
Automatic Quality of Service Control in Multi-core
Systems using Cache Partitioning

Jakob Danielsson1, Tiberiu Seceleanu1, Marcus Jägemar1,2, Moris Behnam1, Mikael Sjödin1
1 Mälardalen University, Västerås, Sweden

2 Ericsson AB, Stockholm, Sweden
jakob.danielsson@mdh.se

Abstract—In this paper, we present a last-level cache partition-
ing controller for multi-core systems. Our objective is to control
the Quality of Service (QoS) of applications in multi-core systems
by monitoring run-time performance and continuously re-sizing
cache partition sizes according to the applications’ needs. We
discuss two different use-cases; one that promotes application
fairness and another one that prioritizes applications according
to the system engineers’ desired execution behavior. We display
the performance drawbacks of maintaining a fair schedule for all
system tasks and its performance implications for system applica-
tions. We, therefore, implement a second control algorithm that
enforces cache partition assignments according to user-defined
priorities rather than system fairness. Our experiments reveal
that it is possible, with non-instrusive (0.3-0.7% CPU utilization)
cache controlling measures, to increase performance according
to setpoints and maintain the QoS for specific applications in an
over-saturated system.

I. INTRODUCTION

Hardware resources are often limited for automotive
control-systems. Especially when executing multiple applica-
tions on electronic control-unit, resource allocation must be
carefully considered before deployment to achieve the desired
Quality of Service (QoS). Multi-core computers are gaining
increased popularity for the automotive industry due to in-
creased available resources (processor cores) on the same chip.
Multi-core processors offer higher computational capacity than
their single-core predecessors while utilizing less size, weight,
and power (SWaP) than older single-core ones. Multi-core
computers often utilize a shared resource principle, where the
ownership of multiple resources such as cache memories and
the memory bus are shared simultaneously across different
cores. The resource-sharing principle makes multi-core’s prone
to a state called shared resource contention, which causes
severe execution-time fluctuations for applications and is seen
as one of the major bottlenecks for bringing multi-core’s into
time-critical computing.

It is possible to counter shared resource contention us-
ing partitioning techniques such as cache coloring for the
cache [12] and thus make multi-core systems more time-
predictable. However, the partition boundaries are hard to
assign appropriately at system boot since an application can
change run-time behavior during the lifespan of the system.
As such, too small partition sizes can cause an application to
display lower QoS than desired, and a too large partition sizes
wastes hardware resources without any QoS gain.

In this work, we try to automate the allocation of cache
memory to meet QoS needs. We present experiments contain-
ing two different distribution policies; fair and prioritized. Fair
distribution prioritizes assigning cache partitions based on the
current performance of all system applications and tries to
optimize the allocated cache size such that all applications
reach as close as possible to their maximum performance.

Priority distribution instead distributes cache memory based on
an application’s setpoint QoS and prioritizes this application to
receive cache partition space while the setpoint QoS is not met.
Our experiments are done for over-saturated systems where it
is impossible to reach maximum QoS for all applications. We
demonstrate that our controller can instead reach and maintain
a setpoint QoS for our system using our fair strategy. We
further demonstrate how to prioritize an application and meet
QoS needs for one specific, prioritized application. We list our
contributions as follows:

• An automated process of monitoring application per-
formance continuously, without the need of a complex
communication scheme.

• A cache partitioning control scheme that automatically
adjusts the cache partition size of monitored applications
to meet their respective QoS.

• A working implementation in Linux using the above
mentioned contributions.

II. BACKGROUND

A. Application Quality of Service
We define QoS as a function of the number of instructions

retired in a time interval. One instruction retired means that the
instruction has passed through all stages within the processor
pipeline. This means that for higher QoS, an application
will execute/retire a higher number of instructions. We can
configure the performance monitor counters (PMC) of a CPU
to monitor the instructions retired rate for a process ID
(pid), and thus monitor the performance of an application
online. However, the measurement approach means that we put
requirements on the application’s functionality – network and
I/O applications that utilize busy-wait loops typically display
a high number of instructions retired in the loops but not
doing practical work. The prerequisites for our performance
measurement approach to work is that the applications are
not utilizing busy-wait loops (such as waiting for sensors to
become ready) but instead continuously doing ”actual” pro-
cessing (such as identifying obstacles in an image frame from
a video stream). We assume our the QoS of our applications
is correlated to the number of instructions retired, where an
increase in number of instructions retired leads to a decrease
in response time.

