
Modelling Application Cache Behavior using
Regression Models

Jakob Danielsson1,Janne Suuronen1, Marcus Jägemar1,2, Tiberiu Seceleanu1, Moris Behnam1, Mikael Sjödin1
1 Mälardalen University, Västerås, Sweden

2 Ericsson AB, Stockholm, Sweden
jakob.danielsson@mdh.se

Abstract—In this paper, we describe the creation of resource
usage forecasts for applications with unknown execution charac-
teristics, by evaluating different regression processes, including
autoregressive, multivariate adaptive regression splines, exponen-
tial smoothing, etc. We utilize Performance Monitor Units (PMU)
and generate hardware resource usage models for the L2-cache
and the L3-cache using nine different regression processes. The
measurement strategy and regression process methodology are
general and applicable to any given hardware resource when
performance counters are available. We use three benchmark
applications: the SIFT feature detection algorithm, a standard
matrix multiplication, and a version of Bubblesort. Our evalua-
tion shows that Multi Adaptive Regressive Spline (MARS) models
generate the best resource usage forecasts among the considered
models, followed by Single Exponential Splines (SES) and Triple
Exponential Splines (TES).

I. INTRODUCTION

Cache memories in multi-core systems are prone to re-
source contention, most notably the last-level cache since it
is commonly shared across multiple cores and allows for
simultaneous usage [13]. The cache is a small, finite memory
storage area and will evict data when its’ capacity limit
is met; the evictions are called cache misses. In contrast,
references to a cache memory block are called cache accesses.
Resource contention typically occurs when two memory-
intensive applications execute on different cores, continuously
executing cache accesses to new memory blocks. The cache
memory will become full at some point during execution and,
therefore, needs to evict cache lines to make space for new
data requests. A vicious cycle can in the worst cases occur,
where the applications’ cache accesses continuously triggers
cache evictions from each others’ data, leading to performance
degradation’s and execution time fluctuations. One popular
way to avoid such a scenario is to disqualify simultaneous
usage of certain cache blocks through page coloring, also
known as cache partitioning [30]. Page coloring removes
resource contention through assigning specific cache blocks
to specific processes at the cost of overhead performance
penalties [9].

The execution characteristics of applications different de-
pending on the application functionality. Applications are
typically split into several phases [23], such as cache-heavy
phases, arithmetic-heavy phases and floating-point heavy
phases. A cache-heavy phase means the majority of the in-
structions leads to an access in the cache memory. In contrast,
an arithmetic phase means the majority of the instructions
causes an operation within the Arithmetic Logic Unit (ALU),
etc. The most vicious scenario for cache contention is when
two applications run simultaneously on different cores while
executing their most cache heavy phases and stresses the cache

to the capacity limit. We should not run applications that exe-
cute their most cache heavy phases simultaneously because of
resource contention. Instead, we should schedule applications
according to their shared resource usage, so the resource-
specific phases (e.g., cache-heavy phases) never collides with
each-other, thus mitigating the resource contention to a small
degree. Making such a schedule requires modelling techniques
that estimate the applications’ resource usage trends for offline
scheduling. To further adapt the methodology for reactive, run-
time scheduling, we also need the model to predict the future
resource usage.

Regression modelling is a mathematical process used to
analyze trends in time-varying processes such as stock prices.
In this paper, we benchmark different regression models with
respect to the computing realm. We aim to create suitable
regression models that can formalize an application’s resource
usage and create a prediction model for future resource usage.

We use the computer’s performance counters to generate
resource usage models. Our models look at what hardware
is triggered by a software application and estimate its future
resource usage. Performance counters are widely used in
modern computers, making the modelling approach scale-able
to all hardware that has the performance counter utility. In this
paper we exemplify the modelling process using a set of three
applications, including Bubblesort (non-cache heavy), matrix
multiplication (cache heavy) to serve as synthetic workloads,
to show resource forecasting applicability. We also use the
Feature detection algorithm Scale Invariant Feature Transform
(SIFT) [17] to serve as a realistic workload for resource
forecasting.

Our contributions are:
• Resource forecast modelling on the three previously

mentioned algorithms using the forecast models available
in the Statsmodel module [22].

• A comparison evaluation on the accuracy of the different
forecast models using the Root Mean Square Predicted
Error (RMSPE) as a comparison metric.

