruction. There are multiple ways to de-
fine such a model, while the problem is of some complexity,
in the following sense: clouds over snow appear significantly
different compared to clouds over an ocean, or over a city dur-
ing the day, or during the night. One can condition a cloudness
model over the various relevant backgrounds, and train either a
generative model that will generate clouds and apply them on
various backgrounds, or directly train a discriminative model
that will deduce the cloudness distribution. There is merit in
both approaches, however, in keeping with the current state of
the art, it is beneficial to train a deep network, to automatically
discover the salient feature maps. There are two approaches in
training such a network: one approach would stream the data to
a ground data-center, which would combine imagery from mul-
tiple satellites. Such an approach would be the most fruitful,
as it could be enhanced by user-assisted classification. There
are multiple machine learning frameworks that can accomplish
this, such as Tensorflow*, Torch®, Caffel, and Microsoft Cog-
nitive Toolkit (CNTK)!. Of course, one could also employ un-
supervised learning approaches, such as a (deep) auto-encoder

¥ https://www.tensorflow.org/

§ http://torch.ch/

1 https://caffe.berkeleyvision.org/

I https://github.com/Microsoft/CNTK

scheme. Having a trained model, one can execute it on the
satellites GPU, and produce a scene classification. The forward
problem consists of a cascade of convolution filters, activation
functions, subsampling, and normalization. One would execute
a forward pass on multiple and possibly overlapping regions of
interest, for local scene classification. Such a problem is well
suited for GPU acceleration. If the training takes into account
the various variability factors (terrain kinds, atmospheric con-
ditions, light conditions), the classification will also succeed in
classifying the scene according to these factors, for example de-
ducing that the scene represents a city at night with clouds.

Having performed a classification on the scene, one can then
have a solid ground in performing further analysis: for exam-
ple, by knowing what features in the scene are persistent, as
opposed to transient noise (such as a cloud), one can select ro-
bust keypoints (or robust regions of interest), for image regis-
tration (either based on keypoints, or based on functional mini-
mization). Such robust registration would be beneficial for cre-
ation of panoramas, or for enhancing image quality by com-
bining multiple images of the same scene (super-resolution).
Conversely, one can apply tracking algorithms to the transient
features, for example following a cloud or a car, or set of cars,
using correlation tracking. Depending on image resolution, it
may be beneficial to apply pre-processing algorithms on the im-
age, such as image sharpening (e.g. via unsharp mask with local
contrast enhancement, or anisotropic heat diffusion).

4. System Model

We consider a task model which is described by Fork-Join
task model. As shown in Fig. 2, the parallel segment (starts
with a Fork and ends with a Join) of tasks could be executed in
two manners, parallel and sequential.¥ Parallel execution could
be performed on GPU, multi-core CPUs, or single CPU using
parallelization techniques such as Single Instruction, Multiple
Data (SIMD), multithreading, etc. Sequential execution is exe-
cuted on CPU sequentially.

in Parallel

; in Sequential

Fig. 2. Execution manner of parallel segment of Fork-Join task model.

In order to study a trade-off between computing power and
energy consumption, we consider a task set I', which consists
of n independent periodic tasks {7y, ..,7,} expressed with the
introduced task model. Each task 7; has a period 7, deadline D;,
and worst case execution time (WCET) C;. The response time

(RT) R; of task 7; is measured by experimental observations in
this paper.

We consider that the system consists of two different process-
ing units such as CPU and GPU. The system energy consump-
tion can be calculated with either Egen = Ecpu+EGpu +Eother
or

Psystem(t) * At

1<t<max(R;),1<i<n

E system —

Here, Esem 1S the system’s energy consumption. Ecpy, Egpy,
and E ., are the energy consumptions of CPU, GPU, and other
peripherals, respectively. Py g.,(f) is power consumption of the
system at timing instance of ¢. At is unit value of time sample.

