
Towards a Workflow for Model-Based Testing of Embedded
Systems

Muhammad Nouman Zafar
muhammad.nouman.zafar@mdh.se
Mälardalen University, Sweden

Wasif Afzal
wasif.afzal@mdh.se

Mälardalen University, Sweden

Eduard Enoiu
eduard.enoiu@mdh.se

Mälardalen University, Sweden

ABSTRACT
Model-based testing (MBT) has been previously used to validate
embedded systems. However, (i) creation of a model conforming
to the behavioural aspects of an embedded system, (ii) generation
of executable test scripts and (iii) assessment of test verdict, re-
quires a systematic process. In this paper, we have presented a
three-phase tool-supported MBT workflow for the testing of an em-
bedded system, that spans from requirements specification to test
verdict assessment. The workflow starts with a simplistic, yet prac-
tical, application of a Domain-Specific Language (DSL) based on
Gherkin-like style, which allows the requirements engineer to spec-
ify requirements and to extract information about model elements
(i.e. states and transitions). This is done to assist the graphical mod-
elling of the complete system under test (SUT). Later stages of the
workflow generates an executable test script that runs on a domain-
specific simulation platform. We have evaluated this tool-supported
workflow by specifying the requirements, extracting information
from the DSL and developing a model of a subsystem of the train
control management system developed at Alstom Transport AB
in Sweden. The C# test script generated from the SUT model is
successfully executed at the Software-in-the-Loop (SIL) execution
platform and test verdicts are visualized as a sequence of passed
and failed test steps.

CCS CONCEPTS
• Computer systems organization → Embedded software;
• Software and its engineering → Software verification
and validation; • Computing methodologies → Modeling
methodologies.

KEYWORDS
Domain-Specific Language, Model-Based Testing, Software-in-the-
Loop
ACM Reference Format:
Muhammad Nouman Zafar, Wasif Afzal, and Eduard Enoiu. 2021. Towards a
Workflow for Model-Based Testing of Embedded Systems. In Proceedings of
the 12th International Workshop on Automating TEST Case Design, Selection,
and Evaluation (A-TEST ’21), August 23–24, 2021, Athens, Greece. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3472672.3473956

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
A-TEST ’21, August 23–24, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8623-4/21/08.
https://doi.org/10.1145/3472672.3473956

1 INTRODUCTION
Model-Based Testing (MBT) [16] uses an explicit model that cap-
tures the intended behavior of the system under test (SUT). Gen-
erally, some modelling notations are used such as various UML
diagrams, finite state machine (FSM), etc. that depend on require-
ments mostly written in a natural language. In some cases, re-
quirements are specified using a semi-structured notation, e.g., the
Gherkin (Given-When-Then) style. To facilitate the modelling ef-
forts, a Domain-Specific Language (DSL) could be used to define
the requirements in a consistent format and to extract certain in-
formation (such as states, transitions, variables and their values)
that can be used for generating an explicit model. A DSL contains
an abstract syntax based on a meta-model to provide a custom and
platform independent support for a specific domain [18]. A DSL is
implemented by exploring the domain concepts and analysing the
structure of specification documents [13].

In this paper, we propose a tool-supported, end-to-end MBT
workflow, starting from requirements specification and ending at
test verdict assessment. This workflow includes an initial imple-
mentation of a DSL based on the Gherkin-like style using XText.
XText is one of the well-known open source languages for the
development of DSLs supported by the Eclipse Modelling Frame-
work (EMF). We have defined a grammar for the DSL in XText
representing the structure of the Gherkin-like format and used it
to generate the artefact containing the states, transitions, variables,
and their corresponding values that should be included in a FSM
model representing the SUT. We have provided a mapping between
the information extracted from the requirements specified in the
DSL and the model representing the system under test (SUT). We
have also evaluated the abstract test cases generated from the model
by transforming them into a concrete and executable test script. The
proposed workflow is then successfully applied to test a subsystem
of the train control management system at Alstom Transport AB,
Sweden.

The overall objective of this paper is thus to propose, imple-
ment and apply a tool-supported MBT workflow describing domain
specific requirements, utilizes these for modelling and generates
concrete and executable test scripts to validate the embedded sys-
tem under test. This paper is an extension of our recent work on
this topic [19, 20] that augments an MBT workflow through the
addition of a simple but practical DSL for assisting domain expert
with model generation.