The rest of this paper is organized as follows: Section II
presents relevant notions, including measurement strategy,
computer resource usage, and regressive performance analysis.
Section III introduces our method for evaluating different
regression processes. In section IV we show the comparison
results of the nine regression processes and discuss the results.
Section VI concludes the paper and presents opportunities for
future work.

II. BACKGROUND

It is challenging to predict bottlenecks for a particular
hardware resource (such as L1-cache, L2-cache or similar)



since the hardware resource usage may vary significantly
during the execution time. For demonstrative purposes, we
show the L3-cache usage for the SIFT algorithm using an 8MB
image executed on a single CPU, Figure 1. The y-axis plots
the total number of L3-cache accesses, while the x-axis shows
the measurement points over the entire execution.

Fig. 1: Illustration of SIFT using an 8MB image.

The L3-cache usage of the SIFT algorithm varies by a
significant amount over time. The L3-cache usage is low at the
start of the algorithm and rapidly increases after 0.5 seconds.
The L3-cache accesses count is significantly reduced at the
6-second mark.

The SIFT application takes 9.1 seconds to execute, which
itself is not a very long time. Still, a complete software system
often consists of 10’s to 1000’s of tasks, which could have
similar execution time to that of SIFT. Accurately forecasting
resource usage can significantly decrease run-time applica-
tions’ testing time since they do not need to run for their
full duration.

Forecasting and predicting the hardware resource usage also
helps system designers in making three significant decisions,
listed as follows:

• Hardware evaluation: The system designer will be able
to distinguish sooner if a specific platform has enough
capacity to run the software.

• System scheduling: Forecasting will enable scheduling
the system run-time in a resource-efficient way so that
hardware resources can be utilized at their maximum
capacity without interference from other tasks.

• Resource bottlenecks: Accurate resource usage forecast-
ing can also indicate if an application will be affected
by resource capacity limits in the future casing resource
bottleneck.

In the following sections, we discuss how different resources
affect an application’s performance and how to measure inter-
esting resources using the Performance Monitor Unit (PMU).
We also discuss different regressive models for forecasting
application resource usage.

A. Computer resource usage
Computers consist of a vast set of resources, such as cache’s,

memory management unit (MMU), main memory (DRAM),
I/O’s, etc. These resources add functionality to the processor,
such as memory access speed through temporary memory
storage areas (cache’s), increase instruction-level parallelism

(processor pipeline), increase process parallelism (processor
cores), etc. All applications utilize at least one computing
resource during execution and are therefore dependent on this
resource to complete their execution - we call this resource
boundness [10]. However, many applications are often com-
plex and thus bound to several resources simultaneously - a
memory-bound application, for instance, typically utilizes the
entire spectra of the memory chain: TLB’s, cache’s, DRAM,
and instruction memory.

In this paper, we mainly investigate how to generate and
forecast cache resource usage models. We limit ourselves to
constructing resource usage forecasting models of cache for
memory-bound applications, and, at the moment, we exclude
other resource boundness situations.

B. Measurement strategy

Measuring the resource usage of applications can be done
using the Performance Monitor Unit (PMU), which is included
in most modern hardware. The PMU hosts a large set of
counters - the Performance Monitor Counters (PMC), which
are event-triggered hardware counters that trace the various
resource usage within a computer. We use here the Perfor-
mance API (PAPI) [18], a performance counter library that
utilizes the built-in Linux perf headers [26] for measuring
the performance counters. Further, we take a sampling-based
approach to generate resource forecasts of applications. This
means that we continuously measure the performance counters
during runtime of an application with a certain frequency,
instead of measuring the total count. Figure 2 depicts our
measurement strategy.

Fig. 2: Periodic measurement of performance counters.

In this way, we can generate resource usage forecasts on the
individual application, since we have multiple sampling points
of the cache resource usage.

C. Regressive performance analysis

Regressive analysis is a method for modeling relationships
between dependent and independent variables through a statis-
tical process. Dependent variables are what a regressive model
tries to predict or model. Independent variables are factors that
have an impact on the dependent variables we are investigat-
ing. For example, a dependent variable can correspond to the
execution time of any given process. A potential independent
variable is the number of cache misses within that process,
which may negatively impact that process’s execution time.

There exists a broad spectrum of different regression tests,
e.g., autoregressive and spline modeling processes [19]. Re-
gressive modeling requires a dataset to construct models and
approximate dependent variables by estimating independent
variables’ functions alongside an error term. The result of this
procedure is an estimation model of the relationship between
different variables of interest. The final product of estimating

2



a mathematical function is the ability to forecast dependent
variables.

