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Abstract—Industrial Augmented Reality (IAR) is a key en-
abling technology for Industry 4.0. However, its adoption poses
several challenges because it requires the execution of computing-
intensive tasks in devices with poor computational resources,
which contributes to a faster draining of the device batteries.
Proactive self-adaptation techniques could overcome these prob-
lems that affect the quality of experience by optimizing computa-
tional resources and minimizing user disturbance. In this work,
we propose to apply PRODSPL, a proactive Dynamic Software
Product Line, for the self-adaptation of IAR applications to
satisfy the quality requirements. PRODSPL is compared against
MODAGAME, a multi-objective DSPL approach that uses a
genetic algorithm to generate quasi-optimal feature model con-
figurations at runtime. The evaluation with randomly generated
feature models running on mobile devices shows that PRODSPL
gives results closer to the Pareto optimal than MODAGAME.

Index Terms—Industrial Augmented Reality, Dynamic Soft-
ware Product Lines, Proactive Control, Self-Adaptation, Opti-
mization

I. INTRODUCTION

Industry 4.0 is pushing the innovation in factories to
optimize industrial processes using Cyber-Physical Systems
(CPSs) and Internet of Things (IoT) technologies [1]. One
of the key enabling technologies is the Mobile Augmented
Reality, also known in the industrial context as the Industrial
Augmented Reality (IAR) [2]. IAR encompasses interactive
real-time applications that combine real and virtual objects and
run and/or display contents on mobile or wearable devices [3],
e.g., a smartphone or smart glasses. The goal of this technol-
ogy is to provide useful and attractive interfaces to operators
to obtain information on their tasks and to interact with certain
elements that surround them [4]. Typical IAR applications are
devoted to supporting assembling tasks, training for new tasks,
or providing remote assistance [5]. As IAR applications are
meant to be used for extended time periods, it is critical to
consider how the IAR software impacts the battery life of
the mobile device while providing a smooth experience to the
operator.

Most IAR applications use location, network connectivity,
and the detection of physical objects intensively, which require

intensive computation tasks [6]. As most IAR applications
provide visual contextualised data in the users’ sight-line
via devices such as handheld displays of mobile devices or
wearables such as “in-sight” smart glasses, such tasks have
to be developed considering their runtime performance and
energy efficiency. Usually, to reduce energy consumption,
such intensive tasks are offloaded in the cloud, or the edge
[7] or use approximate computing [8]–[10]. However, both
techniques have their own challenges. The offloading of tasks
in mobile environments should consider the location and
resources available of edge devices, the type of connectivity,
and the coverage in a given moment. On the other hand,
approximate computing only can be introduced when it is
possible to find a trade-off between accuracy and efficiency.
More intelligent adaptation technologies are required in this
context, which takes the appropriate action while it considers
the context of the mobile device (battery level, memory
occupation, network connectivity, etc.) and the work of the ap-
plication [7]. Self-adaptation is a key technology to overcome
these problems [11]. Self-adaptive systems can simultaneously
optimize application quality attributes, e.g., user experience,
battery consumption, or memory occupation, autonomously.

Self-adaptation is a quality of software systems that can
evaluate their functioning and adjust their behaviour accord-
ingly to optimize its performance, recover from failures,
configure its functionality, or secure some part of an entire
system [12]. The development of self-adaptive systems is chal-
lenging for several reasons. Runtime adaptation mechanisms
can be unstable, inefficient, and unreliable; self-adaptation
systems base their adaptation decisions on models that can be
inaccurate, and sometimes, they have to operate in environ-
ments with considerable uncertainty. Several approaches have
been defined for self-adaptation [11], [13], being Dynamic
Software Product Lines (DSPL) one of the most widely
used. DSPLs are based on the Software Product Line (SPL)
paradigm, but they focus on modelling those features that
can change during system execution. At runtime, the context
is monitored, and when a change occurs, a reconfiguration



service analyses whether this change requires or not to replace
the current configuration with a new one.