Algorithm 1 Algorithm of the 2D Anisotropic Diffusion.
* Initialise the variables; num_iter, option, kappa and
lambda.
* Set an initial condition of Partial Differential Equation
(PDE); dif f _im.
* Set step for all directions. 1 pixel for horizontal: d[x] and
vertical: d[y], sqrt(2) pixels for diagonal: d[d].
* Define 2D convolution masks - finite differences.
* Main calculation of Anisotropic diffusion.Looping given
number of iterations
for num_iter do
* Calculate finite differences nabla[] for all directions N,
S, W, E, NE, SE, SW and NW, where N, S, W, E describe
north, south, west, and east, respectively.
* Calculate coefficients for all directions:
— Choose a diffusion function from 2 original functions.
—if option ==
Calculate c[] = exp(—(nabla[l/kappa)?) for all 8 direc-
tions
—if option ==
Calculate c[] = 1/(1 + (nabla[]/kappa)®) for all 8 direc-
tions
* A solution for Discrete PDE
—diff_im = dif f_im + lambda + sum{c[] * nabla[]/(d[]?))
end for

5. Experimental Design

In this section, we introduce algorithms and discuss the eval-
uation of the energy consumption and computing potential of
the task set which consists of these algorithms.

5.1. Algorithms

In this paper, we consider two on-board algorithms, namely
Anisotropic Diffusion*” and Livermore Unstructured La-
grangian Explicit Shock Hydrodynamics (LULESH).*> The
different combinations of the algorithms are used in the differ-
ent purposes of the experiments.
5.1.1. Anisotropic Diffusion

We perform Anisotropic Diffusion algorithm to evaluate the
on-board computer processing since this algorithm is used to
sharpen images. As we mentioned in Section 3.3, sharpen-
ing the satellite images and detecting objects such as clouds
and forest fires from the satellite images are significantly use-
ful. The pseudo code of the Anisotropic Diffusion algorithm is

shown in Alg. 1, as we have ported the 2D Anisotropic Diffu-
sion code from MATLAB to C++ AMP, OpenCL and OpenMP
in order to execute the application on HSA compliant platform.
In this study, we only deal with the code, since the quality of
Anisotropic Diffusion is well-known from the previous stud-
jes. 40-42)

5.1.2. LULESH

LULESH is created as a result of the project, The Shock Hy-
drodynamics Challenge Problem, which is originally defined
and implemented by Lawrence Livermore National Laboratory
(LLNL) as one of five challenge problems in Defense Advanced
Research Projects Agency (DARPA)’s Ubiquitous High Perfor-
mance Computing (UHPC) program. LULESH is a highly sim-
plified shock hydro application in order to solve only a simple
Sedov blast problems.*” Modeling hydrodynamics is signif-
icant in computer simulations as it is used to understand the
motion of materials relative with each other under the force.
Furthermore, these kind of simulations are preferable to use the
parallel computing. In order to achieve parallelism, LLNL pro-
vides an open-source version of LULESH*™ T, which is ported
to the different environments such as MPI, OpenMP, OpenCL
and C++AMP.

5.2. Testbeds

Test platforms Two test machines, A10 and R&R, are used
for this experiment. A10 is Acer’s laptop that is maintained with
AMD A10-8700P Accelerated Processing Unit (APU), which
consists of 4 core CPUs and 6 compute unit GPUs in a chip.
APU is AMD’s product name of a new type of processing unit,
which integrates CPU and GPU in a die. APU is normally
termed as “integrated GPU”. R&R is a custom made desktop
computer and consists of AMD RyzenTM 7 1800x8 core CPUs
and AMD Radeon R9 nano GPU. More details are shown in
Table 1. As the test machines are general-purpose computers,
the range of the energy consumption differs from the embed-
ded systems, especially R&R. Both A10 and R&R are used for
experimental observations 1 and 2, while only A10 is used for
observation 3.

Test application 1 This application performs Anisotropic
Diffusion algorithm in order to measure a computation time on
the following three combination of the accelerators; HSACalc,
CPUCalc, and OMPCalc. HSACalc is about the computation
of the algorithm using GPU with the HSA extension. CPUCalc
and OMPCalc are the computation of the algorithm on single-
core CPU and multicore CPUs, respectively. OpenMP’s loop
parallel technique is used in OMPCalc for multicores. The aim
of this test application is to confirm the computation time im-
provements of GPU/HSA instead of a single core CPU.

Test application 2 There are three applications which run
Anisotropic Diffusion algorithm in three different programming
manners independently. The intention of this experiment is to
monitor the energy consumptions of the different compute units
in different programming manners.