We list here the major steps to construct a regressive model:
1) Select a modelling process suitable for the observed

patterns in the data
2) Fit the parameters of a model to training data according

to what is dictated by the modelling process.
3) Evaluate the prediction accuracy, for example by exam-

ining Root Mean Square Prediction Error (Equation 4),
of the fitted model using a validation dataset.

There are two types of models that regressive modeling
processes estimate:

• Parametric models consist of a finite number, specified
before the model is generated, of parameters.

• Non-parametric models can theoretically include an infi-
nite number of model parameters.

We limit this work only to include first-order parametric
models. Which means the number of parameters (i.e., the
amount of variables within the model) is limited to only one.
The quality of the generated model is measured by evaluating
how the polynomial function of the model “fits” the measured
dataset. There exists three outcomes, good fits, overfits and
underfits. Good fits accurately describe the shape of the dataset
and can also detect the trends in the dataset. Therefore, they
can forecast future values of the dataset. Overfits means the
model has generated too many parameters and will be an
almost exact representation of the dataset. Overfits also means
that it is impossible to make any forecasts of the dataset since
the model is an exact representation of the values in the current
dataset. Underfit means the model has too few parameters to
make any forecast prediction. Sharma et al. [24] exemplify
over-, under- and good-fitting in Fig. 3:

Fig. 3: Example of under- (left), good- (middle) and over-
fitting (right) [24]

Other than the problems of over-and under-fitting curves,
adopting regressive analysis to construct forecasting models
of hardware resource usage is a relatively straightforward pro-
cess. Regressive models require datasets to be available at the
moment of construction. Thus, we sample the cache resource
usage of processes before initiating the model construction
step and feed the dataset to our regressive models once the
sampling is finished. Our regressive resource usage models
are, therefore, offline representations of resource usage.

D. Related work
Existing research addresses methods that investigate how

to create hardware resource usage models and how they can
be applied to predict application performance. Several studies
evaluate statistical regression models as suitable candidates for
building performance forecasts [25, 14]. These works show

how different performance values can be predicted using dif-
ferent regressive models. Other related work which is closest to
our investigates resource usage through a novel autoregressive
model called Threshold Autoregressive (TAR) [6]. The authors
show that it is possible to create resource usage forecasts of
any given application using regressive models, with a relatively
low prediction error. Our research expands on this topic,
and we evaluate the applicability of resource forecasting on
different regressive models in the Statsmodel module [22]
and pyearth for MARS models. Other results on predicting
software performance and resource usage using autoregressive
models are presented by Courtois and Woodside [8].

While some of the previously listed works employ similar
regressive models to ours, we introduce the use of hardware
performance counters’ in conjunction with regressive models.
To the best of our knowledge, no other research works utilize
performance counters as a mean for forecasting and detecting
hardware capacity bottlenecks.

Other relevant works investigate how to use PMU’s to
evaluate application performance models without in-depth
knowledge of application code [27, 2, 7, 15, 12, 21]. However,
these current methodologies strictly rely on measured data,
which requires an application to be run until completion at
least once to completion. Resource bottlenecks can only be
discovered offline after application execution. Since our paper
targets forecasting, our additions to this domain enable us to
discover potential hardware resource bottlenecks before they
occur.

III. METHOD

A. Model System Behaviour
We primarily focus on constructing forecast models of

an application L2-cache and L3-cache usage. We start by
gathering hardware resource usage samples during the appli-
cation runtime to generate forecast models. We use a time
slot sampling strategy which is similar to a frequency based
measurement strategy. One PMU measurement sample is taken
at the end of each sampling timeslot. We determine the time-
length of a time slot according to Equation 1, where T is
the time slot length in a time unit, appe is an applications’
execution time and s is the desired number of samples.

T =
appe
s

(1)

Assuming an application execution time (appe) of 1 second
and the desired number of samples (S) is 100, the timeslot
length (T ) is equal to 10 milliseconds, which means a sam-
pling rate of 100Hz. We denote the set of all measurement
samples as yc. Here, y denotes the application, and c denotes
the performance counter. In this paper, we focus only on
L2-cache and L3-cache accesses, thus, c will indicate either
the L2-cache or L3-cache accesses. We furthermore denote the
individual performance counter sample of an application y as
t, we can have the complete execution characteristics of c,
with 100 samples, given in Equation 2.

yc = {t0, .., t100} (2)

Next, we use yc set to generate the forecast model ŷc,
see Equation 3, where model represents a regressive model
process.