2 BACKGROUND
Testing of an embedded system is usually done at several levels
of simulation. Development and testing the models representing
the system happens at model tests (MT) and Model-in-the-Loop
(MIL) test levels [3]. Further, in Software-in-the-Loop (SIL) level, the

33

https://doi.org/10.1145/3472672.3473956
https://doi.org/10.1145/3472672.3473956


A-TEST ’21, August 23–24, 2021, Athens, Greece Muhammad Nouman Zafar, Wasif Afzal, Eduard Enoiu

software is developed and tested using experimental hardware or
simulations. In Hardware-in-the-Loop (HIL) level, the real hardware
is tested in a simulated environment.

MBT [15] is an automated test generation technique, which in-
volves fully or semi-automated processes to produce test artefacts
such as test cases, test oracles and test scripts to validate a system
based on behavioral or functional models representing the SUT.
It supports multiple algorithms and coverage criteria to traverse
through the model elements (i.e. states and transitions) and gen-
erates test sequences known as abstract test cases. The abstract
test cases are then transformed into concrete and precise actions to
validate a system.

Several model-based tools are available [10] that are based on a
variety of modelling notations and test generation methods. Graph-
Walker (GW)1, which is used in this paper, is one such MBT tool
based on finite state machine (FSM) models. It provides multi-
ple generator algorithms (i.e. random, quick_random, A_Star etc.)
and coverage criteria (requirement_coverage, edge_coverage, ver-
tex_coverage etc.) to traverse through the model elements.

A Domain-Specific Language (DSL) [17] is a powerful tool for
expressing domain concepts in a consistent and well-structured
format, particularly in terms of specifying domain-specific system
requirements. Implementing a DSL entails the development of a
software capable to process and interpret the program or require-
ments, e.g. Xtext [7] is a framework to help implement a DSL and it
is available as a Java plugin for the Eclipse IDE. For creating a DSL,
one needs to define a grammar and then use Xtend [2] to generate
the language support infrastructure (i.e., editor ecore meta-model,
API).

Behaviour-Driven Development (BDD) is an agile methodology
that supports automated testing. It provides a common view of
domain between business partners, domain experts, testers, and
developers to ratify a concrete understanding of the system and
its behaviour [6]. One way of documenting BDD requirements
and test cases is the Gherkin DSL (Given-When-Then) format. The
preconditions of the system are specified with a keyword starting
with Given, actions are expressed usingWhenwhereas the expected
outcomes are stated with a keyword containing Then [11]. There
is some evidence to suggest that BDD is a cost and time effective
methodology to test an embedded system [12].

3 RELATEDWORK
Olajubu [13] proposed a domain specific modelling notation to
specify requirements. The paper also describes a tool that gener-
ates test cases to satisfy the Modified Condition/Decision Coverage
(MC/DC) by applying model transformation approach to textual
test cases generated from the DSL. The results showed that the
requirements specified using DSL are atomic, complete, and un-
ambiguous and experimental evaluation of generated test cases
guaranteed the accuracy of the proposed methodology. Similarly,
a DSL-based tool to automatically generate test cases and oracles
from functional requirements has been presented in [1]. Results
showed a satisfactory expressiveness of DSL to write requirements
and efficient generation of test steps that can be used to validate a
system.

1https://graphwalker.github.io/

Galinier [8] proposed a DSL-based seamless approach to validate
the requirements for embedded systems using Eiffle solver and to
reduce the inconsistencies by providing a bridge between different
stakeholders involved in a project. The results showed that the pro-
posed approach is efficient for identifying errors in requirements.
In [9], Hoisl et al. specified scenarios in Given-When-Then format,
transformed them into executable test scenarios providing trace-
ability of domain requirements and executed the generated test
scenarios on an execution platform.