Test application 3 This application performs two algorithms
(Anisotropic Diffusion and LULESH) concurrently with differ-
ent sets. The intention of this experiment is to monitor how the
energy consumption of the system changes with respect to the

** https://github.com/LLNL/LULESH
1 https://github.com/AMDComputeLibraries/Compute Apps

different settings of tasks.
5.3. Experimental observations

Observation 1: Compiler vs Computing potential. First,
we consider the relation between computing potential with re-
spect to the different compiler versions. Test application 1 is
compiled by three different versions (GCC5.4.0, GCC6.2.1#
and GCC 7.1.0%%) of GCC compiler toegther with 2 different
options, “non-optimised” and “optimised”. ”Non-optimised” is
compiled with ”-O0” flag, and “optimised” is compiled with
»-03"1 flag. Each measurement is performed 100 times con-
tinuously.

Observation 2: Energy consumption vs Programming
manner. Then, we conduct an experiment about energy con-
sumption of test application 2 implemented in different pro-
gramming manners (using HSA for GPU, normal sequential
execution on CPU, using OpenMP for parallelization on CPU).
While the experiments of ”optimised” and "non-optimised” ver-
sions of the applications are conducted in ”Observation 17, we
consider the worst case scenario in this observation. Hence, we
use only non-optimised versions of the applications in this ob-
servation.

(A) Task 1 stand alone, Parallel segment is on CPU

Mo o

(B) Task 1 stand alone, Parallel segment is on GPU

2y crur GPU cpuL

(C) Task 2 stand alone, Parallel segment is on CPU
T, cPU2 cPU2 cpPu2

(D) Task 2 stand alone, Parallel segment is on GPU
T2 CPU2 GPU CPU2
Fig. 3. Execution manners of a stand-alone parallel segment in terms of
considering worst case execution time (WCET). Blue bars express sequen-
tial segments of tasks that should be executed sequentially only. Red bars
are parallel segments of tasks. Parallel segments could be executed either
in sequential or in parallel manner. The length of each task/bar describes its
worst case execution time. The cases (A) and (B) are the execution manners
of parallel segment of Task 1 (71) in sequential and parallel, respectively.
Similarly, (C) and (D) represent the execution manners for Task 2 (7).

Observation 3: Energy consumption vs Execution man-
ner. Finally, we consider experiments in which the tasks in the
task set are allocated to the different processing units. In order
to generate the worst case scenario, we consider non-optimised
codes on A10 machine in this observation. By conducting these
experiments, we can monitor how the balanced use of the pro-
cessing units affects the energy consumption of the systems.
The allocations of the tasks are illustrated in Figs 3 and 4. We
express sequential and parallel segments with blue and red bars,
respectively. Text inside the bars describe where this segment
should be allocated. For example, in Fig 3-(A), the parallel seg-
ment of task 7; is allocated to CPU1. On the other hand, in
Fig3-(B), we can see that this parallel segment is allocated to

Untrusted PPA:ppa:jonathonflgcc-6.2

8% Untrusted PPA: ppa:jonathonflgcc-7.1

1 Combining the ”-03” flag with the following machine architecture
specific flags is possible; -march=bdver
However, we consider only ”-O3” flag in this paper.

i

and ”-march=znverl”.

Table 1. Detailed information about the test machines.

Test Machine Type Product Specification Clock Cores / . nergy consumption
compute units (Watt)
CPU A10-8700P APU, Excavator 1800MHz 4
Al0 . ™ 12-35
iGPU Radeon R6, GCN Gen3 800MHz 6
R&R CPU RyzenTM 7 1800x, Zen 4GHz 8 95
dGPU Radeon' " R9 nano, GCN Gen3 1GHz 64 175
(E) Tasks 1 and 2 concurrent exec. GPU are connected through PCle 3.0 in R&R machine. In
T Ut S8 A10-8700P APU, CPU and GPU are located in the same sili-
7, cou2 T con with coherent fabric connection. Hence, A10-8700P APU

T CPUL GPU CcPUL

(G) Tasks 1 and 2 concurrent exec.
u

T2 cPU2 cPU2 cPU2

(H) Tasks 1 and 2 sequential exec.

(2§ cPur crui N cPui | CPUL

Ty CPUL

CPU1 [CPU1 CcPUL

Fig. 4. Execution manners of concurrent parallel segments in terms of
considering response time (RT). The combinations of the tasks, Task 1 (1)
and Task 2 (72), described in Fig. 3 are considered. White space bordered
with dot-lines expresses no execution of tasks, e.g., 72 in cases (F) and
(H). Three dots means that the pointed parallel segment has been shortened
compared to its actual execution. In cases (E) and (F), the parallel segment
of 71 is executed either in sequentially or parallel, while the parallel segment
of 17 is executed in parallel manner only. In case (G), Tasks 71 and 7, are
executed on CPU1 and CPU?2, respectively. Both 71 and 7, are allocated to
CPU1 only in case (H).