B. Cache contention
Cache memories are relatively small, temporary mem-

ory storage units that affects the system’s overall perfor-
mance. Cache memories in multi-core systems are prone to
reach a state called cache contention, which causes dramatic
execution-time fluctuation of system applications [3] and can
cause problems to a system that expects execution-time pre-
dictability. The main reason for cache contention is the small978-1-7281-2989-1/21$31.00 ©2021 IEEE

memory size of the cache combined with simultaneous utiliza-
tion from multiple tasks on different cores. The cache’s are so
small that it is very improbable that an entire application’s
memory foot-print fits within the cache and it is almost a
certainty that the cache will become full at some point during
an application’s execution.

Cache memories implement a data eviction policy to mit-
igate out-of-cache memory scenarios and replaces old data
with new data when the cache is full. The cache selects one
data block (cache line) according to a policy (e.g., LRU,
random), evicts the selected cache line from the cache and then
finally inserts the new data onto the address of the previously
evicted data. Data replacement is necessary to counter the
small memory space of a cache, but is also the main reason
for severe execution-time fluctuations and QoS decrease.

Execution-time fluctuation often appears when two or more
cache dominant applications utilize the same cache mem-
ory [2]. Consider the following scenario; two applications
App1 and App2 executes simultaneously in a dual-core system
with a 4 MB cache. App1 runs on core 1 and App2 runs on
core 2. Both applications require a memory footprint of 4 MB–
i.e. the same size as the available cache and both application
have a cache usage that is linear with the execution. The cache
will be full and start to evict data that belongs to either App1
or App2 once the applications have executed roughly half of
their execution. The data evictions means the data is no longer
present within the cache and needs to re-fetched from the
main memory into the cache if referenced again, which has a
significant latency.

Cache contention causes dramatic execution-time fluctua-
tions for applications in multi-core systems [2] and is one of
the major bottlenecks for introducing multi-core chips in to
time-critical computing. In this paper, we focus of the shared
last-level cache (LLC) as the location of the contention which
can be partitioned according to the page-coloring algorithm
that mitigates cache contention [12].

C. Cache partitioning

The main idea behind cache partitioning is to reserve a
portion of the cache memory to only certain processes such
that shared cache contention never occurs. There exist a va-
riety of solutions to implements cache partitioning, including
the static, hardware-supported cache way-partitioning, MMU-
based page coloring [12] [5] and also the programmatic
cache locking solution [10]. In this paper, we utilize page
coloring; an MMU-implemented a policy that redirects how
page addresses are translated into the cache memory. There
exists a large body of variations on page coloring including
Palloc [14], Coloris [12], Jailhouse hypervisor adaptation [5]
etc. Page coloring creates borders in the cache memory dis-
qualifying processes from accessing certain data blocks in the
cache memory (cache-lines).

We exemplify page coloring using three applications (A,B,
and C) in Fig. 1 with a cache that contains nine cache-lines.
Fig 1 shows how the MMU maps addresses to the cache in
a page-colored environment. Memory requests that belong to
application 1 are only allowed to access cache lines 1-3 while
application 2 is only allowed to access the cache lines 4-6.
Page-coloring thus means an application can only evict its’
data from the cache memory and not by other applications on
different cores.

We showcase the effects of cache contention in Fig. 2 and
illustrate how these effects are countered using page coloring.

Fig. 1: Cache coloring

Fig. 2 shows two experiments that runs 150 executions of one
256x256 matrix multiplication on core 0. The blue squares
marks the execution time of a matrix multiplication running
in a non-isolated environment, while the orange crosses marks
the the execution time of a matrix multiplication running in a
cache partitioned environment. We generate cache contention
by starting another 256x256 matrix multiplication at iteration
75 on core 1.