Broenink et al. [4] developed a tool and defined a workflow to
automate the testing of cyber-physical systems. The tool consists of
a testing language, a simulator and a post processor. After executing
the tests generated from the DSL on the simulator, the test data
was extracted and processed by the post processor to obtain final
output. The empirical study showed that the tests generated by the
tool are robust and executable. Similarly, Bucaioni et al. [5] have
proposed a model-based approach to automatically generate test
scripts for product variants in the railway domain. They have also
defined a DSL to specify abstract test cases and used it to generate
test scripts using a model to text transformation approach. The
results showed the applicability of the proposed approach in the
industrial setting.

Our work builds on these previous works to propose an end-to-
end MBT workflow for embedded system testing. It is supported by
associated tooling and is capable of expressing requirements in a
DSL that generates an artefact utilized for modeling. The workflow
then continues to generate a concrete test script that is executable
on a domain-specific simulation platform and finally the test ver-
dicts are available for assessment.

4 PROPOSEDWORKFLOW
Our proposed MBT workflow has been divided into three phases
as shown in Fig. 1.

• Phase 1: Requirements description and automatic genera-
tion of supporting artefact for modelling.

• Phase 2: Generation of executable test scripts using Model-
Based Test scrIpt GenEration fRamework (TIGER) [20].

• Phase 3: Execution of generated test scripts on simulation
levels and test verdict assessment.

4.1 Phase 1
The first phase deals with the modelling aspect of the SUT. In our
case, we have the requirements specification as well as the test
specification (to include the tester perspective) as an input to the
modelling. The requirements specification in our case is written
in a specific DSL that resembles the Gherkin format. The result of
Phase 1 is a FSM model in JSON or GraphML format, that is in turn
used as an input to Phase 2 to generate the executable test scripts.

4.1.1 Requirements Specification in Gherkin-like DSL and the Xtext
Grammar. In order to model the SUT, the first input is a descrip-
tive form of requirement scenarios written in a Gherkin-like DSL.
These scenarios have pre-conditions, post-conditions and actions
to specify the behaviour of the SUT.

Fig. 2 represents the meta-model for describing the concepts of
requirements specification in a Gherkin-like format. In the standard

34



Towards a Workflow for Model-Based Testing of Embedded Systems A-TEST ’21, August 23–24, 2021, Athens, Greece

Figure 1: A MBT workflow for an embedded system.

Gherkin format, the pre-condition is expressed using the Given
keyword, action is specified using the When keyword and outcome
is described using the Then keyword. In our case, after analyzing
the requirements and domain concepts, we have developed the
DSL for requirements in Gherkin-like format which contains a
detailed description about each state of an embedded system and
every event is determined by one or more signals (logical names of
input/output signals and their values). Moreover, pre-conditions,
actions and system responses could be represented as a sequence
of multiple events.

In the meta-model (Fig. 2), the top-level element is the Require-
mentSpecification. The RequirementSpecification contains Require-
ments, each with an unique identifier to validate the atomicity of the
requirement. Each requirement contains the definition of Precondi-
tion that specifies the initial state of the system, Trigger defining
the actions required for an event and state achieved after an event,
SystemResponse specifying the state that will be achieved after the
response of a system and Time to define the timing constraint for a
system to respond. Moreover, Trigger also contains a reference for
the initial state of the system. Each State in pre-condition, trigger
and system response contains the definition of a State Variable,
which represents the name of the input/output signal with their
corresponding value. The implementation of the Gherkin-like DSL
in concrete syntax using the Xtext grammar is shown in Fig. 3.

4.1.2 Automatic Generation of Supporting Artefact for Modelling.
We have also implemented the Xtend generator as shown in Fig. 4

to extract the information from the Gherkin-like DSL produced in
the Eclipse-based Xtext editor. The Eclipse editor provides multiple
built-in features such as highlighting the syntax based on DSL (i.e.
preferences for font and color, style for comments and keywords),
predefined templates, an outline view, and assistance for code com-
pletion, and error handling [14]. The Xtend generator contains the
mapping between each meta-model element of the defined DSL
and model elements of the FSM (such as states and transitions). It
extracts the information such as model name, state name, transi-
tions, transition variables and their corresponding values from each
requirement specified by the requirements engineer in the editor.
The requirements specified using DSL are structurally complete,
however, the validation checks to validate each requirement’s atom-
icity and unambiguity can be included as an advanced feature in
Xtend, which is currently done manually in our case.