GPU. Stand alone executions of the tasks are illustrated in Fig.
3. Allocations of concurrent executions of tasks 7 and 7, are
shown in Fig. 4. Here, we consider that 7; and 7, implement
LULESH and Anisotropic Diffusion algorithms, respectively.
5.4. Evaluation and results

Observation 1: The results of running the test application
1 are shown in Tables 2, 3, 4, 5, 6 and 7. In this observa-
tion, we consider the combinations of two machines, A10 and
R&R, and three accelerators, HSACalc, CPUCalc, and OMP-
Calc, named as A10 HSACalc, A10 CPUCalc, A10 OMPCalc,
R&R HSACalc, R&R CPUCalc, and R&R OMPCalc. In non-
optimised experiments, we can see that the computation times
are in the following order: R&R OMPCalc, A10 OMPCalc,
R&R CPUCalc and A10 CPUCalc, from the smallest to the
largest respectively. This result is obvious since we have used
RyzenTM 7 1800x CPU which is one of the best CPUs in the
market now. However, when we turn a spotlight to both A10
and R&R HSACalc, HSACalc shows between 122 to 152 times
faster than the calculation which uses 1 core CPU with non-
optimised version. This ratio improves in the case of 1 core
CPU with optimised version, however, HSACalc shows still
between 11 to 22 times faster computation time than 1 core
CPU. Moreover, A10 HSACalc shows the best computation
time among others, even better or similar R&R HSACalc. As
we explained in Table 1, Ryzen'~ CPU and discrete R9 nano

is gaining benefits of HSA more than R&R for this particular
workload. In general, a high end discrete GPU has significantly
more compute cores than an integrated GPU. While data needs
to be physically transferred to the discrete GPU over a typically
slower bus, once the transfer is performed (optimally employing
the multiple concurrent asynchronous Direct Memory Access
(DMA) engines typically available), the data is available on the
discrete GPU over a very fast memory (e.g. DDRS). Therefore
the relative performance of a discrete GPU over an integrated
GPU is workload dependent. The more the data that need to
be densely processed, the higher the desired frame-rate, and the
more processing steps they will undergo, the more likely it is
that a discrete GPU will outperform an integrated GPU. How-
ever, as argued in this paper, they will both typically signifi-
cantly outperform even a very powerful CPU.

As we mentioned in the previous section, we have used
”-03” flag for the compiler level optimisations. Moreover,
there is a machine architecture specific optimisation flag -
march=znver1” for RyzenTM. However, this flag is not available
to optimise with GCC 5.4 compiler. Therefore, we have focused
only on ”-O3” flag in this paper. We confirm 6.5-12.7 times
faster improvements for the optimised versions of both A10 and
R&R CPUCalc compared to the non-optimised versions. More-
over, about similar times faster improvements have confirmed
for the optimised versions of both A10 and R&R OMPCalcs
compared to the non-optimised versions. In addition, the opti-
mised R&R CPUCalc calculates the similar computation time
as A10 OMPCalc.

Observation 2: The energy consumption results of the test
application 2 for the different environments, HSACalc, CPU-
Calc and OMPCalc, with optimised and non-optimised are
shown in Figure 5. The preparation, initializing variables and
loading images, part of the entire calculation is marked with
orange colour, and the execution which is the essential calcu-
lation of the algorithm is marked with blue colour. Here, we
consider the total energy consumption, Ejsem, as a summa-
tion of the energy consumption of the execution, E,xecurion, and
Preparation, Epreparation’ i~e~» Esystem = Eexecution + Epreparation-
In case of HSACalc, the total energy consumption, Egyem, 0f
the system is 24.08 Joules and 17.46 Joules for non-optimised
and optimised versions, respectively. In other words, the en-
ergy consumption of the execution (E,xecusion) for HSACalc is
2.24 and 3 Joules, and the energy consumption of the prepara-
tion (Epreparaiion) for HSACalc is 21.84 and 14.46 Joules. The
energy consumption of the preparation part of CPUCalc and

*** The ratio of the average values to the average value of CPUCalc. For
1 avg(A10CPUCalc) avg(R&RCPUCalc)
€xample, o AT0HS ACale) ' avg(R&ROMPCalc) *

Table 2. Anisotropic Diffusion, gcc version 5.4.0 20160609, non optimised.