Fig. 2: Cache contention

Cache contention has a dramatic effect on the non-isolated
matrix multiplications’ (blue squares) execution time. The fig-
ure shows how the execution-time for the matrix multiplication
increases by 17 milliseconds, just from running another matrix
multiplication on another core. The cache partitioned version is
roughly 5-6 milliseconds slower than our un-partitioned case,
but remains unchanged when the new matrix multiplication.
Cache partitioning however comes with drawbacks in terms of
complexity which causes execution-time overhead as (5-6 ms
in the example). The cache memory is also very small, which
means the partition sizes for different applications must be
handled with utmost care to avoid wasting a valuable resource.
The total number of available colors depends on the way-
set associativity and also the total amount of cache space.
The number of available cache partitions for a processor is
calculated according to Equation 1 [12].

Nr. of Colors =
Cache size

Cache ways ∗ page size
(1)

D. Related work
There exists a large body of dynamic cache partitioning [12,

14, 6, 8, 9] that investigates how to optimize cache partitions to
achieve maximum performance of the SPEC CPU benchmark

2

suite. However, it is hard to reach maximum performance
in an over-saturated system where all cache-partitions are
assigned; wherefore, we focus on creating a controller that
lets the system engineer decide the performance thresholds.
Other related works focuses on enforcing quality of service [4]
and isolation [13] through bandwidth restrictions. Kloda et al.
introduces page-coloring into the Jailhouse hypervisor, which
also introduces an entirely new dimension to solving cache
contention as the cache partitioning spans overall application
that belongs to a specific guest OS. However, the solution is
limited to re-partitioning at guest OS boot, which makes it
dynamic but less flexible. Our work differs from the previous
work since we introduce a priority fashion-based assignment
policy into the cache allocation policy. Our goal is not to
optimize overall system throughput but to provide isolation
for applications while prioritizing performance for specific
applications. Xu et al. [11] presents CaM, a resource partition
allocation scheme using the intel’s built-in cache partition
utility called CAT and combines it with the memory bus
reservation scheme memguard [13]. CaM proposes an algo-
rithm that contains multiple procedures that optimizes task
schedulability in a system. The main similarities between our
work and CaM lie in resource allocation and load balancing.
CaM takes the approach of allocating the minimum partition
size to tasks executing on different cores and then re-allocates
partitions until all tasks are schedulable. CaM also executes
load balancing by migrating tasks from unschedulable cores
to schedulable cores. CaM presents WCET guarantees and
focuses on the schedulability of tasks. Our work instead
focuses on tweaking the performance of specific applications
in an oversaturated system in an online fashion. Our controller
does not evaluate all possible task permutations in a system
but instead focuses on tweaking the cache partition size of
already running applications to satisfy performance needs.

III. CACHE PARTITION DISTRIBUTION

Cache partitioning offers isolation and counters execution-
time fluctuations that happen as a consequence of cache
contention. Cache partitioning, however, comes at the expense
of performance degradation due to a complex memory man-
agement mechanism. Allocating cache partitions statically to
applications is the most simplistic distribution policy. How-
ever, it can be very non-optimized as it is hard to assign
suitable partition sizes beforehand unless performing time-
consuming exhaustive searches [1]. Various online approaches
instead tune the cache partition sizes to optimize application
execution time [12] and maximizes system throughput.

There are industrial use-cases where the maximum through-
put of the entire system is not the primary goal but is to
instead maintain the QoS for one or perhaps two particular
applications. Additional performance benefits to the system are
just bonuses. Consider a simplistic multi-core system for an
autonomous vehicle that contains three applications executing
on different cores on the same chip; App1 – feature detection
algorithm that detects visual obstacles; App2 – stores log-
metrics in a database. App3 – DPDK that sends and receives
log-data packets over the network.

App1 has the most critical task in detecting obstacles for
the autonomous vehicle, while App2 and App3 posts log
data. These applications, however, run in the same multi-
core system and thus share the same cache. Assigning cache
partitions based only on increasing system overall performance
(that is, increasing the number of instructions retired in a

time interval) can lead to a scenario where App2 and App3
reserves all available cache partitions, while App1 only gets
one cache partition. Distributing the system fairly based on
cache usage can also lead to the same scenario if App2 and
App3 utilizes the cache more than App1. Both scenarios will
lead to a decreased QoS for the feature detection algorithm
while the system’s overall performance increases. We target
our use-case towards systems that prioritizes QoS for specific
applications above an overall system throughput.