The result of running the Xtend generator is an automatic gen-
eration of the artefact containing the information about modelling
elements such as states and transitions. Fig. 6 shows a sample of
the extracted information from the Xtend-generated artefact, that
is discussed in detail in Section 5.2.

4.1.3 Modelling of the SUT. Our experience with modelling the
SUT [19] shows that the information generated from requirements
specification alone is not sufficient to embed all behavioural as-
pects in the model. The modelling activity has to be iterative, also
embedding tester’s expertise and perspective regarding the desired
behavioral aspects in the model. While the initial model of the SUT

35



A-TEST ’21, August 23–24, 2021, Athens, Greece Muhammad Nouman Zafar, Wasif Afzal, Eduard Enoiu

Figure 2: Meta-model for Gherkin-like DSL

is created based on the requirements specification, our experience
suggests that it evolves by including the tester’s domain knowledge.
The inclusion of tester’s perspective, viewpoint and expertise is an
important step towards making the model complete with respect
to scenarios that are missed in the requirements specification but
still considered obvious by the tester [19].

Thus, while the automatic generation of the artefact containing
the states and variables (based on the Gherkin-like DSL for the
requirements specification) helps create an initial version of the SUT
model, it still needs tester’s domain expertise to reflect complete
behavioral aspects of the SUT.

The final model can be made in different editors, however we
have used GW as the modelling environment where the model is ex-
ported as a JSON file, details regarding which appear in Section 5.3.

4.2 Phase 2
Following a transformation approach forMBT [15], we have defined
the mapping rules to transform the abstract test cases into concrete
ones using the TIGER framework. TIGER consists of three parts:
abstract test case generator, test case concretizer and test script
generator. While the detailed description of these steps is explained
in [20], here we briefly summarize these parts.

4.2.1 Abstract Test Case Generator. GW takes as an input themodel
file in JSON/GraphML format and generates the abstract test cases by
traversing through the model elements (i.e. states and transitions)
based on a generator algorithm (such as random, quick_random,

Astar etc.) and a stopping condition (such as edge_coverage, ver-
tex_coverage etc.).

4.2.2 Test Case Concretizer. The test case concretizer converts the
abstract test cases into concrete bymapping the logical signal names
with their technical counterparts and corresponding values. Testers
and developers at our case organization (Alstom Transport AB) use
these logical names as initial names of the signals in the early phases
of development. Later in the development, technical signal names
become available that represent the actual signal names used by the
SUT for its normal operations. Hence, test case concretizer extracts
the test data i.e. (variable names and its respective values) from the
generated abstract test cases (available in a JSON file), extracts the
required information about technical signal names from a XML file,
and maps the logical signal names with technical signal names and
their corresponding values based on defined mapping rules [20].

4.2.3 Test Script Generator. Once the abstract test cases are con-
verted into concrete test cases, the test script generator generates
the test script in C# language using the implementation details of
the SUT (i.e. script format, libraries and methods to be executed
on the target test execution platform, SIL & HIL). The generated
test script contains two types of steps for each test case, forcing the
input signals and verifying the expected output signals, to validate
the expected behaviour of the SUT. An example test script is shown
later in Section 5.4.

4.3 Phase 3
The test scripts generated by TIGER can be executed on Software-in-
the-Loop (SIL) and Hardware-in-the-Loop (HIL) levels after includ-
ing specifically designed libraries and integrating a configuration
file in our case company’s C# generic test framework. After the
execution of generated test scripts on either SIL or HIL level, the
test framework generates a test verdict containing a detailed list of
passed and failed test steps, described further in Section 5.4.

5 CASE STUDY
The implementation and evaluation details of the workflow are
presented as an industrial case study in the following subsections.