In a previous contribution, we have proposed PROD-
SPL [14], a self-optimizing approach that combines DSPL
with a control-based proactive decision strategy for dynam-
ically proactively generating optimal configurations. Self-
adaptive proactive strategies, like the one used by PRODSPL,
are especially well suited for applications that interact with
the user, such as IAR applications, because they can adapt
the system before a malfunction happens and, in this way,
it minimizes user disturbance. However, IAR applications
require a multi-objective perspective because it is required to
consider at the same time several non-functional concerns of
the system like performance, memory occupation, or battery
consumption. In this contribution, we analyse the feasibility
of using PRODSPL, a proactive self-adaptive approach, to
adapt IAR applications. Specifically, this work focuses on
three different aspects of PRODSPL: (i) how close are the
solutions generated by PRODSPL to the Pareto frontier, or in
other words, how optimal are the generated configurations;
(ii) are the execution times of PRODSPL adequate for an
IAR application; and (iii) when is it more advantageous to
use a proactive strategy rather than a reactive strategy for
interactive applications. We tested our approach in mobile
devices and compared its results with MODAGAME [15], a
multi-objective evolutionary algorithm (MOEA) suitable for
mobile phones. The evaluation with randomly generated fea-
ture models running on mobile devices shows that PRODSPL
gives results closer to the Pareto optimal than MODAGAME.

This paper is structured as follows: Section II presents the
necessary background to understand our proposal; Section III
shows how PRODSPL is adapted to be apply in the context
of IAR applications; Section IV presents the results of our
experiments and answers to research questions; and Section V
provides some conclusions and future work.

II. BACKGROUND

A. DSPL in Industrial IoT

As with many software systems today, industrial IoT sys-
tems and CPSs have to respond to external and internal
changes (i.e. variations) that might affect their QoS by provid-
ing support for adaptation and reconfiguration at runtime. Such
adaptive systems are designed to run continuously and may
not be shut down for reconfiguration or maintenance tasks.
The variability of such systems has to be explicitly managed,
together with mechanisms that control their runtime adaptation
and reconfiguration [16]. Dynamic software product lines
(DSPLs) are a very valuable approach to self-adaptation based
on the software product line (SPL) paradigm, focusing on
modelling only those features that can change during system
execution and additionally supporting system reconfiguration
at runtime. The modelling of those variable features can be
specified using different modelling languages, being feature
models [17] the most popular [18].

A feature model organizes features into a tree and includes
the corresponding tree and cross-tree constraints representing

dependencies among features. In DSPL, the features that can
be reconfigured are modelled as dynamic variation points,
while the set of selected features that fits the current context is
known as dynamic configuration. In DSPLs, optional features
will be included or not in the system at runtime, depending
on how the context conditions affect the application during
its execution. Monitoring the current situation and controlling
the adaptation are the central tasks of DSPLs. At runtime, the
context is monitored, and when a change occurs a reconfigu-
ration service analyses whether this change requires or not to
replace the current configuration with a new one.

In the IoT context, the self-adaptation of the system is
a relevant issue and different works have applied DSPL to
approach reconfiguration at runtime. DSPL has being applied
specifically for the optimization of energy consumption in
the context of the IoT devices such as eHealth systems [19],
and actually, it has become a good choice to enable the
selection of different software options in mobile devices, or
autonomous and adaptive systems such as healthcare robots.
A DSPL approach reasons about different application variants
that may be reconfigured dynamically at runtime driven by a
QoS model [20]. Also, as mobile and other pervasive devices
pose limited hardware capabilities, they can benefit from an
automatic variant selection, which is also limited by non-
functional properties of the device like memory and energy
consumption [15].

B. Proactive approaches

Proactive adaptation considers both the current and the
anticipated adaptation needs of the system. Usually, such
approaches make use either of a prediction model of the
incoming workload [21] or of a model of how the system
to be controlled [22]. In both cases, the models are used to
proactively adjust the behavior of the system, based on the
ability to learn, predict, and act ahead of time.

Although the use of proactive control in DSPL as a decision-
making strategy is new, recent proactive self-adaptation mech-
anisms apply ideas from control theory, such as Model Pre-
dictive Control (MPC) [23]. Some approaches apply predic-
tive control in different domains, such as cloud computing
to guarantee nonfunctional properties [24], on a Denial of
Service (DoS) attack scenario [25], or Meeting-Scheduling
System [22]. The work in [26] compares two approaches that
are inspired by MPC, applied to the same benchmark system.
The main conclusion is that the improvement that can be
obtained with each type of proactive approach depends on the
application and the required type of adaptation.