3



ŷc = model(yc) (3)

The populations yc and ŷc describes the actual (yc) and
modelled (ŷc) cache resource usage at specific time points.
We access data within the respective population using discrete
time points t. yc(t) returns the actual cache resource usage
at timepoint t and ŷc(t) returns the modelled cache resource
usage at timepoint t.

We exemplify a resource usage forecasting scenario using
matrix multiplication as a test application and a MARS model
as forecasting generation model, Figure 4. The first 50 samples
in the model show a tendency of overfitting but still generates
a close estimation of the measured L2-cache usage in the
last 100 samples. The y-axis shows the amount of L2-cache
accesses, and the x-axis shows the sample number. One blue
dot corresponds to the data samples at a specific time point
(ti), which means all blue dots builds the population yc where
c is equal to L2-cache accesses. The green line depicts the
MARS model’s fit, and the red line depicts the forecast model
produced by MARS (ŷc). The figure visualizes the purpose of
resource forecasting, i.e., the ability to forecast the L2-cache
usage.

Fig. 4: Example of an L2 cache usage function estimated using
a MARS model [19].

The figure shows the model generation of MARS, where the
red line depicts the actual forecast model. We then evaluate
the model’s applicability using RMSPE, see Section III-B. In
this work, we investigate the applicability of multiple different
regression models, including Auto-regressive, Auto-regressive
Moving Average, Auto-regressive Integrated Moving Average,
and Spline (Natural, B- and MARS) Regressive modeling
processes [19] and their applicability for forecasting applica-
tions’ usage of L2-cache and L3-cache memory. We list all the
modelling that we consider in Table II.

B. Evaluation Methodology
We use the Root Mean Square Prediction Error (RMSPE) to

evaluate our regressive models’ accuracy. The RMSPE metrics
describe the difference between predicted values and actual
observation values of the data set. This paper uses RMSPE as
a model comparison metric; the lower RMSPE value means

the difference between the actual data and the forecast model is
smaller and is preferable over a high RMSPE value. Equation 4
describes the RMSPE calculation, which is the root square
value of the difference between all values in population ŷc
and yc divided by the number of samples n.

RMSPE =

√
ŷc − yc
n

(4)

Equation 4 gives the prediction error by squaring the sum of
the averaged difference between predicted (ŷc) and actual (yc)
values, where n is the number of samples considered. In this
paper, we exclusively use 400 as the number of samples, and
therefore, n will always be equal to 400 in our experiments.

IV. EXPERIMENTS

We generate resource usage forecast models and evaluate
the RSMPE value using the platform in Table I.

TABLE I: Hardware specifications Intel R© CoreTM i5 8250U

Feature Hardware Component
Core 4xIntel R© CoreTM i5-8250U CPU (Kaby Lake) 1.6

GHz

L1-cache
32 KB 8-way set assoc. I-cache/core +
32 KB 8-way set assoc. D-cache/core

L2-cache
256 KB 4-way set assoc. cache/core

L3-cache
6 MB 12-way set assoc. Inter-core shared cache

In addition to the hardware setup, we set the desired number
of samples (s) to 400 for all experiments. We use 400 for all
applications since it provides the best trade-off between over-
and under-fitting of the curves for our test applications. In the
following subsections, we discuss the applications put under
test, the software execution environment and also the different
regressive models that we use.

A. Execution scenario
We use three different applications including, a traditional

bubblesort of an array, a conventional matrix multiplication of
two randomly generated matrices, and finally, an application
containing the SIFT algorithm [20] for detecting features
within an image. We use a matrix multiplication and bub-
blesort due to the simplicity in following their execution
characteristics. Furthermore, we use SIFT to display resource
forecasting usage in a more realistic non-synthetic scenario.
In the following subsections, we discuss the basic mechanics
and the resource usage of our applications.

1) BUBBLESORT: The BUBBLESORT algorithm com-
pares two adjacent values within an array, the left-hand side
value, and the right-hand side value. If the right-hand side
value is lower than the left-hand side value, these values swap
location within the array. The bubble sort application’s main
mechanic utilises comparisons mainly, which means it is a
heavily branch-predictor dependent application.