Computation time of Anisotropic Diffusion

A10 HSACalc A10CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalc
max (msec) 2.692 128.843 50.631 0.913 94.292 36.225
min (msec) 0.487 112.960 43.897 0.556 89.341 27.726
avg (msec) 0.889 116.663 47.223 0.679 91.978 30.372
ratio™” 131.265 1 2.470 135.468 1 3.028
Table 3. Anisotropic Diffusion, gcc version 5.4.0 20160609, optimised.
Computation time of Anisotropic Diffusion
A10 HSACalc A10CPUCalc A10OMPCalc R&R HSACalc R&R CPUCale R&R OMPCale
max (msec) 2.580 22.579 14.874 0.914 11.983 4.869
min (msec) 0.516 16.206 6.674 0.567 7.764 2.085
avg (msec) 0.923 17.819 8.752 0.658 8.247 2.933
ratio 19.307 1 2.036 12.532 1 2.812
Table 4. Anisotropic Diffusion, gcc version 6.2.1 20161215, non optimised.
Computation time of Anisotropic Diffusion
A10 HSACalc A10CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalce
max (msec) 2.796 123.160 48.415 0.903 94.328 35914
min (msec) 0.485 112.515 42.630 0.545 88.889 24.633
avg (msec) 0.963 117.759 45.092 0.608 91.380 26.593
ratio 122.302 1 2.612 150.408 1 3.436
Table 5. Anisotropic Diffusion, gcc version 6.2.1 20161215, optimised.
Computation time of Anisotropic Diffusion
A10 HSACalc A10CPUCalc A10 OMPCalc R&R HSACale R&R CPUCalc R&R OMPCalc
max (msec) 2.703 22.354 13.924 0.837 11.694 5.696
min (msec) 0.485 15.885 6.572 0.552 7.963 2.199
avg (msec) 0.770 17.524 8.233 0.640 8.318 2.560
ratio 22.762 1 2.129 12.993 1 3.249
Table 6. Anisotropic Diffusion, gcc version 7.1.0, non optimised.
Computation time of Anisotropic Diffusion
Al10HSACalc A10CPUCalc A10OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCale
max (msec) 2.504 124.866 48.461 1.135 90.652 37.356
min (msec) 0.508 113.488 41.570 0.535 85.848 24.244
avg (msec) 0.782 119.108 45.348 0.684 88.440 26.210
ratio 152.290 1 2.627 129.330 1 3.374
Table 7. Anisotropic Diffusion, gcc version 7.1.0, optimised.
Computation time of Anisotropic Diffusion
A10 HSACalc A10CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalc
max (msec) 2.673 18.415 12.675 0.899 10.425 4.189
min (msec) 0.489 14.304 5.597 0.538 6.459 1.873
avg (msec) 0.753 15.668 7.158 0.620 6.923 2.265
ratio 20.800 1 2.189 11.158 1 3.056

OMPCalc decrease by half of HSACalc to approximately 13
and 7.5 Joules for non-optimised and optimised versions, re-
spectively. From Figure 5, we can see that the energy con-
sumption of the experiment part in OMPCalc (123.38 Joules for
non-optimised and 25.08 Joules for optimised) is around half of
CPUCalc (296.79 Joules for non-optimised and 45.85 Joules for
optimised). Hence, we see that the execution part (Eyecusion) Of
HSACalc uses between 15 (= 45.85/3) to 132(= 296.79/2.24)
times less energy consumption compared to the execution part
of CPUCalc. Similar to the comparison of energy consump-
tion regarding the execution parts of HSACalc and OMPCalc is
between 8 to 55 times difference, which means HSACalc con-

sumes that much less energy. In other words, adapting an HSA
complaint GPU uses between 8 to 132 times less energy com-
pared to the CPU cores.

Table 8. System’s energy consumption (stand alone execution).
@A) B) © D)
Measured WCET of 1521 9.1
71 (8)
Measured WCET of 1194 611
T2 (8)
Energy consumption
of the system (Joules) 136.81 88.82 107.14 60.81

Energy consumptions in the different environments with GCC 5.4
m Execution m Preparation

350

300 e

250

N
=]
S

Energy [Joules]

N
@
=]

100

50 1
7.95
w
: o

HSA_non CPU_non OMP_non HSA_opt CPU_opt OMP_opt
Accelerators

Fig. 5. Comparison of energy consumption between different program-
ming manners with optimised and non-optimised codes.