IV. IMPLEMENTATION

We implement our QoS cache partitioning controller in C
using a petalinux 4.14 kernel. The controller utilizes the per-
formance API (PAPI) [7] for monitoring the PMC; the cgroup
interface for controlling an application’s core affinity, and also
the palloc [14] interface for adjusting the cache partition sizes.
Our primary focus lies not in optimizing performance but to
meet a specific application’s QoS. We present our controller
architecture in Fig 3.

Fig. 3: Cache partition controller architecture

The controller samples the number of instructions retired
(QoS) of all system applications (M1..Mx) every 20 ms and
calculates the average QoS every 100 values. We assume each
application to run in parallel on different cores. Our controller
utilizes a QoS database to provide an estimate setpoint for
the controller. The QoS database contains instructions retired
measurements of all system applications and is measured pre-
execution. However, the purpose of the QoS database is only
to provide estimates for QoS setpoints, as they might not be
theoretically achievable due to the limited cache space on-
chip. The system engineer has to make the final verdict for
each application on valid setpoints and use the database values
as a reference for deciding a setpoint QoS. The controller
compares the setpoints (S) of all running applications to the
current QoS and selects two applications, one application that
receives cache partition space and one application that loses
cache partition space in step C. We implement two different
controller modes that select applications for cache partition
re-distribution; fair-oriented and priority-oriented.

Fair-oriented In this mode, we compare the differences
between an application’s current performance and its setpoint.
The controller will increase the cache partition size for the
application that displays the greatest difference between the
setpoint and the current performance and decrease the cache
partition size for the application that displays the least differ-
ence.

Priority-oriented In this mode, the system assigns priorities
to each application. The application that has the highest
priority will always receive cache partition size first-hand. The
controller will assign cache partition space to lower priority

3

applications only when the higher priority applications display
a QoS equal to the setpoint.

The change in cache partition size for the two selected
applications is always 1 and the minimum cache partition
is one for each application. If an application already has the
minimum cache partition size, another application will instead
be selected. The controller actuates the cache partition space
of the two selected applications in step E utilizing the palloc
API. The outcome from the cache partition actuation is a cache
partition space for each application (P1..Px).

V. EXPERIMENT SETUP

We utilize the Xilinx-zynq zcu102 evaluation kit as testbed
platform, with the processor specifics as of Table. I. Our chip
provides a 16-way set associative cache, which means we may
consider 16 (1 MB/16 ∗ 4 KB = 16) available colors in the
system according to equation 1.

TABLE I: Hardware specifications Xilinx Zynq UltraScale+ MPSoC

Feature Hardware Component
Core 4xArm Cortex A-53 @ 1.2GHz
L1I-cache 32 KB 2-way set assoc cache/core
L1D-cache 32 KB 4-way set assoc cache/core
L2-cache 1 MB 16-way set assoc. shared Last-level Cache
MMU L1ITLB: 10 entries

L1DTLB: 10 entries
L2TLB 512 entries, 4-way set assoc.

A. Test applications
Our execution scenario is inspired from industrial use-

cases that execute applications on different cores. The system
contains resource draining applications, that will drain the
entire cache and as such cause severe execution-time jitters for
other applications in the system. We exemplify the industrial
use-case with three continuously running applications, two
cache draining matrix multiplications that are common in
computer graphics as synthetic loads and one feature detection
algorithm, SUSAN to serve as a realistic load, listed as
follows:

1) Matmultijk (200x200) - Naı̈ve implementation of the
matrix multiplication that utilizes the traditional IJK
traversion strategy.

2) Matmultikj (100x100) - Cache prefetcher friendly
traversing strategy of a matrix multiplication, designed
to generate a higher cache hit rate than the naı̈ve version.
We chose a different size of this matrix multiplication
to show more diverse results.

3) SUSAN - This application represents our realistic ap-
plication and is used to detect corners in a frame. It is
commonly used combination with other algorithms to
identify visual obstacles for autonomous vehicles.