2) Matrix multiplication: We use a standard ijk matrix mul-
tiplication, famous for loading the cache in a very suboptimal
way. Our matrix multiplication multiplies the columns of one
matrix A with the row of matrix B. The result value is stored in
matrix C. The procedure of loading values from a matrix and
storing new values into another matrix is very memory inten-
sive, which means its a memory-bound application, including
caches and DRAM.

4



3) SIFT: SIFT is a complex feature detection algorithm
containing several mathematical operations such as the differ-
ence of Gaussian, nearest neighbor, hough transform voting,
linear least squares, and more. The mathematical operations
mean the SIFT application performs multiple steps and may
depend on several different resources during the algorithm’s
different phases.

B. Environment

We collect data using the platform specified in Table.I)
running the 64-bit desktop version of Ubuntu 18.04 LTS
in an unmodified state with Linux kernel version 5.3.0-46-
generic. As a measure to lessen stalls due to user-related
interface interaction, we disable the graphical interface. We
reboot our test platform for each test run to clear cache levels
and ensure each test runs with a cold cache and comparable
circumstances. Our experiments run on an as-is Intel R© CoreTM

i5 8250U(Kaby Lake architecture) with four homogeneous
cores clocked at a base frequency of 1.60 GHz and a three
levelled cache hierarchy. We list all the details on our test
platform in Table I.

C. Execution

For each test application, we collect L2-cache and L3-cache
resource usage data at a sampling rate specified in Equation 1.
The resulting three datasets are each individually split accord-
ing to a 75/25% ratio which yields data subsets of 300(75%)
and 100(25%) measurements for model training and testing.
The values of hyperparameters is a crucial factor to consider
when fitting regressive models. Regarding Auto-Regressive
models(AR, ARMA, ARIMA), the adjustable hyperparameters
are the Auto-Regressive(AR) and Moving Average(MA) or-
ders. In our case, all Auto-Regressive-based models are of the
first order. The Exponential Smoothing models(SES, DES and
TES) are tunable by modifying the weights applied to previous
observations(α), trends(β) and seasonality(γ). We optimize α
in SES and α, β, γ in TES using maximum log-likelihood.
α and β in DES are set to 0.8 and 0.2 respectively as this
procured better results compared to maximum log-likelihood
optimization. Finally, the Spline-based models are tunable
by the number of knots, Degree of Freedom(DF), and the
maximum polynomial degree of each spline. Both B-spline and
N-spline DFs are set to 10, whilst the maximum polynomial
degree is set to five. In MARS, only the maximum polynomial
degree is adjustable by design and is set to 3.

A key aspect concerning regressive models is their data
demands to avoid over-and underfitting. Thus we set the sam-
pling frequency to capture enough measurements without com-
promising the significance of the observed usage. Adopting
a higher sampling rate could provide unrepresentative usage
data since the overhead of measuring the performance counters
becomes overwhelming compared to the actual measurement
samples.

We run the SIFT algorithm on an 8MB image. BUB-
BLESORT sorts a 6MB array of randomly generated values.
The MATMULT workload multiplies two matrices summing
up to a workload size of 1MB. We sample the L2-cache,
and L3-cache accesses during each application’s execution.
Figures 5, 6 and 7 plots the execution profiles for the
SIFT, MATMULT and BUBBLESORT respectively. Orange
dots mark the quantity of L2 accesses and blue crosses,

which marks the number of L3 cache accesses over 400
measurements.

Fig. 5: Memory usage illustration of SIFT using an 8MB
image.

Fig. 6: Memory usage illustration of a matrix multiplication
using a 1MB dataset.

ma

Fig. 7: Illustration of SIFT using an 8MB image.

All three applications show very different execution profiles.
The BUBBLESORT application shows a contiguous decrease
in both L2 and L3 cache accesses. The matrix multiplication
instead has a ramp phase, where the cache accesses rapidly
increase in the beginning while saturating at measurement
sample 80. SIFT shows stage-alike patterns in cache accesses,
where there is first a dormant stage with almost no cache

5



accesses. At sample 30, the cache accesses increase rapidly
and remains high until sample 100, where the accesses starts
to decrease gradually.

D. Model Comparison
Once the measurement phase finalizes, we create resource

usage models using the regression processes listed in table II
of each application, using the sample measurements.