III. MULTI-OBJECTIVE ADAPTATION OF AUGMENTED
REALITY APPLICATIONS

In this work, we propose a self-adaptation method that
is suitable for IAR applications running in mobile devices.
PRODSPL is an application model-based proactive approach;
it formulates the adaptation problem as an optimization prob-
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Fig. 1: The PRODSPL approach.

lem over a prediction horizon subject to the linear constraints
of the DSPL. PRODSPL uses a dynamic model of the system:

Mt :

{
x(t +1) = Ax(t)+Bu(t)
y(t) = Cx(t)

(1)

that is used to capture how the features u = [u1,u2, . . . ,um]
>

selected at time t affect the performance metrics y =
[y1,y2, . . . ,ym]

>; The variable x is called the state of the
dynamic system [27]. Such a model can be learned offline, but
it can also be adapted at runtime, in case a large variability
of the model is expected [27]. Such a model can be used to
understand how the system will behave in the future based
on the current state (represented by the initial condition x(0)),
and based on the decisions that are taken over a prediction
horizon H (creating a plan of actions u(0), u(1), . . ., u(H)).
In fact, Eq. (1) can be “unrolled” for H steps ahead, obtaining:

y(H) = C

(
AHx(0)+

H−1

∑
i=0

AH−i−1Bu(i)

)
. (2)

The model can be used to optimize the selection of the features
u over the prediction horizon, based on the current state x(0)
of the application.

In this work, we consider different optimization criteria
f1(y), f2(y), . . . , fq(y) that depend on the measured perfor-
mance indexes y, and that must be minimized concurrently.
To be able to compute a unique solution, we scalarize
the multi-objective optimization problem through a function
F( f1(y), f2(y), . . . , fq(y)) = ∑

q
i=1 wi fi(y), where the weights

wi > 0 are chosen to prioritize the criterion with highest
importance. The resulting optimization problem is:

minimize
u(1),...,u(H)

H

∑
i=1

F(yi)

subject to yt = C

(
Atx0 +

t−1

∑
i=0

At−i−1Bui

)
,

ut ∈ Ct , ∀t = 1, . . . ,H,

Cx0 = ymeasured,

(3)

where Ct is a set of constraints that define a feasible set of
features u based on the feature model, and the last constraint
initializes the optimization problem based on the last measured
value of the performance ymeasured. If no numerical features
are present, classical 0-1 programming solvers can be used
for solving (3) [28].

PRODSPL is based on the solution of the optimization
problem (3), computed whenever a new measurement ymeasured
is available. Therefore, the optimization problem is solved
periodically at runtime and generates a plan with the future
actions to take within the prediction horizon.

Similar to the approach described in [14], our proposal
has activities that take place both at design time and runtime
(see Fig. 1). At design time, the variability of the problem is
modelled in a variability model and transformed in a set of
linear constraints. In addition, we use log data of the system’s
behaviour to learn the dynamic model used by the proactive
control to take its decisions. At runtime, the configuration
service runs in a mobile device (or in the device self-adaptive
device) and receives periodically from the decision-strategy the
plan of enabled features. The reconfiguration service provides
the performance indicators. The decision-making strategy uses
the dynamic model and the linear constraints from the vari-
ability model to provide the plan of enabled features.

A. Use case application

AR has been used in industrial situations to provide useful
and attractive interfaces to operators to obtain information on
their tasks and to interact with certain elements that surround
them [4]. In the specific case of Industry 4.0, the concept
of IAR involves the AR hardware, typically a mobile device,
e.g., a smartphone or smart glasses, and AR software. As IAR
applications are meant to be used for extended periods, e.g.,
while performing on-site operations, it is critical to take into
account how the IAR software impacts the battery life of the
mobile device, while providing a smooth experience to the
operator.

Several works have focused their attention on how to offload
the computation of the IAR application towards the edge of the
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Fig. 2: Feature model of the IAR training application.

network, to reduce the impact on the battery consumption [9].
On the other hand, there are other features onboard the mobile
devices that can be tuned to extend the battery life, such as
the type of connectivity, the type of visualization, the refresh
rate, and so on. Such characteristics can be modeled according
to the feature model of SPLs. The feature model can then be
used to adjust at run-time what are the enabled features to
minimizing the memory and battery usage, which increase the
user experience.