5.1 SUT
The case selected for evaluation is the part of an ongoing Train
Control Management System (TCMS) development project at Al-
stom Transport AB, Sweden, concerning one of the metro train
projects. TCMS is a distributed control system built upon highly
complex infrastructure and uses an open standard IP-technology
for communication to control the subsystems such as ventilation,
doors, heating, and air conditioning. We have selected require-
ments of TCMS related to the fire detection subsystem to evaluate
our proposed workflow. The fire detection subsystem in TCMS is
responsible for the indication of two types of fire, internal and ex-
ternal, in the driver’s cab. It uses two instances of the Fire Detection
Control Unit (FDCU) device to achieve this function. Each FDCU
device can have two states, Master and Slave. Both FDCUs commu-
nicate with fire and smoke sensors in order to detect fire. When
a sensor detects a fire, the fire detection subsystem sends signals
to the TCMS representing the current state of each device along

36



Towards a Workflow for Model-Based Testing of Embedded Systems A-TEST ’21, August 23–24, 2021, Athens, Greece

Figure 3: Concrete syntax of the Gherkin-like DSL using the Xtext grammar

Figure 4: Implementation of Xtend generator

with the signals representing the fire detected by the sensor of each
device. Based on these signals, TCMS takes the desired action of
turning on the LED light in the driver’s desk via electrical wiring,
indicating detection of fire in the train.

5.2 Generated Artefact

In contrast to a typical ‘Given-When-Then’ Gherkin format, Al-
stom Transport’s domain expert used ‘Given-Then-Within’ format
to specify requirements where the ‘Within’ clause specifies the
timing constraint of each requirement. The general format of re-
quirements specification is as follows:

GIVEN {Statement 1} AND/OR {Statement 2}
THEN TCMS shall {Statement 3}
WITHIN {t Seconds}

After specifying the requirements in Xtext-based Eclipse edi-
tor as shown in Fig. 5, the Xtend generator generated a text file
containing the information about model elements as shown in
Fig. 6. For a complex system, having multiple diagrams/models
representing the sub-parts of the SUT, provides a high level of ab-
straction and can be helpful in determining errors and their causes
due to improved traceability. Moreover, these models need to be
connected through shared nodes. So, the Xtend generator gener-
ated the information by dividing the system in different models.
The generated artefact contains Requirement#, Model Name, State
Name, Transition/Action, and Variable Name along with their
corresponding values for each requirement specified in the editor.

As mentioned in Section 4.1.3, incorporating the tester’s per-
spective in the model makes behavioral aspects more complete

37



A-TEST ’21, August 23–24, 2021, Athens, Greece Muhammad Nouman Zafar, Wasif Afzal, Eduard Enoiu

Figure 5: An example of a requirement specified in Xtext

Figure 6: A sample of extracted information from the Xtend
generated artefact

and representative of the SUT, therefore a test specification docu-
ment based on the specified requirements was made available. It
included manually-written test cases in natural language, where
each test case was composed of a series of steps (actions) and their
corresponding expected results.

5.3 Modelling of the SUT
Based on the information in the Xtend-generated artefact alone,
we have manually created the initial models representing FDCU
and TCMS in GW, as shown in Fig. 7. On both sides of the models,
we have also provided an outline view of elements generated by
Xtend generator and mapping of some generated elements with
initial model elements using arrows. However, initial models con-
tain all the generated elements in it. After refining and includ-
ing tester’s domain knowledge in the modelling process, the final
model of the system is shown in Fig. 8, containing two diagrams
representing each FDCU and one diagram representing TCMS.
In this final model, we have merged some initial states of the
FDCUs: InternalFireIndication, ExternalFireIndication
and InternalAndExternalFireIndication (FDCU1Signal in di-
agram representing FDCU1 and FDCU2Signal in diagram repre-
senting FDCU2, in Fig. 8), as these states represent the actions
of a sensor to detect the presence of fire. Whereas, TCMS indi-
cates the fire as the final output based on signals received from
FDCUs. FDCU1, FDCU1Signal, FDCU2, FDCU2Signal, TCMSisActive
and FDCUFireSignals represent the shared states used by the GW
for traversing between the model elements to generate abstract
test cases. Similarly, Master, Slave, InternalFire, ExternalFire,
InternalAndExternalFire and Reset states represent the output
states of corresponding transitions. Moreover, the addition of one
new state Reset and 21 new transitions are the result of scenarios
added based on tester’s domain expertise and perspective.