Modelling process Type
Auto Regressive (AR) [1] Non-param
Auto Regressive Moving Average (ARMA) [28] Non-param
Auto Regressive Integrated Moving Average (ARIMA) [3] Non-param
Regressive B-spline [11] Param
Regressive Natural Spline [5] Param
Multivariate Adaptive Regressive Spline(MARS) [14] Non-param
Simple Exponential Smoothing(SES) [4] Non-param
Double Exponential Smoothing(DES) [16] Non-param
Triple Exponential Smoothing(TES) [29] Non-param

TABLE II: Modelling processes evaluated in this work.

Our complete regression model suite generates a total of
54 forecasting models for our three example applications; 18
different models for each application, 9 different models for
each cache level. For each of the 54 models, we calculate
the RMSPE according to Equation 4. The RMSPE score
describes how accurate forecasts made by a model are through
calculating the the error size of the predictions. Thus, a lower
RMSPE score is preferable over a higher one. Figures 8 and
9 shows the RMSPE scores for the SIFT application. Figures
10 and 11 the same for BUBBLESORT and Figures 12 and
13 the corresponding for MATMULT.

1) SIFT models: The first application we examine executes
the SIFT on an 8MB image. The MARS models notably
achieve the lowest RMSPE score for both cache levels. Figures
8 and 9 lists the RMSPE value of each different regression
process on the left-hand side y-axis. Smaller RMSPE value
means the prediction error is lower and is, therefore preferable
to a high RMSPE value.

Fig. 8: RMSPE score of L2-cache usage models from data
collected during execution of the SIFT algorithm with a 8MB
image.

The SIFT workload identifies edge features in an 8MB
image. On the other side of our SIFT RMSPE spectrum, the
ARIMA models stand out with the highest RMSPE scores out
of the calculated model scores. The remaining modeling pro-
cesses achieve similar scores within the respective modeling

Fig. 9: RMSPE score of L3-cache usage models from data
collected during execution of the SIFT algorithm with a 8MB
image.

process family. That is, B- and Natural splines models achieve
similar RMSPE scores; the same applies to the Exponential
Smoothing family of modeling processes (SES, DES and
TES).

2) BUBBLESORT models: Our second application per-
forms a traditional bubble sort on an unsorted integer array
6MB in size with random values. Figures 10 and 11 presents
the RMSPE scores of each successfully constructed model.

Fig. 10: RMSPE score of L2-cache usage models from data
collected during execution of the BUBBLESORT algorithm
with a 6MB array.

The BUBBLESORT RMSPE show MARS, SES, and TES
outperform the other regression processes in prediction error.
Furthermore, ARMA and ARIMA models failed to construct
models from the dataset, due to lack of invertibility in the
Moving Average(MA) component. We were, thus, unable to
calculate RMSPE values for these modeling processes.

3) MATMULT models: Our third and final application
performs a matrix multiplication between two square matrices
with a working set size of 1MB for each matrix. Amongst the
L2-cache models, the SES and TES models achieve, nearly
identical, the lowest RMSPE scores, as seen in Figure 12.
The B-spline L2-cache model achieves the highest RMSPE
score, and the ARIMA model fails to construct due to lacking
data invertibility for the MA component. The RMSPE scores
calculated for the L3-cache usage models show a different out-

6



Fig. 11: RMSPE score of L3-cache usage models from data
collected during execution of the BUBBLESORT algorithm
with a 6MB array.

come. Double Exponential Smoothing achieves a significantly
higher RMSPE score, as visualized in Figure 13, while SES
and TES models provide the smallest RMSPE scores.

Fig. 12: RMSPE score of L2-cache usage models from data
collected during execution of the MATMULT algorithm with
a 1MB working set.

V. DICUSSION OF APPLICABLE METHODS

We examine several regressive modeling processes with
the purpose of forecasting L2-cache, and L3-cache usage,
expressed as the number accesses done per unit of time
performed to a given cache level.

We examine both parametric and non-parametric modeling
approaches. We state that parametric processes are too inflex-
ible to model cache usage, as shown by the relatively high
RMSPE scores of B- and Natural Spline models. Parametric
models require set parameters before construction, requiring
users to learn the resource usage pattern before setting optimal
parameters. Setting parameters before-hand means additional
testing time for finding the optimal parameters rather than
actual testing, which contrasts our goal of reducing testing
costs. As such, non-parametric models are preferable since
they are more flexible compared to parametric alternatives.