Our use case considers an IAR application for carrying out
the training of an operator through a mobile device. The use
case is inspired by the one presented in [29], where the IAR
application is meant to train operators for assembly operations
on the real machines using real instruments for the interaction,
guided by the mobile device. The IAR application provides
instructions and feedback to the trainee, like audio cues or
captions. In this use case, we consider also the possibility of
connecting to a remote operator for asking for clarifications,
in case the training instructions are not clear.

From a platform perspective, the IAR application requires
the usage of some connectivity, which can be either through a
Local Area Network connection or via a Bluetooth connection.
The graphic interface can be tuned to different levels of quality,
depending on the available resources.

Fig. 2 shows the extended feature model for the use case.
We use two different kinds of features: choices and variables.
Choices, which are shown in the figure as rectangles (e.g.,
Connectivity), are evaluated as true or false. They correspond
to features ui ∈ {0,1}. On the other hand, variables (e.g.,
f rameRate), which are shown as ovals, can be evaluated as
values of different types, for our case study they are positive
integer numbers, i.e., ui ∈ N.

The extended feature models allow the specification of
cross-tree constraints to delimit the degree of variability.
These constraints are defined as relationships between different
features of the feature model. The grey box of Fig. 2 shows
the constraints of our case study. For instance, C1 states
that having a remote operator that is available online for
the training requires the network connectivity to be enabled

(as it provides a higher bandwidth). It is possible to specify
constraints involving the values of a variable feature. For
instance, constraint C3 states that the value of f rameRate is
between 40 and 60 frames per second.

B. Formulation of the use case

Once the extended feature model of the case is derived (see
Fig. 2), the feature constraints Ct can be formulated as a set of
linear constraints needed for the optimization problem (3). In
the following, we show on the given use case how to formulate
such constraints, based on the feature model.

We introduce the constraints on the variables ui where i is
the number of the feature in Fig. 2. Additionally, we have
to consider the special mappings for variable features (i.e.,
the case of u9 and u21). Therefore, the resulting paternity
constraints are:

ui ≤ u1, i = 2, . . . ,5
u8 ≤ u3,

u9 ≤ 21u3,

u21 ≤ 129u11.

(4)

The mandatory constraints are the following:

u1 ≤ ui, i = 2, . . . ,5
u3 ≤ ui, i = 8,9
u11≤ u21.

(5)

The group constraints are the following:

u2 ≤ u6 +u7 ≤ 2u2,

u4 ≤ u10 +u11 ≤ u4,

u5 = u12 +u13,

u6 = u14 +u15 +u16 +u17,

u8 = u18 +u19 +u20.

(6)



Finally, the cross-tree constraints are the following:

u13 ≤ u6, (C1)
u12 ≤ u7, (C2)
0≤ u9 ≤ 21, (C3)
0≤ u21 ≤ 129, (C4)
u20 ≤ u17, (C5)
u14 ≤ u18. (C6)

(7)

When the IAR application is running, then u1 = 1. The set of
constraints is therefore Ct = {(4)∪ (5)∪ (6)∪ (7)}, that must
hold true for every time instant in the prediction horizon.

The model (2) can be learned at design time from data
logged from the running system, where the features u =
{u1, . . . ,u21} are varied one by one to better capture their effect
on the performance metrics y.

As these values can be obtained at runtime monitoring the
application, we can test our proposal with real devices.

Finally, one can select the objective function to account for
different costs of running the application to be simultaneously
minimized. For IAR applications running in a smartphone,
we have chosen as performance indicators y = {y1,y2}, where
y1 is the current battery consumption; and y2 is the memory
occupation. The objective function can be therefore selected as
F(y) = w1y1 +(1−w1)y2, with w1 ∈ [0,1]; w1→ 0 will result
in an adaptation that tries to minimize the memory occupation,
while w1→ 1 will result in an adaptation that minimizes the
battery consumption.