Table 9. System’s energy consumption (concurrent executions).
E) (F) G) (H)
Measured RT of 71 (s) 15.63 941 1593 15.78
Measured RT of 75 (s) 6.36 11.62 12.64 32.1
Energy consumption
of the system (Joules)

150.32 136.29 152.47 382.41

Observation 3: The results of different allocations of tasks
71 and 7, are illustrated in Tables 8 and 9. The result in Table
8 corresponds to the execution manner described in Figure 3,
while the result in Table 9 relates to the execution manners in
Figure 4. Since the stand alone execution manner of the tasks
are explained in Figure 3, the results in (C) and (D) for tasks 7
and in (A) and (B) for tasks 7, are not available. As described in
Figure 4, we consider an execution manner of concurrent execu-
tion of two tasks, hence, the response time (RT) will be the key
in these measurements. In case of (F), we can see the system
consumes less energy (at least 10% and up to 65%) compared to
other allocations, although the RT of 7, gets almost two times
longer (R, = 11.62sec) than the stand alone version, i.e, its
worst case execution time (WCET). (C, = 6.11sec). The RT of
7, in (F) is shorter than the stand alone version (C, = 11.94sec)
of 7, when the parallel segment is allocated to CPU sequen-
tially. This means that the proper use of GPU shows better re-
sults of both computing potential and energy efficiency.

The energy consumptions of the systems in the cases of
(BE)Eystem = 150.32Joules) and (G)(Egysem = 152.47Joules)
are close to each other. The parallel segment of task 7, is al-
located to CPU in both cases. The difference here is that the
parallel segment of task 75 is allocated to GPU in parallel and
CPU sequentially. This means that we can choose the allocation
of (E) in case GPU is idle. Otherwise, it is good to choose the
allocation of (G) when GPU is busy with other tasks.

The allocation (H) shows longest RTs (R; = 15.78sec for 7
and R, = 32.1sec for 77) and consumes most energy (Eysem =

382.41Joules). However, we have to note that the system did
not use the GPU in this case at all. Hence, we could say that the
system has more space for GPU computation.

6. Conclusion

In this paper, we have focused on the energy consumption
and computing potential of GPU accelerated in-orbit space sys-
tems. Further, both programming manner (how to compile a
task) and executing manner (how to allocate a task) are con-
sidered in the experiments. From the experimental study, we
have confirmed that the execution part of HSA compliant GPU
computes the calculation between 10 to 140 times faster and
consumes between 8§ to 130 times less energy, compared to the
execution part of CPU-based (including single- and multi-core
processors) calculations. The use of GPU is supported even
when we consider the entire system as allocation of the work-
load to GPU is most energy efficient compared to the other al-
locations. Therefore, we conclude that GPU can be a highly
potential candidate in the on-board data processing of the small
satellites.

For future work, we would like to continue developing a sys-
tem with real-time GPU scheduler, which can dynamically al-
locate the tasks under limited power budget.

Acknowledgments

The work presented in this paper is supported by the Swedish
Knowledge Foundation (KKS) through the research profile
DPAC. We would like to express our sincere gratitude to Dr.
Moris Behnam for sharing his great knowledge in real-time em-
bedded systems. Further, this work is supported in part by a cor-
porate scholarship of the TESO Corporation for Nandinbaatar
Tsog.

The authors would also like to express our sincere gratitude
to Dr. Harris Gasparakis, a computer vision expert at AMD,
for his great knowledge in computer vision and HSA related
areas. Dr. Gasparakis has helped us a great deal by providing
an extensive amount of support whenever necessary, especially,
Sections 3 and 5 would not be improved without his advice and
valuable discussions.

AMD, Ryzen, Radeon and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. Other product names
used in this publication are for identification purposes only and
may be trademarks of their respective companies.

References
1) Master, T.: Consortium for Execution of Rendezvous
and Servicing Operations (CONFERS), DARPA,

https://www.darpa.mil/program/consortium-for-execution
-of-rendezvous-and-servicing-operations, (accessed Apr 22, 2019).

2) Bruhn, F., Brunberg, K., Hines, J., Asplund, L., and Norgren., M.:
Introducing Radiation Tolerant Heterogeneous Computers for Small
Satellites, 2015 IEEE Aerospace Conference, pp. 1-10, IEEE, 2015.

3) Tsog, N., Behnam, M., Sjodin, M., and Bruhn, F.: Intelligent Data
Processing Using In-orbit Advanced Algorithms on Heterogeneous
System Architecture, 2018 IEEE Aerospace Conference, pp 1-8,
IEEE, March 2018.