Flexibility is a desired trait as cache usage patterns are
not uniform across all applications. However, despite a higher

Fig. 13: RMSPE score of L3-cache usage models from data
collected during execution of the MATMULT algorithm with
a 1MB working set.

degree of flexibility, non-parametric models are not fault-free
since there is difficulty finding good fits when the measure-
ment values are highly fluctuating [19]. Our work models
three applications which do not have fluctuating resource
usage characteristics to that extreme extent, and as such,
we did not encounter the issue. A method of combating
irregular usage patterns is adjusting the frequency to minimize
the difference between each measurement. This solution is
not without its problems, as some applications might have
mixed and periodical resource boundness. Thus, measuring too
frequently becomes an issue, as some applications might not
finish a viable amount of work between each measurement.

In four out of six cases, MARS achieves the lowest RMSPE
values of the non-parametric regression processes evaluated in
this paper. TES and SES present a considerably lower RMSPE
value, modeling the matrix multiplication application than
MARS. These lower RMSPE values are visible in figures 12
and 13. The difference in low RMSPE values, depending on
the different applications we use, suggests the best regression
processes is dependent on the sample characteristics. Since
MARS provides the best overall RMSPE value, it will be the
best when forecasting resource usage of an application with
completely unknown execution characteristics.

There is an inability to construct some of the regressive
models with a moving average component, including ARMA
and ARIMA, which happens as a consequence of wrongful
tuning of the moving average component input parameter.
Fine-tuning the input parameters of our models, however,
means we need to add additional parameters into the model,
which goes outside of the limitation of using only first-order
models. As a final remark, referring back to this paper’s orig-
inal question: Can we predict a given application’s resource
usage using regression models? We argue that this is doable,
as indicated by our results.

Since most CoTS hardware typically implements a broad set
of performance counters, there are opportunities for complete
resource usage forecasts. Our approach using frequency-based
measurements on individual applications makes resource usage
forecasts possible for any application as long as the hardware
implements the performance counters, which are of interest.

7



VI. SUMMARY

In this paper, we evaluate methods for forecasting the
resource usage of 3 different applications. We evaluate auto-
regressive, spline regressive, and exponential smoothing as
approaches for modeling applications and their usage of CPU
L2-cache L3-cache. We compare the modeling fitness using
RMSPE against each other to single out an ample modeling
process. Our evaluation shows that MARS shows the most
promise for forecasting application resource usage among the
nine different evaluated regression processes.

A. Future work
We want to extend the MARS-work presented in this paper

with resource scheduling forecasting using MARS processes
making it possible to schedule processes in a cache-aware
fashion. The processes do not interfere with each other, thus
decreasing the risk for cache contention.

The three workloads we use in this paper are traditional
Bubble Sort, Matrix Multiplication and Scale-invariant feature
transform(SIFT). These commonly appear in larger applica-
tions and are thus representative for small chunks of code
within a system. Future work includes examining our approach
in conjunction with large-scale system solutions which include
more complex applications with different resource usage pro-
files. Future work also includes conducting the resource fore-
casts in a scheduling environment where we test our hypothesis
on resource contention. Ideally, two applications executing
their most cache heavy phases should not run simultaneously
since it builds a perfect environment for resource contention.
Since we build resource usage profiles, the final goal is to
create a new scheduling technique to mitigate cache contention
through analysis of the cache access patterns.

In this work, we only use one hardware platform and one
compiler flag. The resource usage profiles will be different
using different hardware and compiler flags since the . Our
approach is however agnostic since it only uses events pro-
duced from the performance counters. We however want to
verify the RMPSE calculations against other hardware with
different cache configurations to compare RMSPE differences
for the models.

REFERENCES
[1] H. Akaike. Fitting autoregressive models for prediction. Annals

of the institute of Statistical Mathematics, 21(1):243–247, 1969.
[2] R. Azimi, David K. Tam, L. Soares, and M. Stumm. Enhancing

operating system support for multicore processors by using
hardware performance monitoring. SIGOPS Oper. Syst. Rev.,
43(2):56–65, April 2009. ISSN 0163-5980.

[3] G. EP. Box and G. M. Jenkins. Time series analysis: Forecasting
and control san francisco. Calif: Holden-Day, 1976.

[4] R. G. Brown. Exponential smoothing for predicting demand.
In Operations Research, volume 5, pages 145–145, 1957.

[5] J. Cao, M. Valois, and M. S. Goldberg. An s-plus function
to calculate relative risks and adjusted means for regression
models using natural splines. Computer methods and programs
in biomedicine, 84(1):58–62, 2006.