IV. EXPERIMENTAL RESULTS

A. Objectives and Research Questions

The methodology used in this study is the goal-question-
metric approach as follows: “Analyze the feasibility of using
ProDSPL for the adaptation of IAR applications”. To achieve
this goal we set the following research questions (RQ):

RQ1. How close are the solutions generated by PROD-
SPL to the Pareto frontier compared with a reactive
strategy? This question studies the values of battery consump-
tion and available memory of the configurations generated
by the proactive controller. We compare our results with the
configurations generated by a reactive approach, the IBEA
algorithm presented in [15].

RQ2. Are the execution times of PRODSPL adequate
for an interactive application? This question explores the
feasibility of using our approach in contexts with different
response time requirements. When it comes to user experience,
and in the context of real-time interactive applications, this
delay determines how users experience an AR-based training
session. Normally, response times should be as fast as possible
and this question studies if the time required to perform
adaptation affects user experience. In interactive and real-time
applications like IAR, the response time, a measurement of
the total amount of time an application takes to respond to a
user request for service or action, has a tremendous impact
on user satisfaction. Specifically, in AR, the display of the
personal device (e.g., an AR headset or a mobile phone) should

show the changes in the environment immediately at the same
time the user moves. Any significant delay causes a conflict
in the brain which can result in nausea or motion sickness.
High latency can cause misalignment of virtual elements in
relation to the real world. According to [30], which defines
three response-time limits, 1.0 second is about the limit for
the user’s flow of thought to stay uninterrupted, even though
the user will notice the delay. Normally, no special feedback
is necessary during delays of more than 0.1 but less than 1.0
seconds, but the user does lose the feeling of operating directly
on the real-time data.

RQ3. When it is more advantageous to use a proactive
strategy rather than a reactive strategy for IAR applica-
tions? To answer this question, we analyze the answers to the
previous questions paying special attention to the number of
reconfiguration executions required by each strategy.

B. Data collection

To answer the research questions, we study different aspects
of our proposal in the context of mobile devices. With this
goal, we have developed a framework that works with a set
of benchmarks generated using random feature models from
SPLOT1.

Self-adaptations are made taking into account two important
non-functional properties of IAR apps, to minimize battery
consumption and to maximize available memory. The mobile
phone starts the experiments fully charged and the benchmark
requests a new configuration to an Adaptation Server (AS)
providing battery consumption and the available memory every
30 seconds. The AS supports four self-adaptation strategies:
random (i.e., random valid configuration of the benchmark
FM), empty (i.e., all the adaptive components of the bench-
mark disabled), proactive and reactive. Each experiment runs
until the battery is depleted (which is around 8 hours) and
it is repeated three times. When the experiment finishes, the
AS generates a report that includes battery consumption and
available memory of each configuration of the benchmark.
Benchmarks run in a Nexus 5X device and the AS is deployed
in an Intel Core i7 with 3.40 GHz of CPU and 16 GB of RAM.

All the benchmarks have the same structure. They have an
adaptor, which is in charge of interacting with the AS and
adapting to the new configuration, two monitoring services
for the battery consumption and the available memory, and a
variable number of adaptive components that can be enabled or
disabled at runtime. Monitoring is implemented using Android
system libraries. However, they only provide battery consump-
tion and available memory for the device (not per application),
and it is very inaccurate. Therefore, the adaptation strategy
has only an overall notion of the current behaviour of the
app. A side effect is that it is very difficult to have a precise
learned model for the adaptation of the system. The adaptive
components of the benchmark are generated using the FMs.
For each feature of the FM, the benchmark has an adaptive
component that performs one of these tasks: to calculate the

1http://www.splot-research.org/
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tangent, to determine if a number is prime or not, to compute
the factorial of a random number, or to sum two numbers. The
type of task is randomly determined in the generation of the
benchmark using the Java random function.