B. Controller setup
The controller is run as a standalone process that is running

on its own core. It continuously monitors the applications’ per-
formance counters (instructions retired and L2-cache misses)
every 20 milliseconds – the sampling rate is a trade-off value.
More frequent sampling rate reduces the controller’s sleep
time and thus results in a significant CPU utilization increase.
Less frequent values will instead decrease the controller’s
responsiveness since we are dependent on average samples
to estimate the current performance. In this paper we wanted

to maintain a CPU utilization below 1% while still being able
to re-partition on a second basis, wherefore we chose 20ms.
The controller stores the performance counters in a history
database, which is used for calculating the average readings.
We calculate the average performance counter readings based
on 100 samples from the history database and use these
average readings as basis for the re-partitioning decision.
Table II summarizes the controller variables for our tests.

TABLE II: Controller configuration

Property Value
Sampling frequency 50HZ

Average window size 100

VI. PARTITIONING EXPERIMENTS

In this section, we perform several experiments to show
the benefits of an online partitioning controller. We perform
four different experiments, including a baseline experiment, a
proof-of-concept experiment focusing on application fairness,
a QoS-focused cache distribution policy, test and finally a
priority-based cache distribution policy. We affine each appli-
cation to different cores; Cache partition controller (core 0),
Matmultijk (core 1), Matmultikj (core 2) and SUSAN (core 3).
The controller has a CPU utilization of 0.3-0.7% and always
runs using one cache partition. Due to the controller’s CPU low
utilization, it is possible to run other other applications on the
same core as the controller if 0.3-0.7% loss of CPU utilization
is acceptable. In this paper we focus only on partitioning
the cache, wherefore we opt out of optimizing scheduling
applications together with the controller.

A. Initial experiment
Here, we present the setpoint QoS of the applications

utilizing the maximum available cache partitions for each
application. This value will be our reference QoS and used
to compare the quality of a cache partition. We measure
the maximum QoS by monitoring the number of instructions
retired while all available partitions are assigned to an appli-
cation running in isolation. We sample the instructions retired
every 20ms for 10 seconds and then calculate the average
instructions retired. We use 10 seconds as interval to capture
PMC events of at least 10 full iterations of each application.
We present the reference values in Table III.

TABLE III: Cache partition maximum configuration

Application Partition size Reference QoS
Matmultijk 15 5.4 ∗ 106
Matmultikj 15 8.22 ∗ 106

SUSAN 15 10.4 ∗ 106

The table shows the average number of instructions retired
per 20 milliseconds of our applications, we denote this metric
as reference QoS. However, the conditions of this experiment
are not possible in a real system with concurrently running
tasks, as we only have 15 available cache partitions and cannot
distribute 15 colors to all concurrently running tasks without
risking cache contention through cache-partition sharing.

B. Naı̈ve cache partitioning
We can statically assign cache partitions in a naı̈ve fashion

by distributing the available cache partition space equally to
all concurrently running applications, see Table IV.

4

TABLE IV: Initial setup

Application Partition
Controller 1

Matmultijk 5
Matmultikj 5

SUSAN 5

In our naı̈ve scenario, we split all available cache partitions
among our different applications, which means our test appli-
cations receives 5 cache partitions while the controller receives
1. Table V shows the number of instructions retired per 20 ms
(denoted as QoS), the L2-cache misses per 20 ms, and the
difference in QoS compared to the reference QoS for each
application.
TABLE V: Performance comparison: reference versus equal partitions

Application QoS L2-cache misses Diff
Matmultijk 3.23 ∗ 106 27901 41 %
Matmultikj 7.19 ∗ 106 45380 13%

SUSAN 9.83 ∗ 106 81073 6.2%

The table shows how an initial cache partition setup changes
the QoS of our applications compared to the reference QoS
in our previous experiment. Matmultijk performs worst (due
to nature of the naı̈ve traversion strategy) comparing to the
reference QoS, and SUSAN performs best.

C. Fair distribution

The equally shared cache distribution experiment shows
a significant QoS degradation as compared to the reference
QoS. We introduce a control mechanism to regulate the cache
partition sizes according to the distance to the reference
QoS. The controller balances the QoS of the applications to
minimize the difference between the application’s current QoS,
and their reference QoS. We list the controller steps as follows:

1) Monitor current QoS of all applications in the system
2) Select application with highest difference compared to

the reference QoS (Apphigh)
3) Select application with lowest difference compared to

the reference QoS and cache partition size > 1 (Applow)
4) Increase partition size of (Apphigh) by one and decrease

partition size of (Applow) by one
5) Go to step 1
The above algorithm embraces fairness, prioritizing poorly

performing applications over better-performing applications.
Figures 4, 5 and 6 depicts the cache partitioning assignments
done by the controller over a time-period of 90 seconds. The
red line marks the current average QoS on the left-hand side
y-axis, the green line marks the reference QoS as measured
in the initial experiment, and the blue line marks the cache
partitioning sizes on the right-hand side y-axis.