[6] X. Chen, Q. Quan, Y. Jia, and K. Cai. A threshold autoregres-
sive model for software aging. In 2006 Second IEEE Inter-
national Symposium on Service-Oriented System Engineering
(SOSE’06), pages 34–40, 2006.

[7] Y. Cho, Y. Kim, S. Park, and N. Chang. System-level power
estimation using an on-chip bus performance monitoring unit. In
2008 IEEE/ACM International Conference on Computer-Aided
Design, pages 149–154, Nov 2008. doi: 10.1109/ICCAD.2008.
4681566.

[8] M. Courtois and M. Woodside. Using regression splines for
software performance analysis. In Proceedings of the 2nd
International Workshop on Software and Performance, WOSP
’00, page 105–114, New York, NY, USA, 2000. Association
for Computing Machinery. ISBN 158113195X. doi: 10.1145/
350391.350416.

[9] J. Danielsson, Jägemar Marcus, Tiberiu Seceleanu, Moris
Behnam, and Mikael Sjödin. Run-time cache-partition con-
troller for multi-core systems. In In 45th Annual Conference of
the IEEE Industrial Electronics Society (IECON), 2019, 2019.

[10] Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris
Behnam, and Mikael Sjödin. Testing performance-isolation
in multi-core systems. In 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC), volume 1,
pages 604–609. IEEE, 2019.

[11] C. De Boor. On calculating with b-splines. Journal of
Approximation theory, 6(1):50–62, 1972.

[12] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra.
Using papi for hardware performance monitoring on linux
systems. 08 2009.

[13] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik
Hagersten. Cache pirating: Measuring the curse of the shared
cache. In 2011 International Conference on Parallel Processing,
pages 165–175. IEEE, 2011.

[14] J. H. Friedman. Multivariate adaptive regression splines. The
Annals of Statistics, 19(1):1–67, 1991. ISSN 00905364.

[15] M. Hatzimihail, M. Psarakis, D. Gizopoulos, and A. Paschalis.
A methodology for detecting performance faults in micropro-
cessors via performance monitoring hardware. In 2007 IEEE
International Test Conference, pages 1–10, Oct 2007. doi:
10.1109/TEST.2007.4437646.

[16] C. C. Holt. Forecasting seasonals and trends by exponentially
weighted moving averages. International journal of forecasting,
20(1):5–10, 2004.

[17] G Lowe. Sift-the scale invariant feature transform. Int. J, 2:
91–110, 2004.

[18] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable
interface to hardware performance counters. In Proceedings
of the department of defense HPCMP users group conference,
volume 710, 1999.

[19] omitted for blind review. Master’s thesis.
[20] Robertwgh. Ezsift. URL https://github.com/robertwgh/ezSIFT.

accessed: 2020-10-12.
[21] F. T. Schneider, M. Payer, and T. R. Gross. Online optimizations

driven by hardware performance monitoring. SIGPLAN Not., 42
(6):373–382, June 2007. ISSN 0362-1340.

[22] S. Seabold and J. Perktold. statsmodels: Econometric and
statistical modeling with python. In 9th Python in Science
Conference, 2010.

[23] Andreas Sembrant, David Eklov, and Erik Hagersten. Efficient
software-based online phase classification. In 2011 IEEE In-
ternational Symposium on Workload Characterization (IISWC),
pages 104–115. IEEE, 2011.

[24] R. Sharma, A. Nori, and A. Aiken. Bias-variance tradeoffs in
program analysis. volume 49, pages 127–137, 01 2014.

[25] S. Shimizu, R. Rangaswami, H. A. Duran-Limon, and
M. Corona-Perez. Platform-independent modeling and predic-
tion of application resource usage characteristics. Journal of
Systems and Software, 82(12):2117 – 2127, 2009. ISSN 0164-
1212.

[26] L. Torvalds. Perf tools. URL https://github.com/torvalds/linux/
tree/master/tools/perf. accessed: 2020-07-07.

[27] S. Vogl and C. Eckert. Using hardware performance events for
instruction-level monitoring on the x86 architecture. 01 2020.

[28] P. Whittle. Hypothesis testing in time series analysis, volume 4.
Almqvist & Wiksells boktr., 1951.

[29] P. R. Winters. Forecasting sales by exponentially weighted
moving averages. Management science, 6(3):324–342, 1960.

[30] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Coloris:
a dynamic cache partitioning system using page coloring. In
2014 23rd International Conference on Parallel Architecture
and Compilation Techniques (PACT), pages 381–392. IEEE,
2014.

8