The proactive strategy presented in Section III has been
implemented using the Matlab API for Java and the Opti-
mization toolbox. On the other hand, the reactive strategy is
implemented using the MOEA for DSPLS presented in [15].
In this work, some of the MOEAs of the JMetal framework
is adapted and evaluated for DSPLs. Specifically, we have
used the IBEA algorithm, which generates better solutions
for small and medium-sized FMs (20-100 features). MOEAs
use a fitness function to determine the quality of generated
configurations that needs to know the relationship between
features and the available memory and battery consumption.
To determine this, we have used the random models and the
implementation of the Support Vector Regression of Weka2

with a lineal kernel.
In the experiments presented in this section, we have used

3 FMs with a different number of features and number of
possible configurations (20 and 2.268; 50 and 85.952.600; 100
and impossible to compute a number of possible configura-
tions). These models have been created with the following
proportions: 25% of mandatory features, 25% of optional
features, 25% of alternative OR features, and 25% of exclusive
XOR features. Regarding the branching factor, the minimum
is 1 and the maximum is 6. The maximum size of the groups is
6. The cross-tree constraints are 3-CNF formulas that consider
the 20% of features with a clause density of 1.

C. Answers to research questions

RQ1. How close are the solutions generated by PROD-
SPL to the Pareto frontier compared with the reactive
strategy? To answer this question, we compare PRODSPL
with MODAGAME. As we explained in Section III, PROD-
SPL generates a plan over a prediction horizon subject to
the constraints derived from the DSPL. Our hypothesis is the
wider the horizon is, the better will be the battery consumption
and available memory of the plan. However, the duration of
our experiments (around 8 hours) makes it impossible to test
the behaviour of PRODSPL for all the prediction horizons and

2https://www.cs.waikato.ac.nz/ml/index.html

FMs. So, we made previous experimentation to determine a
prediction horizon that works well with all the FMs, which
resulted in being 6.

To compare the solutions of both strategies, we have to
consider that they use multi-objective optimization, and the
Pareto frontier is unknown. This is due to several factors: (i)
the inaccuracy of measuring methods; (ii) the maximum and
minimum values of available memory and battery consumption
that the device can support are unknown, and (iii) the real
optimal configurations of our FMs cannot be determined.
However, we know that the application results when any
feature is selected, i.e., the empty configuration, should be
very similar to the Pareto optimal. Fewer features selected
imply lower battery consumption and more available memory.
Therefore, the strategy that generates solutions more similar
to the empty strategy should be the best one.

We calculate the similarity of the solutions generated by
each strategy using the distance between centroids of the
solutions generated by each adaptation strategy and the empty
strategy. To compute these centroids, the first 30 and the last
30 experiment steps are eliminated because when a lithium
polymer battery (as the one of the Nexus 5x) is fully charged
or nearly empty provides voltage values that introduce a lot
of distortion in the results. The scale of the objective affects
this distance, so data has been normalized. We can see the
solutions generated by the three strategies for the three FM
in the scatter plots of Figures 4-6. Centroids are highlighted
using circles, and frontiers are marked using lines. The violet
centroid corresponds to the Proactive Strategy, while light blue
is for the reactive strategy, and the black one is for the empty
configuration.

These scatter plots illustrate the inaccuracy of the infor-
mation provided by Android about the state of the device.
Although the configurations generated by the proactive and
empty strategies are always the same, we can see a great dis-
persion in the results. Additionally, it is interesting to note that
the behaviour of the strategies differs a lot depending on the
size of the FM. For 20 and 100 features, the proactive strategy
can maintain the system more stable. However, for 50 features,
the situation is the opposite, but the proactive strategy can
reduce battery consumption more than the reactive strategy.
Considering the centroid, results for both algorithms are
rather similar but better for the proactive strategy for FM
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Fig. 4: Scatter plots of the results for FM of 20 features.
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Fig. 5: Scatter plots of the results for FM of 50 features.

of 20 and 50 features, and better for the reactive strategy
for FM of 100 features. As we stated in the introduction, the
proactive strategy does not improve the results of the reactive
one in all scenarios but provides other benefits discussed in
RQ3.

RQ2. Are the execution times of PRODSPL adequate
for an interactive application? To answer this question, we
have measured the execution time of PRODSPL for different
prediction horizons from 1 to 10 (see Table I). Experimentation
stopped when the response time of the algorithm becomes
unacceptable for the reconfiguration of an application that
requires user interaction. This limit was reached when the
prediction horizon was 12. If we exclude these cases, the
execution times are in the order of milliseconds on average.
However, in the worst-case execution, time can rise to 4
seconds. In any case, these results make our approach suitable
for an interactive IAR application.