The three figures show an example of an over-saturated
system as the controller cannot assign partitions that meets
any reference QoS. The difference of Matmultijk remains the
highest until a cache partition size of 11. Once this mark is
met, the controller starts continuously change partition size
between Matmultijk and Matmultikj . The algorithm partitions
the system fairly, but fails to meet the QoS requirements of any
application. Figure 6 displays high performance fluctuations
due to the sensitivity of the performance to the cache size, we
discuss this further in Section VII.

Fig. 4: Susan fair cache partitioning

Fig. 5: Matmultijk fair cache partitioning

D. Reference distribution
An application’s desired QoS does not necessarily have to

be the maximum achieve-able QoS. A system engineer can, for
example, decide that it is acceptable that a task is operating
at a percentage value of its maximum capacity when cache
isolation is more prioritized. In this subsection, we tune down
the expectations of our two matrix multiplications and instead
use a ”desired QoS” as metric for the controller to chase.
We leave SUSAN’s desired QoS unchanged at 10.4 million
instructions per 20 ms. We show these new desired QoS values
in Table VI and compare them with our reference values.

TABLE VI: Initial setup

Application Reference Desired % Difference
Matmultijk 5.4 ∗ 106 3 ∗ 106 55%
Matmultikj 8.22 ∗ 106 7.5 ∗ 106 91%

SUSAN 10.4 ∗ 106 10.4 ∗ 106 100%

The table shows that we have tuned down the QoS require-
ment of Matmultijk by 45% to an average of 3 million instruc-
tions per 20ms. We have also tuned down the requirement of
Matmultikj by 9%, to 7.5 million instructions per 20ms. In
Figures 7, 8 and 9 we show how our controller operates
with these new QoS requirements.

The figures show how the controller adapts the parti-
tions according to the new desired QoS values. SUSAN
still gets the minimum number of partitions, but Matmultijk
and Matmultikj present a different scenario. Matmultijk gets
priority on receiving partitions first-hand since the distance
to the desired QoS is highest. Matmultikj starts to receive
partitions from Matmultijk at controller iteration six.

5

Fig. 6: Matmultikj fair cache partitioning

Fig. 7: SUSAN 100% target performance

E. Priority distribution
Different applications in a system can be of different im-

portance. Our system utilizes two matrix multiplications as
synthetic loads and one ”real” scenario application, SUSAN.
In this experiment, we assign priorities to our applications to
force partitions into a specific application. We chose SUSAN
to receive the highest priority, Matmultikj to receive medium
priority, and Matmultijk to receive low priority. Introducing
priorities means we also shift our distribution rules, presented
as follows:

1) Monitor the QoS of active tasks in the system
2) Select the highest priority application (Apphigh) that

does not have a current QoS higher than a desired QoS
3) Select the lowest priority application that has cache

partition size > 1 (Applow)
4) Distribute one cache partition from Applow to Apphigh
5) Go to step 1
Once the high-priority application meets its target QoS,

the controller will actively shift focus to the second-highest
priority task and so on. Our priority policy means a medium
priority task will only get partitions once the high priority
task has its QoS requirements fulfilled etc. We exemplify
the priority distribution policy using a QoS threshold in our
applications. The controller will shift cache distribution focus
once an application runs at a higher QoS than its threshold.
Table VII presents the experiment setup and contains appli-
cation priorities and QoS threshold values. Matmultijk has a
non-applicable threshold since it is the lowest priority.

SUSAN has the highest priority, Matmultikj has medium
priority and Matmultijk has low priority. Once SUSAN counts
a presents a higher count of instructions retired than 7.5 ∗

Fig. 8: Matmultijk 55% target performance

Fig. 9: Matmultikj 91% target performance

106 (95% of measured max), Matmultikj will start to receive
partitions. Figures 10, 11 and 12 shows the cache partition
distributions for SUSAN, Matmultijk and Matmultikj using
our prioritization policy.