5.4 Executable Test Script Generation
After creating the model, we have generated the abstract test cases
and executable test scripts. We have provided the model in JSON
format to TIGER and generated abstract test cases based on random
generator algorithm and 100% edge coverage criterion. After the
generation of abstract test cases, TIGER used the XML file containing
the logical and technical signal names, and type of the signals (i.e.
input/output) to generate the executable test scripts as shown in
Fig 9.

5.5 Execution of Generated Test Scripts at
Software-in-the-Loop (SIL) Level

The generated test script is successfully executed at the SIL level
by creating a generic C# project in Visual Studio and by import-
ing TCMS libraries and a configuration file (as mentioned in Sec-
tion 4.3). After the execution, the test execution platform generates
test verdict in an html format as shown in Fig. 10. The test verdict
html contains the configuration steps (in the beginning), test steps
(forced signal values) along with their pass or fail verdicts and a
summary of the whole execution.

6 FUTUREWORK
The developed DSL helped us to describe the requirements in a well-
structured format. The requirements specified using DSL are struc-
turally complete and exclusive of errors, but DSL can be extended
by adding validation checks to ensure other quality attributes of
requirements (i.e. atomicity and unambiguity). The Xtend generator
successfully generated artefact containing information about the
states and transitions but to model a system, one should have the
domain knowledge and experience of modelling to understand the
generated information. Moreover, a semi or fully automatic trans-
formation of the textual description of requirements to an FSM
model in JSON or GraphML format is left as an interesting future
work.

While the generated test script was successfully executed at
the SIL level, a thorough cost-benefit analysis of the workflow is
still required. Also, optimization of the generated test steps and
comparison with combinatorial testing can provide better insights
into the effectiveness of the proposed workflow.

7 VALIDITY THREATS
The threat related to internal validity of this study concerns the
correctness of the SUT model. The DSL helped us to identify the
model elements but it took multiple iterations to develop the correct
version of the model, that was ultimately achieved by including
the tester’s domain knowledge. The final model was also declared
correct by a domain expert. Another threat is with respect to the
general applicability of the defined workflow. Both, the DSL and the
TIGER, are particularly designed for the testing of the embedded
system developed at Alstom Transport AB, thus they are applicable
to other projects inside the company. However, due to dependencies
on the proprietary platforms and frameworks, the workflow may
not be applicable as it is to other embedded systems, where the
workflow must change to cater for domain-specific dependencies.

38



Towards a Workflow for Model-Based Testing of Embedded Systems A-TEST ’21, August 23–24, 2021, Athens, Greece

Figure 7: Initial model representing the SUT and the mapping of Xtend-generated elements with model elements

Figure 8: Final model representing FDCUs and TCMS as a black box

Figure 9: An example of the generated test script

39



A-TEST ’21, August 23–24, 2021, Athens, Greece Muhammad Nouman Zafar, Wasif Afzal, Eduard Enoiu

Figure 10: An example of the generated test verdict html

8 CONCLUSION
We have proposed a systematic MBT workflow and tool support
to facilitate the simulation-based testing process of an embedded
system. The workflow is divided into three main phases: 1) re-
quirements description and automatic generation of supporting
artefact for modelling, 2) generation of executable test scripts us-
ing Model-Based Test scrIpt GenEration fRamework (TIGER) [20],
and 3) execution of generated test scripts on simulation levels and
test verdict assessment. We have evaluated the workflow as well
as the supported tooling using an industrial case study at Alstom
Transport AB. The results show that the tool-supported workflow
is practically feasible and the generated test script is executable at
the SIL level to produce the test verdict required for an embedded
system validation.

ACKNOWLEDGMENTS
The work in this study has received funding from the European
Union’s Horizon 2020 research and innovation program under
grant agreement Nos. 871319, 957212; from the Swedish Innovation
Agency (Vinnova) through the XIVT project and from the ECSEL
Joint Undertaking (JU) under grant agreement No 101007350.

REFERENCES
[1] A. Arrieta, J. A Agirre, and G. Sagardui. 2020. A Tool for the Automatic Generation

of Test Cases and Oracles for Simulation Models Based on Functional Require-
ments. In 2020 IEEE International Conference on Software Testing, Verification and
Validation Workshops. IEEE.

[2] L. Bettini. 2016. Implementing domain-specific languages with Xtext and Xtend.
Packt Publishing Ltd.