4) Mittal, S. and Vetter, J.S.: A Survey of CPU-GPU Heterogeneous
Computing Techniques, ACM Computing Surveys (CSUR), 47 (2015),

5)

0)

7

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

pp. 69:1-69:35.

Wen, Y., Wang, Z., and O’boyle, M. F. P: Smart Multi-task Scheduling
for OpenCL Programs on CPU/GPU Heterogeneous Platforms, 21st
International Conference on High Performance Computing (HiPC),
pp. 1-10, IEEE, 2014.

HSAFoundation : HSA Foundation - ARM, AMD, Imagination, Me-
diaTek, Qualcomm, Samsung, TI, http://www.hsafoundation.com/,
(accessed Apr 22, 2019)

Tsog, N., Sjodin, M., and Bruhn, F.: Using Heterogeneous Comput-
ing on GPU Accelerated Systems to Advance On-Board Data Process-
ing, European Workshop on On-Board Data Processing (OBDP2019),
ESA, CNES and DLR, 2019.

Tsog, N., Becker, M., Bruhn, F.,, Behnam, Sjodin, M.: Static Alloca-
tion of Parallel Tasks to Improve Schedulability in CPU-GPU Hetero-
geneous Real-Time Systems, IECON 2019 - 45th Annual Conference
of the IEEE Industrial Electronics Society, pp. 45164522, 2019.
Wright, R., George, T, et al.: Hyper-
spectral Thermal Imager (HyTD), NASA,
https://esto.nasa.gov/files/solicitations/INVEST_17/ROSES2017
_InVEST_A49_awards.html#george, (accessed August 6, 2018)
Czarnul, P. and Rosciszewski, P.: Optimization of Execution Time
under Power Consumption Constraints in a Heterogeneous Parallel
System with GPUs and CPUs, ICDCN 2014: Distributed Computing
and Networking, pp 66-80, 2014.

Kato, S., Lakshmanan, K., Rajkumar, R., and Ishikawa, Y.: Time-
Graph: GPU Scheduling for Real-time Multi-tasking Environ-
ments, USENIX Conference on USENIX Annual Technical Confer-
ence (USENIXATC), (2011), pp 2-2.

Kato, S., Lakshmanan, K., Kumar, A., Kelkar, M., Ishikawa, Y.,
and Rajkumar, R.: RGEM: A Responsive GPGPU Execution Model
for Runtime Engines, 32nd IEEE Real-Time Systems Symposium
(RTSS), pp. 57-66, 2011.

Kato, S., McThrow, M., Maltzahn, C., and Brandt, S.: Gdev: First-
class GPU Resource Management in the Operating System, USENIX
Conference on Annual Technical Conference (USENIXATC), pp. 37—
37,2012.

Kato, S., Aumiller, J., and Brandt, S.: Zero-copy I/O Processing for
Low-latency GPU Computing, ACM/IEEE International Conference
on Cyber-Physical Systems (ICCPS), pp. 170-178, 2013.

Elliott, G. A. and Anderson, J. H.: Globally Scheduled Real-time
Multiprocessor Systems with GPUs,Real-Time Systems, 48 (2012),
pp. 34-74.

Elliott, G. A., Ward, B.C., and Anderson, J.H.: GPUSync: A Frame-
work for Real-Time GPU Management, 34th IEEE Real-Time Sys-
tems Symposium (RTSS), pp. 33—44, 2013.

Kim, H., Patel, P., Wang, S., and Rajkumar, R. R.: A Server-based
Approach for Predictable GPU Access Control, 23rd IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pp. 1-10, 2017.

Kim, H., Patel, P., Wang, S., and Rajkumar, R. R.: A Server-based
Approach for Predictable GPU Access with Improved Analysis, J.
Systems Architecture, 88 (2018), pp. 97-109.

Harris, M.: Unified Memory for CUDA Beginners, 2017,
, https://devblogs.nvidia.com/unified-memory-cuda-beginners/, (ac-
cessed Oct 16, 2018).

HSA Foundation: Heterogeneous System Architecture,
http://www.hsafoundation.com/, (accessed Oct 16, 2018).

Tsog, N., Sjodin, M., and Bruhn, F.: Advancing On-Board Big Data
Processing Using Heterogeneous System Architecture, ESA/CNES
4S Symposium 48, 2018.