Fig. 10: SUSAN high priority

These experiments show a different cache partitioning dis-
tribution compared to the previous two experiments. SUSAN,
now on high priority,receives a size increase at the first con-
troller iteration, which increases the QoS to above the thresh-
old. Since SUSAN now is above the threshold, Matmultikj
receives cache partitions from Matmultijk for two iterations
while also increases the QoS above the desired threshold.
SUSAN, however, displays a QoS degradation during this time
and is prioritized once again for cache partitions. This time,
SUSAN takes cache partition size from Matmultijk for six
iterations, and the QoS finally hits the QoS threshold again. At
iteration 30, SUSAN’s QoS once again is below the threshold

6

TABLE VII: Initial setup

Application Priority Threshold Value
Matmultijk Low N/A N/A
Matmultikj Medium 95% 7.5 ∗ 106%

SUSAN High 95% 9.95 ∗ 106

Fig. 11: Matmultijk low priority

and thus receives another cache partition from Matmultijk.
From this point, the controller does not change the cache
partition distribution.

F. Equal priority distribution
Our last experiment presents our prioritization policy when

applications run the same priority. This policy presents the
most complex problem since we here combine both fairness
and priority. When two applications have the same priority, we
trigger the fairness calculation and calculate the application’s
distance to its desired QoS. In this experiment, we assign
SUSAN the same priority as in the previous experiment (high),
but we lower the threshold by 0.2% to create a more interesting
execution scenario. We furthermore lower the priority of
Matmultikj to low, see Table VIII for experiment specification.
We maintain the desired QoS from our previous experiment.

TABLE VIII: Initial setup

Application Priority Threshold Value
Matmultijk Low N/A N/A
Matmultikj Low N/A N/A

SUSAN High 93% 9.95 ∗ 106

The graphs show the re-distribution policy when Matmultijk
and Matmultikj run with the same priority (low). The con-
troller immediately assigns one cache partition to SUSAN,
which increases SUSAN’s QoS to above the 93% threshold.
The controller then triggers the fairness calculation for both
matrix multiplications. Matmultijk has the most significant
distance to the desired QoS and gets cache partitions from
Matmultikj for five controller iterations. The increased cache
space results in an increased QoS for Matmultijk but also
a decreased QoS for Matmultikj . The controller starts to
fluctuate at iteration 8, since Matmultikj has now the furthest
distance to its desired QoS. The controller thus assigns one
cache partition from Matmultijk to Matmultikj , a behavior
maintained throughout the rest of the experiment execution.

G. Discussion
Our results show that it possible with relatively non-

intrusive algorithms (0.3-0.7& CPU utilization) to control

Fig. 12: Matmultikj medium priority

Fig. 13: SUSAN high priority

an application’s QoS using only the means of cache re-
partitioning. The first and most engaging discussion point
is when to stop assigning cache partitions. All of our ex-
periments, except for the all-different priority case, display
a self-fluctuating state of the controller, which repeatedly
decreases/increases the partition size of the same two ap-
plications. The fluctuating behavior is a consequence of a
traditional constant controller that is working, but that case
might not be practical. It is possible to add sanity checks
within the controller that detects such behaviors since we
have access to historical data and stop the re-partitioning
procedure once detecting a fluctuating behavior. Stopping the
re-partitioning procedure will increase the complexity of the
controller significantly, since we then also need to add decision
making for starting a stopped controller again.

The SUSAN’s fluctuating performance - Fig. 10 - can
be explained as follows. SUSAN trespasses the performance
threshold setpoint already at controller iteration 1. SUSAN
reaching the performance threshold mark this early is however
an outlier and could be a result of SUSAN executing a couple
of ”lucky” executions. SUSAN goes below the threshold QoS
setpoint again at controller iteration 4, wherefore the controller
re-starts to assign partitions to SUSAN. Implementing a freez-
ing functionality for the controller could, in this particular
case, have led to a scenario where the controller freezes the
partitions for SUSAN at partition size 1, while the current
detected performance was a result due to a measurement
anomaly.