[3] B. Broekman and E. Notenboom. 2003. Testing embedded software. Pearson
Education.

[4] T. Broenink, B. Jansen, and J. Broenink. 2020. Tooling for automated testing of
cyber-physical systemmodels. In 2020 IEEE Conference on Industrial Cyberphysical
Systems. IEEE.

[5] A. Bucaioni, F. D. Silvestro, I. Singh, M. Saadatmand, H. Muccini, and T. Jochums-
son. 2021. Model-based Automation of Test Script Generation Across Product
Variants: a Railway Perspective. In 2nd ACM/IEEE International Conference on
Automation of Software Test. IEEE Computer Society.

[6] R. Bussenot, H. Leblanc, and C. Percebois. 2018. Orchestration of Domain Specific
Test Languages with a Behavior Driven Development approach. In 2018 13th
Annual Conf. on SoS Eng. IEEE.

[7] M. Eysholdt and H. Behrens. 2010. Xtext: implement your language faster than the
quick and dirty way. In Proceedings of the ACM international conference companion
on Object oriented programming systems languages and applications companion.
ACM.

[8] F. Galinier. 2018. A DSL for Requirements in the Context of a Seamless Approach.
In 33rd Intl. Conf. on Automated SE. IEEE.

[9] B. Hoisl, S. Sobernig, and M. Strembeck. 2014. Natural-Language Scenario De-
scriptions for Testing Core Language Models of Domain-Specific Languages. In
Proceedings of the 2nd International Conference on Model-Driven Engineering and
Software Development. IEEE.

[10] W. Li, F. Le Gall, and N. Spaseski. 2017. A survey on model-based testing tools for
test case generation. In International Conference on Tools and Methods for Program
Analysis. Springer.

[11] M. Micallef and C. Colombo. 2015. Lessons learnt from using DSLs for automated
software testing. In 8th International Conference on Software Testing, Verification
and Validation Workshops. IEEE.

[12] A. S. Nezhad, J. J. Lukkien, and R. H. Mak. 2018. Behavior-driven Development
for Real-time Embedded Systems. In 2018 IEEE 23rd Intl. Conf. on Emerging
Technologies and Factory Automation. IEEE.

[13] O. Olajubu. 2015. A textual domain specific language for requirement modelling.
In 10th Joint Meeting on Foundations of SW Engineering. ACM.

[14] A. Rahman and D. Amyot. 2014. A DSL for importing models in a requirements
management system. In 2014 IEEE 4th International Model-Driven Requirements
Engineering Workshop. IEEE.

[15] M. Utting and B. Legeard. 2010. Practical model-based testing: a tools approach.
Elsevier.

[16] M. Utting, A. Pretschner, and B. Legeard. 2012. A taxonomy of model-based
testing approaches. SW Test, V and R 22, 5 (2012), 297–312.

[17] M. Vidal, T. Massoni, and F. Ramalho. 2020. A domain-specific language for
verifying software requirement constraints. Science of Computer Programming
197 (2020), 102509.

[18] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, K. Czarnecki, and B. von Stock-
fleth. 2006. Model-Driven Software Development: Technology, Engineering, Man-
agement. Wiley.

[19] M. N. Zafar, W. Afzal, E. Enoiu, A. Stratis, A. Arrieta, and G. Sagardui. 2021.
Model-Based Testing in Practice: An Industrial Case Study using GraphWalker.
In 14th Innovations in Software Engineering Conference. ACM.

[20] M. N. Zafar, W. Afzal, E. Enoiu, A. Stratis, and O. Sellin. 2021. A Model-Based
Test Script Generation Framework for Embedded Software. In The 17th Workshop
on Advances in Model Based Testing. IEEE.

40


	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Proposed Workflow
	4.1 Phase 1
	4.2 Phase 2
	4.3 Phase 3

	5 Case Study
	5.1 SUT
	5.2 Generated Artefact
	5.3 Modelling of the SUT
	5.4 Executable Test Script Generation
	5.5 Execution of Generated Test Scripts at Software-in-the-Loop (SIL) Level 

	6 Future Work
	7 Validity Threats
	8 Conclusion
	Acknowledgments
	References