We can reduce the response time of our strategy to manage
the worst case. Related to this, the real-time community
has explored different options [22] that includes exploiting
the simple properties of interior point algorithms to execute

0 0.2 0.4 0.6 0.8 1
Normalized Available Memory

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 B
at

te
ry

 C
on

su
m

pt
io

n

Proactive:0.52272
Reactive:0.46588
Empty

Fig. 6: Scatter plots of the results for FM of 100 features.

the next proposed step by the proactive strategy to avoid
computing a new plan or reducing the complexity of the
problem. We will explore this issue in future work.

RQ3. When it is more advantageous to use a proactive
strategy rather than a reactive strategy for IAR applica-
tions?. Considering the results of our experiments, the PROD-
SPL can generate configurations closer to the Pareto optimal
for FMs of 20 and 50 features. However, the execution time
is the order of hundreds of milliseconds while MODAGAME
can produce solutions in few milliseconds [15]. On the other
hand, the number of reconfigurations required for PRODSPL
is smaller than the numbers required by MODAGAME. For
the experiments presented, PRODSPL maintains the same
configuration during the execution of the experiment, while
MODAGAME performs 17, 13, and 24 reconfigurations for
the models of 20, 50, and 100 features, respectively.

In conclusion, PRODSPL is adequate for interactive appli-
cations like IAR because the frequent change of configuration
could lead to user dissatisfaction. Finally, we see that the
results of both strategies are similar concerning the Pareto
optimality. It would be interesting to explore which kinds of
FMs are better for each strategy as future work.

V. CONCLUSIONS

IAR is a key technology for the vision of Industry 4.0. How-
ever, its adoption faces several challenges because it requires
the execution of heavy computation tasks in wearable devices
(poor in computational resources) in a dynamic operational
context. IAR application requires proactive self-adaptation
to ensure an immersive augmented reality experience while
ensuring computational resources. In this work, we have pro-
posed the application of PRODSPL, which combines proactive
control with DSPL, for the self-adaptation of IAR applications.
To do so, PRODSPL has been adapted to operate in multi-
objective application domains like IAR. We have explored
the feasibility of the application of PRODSPL by analyzing
the quality of the configurations obtained, the number of
reconfigurations needed, and the response time. PRODSPL



TABLE I: Times statistics in milliseconds.

FM 20 50 100
H 1 4 6 10 1 4 6 10 1 4 6 10

Median 140 239 288 429 267 456 572 805 536 847 1077 1483
Std. Dev. 355 486 295 457 354 329 386 628 631 380 213 553

Min 129 213 270 375 260 440 556 776 492 833 1066 1450
Max 2466 2766 2836 3308 2864 3013 3406 4776 3359 3439 4118 4948

has been compared with MODAGAME, a multi-objective
reactive DSPL that generates nearly optimal configurations.
Our approach has a reasonable response time and can generate
system configurations near the optimal ones for feature models
of 20 and 50 features. Additionally, PRODSPL minimizes the
number of reconfigurations required to optimize the app.

In this work, we have shown that PRODSPL is advanta-
geous in the self-adaptation of IAR applications. However, in
our ongoing work, we are studying its applicability to other
IoT systems. With this regard, it is of special interest the
influence of the uncertainty, the cost of the reconfiguration,
and the impact of the features in the multi-objective function.
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B. Schmerl, “Comparing model-based predictive approaches to self-
adaptation: CobRA and PLA,” in SEAMS 2017, 2017, pp. 42–53.

[27] L. Ljung, System Identification: Theory for the User, 1999.
[28] P. Hansen, “Methods of nonlinear 0-1 programming,” in Discrete Opti-

mization II, 1979, vol. 5, pp. 53 – 70.
[29] N. Gavish, T. Gutiérrez, S. Webel, J. Rodrı́guez, M. Peveri, U. Bockholt,

and F. Tecchia, “Evaluating virtual reality and augmented reality training
for industrial maintenance and assembly tasks,” Interactive Learning
Environments, vol. 23, no. 6, pp. 778–798, 2015.

[30] J. Nielsen, Usability engineering, ser. Interactive Technologies. Cam-
bridge, Mass: AP Professional.