VII. SUMMARY

We presented here the idea of building an online cache
partitioning controller that focuses on maintaining QoS for

7

Fig. 14: Matmultijk low priority

Fig. 15: Matmultikj low priority

prioritized applications. We presented two primary cases;
maintaining QoS based on a user-defined reference value
and maintaining QoS through prioritization. Our results show
that it is possible to control the execution time of several
cache-bound tasks in a multi-core system by adjusting cache
partition sizes. We introduced two controller modes: fair and
prioritized and execute experiments using three applications.
Our fair partitioning algorithms display favoritism towards
the matrix multiplications because the difference between
their current QoS and their setpoint performance is always
greater than SUSAN’s. The two matrix multiplications also
show a more significant sensitivity towards an increased cache
space which results in SUSAN never receiving cache partition
space according to the fair policy. We therefore implement a
priority policy that will assign partitions for applications with
A. Future work

Our controller uses a minimum cache partition size of one,
but there is also the possibility of investigating cache partition
sharing such that applications which are not important share
the same cache partition. Sharing the same cache partitions
will cause cache partition contention and reduce the QoS
dramatically for the affected applications but will on the
other hand free more cache partitions for the applications that
do not share cache partitions. We also envision using more
sophisticated controller techniques with other hardware that
provides more available cache partitions. More available cache
partitions means it can be possible to include a proportional
element to the controller and change the cache redistribution

higher priority on first-hand. We show that our priority scheme
prioritizes the QoS of SUSAN and increases its performance
by 5% compared to a fairly partitioned system.
to more than just one per iteration. Other interesting works
include investigating effective ways to freeze the system and
thus counter the self-fluctuating effect resulting from our
controller operating.

REFERENCES

[1] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal
cache partition-sharing. In 44th International Conference on
Parallel Processing, pages 749–758. IEEE, 2015.

[2] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and
M. Sjödin. Testing performance-isolation in multi-core systems.
In 43rd Annual Computer Software and Applications Confer-
ence (COMPSAC), volume 1, pages 604–609. IEEE, 2019.

[3] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten.
Cache pirating: Measuring the curse of the shared cache. In
2011 International Conference on Parallel Processing, pages
165–175. IEEE, 2011.

[4] M. Jagemar, A. Ermedahl, S. Eldh, M. Behnam, and B. Lisper.
Enforcing quality of service through hardware resource aware
process scheduling. In 23rd International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), volume 1,
pages 329–336. IEEE, 2018.

[5] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente,
and M. Bertogna. Deterministic memory hierarchy and virtu-
alization for modern multi-core embedded systems. In Real-
Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–14. IEEE, 2019.

[6] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
Gaining insights into multicore cache partitioning: Bridging the
gap between simulation and real systems. In 14th International
Symposium on High Performance Computer Architecture, pages
367–378. IEEE, 2008.

[7] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable
interface to hardware performance counters. In Proceedings
of the department of defense HPCMP users group conference,
volume 710, 1999.

[8] S.P. Muralidhara, M. Kandemir, and P. Raghavan. Intra-
application cache partitioning. In International Symposium on
Parallel & Distributed Processing (IPDPS), pages 1–12. IEEE,
2010.

[9] M. K Qureshi and Y. N. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to par-
tition shared caches. In 39th Annual International Symposium
on Microarchitecture (MICRO’06), pages 423–432. IEEE, 2006.

[10] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher
program predictability. SIGMETRICS Performance Evaluation
Review, 31(1):272–282, 2003.

[11] Meng Xu, Linh Thi Xuan Phan, Hyon-Young Choi, Yuhan Lin,
Haoran Li, Chenyang Lu, and Insup Lee. Holistic resource
allocation for multicore real-time systems. In 2019 IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), pages 345–356. IEEE, 2019.

[12] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache
partitioning system using page coloring. In Parallel Architec-
ture and Compilation Techniques (PACT), 23rd International
Conference on, pages 381–392. IEEE, 2014.

[13] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha.
Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In Real-Time and
Embedded Technology and Applications Symposium (RTAS),
19th, pages 55–64. IEEE, 2013.

[14] H. Yun, R. Mancuso, Z.P. Wu, and R. Pellizzoni. Palloc: Dram
bank-aware memory allocator for performance isolation on
multicore platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 20th, pages 155–166.
IEEE, 2014.

8