Maia, C., Bertogna, M., Nogueira, L., and Pinho, L. M.: Response-
Time Analysis of Synchronous Parallel Tasks in Multiprocessor Sys-
tems, 22nd International Conference on Real-Time Networks and
Systems (RTNS), pp. 3:3-3:12, 2014.

Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., and Gill, C. D.:

24)

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)
35)
36)
37)
38)
39)

40)

41)

42)

43)

44)

Parallel Real-Time Scheduling of DAGs, IEEE Trans. Parallel and
Distributed Systems, 25, (2014), pp. 3242-3252.

Ullman, J. D.: NP-complete Scheduling Problems, J. Comput. Syst.
Sci., 10 (1975), pp. 384-393.

Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A.,
and Buttazzo, G. C.: Response-Time Analysis of Conditional DAG

Tasks in Multiprocessor Systems, 27th Euromicro Conference on
Real-Time Systems (ECRTS), pp. 211-221, 2015.

Sanjoy, B.: Resource-Efficient Execution of Conditional Parallel
Real-Time Tasks, Euro-Par 2018: Parallel Processing, pp. 218-231,
2018.

Liu, Q. and Luk, W.: Heterogeneous Systems for Energy Efficient Sci-
entific Computing. Reconfigurable Computing: Architectures, Tools
and Applications, Springer, pp. 64-75, 2012.

Aydin, H., Melhem, R., Mossé, D., and Mejia-Alvarez, P.: Power-
aware Scheduling for Periodic Real-time Tasks, IEEE Trans. Com-
puters, 53 (2004), pp. 584-600.

Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., and Sarrafzadeh,
M.: Energy-aware High Performance Computing with Graphic Pro-
cessing Units, Workshop on Power Aware Computing and System,
2008.

Varsha, R., Arora, R., Ram, T.V.S., and Patel, A.: Design and Im-
plementation of DVB-S2 Transport Stream for Onboard Processing
Satellite, 19th International Symposium on VLSI Design and Test,
pp. 1-6, 2015.

Williams, J.A., Dawood, A.S., and Visser, S.J.: FPGA-based cloud
detection for real-time onboard remote sensing, 2002 IEEE Interna-
tional Conference on Field-Programmable Technology, pp. 110-116,
2002.

Norton, C.D., Werne, T.A., Pingree, P.J., and Geier, S.: An Evaluation
of the Xilinx Virtex-4 FPGA for On-board Processing in an Advanced
Imaging System, 2009 IEEE Aerospace Conference, IEEE, pp. 1-9,
2009.

Davidson, R.L. and Bridges, C.P.: Adaptive Multispectral GPU Ac-
celerated Architecture for Earth Observation Satellites, 2016 IEEE
International Conference on Imaging Systems and Techniques (IST),
pp. 117-122, 2016.

Buttazzo, G. C., Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Springer, 2011.

OpenMP Architecture Review Board: OpenMP Application Program-
ming Interface, Version 4.5, November 2015.

Khronos OpenCL Working Group: The OpenCL Specification, Ver-
sion 1.2, Document Revision 19.

NVIDIA: NVIDIA CUDA C Programming Guide, Version 4.2, April
16, 2012.

NVIDIA: CUDA C PROGRAMMING GUIDE, Version PG-02829-
001-v9.2, Design Guide, July 2018.

Microsoft: C++ AMP : Language and Programming Model, Version
1.0, August 2012.

Perona, P. and Malik, J.: Scale-space and Edge Detection Using
Anisotropic Diffusion, IEEE Trans. Pattern Analysis and Machine In-
telligence 12 (1990), pp. 629-639.

Schwarzkopf, A., Kalbe, T., Bajaj, C., Kuijper, A., and Goesele, M.:
Volumetric Nonlinear Anisotropic Diffusion on GPUs, SSVM 2011,
LNCS 6667, pp. 62-73, 2012.

Lopes, D.S. A Set of Filters That Perform
and 3D Conventional Anisotropic Diffusion,
http://se.mathworks.com/matlabcentral/fileexchange/14995-
anisotropic-diffusion—perona—malik-, (accessed April 22, 2019).
Lawrence Livermore National Laboratory: LULESH,
https://computation.llnl.gov/projects/co-design/lulesh, (accessed
April 21, 2019).

Sedov, L. I.: Similarity and Dimensional Methods in Mechanics, (3d
ed.; Moscow: State Publishing House), pp. 225-237, 1954.

1D, 2D
2007,

